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Introducing the DG/UX 5.4 File System

Figure 1 is a high-level view of the DG/UX 5.4 File System. The figure

shows how the File System connects to the disk I/O system and where file

addresses (in italics) are translated from pathnames to locations on a

physical disk.
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Figure 1 Overview of the DG/UX 5.4 File System and Virtual Memory Manager
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The DG/UX 5.4 File System supports the features of the classic UNIX file

system, the Berkeley (BSD) Fast File System, and the DG/UX 4.3x file sys-

tem. However, the DG/UX 5.4 File System is more generalized than the

BSD file system and provides enhancements to work with the DG/UX mul-

tiprocessor architecture.

In the DG/UX 5.4 operating system, application programs and files as well

as kernel programs are demand paged in main memory by the Virtual

Memory Manager. In this model, virtually all of a computer’s memory is

treated as a cache for programs and files—unlike other UNIX implementa-

tions that use Virtual Memory for programs and a buffer cache for files.

The DG/UX 5.4 operating system uses the kernel data cache only for file

system metadata (Figure 1). File system metadata is “data about data”—

data that the File System uses to describe and locate files.

Using the DG/UX 5.4 operating system’s Virtual Memory Manager to han-

dle both programs and files provides for more efficient use of a computer’s

main memory resource. The Virtual Memory Manager can adjust dynami-

cally the memory resources to reflect the demand of a mix of applications.

The result is improved File System performance without the need for try-

ing to determine the set of system parameters, such as buffer cache size,

that provides the best performance for a range of applications.

Some of the other key points about the File System are listed below. It’s im-

portant to note that these features are transparent to applications that use

the File System.

Q You can create file systems on either logical disks or on physical disks.

You will almost always want to create file systems on logical disks.

Logical disks essentially isolate a file system from the implementation

details of the underlying physical disk subsystems and provide

flexibility in how you use a computer system’s physical disk resources.

QO To an application, a logical disk looks just like a physical disk. However,

a logical disk can be as large as 2 Tbytes (2 Terabytes) and can span as

many as 32 physical disks.

Q The sizes of file systems are limited only by the size of the logical disk

or physical disk on which a file system is created. A single file in a file

system can be as large as 2 Gbytes.

QO The File System supports mirroring of logical disks as well as data

striping (interleaving). Striping distributes data from large files among

two or more physical disks so that programs can access multiple

physical disks concurrently.

QO The File System divides disk space into Disk Allocation Regions (DARs).

DARs enhance File System performance by keeping a file’s data blocks

and the pointers to its blocks close together, to minimize disk latency.

DG/UX Technical Brief The DG/UX 5.4 File System
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QO) The File System is responsible for translating file pathnames into

addresses that a disk drive understands (block numbers).

QO When you create file systems, you'll find that the default parameters

work well with a range of applications. However, you have the option of

changing several kernel and File System parameters to maximize the

performance of your file system.

QO You can move the contents of file systems to and from other UNIX

systems by using the standard transfer utilities, such as tar. In addition,

you can mount NFS file systems, DOS file systems, High Sierra, and

ISO-9660 (CD-ROM) file systems.
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Terminology

Here are some terms that we use in this technical brief.

Disk sectors

The granularity at which disk drives and controllers work. Disk sectors

are a fixed size; in AViiON systems a disk sector is 512 bytes. Also

called disk blocks. (Sectors for other random access devices, such as

optical disks, can have different sector sizes.)

Data block

If we’re talking about a block of data that is stored in a logical disk, we

use the term data block. Data blocks are 512 bytes, and are a multiple of

the underlying physical disk’s sector size.

Data elements

The logical granularity at which the DG/UX File System transfers files’

data. You can set the size of a file’s data elements from 512 bytes to

several megabytes. The default data element size on DG/UX systems is

8 Kbytes, which is sixteen 512 byte disk sectors.

Frame

A memory container that holds a page or part of a page. In AViiON

computers, the frame size is 4 Kbytes.

Page

The logical granularity at which the DG/UX Virtual Memory system

allocates and transfers data. Page size must be a multiple of frame size.

In DG/UX 5.4, the page size is 4 Kbytes (1 X frame size).

One other comment about terminology—in this technical brief, we use the

term File System (with capital letters), when we're talking about the general

concepts of the DG/UX 5.4 File System. We use the term file system (without

capital letters), when we’re talking about a specific instance of a file system—

one that you’ve created.

The DG/UX 5.4 File System DG/UX Technical Brief
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Understanding the File System

The DG/UxX File System is responsible for managing all files that are stored

on disk—application program files as well as the operating system’s files.

This responsibility includes managing files’ characteristics, such as access

privileges, and translating file pathnames to addresses in physical or

logical disks.

You typically create file systems on logical disks. When you create a file

system on a logical disk, the Logical Disk Manager translates logical disk

addresses (block numbers in a logical disk) to physical disk addresses

(block numbers in a physical disk) and passes the physical disk addresses

to the disk I/O system. The Logical Disk Manager is a pseudo-device

driver—part of the DG/UX kernel. If you create a file system on a physical

disk, the services of the Logical Disk Manager aren’t used, and the file

system passes its addresses directly to the disk I/O system.

We'll describe first how file systems work with physical disks, because the

same concepts apply to file systems that you create on logical disks. Then,

we'll talk about the unique aspects of logical disks. We’ll examine the dif-

ferent aspects of the File System and Logical Disk Manager in the follow-

ing order:

O Files and file systems

How files are stored

Accessing files

Logical disks

The File System and the Virtual Memory Manager

Access modes for files

Cy

i)

|

CJ

LJ

Q Block I/O and character I/O

DG/UX Technical Brief The DG/UX 5.4 File System
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An Application’s View of Files and File Systems

To a user program, a file has a name, a size, and other properties such as

access flags and date/time stamps. Files can contain data, executable pro-

grams, shell scripts, or a list of information about other files (a directory).

Programs access files with operating system calls such as creat, open, read,

and write.

Files are stored in file systems. You can mount file systems to enable pro-

grams to access files within those file systems.

Within a file system, files are organized in a hierarchical, inverted tree

structure. The top of the inverted tree is the root, which is represented by

the slash character (/) (Figure 2).

Figure 2 Files in the DG/UX Hierarchical File System

User programs refer to files by pathname, starting with the root. For exam-

ple: /usr/doe/test. Intermediate names in a path, such as usr and doe are

directories (nodes in the tree). Directories are files that contain a list of the

files that are stored under them in the tree. Because directories themselves

can contain other directories, a tree can contain many levels.

The DG/UX 5.4 File System DG/UX Technical Brief
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Inside the File System

The DG/UX kernel’s Directory Manager creates and manages the user-vis-

ible hierarchical file structure. However, the File System doesn’t work di-

rectly with the hierarchical structure—the File System works with a logical

flat file structure, where all of a file system’s files are in one “directory.”

This flat file structure (Figure 3) is invisible to application programs.

Application Programs

Block Number on Logical Disk

Figure 3 Directory Manager and Flat File Manager

The Flat File Manager is responsible for providing and managing the flat

file model. In a file system’s flat file structure, each file is identified by a

unique index node (inode) number.

When the Directory Manager receives a user program’s request to access a

file, the Directory Manager converts the file’s pathname into an inode num-

ber and passes the inode number to the Flat File Manager. For example, in

Figure 3, filel, which is under dir1, might be stored as a file with inode

number 105 in the flat file system.

Within each inode are pointers to the location of a file’s data blocks. (We

talk more later about how inodes point to a file’s data blocks.)

