
In This Issue:Event

DG/UX 6.4 ATE POSIX Realtime Extensions in the

Response DG/UXTM 5.4 R2.01 Operating System

In response to requests that Data General’s UNIX

Contents Development Group has received from customers, we
_ . are releasing some realtime extensions with the R2.01

What's In This Technical Brief......2 version of the DG/UX 5.4 operating system. These
Realtime Terminology manneneeseaeesorens 3] realtime extensions add to the operating system several
RTE Signal Handling process scheduling enhancements that can be used
Enhancements ..........css:ccscscscsseess 4 with many non-critical (soft) realtime applications.

RTE Process Scheduling

Enhancementt.........sssscsssseecsssees 4) The DG/UX 5.4 operating system already provides

RTE Semaphores.......ssssssssssseseeee 16| Support for realtime applications in many areas,
RTE Timer Extensions 49| including memory locking, memory mapping, and

FYI—Comparina DG (UX SARTE shared memory. However, our customers asked for

RTE ong p ' 003 4/D12 99 additional extensions that would provide more support
for realtime applications in the areas of process

scheduling and synchronization.

Therefore, in addition to the realtime support already available in DG/UX 5.4,

the realtime extensions in DG/UX 5.4 R2.01 support new system calls for:

Q process scheduling

Qi process synchronization with semaphores

1 process synchronization timers

We'll refer to this set of realtime extensions as DG/UX 5.4 RTE.

To maintain Data General’s commitment to standardization, we implemented

the system calls for these three areas using the functional descriptions of

POSIX 1003.4 Draft 12 (P1003.4/D12). P1003.4/D12 describes twelve other sets

of realtime options in addition to the three process-scheduling areas that are

available in DG/UX 5.4 R2.01.

In addition to the process scheduling and synchronization enhancements,

DG/UX 5.4 R2.01 has increased the performance of signal handling routines.

FrameMaker is a registered trademark of Frame Technology Corporation.

AViiON is a registered trademark of Data General Corporation.

DG/UxX is a trademark of Data General Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

©1992 Data General Corporation.

Produced on a Data General

AViiON AV4000 with FrameMaker® 3.1X.

012-004244-00



Page2 @,

Note that there are no performance penalties if you choose to upgrade to

DG/UX 5.4 R2.01 and don’t use the extension’s realtime enhancements. In

fact, the realtime enhancements that are described here will become part of

the standard DG/UX operating system in a future release.

What’s in This Technical Brief

This technical brief focuses on the new realtime extensions that DG/UX 5.4

R.2.01 provides in the areas of scheduling services, semaphores, and

timers. Tables in each section highlight the new system calls associated

with these enhancements.

An “FYI” section at the end of the technical brief has a table that

summarizes the fifteen P1003.4/D12 options, and highlights the functions

and options that DG/UX 5.4 RTE provides.

We'll start by introducing examples of realtime applications, and then

review of some of the realtime terminology that’s used in this brief.

Realtime Applications and Their Requirements

Realtime

applications

require fast and

predictable

process

scheduling.

What is a realtime application?

A realtime application provides predictable responses to events,

within the acceptable response times that are dictated by the

application.

Realtime applications have two dimensions; the speed of response to an

event and the predictability of the response, with the focus on predictability.

From application to application, the requirement for speed of response is

different, but the requirement for predictable response is the same.

Applications that require very fast response to events typically run on

special-purpose realtime computers. The combination of DG/UX 5.4 RTE

and AViiON computers provides support for applications that are less

response-time critical but still require predictable process scheduling.

Some situations that realtime applications might be used include:

laboratory data collection and analysis

Q industrial process monitor/process control

Q aircraft and industrial simulations

Q interactive multimedia

en If realtime applications, processes:

Q must respond to events within predetermined time limits

1 must start and finish executing within predetermined time limits

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



q, Page3

Realtime events can originate from outside of the application or from

within it. For example, a realtime application might monitor parameters

such as temperature and pressure in a piece of production equipment and

respond to out-of-limit values by sending commands to open and close

valves. Events that originate within an application include a process

finishing some calculations or signals generated by a timer in a process.

Realtime applications require a guarantee from the operating system that it

will complete the applications’ realtime processes within predetermined

time limits. The operating system must provide the guaranteed response

time, regardless of what other applications the operating system is

running.