DG/UX Technical Brief The DG/UX 5.4 File System
July 31, 1991 012-004054-00
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The File System’s View of Disk Storage

To the File System, disk storage, whether logical or physical, appears as a

contiguous set of disk blocks. Superimposed on this contiguous set of disk

blocks (Figure 4) are a File Management Information Area (FMIA), Disk Al-

location Regions (DARs), a DAR Entry Table, and a backup copy of the

FMIA.

DAR
_|FMIA] DAR 0” aoe DAR “N” | Entry

Figure 4 Layout of a File System

The FMIA, which is equivalent to the “superblock” in BSD and AT&T

UNIX systems, contains information about the file system, including the

DAR size, the number of inodes per DAR, and the default data element

size for files and directories. The FMIA is stored at the beginning of each

file system. A backup copy of the FMIA is stored at the end of a file sys-

tem, along with a DAR Entry Table. The DAR Entry Table contains infor-

mation about each DAR, including how many inodes and data blocks a

DAR is using.

To increase file system performance, the rest of a file system is divided into

Disk Allocation Regions (DARs). To access a file, the File System alternate-

ly reads a file’s inode (to find where the file’s blocks are stored) and the

blocks themselves. By using DARs, a file system can keep a file’s data

blocks and inodes physically close together, which minimizes physical disk

mechanical latency (seek time).

Figure 5 shows a file system with an exploded view of a DAR, which con-

sists of:

Q a bit map, which tells the Flat File Manager how the blocks ina DAR are

being used. The bit map has an entry for each block in a DAR, including

itself, the inode blocks, and the data blocks. For example, as files are

created and deleted or grow and shrink, the data blocks in a DAR are

used to store new blocks, or will become unused. The DAR’s bit map

reflects this changing usage.

Q a table of inode slots—one inode slot is used for each file that is

referenced from the DAR.

O blocks that contain files’ data and index elements (discussed later).

The DG/UX 5.4 File System DG/UX Technical Brief
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Figure 5 Inside a Disk Allocation Region

When you create a file system, you have the option of specifying the file

system’s DAR size (how many disk blocks will be in the file system’s

DARs). You can also specify the number of inodes in a file system, which

establishes the number of files that a DAR can contain. The default is one

inode for every 3,500 usable data bytes in a file system.

If you know that an application is going to create files with large contigu-

ous allocations, you can create fewer DARs with larger sizes. Conversely, if

your application is going to create mostly small files, you can create more

(and smaller) DARs. The smaller DARs will keep the small files’ data

blocks and inodes close together.

Note that the last DAR in a disk will probably be smaller than the other

DARs. For example, if you create a 1 Gbyte logical disk and set the DAR

size to 10,000 disk blocks (5 Mbytes), the logical disk is divided into 200

DARs. The last DAR will be slightly smaller than 5 Mbytes to make room

for the backup FMIA and the DAR Entry Table.

What happens if a file won’t fit into a DAR? It’s possible that a file can

grow too large to fit within its DAR, or that a newly created file won't fit

within one DAR. In these cases, the File System can automatically use parts

of other DARs to store some or all of a file. The algorithm that the File Sys-

tem uses to store files in other DARs is based on a DAR’s free space and a

file’s “anniversary sizes,” which we describe later in the “Tips for Tuning a

File System” section.

DG/UX Technical Brief The DG/UX 5.4 File System
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Accessing Files

In this section, we'll answer two questions that relate to how files are

accessed in the DG/UX File System:

1) What are data elements?

2) How are inodes used to access files?

About Data Elements and Transfer Sizes

The DG/UX File System works with a granularity of 512 byte blocks,

which is the same size as disk sectors on physical disks. However, it’s inef-

ficient for the File System to read and write data to the disk in these small

blocks. On the average, it takes about 25 milliseconds for a disk to position

its heads over a disk sector. Once a disk’s heads are positioned, the File

System might as well read more data from that area of a disk—anticipating

that a program will be asking for the data next. Therefore, files are allocat-

ed using an aggregate of contiguous 512 byte data blocks called a file sys-

tem data element. By default, a data element is 8 Kbytes (16 disk blocks). On

a per-file basis, you can choose a data element size of 512 bytes to just less

than the size of a DAR.

A data element is stored in contiguous disk blocks on a logical disk. How-

ever, data elements need not be stored contiguously within a DAR. Figure

6 shows an example of how a 32 Kbyte file might be stored in a DAR.

We’ve assumed that the data element size is 8K bytes. Therefore, the file is

stored in four data elements and each data element has in it 16 contiguous

data blocks.

DAR
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Figure 6 Data Blocks in Data Elements

For data element sizes up to 16 Kbytes, the File System will read, write,

and cache data using the data element size. However, for data elements

greater than 16 Kbytes, the read operations, write operations, and Virtual

Memory caching are performed at the File System’s 16 Kbyte transfer size.

The DG/UX 5.4 File System DG/UX Technical Brief
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For example, if a file’s data element size is 64 Kbytes, each data element in

that file contains 128 contiguous data blocks, while transfers are carried out

in 16 Kbyte chunks.

When you create a file system, you can specify the file system’s default

data element size, which is used when files are created. When you create a

file, you can specify a data element size different from the default. Howev-

er, you can’t change a file’s data element size once the file has been created.

We talk about the effects of changing data element size in the “Tips for

Tuning a File System” section.

The File System also provides a facility to manage small files. Many files

that the operating system and application programs use are smaller than

the default 8 Kbyte data element size. When a program is modifying rela-

tively small files, it’s expensive to store on disk large data elements—it

wastes I/O bandwidth and disk space. To conserve bandwidth and disk

space, the File System uses fragments as a way of storing small files on a

disk.

There are five fragment sizes (512 bytes, 1, 2, 4, and 8 Kbytes). Whether the

File System stores a fragment instead of a data element depends on the size

of the data element and the size of the file. The algorithm says “if a file is

smaller or equal to half the size of the data element, the file is transferred

and stored in the smallest possible fragment size, up to the maximum frag-

ment size of 8 Kbytes.”

Here are some examples. If the data element size is 8 Kbytes and an appli-

cation wants to write a 1.5 Kbyte file, the File System will store the file in a

2 Kbyte fragment. If the data element size is 4 Kbytes and an application

creates a 2.2 Kbyte file, the File System stores the file in 4 Kbytes. If the

data element size is 32 Kbytes and an application wants to write a 12 Kbyte

file, the file is stored in 32 Kbytes.

About Inodes

In the DG/UX File System, the key to accessing files is the inode. Pointers

in an inode tell the Flat File Manager where a file’s data elements are

stored.

There is exactly one inode for each file in a file system. In addition to ele-

ment pointers, an inode contains all of the other information that the File

System needs to know about a file. An inode includes information about a

file’s data element size, access privileges, and last-modified times. When

you use the Is -1 command, the information that is displayed about the files

in a directory, except the files’ names, is coming from the files’ inodes.

DG/UX Technical Brief The DG/UX 5.4 File System
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The inodes in a DAR (on disk) are a fixed size—124 bytes—and are stored

four to an inode table block. Because inodes are small, they can’t point

directly to all of the data elements in a large file. (Remember that a DG/UX

file can be as large as 2 Gbytes.) In fact, only the first ten data elements of

a file are pointed to directly from an inode (Figure 7).

Disk Allocation Region

mT TT TT id ProTMN TMNI 1 |

Ga Inodes Data Elements and Index Elements

hit LLL LI Lt oe Ls

Inode

Information S

About the File Direct i

Pointer — Single :

= Index Double :
SS Data Element : Index Triple
Be Pointers Index
SS (To 10 Elements)

Double,

and Triple

index Element

Pointers

Figure 7 Locating a File’s Data Blocks With an Inode

Both the DG/UX operating system and DG/UxX applications often use

small files as temporary files. The File System can locate quickly the data

elements of small files by using inodes’ direct pointers.

The remaining entries in an inode are pointers to index elements. Index ele-

ments, which are stored in the DAR along with data elements, contain

pointers to the data elements in a file that aren’t referenced with direct

pointers. By using index elements, which can contain single, double, and

triple indirect pointers, a small inode can reference all of a large file’s data

elements. For example, to reference a data element through a single indi-

rect pointer, the Flat File Manager reads from disk the inode, then the in-

dex element, then the data element.

When you create a file system, you can change the default size of its data

elements and index elements. We talk about that in the “Tips for Tuning a

File System” section.

The DG/UX 5.4 File System

012-004054-00

DG/UX Technical Brief

July 31, 1991



q, Page 13

The File System caches inodes in virtual memory, which speeds access to

files that are used often (such as the login password file /etc/passwd).

Memory-resident inodes are 512 bytes long. When the File System reads an

inode from the data cache, it calculates addressing information and puts

the information into the expanded memory-resident inode.

The inode cache contains all of the inodes for files that are in use, and some

number of recently used inodes. The size of the inode cache is controlled

by a kernel parameter called the free inode ratio, which is the number of in-

odes that are in use, divided by the number of recently used inodes that

are kept in the cache. The default free inode ratio is four. However, the

minimum number of free inodes is the number of inodes that will fit in 2%

of main memory.

For example, a computer with 16 Mbytes of memory will have, as a mini-

mum, 640 free inodes ((2% * 16 Mbyte)/512 bytes per inode). For file sys-

tems with larger inode usage, say 10,000 inodes, there will be a minimum

of 2,500 free inodes (using the free inode ratio of 4-to-1, which is larger

than the 2% minimum).

By the way, to maintain compatibility with other UNIX operating systems,

inode numbers in DG/UxX file systems start at 2, which is always a root

directory for the file system—there are no inodes 0 or 1.

DG/UX Technical Brief The DG/UX 5.4 File System

July 31, 1997 012-004054-00



Page 14 @,

File Systems and Logical Disks

The DG/UX operating system’s logical disks are software abstractions that

enable the File System to manage files the same way, regardless of how the

files are stored physically. To the operating system, a logical disk is a col-

lection of contiguous 512 byte disk blocks.

In the DG/UX operating system, you can create a logical disk from as

many as 32 pieces. A piece is some part of a physical disk, which can be as

large as a physical disk (currently 1 Gbyte for single-spindle disks and 30

Gbytes for the High Availability Disk Array (HADA) disk systems. A logi-

cal disk can use more than one piece from one physical disk, or pieces from

32 physical disks (Figure 8).

Logical Disk

Disk #0 Disk #1 Disk #31

Figure 8 A Logical Disk, Built on Pieces of Physical Disks

Here is a summary of the rules that govern file systems and logical disks:

0 A logical disk can contain only one file system.

QO If a logical disk contains a file system, the file system will occupy the

entire logical disk.

A logical disk can use pieces from as many as 32 physical disks.C]

QO A piece must reside on one physical disk—it cannot span physical disks.

QO A physical disk can contain many pieces of many logical disks.

| Logical disks can be configured to support data striping (for increased

read performance) and mirroring (for increased data availability).

With these configuration rules and 1 Gbyte disks, an AViiON computer

could be configured with 2 30-Gbyte HADA disk systems and 28 1-Gbyte

SCSI disks for a total of 88 Gbytes of storage. The theoretical addressing

limit for logical disks is 2 Tbytes (2*! bytes), which exceeds the physical

storage capacity of most other UNIX implementations.

The DG/UX 5.4 File System DG/UX Technical Brief
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Striping Logical Disks Across Physical Disks

In the DG/UX 5.4 and DG/UX 4.3x File Systems, you can arrange pieces of

physical disks so that large files are distributed across the disks. This en-

ables you to distribute accesses among the physical disks, instead of

accessing all of a large file’s data from one disk—which can become a bot-

tleneck. In other words, you can place data blocks “1 to m” of a logical disk

on one physical disk and “m+1 to n” on another physical disk, and so on.

The DG/UX 5.4 File System adds support for data striping, also called in-

terleaving. Striping is another, more finely granular, way of distributing a

logical disk’s data blocks among different physical disks. Data striping can

provide several benefits, which are listed below.

Q Striping enables you to balance the I/O load across several physical

disks.

Q Striping can help processes avoid disk bottlenecks.

Q Striping can improve the I/O performance of a single process by

enabling the File System to perform read operations on one disk while it

performs read ahead operations from other disks.

Figure 9 shows a simple example of striping with four physical disks. In

the example, we’ve shown a stripe unit size of 64 blocks (32 Kbytes). Sup-

pose that you were reading a large file that was stored in this striping con-

figuration, with a data element size of 16 data blocks (8 Kbytes). In this

example, there are 4 data elements stored in each stripe unit. Therefore, the

first 4 data elements of the file might be stored on physical disk 1, the next

4 data elements on disk 2, and so on.

3 [0-63 64-127 128-191 192-255

256-319 320-383 384-447 448-511

x 640-703 704-767 4— Stripe
&
° 768-831 832-895 896-959 960-1023

3S
Q

Blocks

N-1 (N-64)-(N-1)
—

Figure 9 Data Striping Across Physical Disks
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Logical disk mirroring is a software technique that maintains identical cop-

ies of logical disks on separate physical disks. Disk mirroring is important

for applications that can’t afford to lose the ability to access data if a disk

fails.

By mirroring a logical disk with pieces from different physical disks, you’re

able to access the logical disk’s data, without interruption, if one of the mir-

rored physical disks fails. If a disk fails, the failure is reported to the oper-

ating system, which sends a message to the console and to the operating

system error log. An application using the data is not affected at all.

Logical disk mirroring dynamically remaps bad blocks among mirror cop-

ies. If a bad block develops on one physical disk in a mirrored pair, the

mirroring software reads the bad block’s data from the other disk and

maps it to a good block. See the “Dynamically Remapping Bad Blocks” sec-

tion at the end of this brief for more information about bad block remap-

ping.
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The DG/UX 5.4 operating system performs software mirroring at the Logi-

cal Disk Manager level, and you can have up to three mirror copies. Two

copies is the most common case—you have a copy of your data in case a

block goes bad or if one of the mirrored physical disks fails.

With three-copy mirroring, you can split off one mirror copy—in effect tak-

ing a snapshot of your file system. You can make a tape backup of the

snapshot while applications continue to run, without losing the security of

mirroring during the backup operation. (Before you split off the mirror

copy, you should be sure that all of the file system’s data has been flushed

from memory.)
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The DG/UX 5.4 Demand-Paged File I/O Model

One of the most significant features of the DG/UX 5.4 operating system is

its use of a demand-paged file I/O model to handle programs’ I/O re-

quests, instead of the file buffer cache that is used in traditional UNIX op-

erating systems.

Comparing the 4.3x and 5.4 File Systems

In the DG/UX 4.3x operating system (the left side of Figure 10), the file

buffer cache stored both file data and kernel metadata (such as inodes, in-

dex elements, and directory information). The size of the buffer cache

memory was a fixed size that you specified when you built the kernel.

Memory allocation for programs was managed separately, by the Virtual

Memory Manager.