Realtime Terminology

Here are definitions of some realtime terms that are used in this brief.

Deterministic

A deterministic scheduling policy guarantees that a process will always be

scheduled the same way, relative to other processes on the system. Note

that a deterministic policy makes no guarantees about the time that it takes

to complete a process.

Heuristic

A heuristic scheduling policy makes decisions about which processes to

schedule and how long each process’s time slice should be. For example,

the DG/UX 5.4 Medium Term Scheduler (MTS) uses heuristic algorithms

to support fair time-sharing scheduling policies. The MTS assigns and

keeps track of processes’ Job Processor (JP) usage, and adjusts process-

priorities of interactive (I/O intensive) and compute-bound processes.

Typically, heuristic scheduling policies are not used to support realtime

requirements because the policies are non-deterministic and process

scheduling timings can vary.

Hard realtime

A hard realtime requirement is absolute, with no margin for error. The

process that controls an event must always be scheduled, executed, and

completed within a specified time. An example is a valve in a piece of

production equipment that must be closed within a few milliseconds after

some event occurs, to prevent damage to the equipment. Hard realtime

applications are generally run on special-purpose computers.

Soft realtime

A soft realtime requirement allows some (typically small) margin for

timing error. In contrast to a hard realtime requirement, no damage will be

done if the upper scheduling limit isn’t met 100% of the time. In other

words, the process scheduler’s agreement with an application is that the

scheduler “will try to provide a specified reaction time.” The realtime

extensions of DG/UX 5.4 RTE are designed to be used in soft realtime

situations.

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page4 @,

DG/UX 5.4 R2.01 Signal Handling Enhancements

Although not specifically part of the POSIX realtime enhancements,

DG/UX 5.4 R2.01 includes enhancements to signal handling performance.

In the technical brief Taking Advantage of Symmetric Multiprocessor Systems

(012-004177), we mentioned that the UNIX signal mechanism is often a

poor choice for use in general-purpose process synchronization. Compared

to other synchronization methods, signals are expensive users of kernel

resources.

However, some application programs use signals to synchronize processes

that are sharing data. To increase the performance of these programs,

DG/UX 5.4 R2.01 includes enhancements that increase signal handling

performance by approximately 30% over signal performance in standard

DG/UX 5.4.

Realtime Process Scheduling Enhancements

DG/UX 5.4 RTE provides eight new process scheduling system calls that

are described in P1003.4/D12. These system calls enable you to associate

processes with three different scheduling policies, instead of the single

time-sharing policy that is provided by the standard DG/UX operating

system.

To establish a background for how these new realtime system calls work,

we talk first about how processes are scheduled in standard DG/UX, then

describe the differences of the DG/UX 5.4 RTE implementation.

Bound

Running

FYi—Process Scheduling Terminology

A process that the Medium Term Scheduler A software representation of a JP. The MTS binds
(MTS) has associated with a Virtual Processor Processes to VPs so that the processes can run.
(VP). A process must be bound to a VP before It is the process/ VP pair that executes on a JP.

the MTS can move it to the VP Eligible List. Therefore, it is technically correct to say that

Runnable and we make that distinction in this technical

A VP (process/VP pair) that can execute ona _ rief. However, most people say simply that

(Job Processor (JP). A runnable VP is not processes run on JPs.
waiting for an event to occur (not sleeping).

The MTS can place runnable VPs onto the VP

Eligible List.

From the perspective of the MTS, a VP that the Sleepin

MTS has moved into the VP Eligible List. A PINs Oe
running VP may not actually be executing ona “ process/VP pair that is waiting for an event to
JP, depending on its priority relative to other | 0ccur—the process is sleeping (blocked) on the

VP (Virtual Processor)

“processes are bound to VPs, which run on JPs,”

Executing

A process/VP pair that is actually using JP

resources—the process’s code is being executed by

a JP.

running VPs and the availability of JP event. An example is a process that is waiting for

resources, 1/0.

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



@, Pages

Process Scheduling in Standard DG/UX

In the standard version of the DG/UX operating system, processes are

scheduled onto Virtual Processors (VPs) and then onto Job Processors (JPs)

by the combination of the high-level Medium Term Scheduler (MTS) and

the lower-level dispatch scheduler (Figure 1).