. DG/UX 5.4 File System with
DG/UX 4.3x File System Demand-Paged File I/O Model

Application Programs Application Programs

Pathname Pathname
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To Logical To Logical
Disk Manager Disk Manager

Figure 10 Comparing the DG/UX 4.3x and DG/UX 5.4 File Systems

The most significant change in the DG/UX 5.4 operating system’s I/O

model (the righthand part of Figure 10), is that files are no longer stored in

the buffer cache. Instead, the Flat File System and Virtual Memory Manag-

er work together to access and cache files as well as user and kernel

programs.

The DG/UX 5.4 File System DG/UX Technical Brief

012-004054-00 July 31, 1991



q, Page 19

In DG/UX 5.4, the kernel’s Virtual Memory Manager treats all memory the

same, whether it is used for programs, files, or stacks. In this model, essen-

tially all of a machine’s main memory is viewed as a cache for demand

paging.

Note that a buffer cache and Buffer Manager are still present in the de-

mand-paged file I/O model. Unlike application programs, the kernel

doesn’t pre-allocate memory for its data structures, so the Buffer Manager

is still responsible for managing the small amount of pooled memory (disk

buffers) that the kernel uses to perform I/O operations on file metadata.

However, the kernel data cache is very small, because it is used only to

cache kernel metadata (unlike the 4.3x buffer cache, which used 20% of

main memory by default).

Advantages of Demand-Paged File I/O

The principle of Virtual Memory is that it presents to programs the illusion

of almost unlimited memory. The Virtual Memory Manager creates this il-

lusion by mapping, on demand, virtual (logical) memory addresses into a

machine’s main memory.

The Virtual Memory Manager looks at main memory as a group of 4 Kbyte

frames. When a program accesses some data (with a read or write system

call), the Virtual Memory Manager (VMM) checks to see if the logical pages

that contain the data are already resident in main memory frames. If the

pages aren’t in memory, the VMM reads them into memory.

From this description, you can see the similarities between how Virtual

Memory works and how traditional UNIX File Systems use a buffer cache.

However, the demand-paged file I/O model provides for more efficient

and flexible use of a computer’s main memory resource by:

QO Supporting “dynamic file caching” in memory, and

(1 Enabling application programs to use the DG/UX 5.4 memory mapping

system call (mmap).

Dynamic File Caching

With a traditional fixed-size buffer cache, there are always situations when

there is no “right” cache size for a mix of application programs. In the

DG/UxX 5.4 operating system, the Virtual Memory Manager dynamically

balances the ratio of resident pages that contain files to resident pages that

contain programs. The more a program uses a file, the more of the file’s

data will reside in main memory.
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Transfer Rate

The demand-paged file I/O model enables a File System to maintain high

transfer rates for repeated accesses to relatively large files. Figure 11 shows

relative I/O transfer rates versus file size for a File System that uses a buff-

er cache and for the DG/UX 5.4 demand-paged file I/O model.

Relative Transfer Rate

vs. File Size

VO Using DG/UX 5.4

/O Transfer Rate : Buffer Cache Demand-Paged File

(Bytes/sec) i (Traditional Systems) l/O Model

Disk Subsystem ce. onan
Tran sfer R at @ Fo Bb EEESSESESSESE RIE as REO An 8 a SOR

A MCC Ne
CMP MMM i Bb Pah hh

Relative File

Size (M bytes)

Buffer Cache Size Size of Main Memory Minus

Pages Containing Programs

Figure 11 Comparing Transfer Rates

In a File System that uses a file buffer cache, the I/O transfer rate starts to

fall off as a file’s size approaches the size of the buffer cache. Because the

demand-paged file 1/O model uses as a cache essentially all of main mem-

ory, a high transfer rate can be maintained for much larger files.

Memory Mapping System Call

The mmap call eliminates the overhead of copying data from memory into

a program’s data space (which occurs when programs use the read system

call). With the mmap call, application programs can map the virtual ad-

dresses of a file into their address spaces, rather than making copies of the

data.

The mmap system call enables an application program to treat a region (or

all) of a file as an array. A call to mmap maps the part of a file that you

specify into virtual memory. You can access that part of the file directly;

without using traditional read and write system calls.
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In addition, the mmap system call:

Q Supports sharing of data, which makes efficient use of memory. Two or

more programs can reference the same data page for read operations.

QO Optionally supports “copy on write” behavior. Copy on write means

that two or more programs can share the same data page in main

memory, up to the point that one of the programs makes a request to

write to the page. At that time, the Virtual Memory Manager gives to

the writing program a separate copy of the page.

_ The FYI section “More About the Demand-Paged File I/O Model” on page

39 talks more about how the mmap system call works.

Note that application programs that were written for DG/UX 4.3x will run

on DG/UX 5.4, without source code changes or recompilation. If you’re

writing new programs, you can take advantage of the mmap system call.

Special Access Modes for Files

The File System normally accesses files asynchronously with Virtual Mem-

ory operations. That means that a program can continue its work even

though data that a program has changed may not yet have moved from

main memory onto a physical disk. However, the DG/UX File System pro-

vides system call support for two other file access modes: synchronous and

unbuffered.

Synchronous Access Mode

You may want an application program to access files synchronously; for ex-

ample, to suspend a program while a write operation’s data is copied from

main memory to disk. Many database programs use this technique to

maintain transaction logs so that the database can be recovered if it is

damaged.

When you open a file, you can specify that you want to access it synchro-

nously. Synchronous mode affects only write operations. For writes, the

system call doesn’t return control to your program (the program doesn’t

run again) until modified data is written to the disk. If you’ve changed the

size of the file, the file’s inode and index elements (if used) are also written

to disk.

Unbuffered Access Mode

You can use special system calls to bypass the buffer cache altogether and

allow a program to read and write data directly to and from its own buff-

ers. Sophisticated transaction processing programs, for example, may use
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unbuffered access mode. Because these applications provide and manage

their own buffering, they don’t require the services of the File System’s

buffer cache.

The DG/UX 4.3x system calls that perform unbuffered I/O operations are

available in the DG/UX 5.4 operating system. However, you can use the

mmiap system call to perform some unbuffered I/O operations more

efficiently.

About Block I/O and Character I/O

The DG/UX operating system supports two kinds of disk I/O operations:

block and character. Although these two operations don’t “belong” to the

File System, it’s useful to examine how they interact with the File System.

As shown in Figure 12, block 1/O transfers go through Virtual Memory. The

transfer size is fixed at 16 Kbytes. Even if a program asks for a one byte

record from a file, the File System reads 16 Kbytes from disk. Block I/O op-

erations can be either asynchronous or synchronous. Block I/O is used

only with disks, and a disk that is being accessed in block mode is called a

block disk.
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Application Programs
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Character
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Figure 12 Block and Character I/O

Character I/O, also called “raw” I/O, is used with devices that transfer one

character at a time, such as terminals and printers. Character I/O can also

be used with disks, allowing unbuffered transfers of an arbitrary number

of disk sectors. Character I/O operations are synchronous. Applications

can bypass Virtual Memory by performing character I/O operations on a

disk. For example, a database management program might use character

I/O to manage its own disk transfers. A disk that is being accessed in char-

acter mode is called a raw disk.

The DG/UX operating system’s ability to create file systems on both logical

and physical disks, combined with the block and character access modes,

gives application programs a great deal of flexibility. For example, a pro-

gram can use character special I/O on a physical disk to interact directly

with a disk—the I/O operations bypass both the File System (and Virtual

Memory) and the Logical Disk Manager.
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The following table summarizes how DG/UX handles the different combi-

nations of disk types and access modes.

Uses Uses

Directory Virtual Logical Disk

Disk Type I/O Mode Pathname Memory? Manager?

Logical Block /dev/dsk Yes Yes

Character /dev/rdsk No Yes

Physical Block /dev/pdsk Yes No

Character /dev/rpdsk No No

You can see the different access modes of logical and physical disks by

looking at the files in the /dev directory. For example, the access privileges

for /dev/dsk are “brw,” where the “b” stands for block special. In contrast,

the access privileges for /dev/rdsk are “crw,” where the “c” stands for char-

acter special.

Creating Logical Disks and File Systems

The DG/UX operating system provides utilities that enable you to create

logical disks, and create and tune file systems.

If you’re creating a file system on a logical disk, you use the diskman

utility to create the logical disk. After you’ve created a logical disk, the

diskman utility invokes mkfs, which you use to create a file system ona

logical disk or physical disk. You can modify a file system’s parameters

with tunefs, which we describe in the next section.
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The DG/UX diskman utility enables you to create and arrange logical

disks while a system is running. If there’s a logical disk that you’re not us-

ing, you can delete it or make a copy of it. If there’s a piece of disk space

that is free, you can turn it into a logical disk. Note that the diskman utility

is not part of the BSD or AT&T operating systems.

Here’s a summary of the relationships and sizes of various File System

data structures.

Data Structure

Logical disk

File system

DAR

Single file

Data element

Index element

Data block

Disk sector

Size

Tunable—2 Tbytes maximum, 32 piece maximum.

Limited by size of logical disk (2 Tbytes) and number of

disk pieces (maximum of 32). If created on a physical disk,

limited by disk’s size.

Tunable—limited by size of file system.

Application dependent—can be larger than a DAR, up to

a maximum of 2 Gbytes.

Tunable—512 bytes to several hundred Mbytes (just less

than DAR size), in powers of 2. Default is 8 Kbytes.

Tunable—512 bytes to 64 Mbytes, in powers of 2. Default is

512 bytes.

Fixed—512 bytes for disks.

Fixed by disk system— 512 bytes for most disks.
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Tips for Tuning a File System

Before you begin a tuning exercise, you should have some specific perfor-

mance goals in mind. You should also have an understanding of the de-

mands your application or mix of applications places on the system.

For example, are your applications memory intensive, CPU intensive, or

I/O intensive? If your system has multiple physical disks, is the system’s

I/O load balanced among the disks? You should also understand that the

tuning parameters interact among themselves. A change that you make to

speed up one application might slow down a different application. Your

goal should be to find the best balance of system parameters for your mix

of applications.

After you've created a file system with diskman and mkfs, you can tune

the file system. A simple way of optimizing a file system’s performance is

to create the file system on a fast disk. For example, if your system has a

fast disk drive, you might use it for file systems that support your perfor-

mance-sensitive applications. If you have multiple disks on your system,

you may be able to increase performance by putting pieces of a logical disk

on different physical disks, or by using data striping to enable the File

System to access data from several physical disks concurrently.

In addition to moving a file system to a faster disk, you can tune a file sys-

tem with the tunefs utility. You can also change the values of kernel pa-

rameters (in the kernel configuration file), which affects all of the file

systems.

You can use the tunefs utility to change the defaults for a specific file sys-

tem without affecting the parameters of other file systems. Often, this is

easier than using system call parameters on a file-by-file basis. Changing a

file system’s defaults is also useful if you don’t have access to a program’s

source code—for example, you can set data element size this way.

There are several file system parameters that you can change. Some param-

eters, such as Virtual Memory cleaning time, are set in the kernel configu-

ration file and are used by all file systems. Other parameters, such as

default data element size, are set when you create a file system with the

mkfs utility and can be different for each file system. We’ll look at some of

the parameters in the general order that they affect performance:

Q) Size of main memory

Q Virtual Memory cleaning time (kernel configuration file)

QO Default data element sizes (mkfs, tunefs, and system calls)

QO Default index element sizes (mkfs, tunefs, and system calls)

QO Anniversary sizes (mkfs and tunefs)
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Notice that we don’t talk about making changes to the kernel data cache

parameters of size and aging time. These parameters have relatively small

effects on performance because the kernel data cache is only used to store

small amounts of kernel metadata.

Adding Main Memory

In the technical brief that talked about disks on AViiON systems, we men-

tioned that the way to speed up a disk is to avoid using it. That’s really not

a paradox—you can significantly reduce disk I/O operations by installing

as much memory in your system as your budget allows. This enables the

Virtual Memory Manager to cache more program and file pages in main

memory. Generally, increasing the size of a computer’s memory directly re-

duces the number of disk I/O operations. During normal system opera-

tion, many files are short lived—with adequate memory, they can be

created and deleted without requiring any disk I/O.

We'll look at the effect that adding memory has on a typical AViiON com-

puter by running an I/O benchmark program.

The test program starts by creating an 8 Mbyte file. The program reads

data records from the file sequentially, and then writes data records back to

the file sequentially. The reads and writes continue until all of the records

have been read and written. The test program then repeats the read and

write operations using random accesses. The sequential and random oper-

ations are repeated five times, to transfer 40 Mbytes of data.
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The test system was an AViiON AV310 with a model 6554 662-Mbyte SCSI

disk. To show the effect of different memory sizes, we ran the benchmark

program with memory sizes of 8 Mbytes and 16 Mbytes. Figure 13 shows

the results of these tests.
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Figure 13 Effect of Different Main Memory Sizes

With 8 Mbytes of memory, only part of the 8 Mbyte test file can be cached.

(Memory is shared by the data file, the operating system, and the test

program.) Doubling the amount of memory (to 16 Mbytes) has significant

effects on the I/O transfer rate because all of the 8 Mbyte test file can fit

into memory. With the 16 Mbyte memory, the throughput for sequential

read operations was 21.5 times better than with 8 Mbytes of memory, and

write throughput was 20 times better. The throughput for random read and

write operations was more than 16 times greater with the 16 Mbyte main

memory.

Changing the Page Cleaning Time

The Virtual Memory Manager normally cleans pages (copies modified pag-

es to disk) within 60 seconds after a page has been modified. The purpose

of this policy is to maintain data integrity by copying modified pages to

non-volatile storage (disk). Note that the modified pages are only copied to

disk—the pages remain in memory until the Virtual Memory Manager

swaps them out to make room for other pages.
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You can change the cleaning time by changing the Virtual Memory

cleaning time parameter (MAXBUFAGE) in the kernel configuration file

and rebuilding the kernel. (In DG/UX 4.3x, this parameter controlled the

buffer cache flush time.)

Turning the MAXBUFAGE value up—cleaning modified pages at longer

intervals—can make many application mixes perform better, but reduces

data integrity. By increasing the cleaning time, you’re increasing the risk

that recently modified data in memory will be lost if a system failure

occurs.

Keep in mind that turning the MAXBUFAGE parameter down is in

opposition to the general policy of keeping file and program pages in

memory for as long as possible. This policy saves disk I/O operations by

increasing the probability that a program will finish working with a file

before the file is written to disk. If a temporary file is not written to disk

before an application finishes using it, the file can be created in memory,

used to store some intermediate data, then deleted—without requiring any

disk I/O operations. For example, a compiler generates temporary files

between the different phases of a compilation. Turning down the cleaning

time can cause these temporary files to be written to disk, which results in

unnecessary I/O operations.