The MTS establishes scheduling policies. It binds processes to VPs and uses

sophisticated timesharing heuristics to ensure “fair” scheduling among a

system’s processes. When the MTS binds a process to a VP, it notifies the

lower-level dispatch scheduler (the dispatcher) that the VP is available. Once

the MTS passes information about the VP to the dispatcher, the MTS

considers the VP to be “running.”

When the dispatcher receives information about a runnable VP, it places

the information into the VP Eligible List. The dispatcher places the highest

priority VP at the head of the list, followed by the next lower priority VP,

and so on. When a JP becomes available, the dispatcher places the highest

priority VP onto the JP and removes that VP from the list.

Binds processes to VPs

and tells the dispatcher that

there are runnable VPs.

aston
Sa

Sa RR RP RM A a Se ae a hat a ee hh Na ae
Ce ee ee hehe ee ee a ee Oe ea a Oe ht nh Gad

vP "vy"

OCR ae eae OOa De Da hh Dh ai i hh ed a ae ha aa at ah en Na aS i ra maT Pe ae
EP II a eh he aN bt et hh ae et ae oe haa LT Lee hs ari eee ar ML PL PnP
PEGae be ar at at ba aah a a a a OO a

V P wy" acess ore

Accepts VPs from the MTS.

Puts VPs into the

prioritized VP Eligible List.

Assigns highest priority

VPs to JPs.

VP

Eligible

List

Dispatch

Scheduler

ae

a)Oe ee eh a ee nC Me at ee he te eh a ea)
cea a ar he i bh hh a a AOe Ct et ee a a i ta ar a he a har enn ena ee Ce a ee he a ha Pt hd he i i at ad ae hPa MM MMe MM MMiee a he a hha he an ere NL NSM em Pee

Naa a a ha la ha ha he a a ie a a i a a LC A CAL CL ACCA RO

b
Processor 0 Processor “J”

Figure 1 Medium Term and Dispatch Scheduling

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page6 @,

More About the Role of the Dispatcher

The dispatcher’s scheduling technique is simple round robin. When a JP is

available, the dispatcher places onto that JP the highest priority VP; that is,

the VP that is at the head of the VP Eligible List.

To prevent a process from monopolizing a JP, the dispatcher allocates an

on-JP time slice to each VP. The dispatcher’s time slice is fixed.! When a VP
uses up its time slice, the dispatcher preempts the VP to enable another

process of the same priority to run. The dispatcher places VPs that have

used up their time slices behind other VPs of the same priority.

More About the Role of the MTS

The MTS

establishes

VP-scheduling

policies; the

dispatcher carries

out the policies.

ee

The MTS’s most important role is to determine which processes it should

bind to VPs and send to the dispatcher for execution. To do that, the MTS

evaluates the availability of system resources (primarily memory), and the

priorities of the processes.

The MTS also allocates time slices to VPs. An MTS time slice typically

consists of several dispatcher time slices. When a process uses up its MTS

time slice, the dispatcher takes the process off of the JP and notifies the

MTS. The MTS can then change the process’s priority and send the process

back to the dispatcher.

The MTS can also change a process’s priority and high-level time slice,

which enables the MTS to dynamically satisfy the needs of interactive (I/O

intensive) and compute-bound processes. The MTS gives better priorities

and shorter time slices to interactive processes. Interactive processes

require quick response time and tend to block themselves waiting for user

input. In contrast, the MTS gives lower priorities and longer time slices to

compute-bound processes. Compute-bound processes, which do not

require quick response times, run without blocking and can monopolize JP

resources.

A Scheduling Example

Figure 2 is an example of how this scheduling works. In this scheduling

snapshot, process numbers 0 and 4 are running and executing (bound to

VPs 3 and 1 respectively). Process 1 is bound to VP 0. It is running, but not

executing. Process 2, which is sleeping, is bound to VP 2. Because its

process is sleeping, VP 2 does not appear in the VP Eligible List. Unless the

MTS reprioritizes the VPs, VP 0 will be next to run.

1. The dispatcher time slice is set in the CEMAXTIME kernel configuration parameter.

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



q, Page7

The MTS can use its scheduling heuristics to change process priorities (and

therefore the scheduling order). For example, the MTS can decide that

process 0 on VP 3 is using too much (or too little) JP time relative to other

processes, stop the process, and lower or raise its priority. The effect is to

move the process’s VP toward the tail or the head of the VP Eligible List.