Turning down the cleaning time also decreases the number of times that a

program can modify data in a resident page, between the time that the data

is first modified and the time that the data is written to disk. As always,

you should experiment to find the best configuration for your particular

mix of applications.
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Figure 14 shows the relative results of changing times from the default of

60 seconds to 10 seconds. We used the same benchmark program as before,

but with a file size of 16 Mbytes and main memory size of 16 Mbytes.
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Figure 14 Effect of Virtual Memory Cleaning Time

Why is the throughput 1.3 times better with the page cleaning time at 60

seconds? Because the longer cleaning interval reduces the number of I/O

operations to disk. With the default 60 second cleaning time, many write

operations are made to already modified resident pages—before an I/O

operation is used to clean the pages to disk. The longer cleaning time also

enables the Virtual Memory Manager to take advantage of its algorithms

that “batch” disk I/O operations. When the cleaning time is turned down

to 10 seconds, more of the I/O system’s resources are used to clean pages,

and the program cannot move as much data.

Changing the Data Element Size

You can sometimes achieve performance gains by changing a file’s data el-

ement size to match the record size of your application. You can make the

data element size as small as one disk block (512 bytes) or as large as sev-

eral hundred megabytes (just less than the size of a DAR).

If you don’t take special action when you create a file system with mkfs, all

files in a file system will have the default data element size of 8 Kbytes.

With tunefs, you can change the default data element size for an existing

file system. You can use the dg_mknod system call to create a new file and
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set the file’s data element size or index element size to something other

than the file system’s default values. You can use the fez command to dis-

play the size of a file’s data elements and index elements.

In general, you want to match a file system’s default data element size to

the record size that your applications use. However, the effects on perfor-

mance can vary, depending on whether an application is using mostly ran-

dom I/O or mostly sequential I/O. Let’s look at both cases.

Random |/O—Try Smaller Data Element Sizes

If you’re working with an application that uses truly random I/O opera-

tions, you might consider using files with data elements that are smaller

than the 8 Kbyte default size.

If a file’s data element size is larger than an application’s data record size

and the application is using truly random I/O operations, the overhead of

reading and caching the extra data can be significant. By “extra data,” we

mean the data in the data element that is not part of the data record. For

example, if an application is accessing 2 Kbyte records and the data ele-

ment size is 8 Kbytes, the File System is moving and caching 6 Kbytes of

extra data for each I/O operation.

By decreasing the data element size so that it more closely matches the size

of the records that a program is reading, you can reduce the amount of ex-

tra data that is transferred. If the chances are small that an application will

make a Virtual Memory page “hit” on a data record from this extra data, it

makes no sense to pay the cost of transferring and caching the data. Not

only does it take longer to transfer this extra data, you’re using memory

that could be used to store files or programs from other applications.

Notice that we used the words “truly random I/O operations” at the be-

ginning of this section. Be aware that many “random” data accesses really

aren't truly random. The data often has some structure, which implies lo-

cality of reference. In these cases, you might want to make the data element

size somewhat larger than the data record size.

The trade-off when you decrease the data element size is that small data el-

ement sizes can adversely effect sequential 1/O operations. As you'll see in

the next section, sequential operations benefit from having data element

sizes that are larger than record sizes. Since data element size can be set on

a per file basis, the same file system can accommodate files that have dif-

ferent data element sizes for different patterns of I/O.

For applications running on the DG/UX 5.4 operating system, you proba-

bly don’t want to make the data element size any smaller than the Virtual

Memory page size (4 Kbytes). If you do, it’s likely that the Virtual Memory

Manager will have to perform more than one I/O operation for each page,
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and performance will suffer. This is a change from DG/UX 4.3x, which

sometimes provided performance gains with data element sizes as small as

512 bytes.

Sequential l/O—Try Larger Data Element Sizes

If you’re working with an application that uses sequential I/O operations,

you might consider using files with data elements that are larger than the 8

Kbyte default size.

As you might suspect from reading the discussion of data elements and

random I/O in the previous section, one reason for increasing the data ele-

ment size for applications that use mostly sequential I/O is to increase the

amount of localized data that is read into Virtual Memory. By increasing

the size of a file’s data element to more than an application’s record size,

you increase the probability that a follow-on request will find that the data

that it wants is already resident in memory. The File System itself performs

read ahead operations on sequential operations, by reading in the next data

element. If the data elements are large, the probability increases that se-

quentially accessed data will be in memory when a program asks for the

data.

There is essentially no limit on the size of a data element, except that it

must be slightly smaller than the DAR size (the DAR size minus the space

used by the DAR’s inodes and bit map). A data element can easily be as

large as several hundred megabytes.

Remember that a file’s data blocks are allocated contiguously within a data

element. If a file fits completely within a data element, you can approxi-

mate the behavior of file systems that support contiguous allocation. Or,

you can use large data elements to reduce disk seek times. With a large

data element, you'll be doing few seeks instead of potentially one seek for

every 8 Kbytes with the default data element size.

For example, if you have a 5 Mbyte file and set the data element size to 1

Mbyte, the first megabyte of the file will be contiguous. The File System

can read the file with a minimal number of seeks—the initial seek to a disk

cylinder, a read of that cylinder, and a seek to the next cylinder.

One trade-off of using a large data element size is that you can adversely

affect random I/O operations. Another trade-off is that you can fragment a

disk by making the data element size too big. There may be plenty of disk

space available, but the File System won't be able to find contiguous blocks

to store large data elements. In this case, the File System produces an “out

of space” error. Therefore, you don’t want to make the data element size

too big unless you really need the performance (or you have a very large

disk).
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Changing Index Element Size

By changing a file system’s index element size, you control how many disk

blocks are used to store index elements. The index element size does not

generally have a significant effect on overall performance, but you can use

it for fine tuning a file system.

If you’re working with large files, you can use larger index elements to ac-

cess more of a file’s data elements with single index pointers, and reduce

or eliminate the use of double and triple index pointers. Note that you

can’t change the number of direct pointers in an inode—that number is

fixed at ten. However, you can affect the amount of data that is pointed to

by the direct inodes by increasing the default data element size. So, for

large files, you might consider increasing both the data element size and

the index element size.

The trade-off of using large index element sizes is that they use up disk

space and memory. This is a consideration with small files—it makes no

sense to increase the index element size for files that can be referenced

completely by an inode’s direct pointers.

Changing Anniversary Sizes

As we mentioned earlier, the point of a DAR is to keep a file’s inode, index

elements, and data elements close together in a disk. The File System al-

ways tries to put all of a file’s pieces into one DAR. However, the File Sys-

tem also tries to balance the allocation of data within a file system by

keeping DARs equally full.

As a file grows in size, the File System allocates more and more blocks out

of the DAR that contains the file, until the file reaches its first anniversary

size. The first anniversary size is a limit that, when reached by a file, tells

the File System to start allocating a file’s data into another DAR. The anni-

versary size limit protects against having any one DAR too heavily sub-

scribed.

The default anniversary size for files is 1 Mbyte. You can set a different size

when you create a file system with mkfs, or afterwards with tunefs. You

might want to use a larger anniversary size if you’re working with large

DARs. With large DARs, a larger anniversary size will keep the File System

from moving parts of files to other DARs too quickly.

There’s also a second anniversary size limit that tells the File System when

to stop allocating data blocks from a secondary DAR and move data into

yet another DAR (or DARs).

On a related note, how full should a file system be allowed to be? General-

ly, a file system should be less than 90% full—if a file system is more than

90% full, it becomes too difficult for the File System to find space on the
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disk, and accesses to the disk slow down. You can set a limit on the “full-

ness” of a file system when you create it with the mkfs utility, or after-

wards with the tunefs or cpd utilities.

You can control the size of directories by using Control Point Directories

(CPDs). We describe CPDs in the “FYI” section on page 36.

FYl—Other Features of the DG/UX File System

The DG/UX 5.4 File System provides many advanced features that distin-

guish it from many other UNIX File Systems. Taken together, these features

contribute to the File System’s functionality, performance, and reliability in

commercial applications. Although some other UNIX implementations offer

some of these features, the DG/UX 5.4 operating system is unique because

it provides a combination of features.

Record Locking

The DG/UX file system supports both advisory record locking and manda-

tory record locking. Advisory record locking means that you lock a range

of bytes and other users cannot lock on that range of bytes. However, users
can choose to ignore the locks. Mandatory record locking means that no

one else can access the data that is governed by the locks. With a mandato-

ry lock, you’re saying in effect that “I’m the only one who can access these

bytes.” There are different kinds of locks for different file operations, such

as reading and writing.

The DG/UX locking implementation is performed in the kernel. Access to

record locking is via a system call. Note that BSD file systems don’t gener-

ally support mandatory record locking—it’s a System V feature. In some

other UNIX operating systems, record locking is supported externally by a
lock daemon.

Forward Progress Checks

The DG/UX kernel uses a “forward progress” algorithm to keep a process
from “starving,” waiting for record locks. The operating system has a data

structure that keeps track of which users are waiting for which locks.

For example, suppose that user “A” locks bytes 1-5 in a data record and

user “B” tries to lock bytes 5-7. User B will wait on user A’s lock because of

the overlap on byte 5. Now suppose that user “C” requests a lock on bytes

7-9. Bytes 7-9 aren’t locked. On most UNIX systems, user C could lock

these bytes. If user C gets the lock on bytes 7-9, user B may “starve”—may

never get a lock on bytes 5-7. The forward progress algorithm looks to see

if anyone else is waiting for a lock. In this case, the forward progress algo-
rithm would place user C’s request behind user B’s request.
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Consumers of record locks include database applications, COBOL applica-

tions, and Business BASIC applications. COBOL programs, for example,

use locks to protect their I/O operations.

Adjustable File System Size

You can use the diskman utility to grow or shrink an unmounted file sys-

tem. This enables you, for example, to increase the size of a file system that

has become too full. You can also grow or shrink a logical disk that con-

tains no file system.

You grow a file system by adding new disk pieces or by making the last

piece bigger. In both cases, the file system will have more DARs available

to store data. Shrinking a file system may cause logical disk pieces to be re-

moved from the logical disk, and may cause the last piece to be reduced in

size. System and user data will be compacted and copied into the smaller

file system. Note that you cannot change the size of a logical disk that is

being striped across physical disks.

Duplicate Data Structures

The File System creates duplicates of each physical disk’s Physical Disk In-

formation Table (PDIT) and each file system’s File Management Informa-

tion Area (FMIA). The File System also maintains copies of the File

System’s bad block remap table and logical disk piece table. If one of these

data structures is corrupted, the File System automatically reads the back-

up copy.

For example, when you format a physical disk, the PDITs are placed on

good disk sectors—they can’t be moved unless you reformat the disk. If the

operating system isn’t able to read a PDIT, you'll receive a “loss of fault tol-

erance” message, and the operating system will automatically read the

backup PDIT.

Dynamically Remapped Bad Blocks

Nearly all disk drives have some media defects. When you first format a

disk, the low level formatting routines mark as “bad” any sector that has a

defect. However, over time, new defects can appear, which can make a sec-

tor unreadable.

The File System assumes that it is working with disks that have no physi-

cal (media) defects. However, at a lower level, the Logical Disk Manager

looks for and manages bad disk sectors (bad blocks). If the Logical Disk

Manager detects errors on a disk sector, the manager tries to copy the data

from the bad sector to a good sector. (The Logical Disk Manager maintains
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a pool of good blocks that it can substitute for bad blocks.) This “bad block

remapping” operation is done automatically—the File System doesn’t

know that the data has moved to a different sector.

Control Point Directories

Control Point Directories (CPDs) enable you to put size limits on directo-

ries so that you can control the size of individual subtrees within a file sys-

tem. The concept is similar to that used in Data General’s AOS/VS

Operating system.

When you create a directory as a CPD, you tell the File System how many

blocks the directory can hold. This limit includes all of the directory’s files,

descendant directories, and their files. If you exceed this limit, the operat-

ing system will report “out of space” errors. Note that they are caused by a

lack of space in your Control Point Directory—not necessarily a lack of

space in a file system.

The BSD operating system has a concept of quota, which controls how

many blocks can be on a file system for a given user ID. However, BSD

quotas are harder to administer than CPDs, because:

© One quota per user ID per file system is less intuitive than one limit per

CPD.

Quotas must be administered by the superuser.

QO Using a file’s user ID for quota purposes makes potentially conflicting

use of the user ID attribute, whose primary purpose is access control.

Read Only and Sealed File Systems

As much as people dislike talking about it, it’s possible that a file system

can be corrupted. Corruption, if it does occur, is usually caused by a hard-

ware problem—for example, someone mistakenly disconnected a disk ca-

ble or a disk experienced a media failure. Occasionally a software problem

could corrupt a file system.

If a file system becomes corrupted while you're using it, the File System

changes the file system’s access privileges to read only. If the read-only file

system continues to generate corruption errors, the File System “seals” the

file system so that you can’t access it. If you continued using the file sys-

tem, it’s likely that you could make the problem worse. This is different

from other UNIX file systems which, if they detect a corrupt file system,

will panic or continue to allow access.

If a file system is sealed, you need to find the cause of the problem. Then,

you can unmount the file system, run the fsck utility to fix the file system,

and remount it. The DG/UX operating system enables you to do this with-

out bringing the system down. You cannot run the fsck utility on the root
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file system while a system is running, because the root can’t be unmount-

ed. However, the kernel automatically checks the root file system during a

system boot.

system Shutdown

The DG/UX operating system provides the halt command, which performs

an orderly system shutdown. The halt utility updates the file systems, un-

mounts them, and halts the processors. Other UNIX systems require that

you use the sync command several times to ensure that a file system’s in-

formation is stored safely on disk.

Fast Recovery Option for File Systems

In DG/UX 5.4, a fast recovery option for files has been added to the mount

command. This option provides significant improvements in how fast a file

system can be recovered with the fsck utility.

The fast recovery option tells the File System to maintain a log of what's

being done to a file system and which files have had their buffers written

to disk. When the file system is recovered following a crash, the File Sys-

tem looks at the log to see how to recover the file system.

The recovery time without a recovery log is proportional to the size of the

file system. When you create a fast recovery log with the mount command,

the recovery time is proportional to the size of the log, not to the size of the

file system. As an example, the time to recover a 200,000 block file system

without a recovery log is 28 seconds. The time to recover the same file sys-

tem using the fast recovery option is 5 seconds (using an eight-block recov-

ery log). If you increase the file system size, the standard fsck recovery

time will increase proportionally, but a fsck recovery using the fast recov-

ery option will remain at 5 seconds.

The fast recovery option requires a small amount of overhead to maintain

the recovery log. Some operations, such as extending a file, will be slightly

slower. However, some operations will actually be faster. For example,

when the recovery log is “on,” disk update commands can be written to

the recovery log while the disk update itself is postponed. If the system

were to crash between the time that the log is written and the disk update

is complete, the recovery program reads the update request from the log

and completes the operation.
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Quiescent File Systems

If a file system is not in use (is mounted but has not been accessed for 5

minutes), the File System marks it as quiescent. When you reboot, any file

system that was not mounted or was marked quiescent need not be

checked by the fsck utility. This feature can save significant time when you

have to reboot a system after a power failure or other system failure.