Process Process Process Process Process

aCeMedium-Term Scheduling P

vPo || vP1 vP3 | sees | VP“

VP "Vv"

Low-Level Scheduling

(Dispatching) - | VP Eligible List
(Assigning VPs to JPs) : (Running VPs)

Highest
Process | VPO | Priority Erocess

VP 1

Job Job
Processor 0 eeee Processor “J”

Figure 2 Time-Shared Scheduling of Processes, Virtual Processors, and ]Ps

Process Scheduling in DG/UX 5.4 RTE

The time sharing algorithms that we described in the previous section are

not acceptable for realtime processing—the algorithms are heuristic; not

deterministic. Because the MTS and dispatcher have complete control over

when (and for how long) processes run, the operating system cannot

guarantee that one particular process will always preempt another—a

requirement of realtime process scheduling.

To meet the needs of realtime processes, an operating system must have

scheduling algorithms that provide deterministic control over when

processes will run.

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page8 @,

DG/UX 5.4 RTE Scheduling Policies

DG/UX 5.4 RTE

provides four

scheduling classes:

FIFO, round robin,

standard time-

share, and DG/UX-

FIFO.
a

Instead of the single time-sharing policy of the standard DG/UX operating

system, DG/UX 5.4 RTE supports three kinds of scheduling policies, called

scheduling classes. Using the realtime system calls, you associate processes

with both a scheduling class and a priority within the class.

The three scheduling classes, as described by P1004.4/D12, are:

Q First in, first out (FIFO), fixed priority scheduling

Q Round robin

Q Others

The three scheduling classes co-exist on a system, enabling you to have

strict control over how an application’s processes will be scheduled.

The FIFO class, round-robin class, and one “others” scheduling class are

required. The “others” classes are implementation dependent, and an

operating system can have one or many “others” classes. DG/UX 5.4 RTE

has two scheduling policies in the “others” class: the standard time-share

class of DG/UX 5.4' and a special-purpose DG/UX-FIFO scheduling class.

For portability, an application’s processes should be in the same scheduling

class. The interaction among the “others” classes is implementation-

defined, so there is no guarantee that the interaction among classes in this

category will be the same among different vendors’ operating systems.

About Process Priorities

POSIX P1003.4/D12 requires that each scheduling class have a range of at

least 32 priorities. However, an implementation can have more priorities

within a class. DG/UX 5.4 RTE, for example, provides a 7K range of

priorities that is broken into sub-ranges. The priority range of one class can

overlap the range of another class. Therefore, scheduling classes are

differentiated by their scheduling policies; not necessarily by their

priorities.

Figure 3 shows the seven priority-scheduling ranges that are provided by

the DG/UX 5.4 RTE operating system. Each range provides 1K priorities.

The horizontal bands in the figure show the current assignments for

process priorities in the DG/UX 5.4 RTE operating system. Critical kernel

processes are assigned to the highest range of priorities, followed by the

range (shaded) that is used by for FIFO and round-robin realtime

processes. Processes in this range have higher priorities than time-share

1. We mentioned earlier that standard DG/UX 5.4 provides a type of round robin process

scheduling. However, the rules for DG/UX 5.4’s standard scheduling are different than the rules

for the POSIX round robin scheduling class. Therefore, standard DG/UX 5.4 scheduling falls

into an “others” class of P1003.4/D12.

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



q, Page9

processes, but lower priorities than critical kernel processes. Standard time-

share processes and non-critical kernel processes are in the lower priority

ranges.

The vertical bars in the figure show the relationship of the FIFO, round

robin, time share, and DG/UX-FIFO priority ranges. Processes in the

special-purpose DG/UX-FIFO scheduling class can have any priority,

which requires that you use this scheduling class with care.

Process Priority

Assignments Highest
iK Priority

Standard time-share 1K

processes that are holding Time Share
a critical kernel resource (a (With Locks)
lock). GY

Kernel processes that should 1K

not preempt a time-share DG/UX-FIFO

process that is holding a lock.

Processes that should not

preempt time-share processes

that are holding a lock. (No 1K

current assignments.).

Standard time-share process-

es that are not holding acritical

kernel resource.

Time Share 1K

(Without Locks)

WV
Low priority

processes (no current 0-1K

assignments.) Lowest

Priority

Figure 3 Scheduling Priority Ranges and Assignments for DG/UX 5.4 RTE

FYI—The Scheduling-Priority Numbers Game

In the scheduling classes of POSIX P1003.4/D12 and DG/UX 5.4 RTE, higher

numbers are associated with higher priority processes. For example, a running

VP of priority 64 will preempt an executing VP of priority 61. This numbering

scheme is different from most UNIX systems (including standard DG/UX 5.4),

which assign lower priority numbers to higher priority processes.

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page 10@,

The FIFO Scheduling Class

The FIFO scheduling class provides fixed-priority process scheduling for

realtime support.

FIFO processes have an infinitely long time slice. Once a FIFO-class process

is executing on a JP, the process stays on a JP until the process:

Q completes

Qi is preempted by a higher priority process

Q is blocked by an action that it takes

Q voluntarily gives up the JP

When the FIFO process completes, is blocked, or gives up a JP, the

dispatcher runs the next highest priority process.

You can use the sched_yield() realtime system call to allow a process to

voluntarily give up a JP, enabling you to prevent a compute-bound process

from monopolizing JP resources. The “yielding” process moves to the end

of its priority queue, allowing any processes of the same priority to obtain

a JP.

Within the FIFO classes’ scheduling list, processes are arranged by priority

sublists (Figure 4). Higher numbers represent higher priorities. We’ve

arbitrarily used a priority range of 65-96 in the figure. (See the “FYI” section

on page 9 for a note about priority numbering.)

First In, First Out (FIFO)

Scheduling List

Head —_ _
Priority Priority Priority Priority

A 96 95 94 65

Higher ennnnnn annua nn cee van
Priority roremrrree eerie rere " wren

rrrcereenewe Ceeenreceen ae vee 1 Tail

Higher Priority

Figure 4 FIFO Scheduling List

Here’s an overview of the scheduling policies for processes in the realtime

FIFO class:

(4 When an executing process is preempted, it remains in its place in the

priority list.

(4 When an executing process issues a sched_yield() system call to give up

a JP, the process is placed at the tail of its priority list.

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



q, Page 11

[4 When a blocked process becomes runnable, it is placed at the tail of the

list that contains processes of the same priority.

Q Ifa process’s priority changes (if the process issues the sched_setparam()

system call) the process is placed at the tail of the new priority list. Note

that the “new” priority could be the same as the old priority. Regardless,

the process goes to the tail of the list.

The Round-Robin Scheduling Class

The round-robin class is designed primarily to support fixed-priority time-

sharing processes instead of realtime processes. With one exception, the rules

for the round-robin class are the same as the rules for the FIFO class. The

exception is that the round-robin class includes the concept of a time slice,

which promotes fair scheduling by helping prevent processes of the same

priority from monopolizing a JP.

When a round-robin process exceeds its time slice, the dispatcher takes the

process off the JP to allow other processes of the same priority to run. As the

name “round robin” implies, the suspended process is placed at the tail of its

priority list (Figure 5). The effect of a time-slice running out is the same as if

a FIFO process volunteered to give up a JP with the sched_yield() system

call.

In Figure 5, we've arbitrarily shown a priority range of 33 to 64. However,

remember that the priorities of a round-robin class process can be higher

than those of the FIFO class, or can overlap the FIFO class or an “others”

class.

Round-Robin

scheduling List

Head

Priority Priority —_ Priority Priority
A 64 6 62 33

Higher seenneeenees veeneeenee seeeereeneee cece seeeeenenen

Prior ity nnannnnnnnns ~eeernneee mannanannnns annannnnnn

a waanneaanne noeannnaane wenn 1 Tail

<q

Higher Priority

Figure 5 Round-Robin Scheduling List

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page 12 @,

The “Others” Scheduling Classes

For flexibility, P1003.4/D12 provides for implementation-defined scheduling

classes, called “others.” The draft does not specify what scheduling policies

are implemented in this class; only that the class be defined. In DG/UX 5.4

RTE, the time-sharing algorithms of the standard DG/UX operating system

and the special-purpose DG/UX scheduling policy are in the “others” class.

Time Sharing Class

Although the standard DG/UX 5.4 time sharing algorithms are round

robin, there are some subtle differences between the DG/UX time-share

class and the round-robin class described in the previous section. For

example, the round-robin class processes have a fixed priority—the MTS

does not change their priorities as it can for the DG/UX time-share class.

And, round-robin processes have no MTS time slice; DG/UX time-share

processes do.