Memory File Systems

On personal computers, utilities are available that enable you to create a

RAM disk, which uses a region of main memory to emulate a physical

disk. Accesses to a RAM disk are extremely fast because they are made at

the nanosecond speeds of memory instead of the millisecond speeds of a

mechanical disk.

In the DG/UX operating system, there’s a similar concept, called a memory

file system. You create a memory file system with a mount command op-

tion.

If you have enough main memory, you can mount a memory file system

that programs such as compilers and linkers can use for their temporary

files.

A memory file system, because it is mounted from main memory, is much

faster than a file system that is mounted from a disk. Note that you would

not want to use a memory file system for an editor’s temporary files be-

cause the files are needed for crash recovery.

Another use for a memory file system is to speed access to files on diskless

workstations. A good example is a Network Information Service binding

file, which contains information about a client’s server. By maintaining this

file in a memory file system, the DG/UX operating system can lock and ac-

cess the file much faster than if the file had to be accessed over a network.

The disadvantages of a memory file system are that the file system uses up

main memory resources such as swap space. Also, a memory file system is

volatile—if the system loses power, the data in the memory file system is

lost.
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FYi—More About the Demand-Paged File I/O Model

Figure 15 shows more details of how the DG/UX 5.4 demand-paged file

I/O model and the File System work together. We’ve annotated the figure

to show how some different kinds of system calls are handled, where ad-

dresses are converted, how Virtual Memory is used for file data, and how

the kernel data cache is used to cache kernel metadata.

Application Programs

mmap read/write open
System Call System Call System Call

File
system

/-———___}
(Virtual Memory Manager )

Flat File

Manager

(FFM)
Resident File woe

Pages

File System |
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Figure 15 Virtual Memory and the File System
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Channel Manager

In Figure 15, we’ve shown the File System’s Channel Manager. The Channel

Manager is a generic part of the File System that provides I/O access paths

between application programs and files. These access paths, called chan-

nels, are independent of the type of file with which a program works.

An application program accesses a channel by referring to the channel's file

descriptor. Within the File System, a file descriptor identifies a channel,

which references an open file. More than one channel can reference the

same file, so a file can be accessed via several channels. To an application

program, a file descriptor is an integer that system calls, such as read,

write, and mmap, use to identify a file.

FFM and the Virtual Memory Manager

The Virtual Memory Manager receives mapping requests directly (from

mmap system calls) and indirectly (from read, write, and open system

calls.)

When the FFM wants to read or write data for an open file, it obtains from

the VMM a mapping for each referenced file page and performs the re-

quested I/O operations to or from those pages. If the FFM requests a map-

ping for a file page that is not resident in memory, VMM performs a “page

in” operation, by requesting the FFM to fill a frame (or frames) of main

memory with the data from the appropriate file elements. The FFM trans-

lates the file offset to a disk address (block number on logical disk) and

sends the I/O request and address to the Logical Disk Manager.

Similarly, when dirty (modified) file pages need to be written to disk (for

either data integrity or page replacement), VMM performs a “page out”

operation by requesting FFM to write file data from main memory frames

to the appropriate data elements on disk.

Handling System Calls

As Figure 15 shows, the File System and Virtual Memory Manager handle

application programs’ file-related system calls in different ways. Because

the mmap system call is new in DG/UX 5.4, let’s summarize how open,

read and mmap system calls are handled.

Open System Calls

When you use the open system call to open a file, the call returns a file de-

scriptor. Subsequent system calls that reference the open file, such as read,

write, and mmap, use the descriptor to identify the open file.

The DG/UX 5.4 File System DG/UX Technical Brief

012-004054-00 July 31, 1991



q, Page 41

One argument to the open system call is the pathname of the file that you

want to open. The pathname can contain the names of many subdirecto-

ries, which the Directory Manager and FFM resolve recursively to inode

numbers and then to inodes. When the Directory Manager finds the direc-

tory entry for the last path in the pathname, it reads the target file’s inode

number from the directory entry and passes the inode number to the FFM.

The FFM converts the inode number into an inode and passes the inode

back to the Channel Manager. The channel then has the target file’s inode,

and the file descriptor is returned to the application program by the open

system call.

Read System Calls

The read system call takes the following arguments:

Q a file descriptor,

(1 the number of bytes to read from the file, and

Q the address of a program buffer that will get the requested data.

When the Channel Manager receives the file descriptor, it gets the refer-

enced file’s inode from the file descriptor’s channel. The file’s inode is al-

ready in the kernel data cache as a result of the system call to open the file.

Using the addressing information in the file’s inode, the FFM performs an

internal mapping calculation, and tells the VMM what pages that it wants

mapped into memory. If the pages are not already in memory, the VMM

gets them from disk. After the pages are in memory, the requested data is

copied to the program’s buffer. Therefore, the read system call uses two

data-copy operations—one operation to copy data from disk to memory

and another operation to copy data from memory to a program’s buffer.

Memory Mapped System Calls

mmap system calls go directly to the Virtual Memory subsystem. This en-

ables application programs to “touch” pages in memory by using virtual

addresses—without the read system call’s second step of copying data to

the program’s buffer.

The mmap call uses the Virtual Memory Manager’s ability to manipulate

addresses and causes the VMM to set up mappings between file pages and

pages in virtual memory. It’s more efficient to manipulate these mappings

(in a page table) instead of actually copying data. After you have memory

mapped a file (or part of a file), your program can use virtual memory ad-

dresses in its address space to access the file’s data. Note that a page table

maintains mappings for both resident and non-resident pages.
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Memory mapping is performed on page boundaries and at page granulari-

ty. If the piece of a file that you want to access is smaller than a page, a

page-sized piece of the file is mapped. If the piece of the file is larger than

a page, multiple pages are mapped into memory.

The mmap system call includes the following arguments:

Q a file descriptor,

Q the mapping address (the program address at which to map the region),

Q) offset in the file of the region to map, and

Q number of bytes of the region to map.

Figure 16 shows a simple example of how the mmap system call works.

Assume that a process uses the mmap system call to map pages 0, 1, and 2

of the file “mydata” into pages 3, 4, and 5 of the process’ memory space.

Disk Storage

FileOffsets | sytem | Block#’s

File “mydata”

: Frame 3877 \ FPage = File Page

Figure 16 Using the mmap System Call to Memory Map a File

When the VMM receives the mmap system call from the process, the VMM

sets up in the process’ page table the mappings of virtual memory pages to

file pages. The VMM does not read the pages from disk—it only sets up the

mappings. As the process references particular pages, hardware page faults

cause the VMM to perform “page in” operations to read the pages from

disk.
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In the example, file page 0 (FPage 0) resides in main memory frame 115,

and so on. When the process references its page 3, that reference is mapped

automatically by the VMM to main memory frame 115, which contains file

page 0. Notice that the page table contains entries for non-resident pages.

The locations for these pages are filled in when the VMM gets a page from

disk.

The VMM manages the page table, independent of the process. If the pro-

cess doesn’t touch one of the pages for a period of time, the page will

“age,” and the VMM will swap the page back to disk when the memory is

needed for other pages. Also notice that a page or pages may already be

resident in memory if another process has accessed them. In that case, the

processes can share memory pages.
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