DG/UX-FIFO Scheduling Class

The special-purpose DG/UX-FIFO scheduling class is provided for

developers or users who require absolute control over the way processes

are scheduled. Processes within this class can be assigned any priority. It’s

not likely that you’ll need to use this class. For example, you could use the

class for a process that periodically profiles all of the other processes in a

system. Or, you could use the class for a process that must service a time-

critical external device.

Important — The DG/UX-FIFO scheduling class provides unlimited

flexibility in how you can assign priorities to processes. Because a DG/UX-

FIFO scheduling-class process can be set to any priority, you should take

care not to inadvertently set the priority of a process higher than that of

critical kernel processes.

New Roles of the MTS and Dispatcher

Conceptually, the prioritized process lists for the three classes provide a

second level of process scheduling, which feeds into the dispatcher’s VP

Eligible List (Figure 6 on page 13).

Depending on the rules of a scheduling class, the MTS may or may not be

involved with changing a process’s priority once the process is in the VP

Eligible List. For example, the MTS will not change the priority of a FIFO

or round-robin class process.

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



@, Page 13

The dispatcher doesn’t know about scheduling classes; it only needs to

know a VP’s priority and whether it should associate a time slice with the

VP. When the MTS sends a runnable VP to the dispatcher, it also passes

information about the VP, including whether the VP should have an on-JP

time slice.

7

: caconntesccasraesesenerrseeeeemeeeerenaetotter ence ctceneecacectecneotee crane eceteenaceeeteee a teaksaseonsoneneententoioitereteieaceeoeeesions
DG/UX 5.4 RTE Scheduling,

Class Priority Lists #2

See

Ssapecaneecnneeenessetresear eos
ee aes eh

atatetacen

ctaterateta

eee
anen0e88 e

ata atat ata atanatatatantenotn-atatntatatatntatatatatstatetetsnatattetsteinatatateee’atone 
etatetacerentenarenntatn

etatatatanatanatarctatatatabatecntatctatatatctatshatatstatatatatarstatahe ect atatathctcttatatSARC atatattatatatatahe ot

VP Eligible List

(Running VPs)

VP

Highest VP

Priority VP

Job Job
Processor 0 eoee Processor “J”

Figure 6 Scheduling DG/UX 5.4 RTE Classes

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page 14 ¢,

Bringing the Scheduling Classes Together

Figure 7 shows conceptually how the DG/UX 5.4 RTE operating system

brings together processes from different scheduling classes. In this

example, we've arbitrarily assigned the highest priorities to the FIFO class,

the next highest to the round-robin class, and the lowest to the standard

time-share class. Remember that this is only an example of how priorities

can be assigned.

In this example, VP #21, with a priority of 92, is in the FIFO scheduling

class. When VP #21 is loaded onto a JP, it will run to completion (unless it

is blocked or volunteers to give up a JP). As soon as a JP is available, VP

#84 will start executing. On a dual-JP system, both VP #21 and VP #84

would run at the same time. On a quad-JP system, all four VPs in the

eligible list could run at the same time.

Seaeseseeecece ene ere eger cetacean earache aac

Seo Set
Cx wy fe

os odprone
First In, First Out (FIFO)

Scheduling List

oo on CO rd e anee Sheet! ocenca.c,@se4! vatnvececes’ Ore} ona i“ ontn tata! “eons

Seance
sated ates.

Round-Robin

Scheduling List

See

Standard DG/UX

Time-Share Scheduling List
et

Ronee

esata

atatatctata’aracatatatessta oacaatdicnatatateretasauafata’ater satel ata’ acaraalavatarbrarscn eraraatasscsranat afte’ srate-arererereces ere Meee mee
RR Eee aac eae
Se f

lana

’ VP “Vv”

VP Eligible List

VP 54 (Priority 21- Standard) | (Runnable VPs)

VP 9 (Priority 57- Round Robin)

Highest VP 84 (Priority 74-FIFO)

Priority VP 21 (Priority 92-FIFO)

Job Job
Processor 0 eecccene Processor “J”

Figure 7 Bringing the Scheduling Classes Together

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



qd, Page 15

Realtime System Calls

Table 1 summarizes the DG/UX 5.4 RTE realtime system calls for process

scheduling. You can refer to P1003.4/D12 for more information about these

functions.

Table 1 RTE Functions for Process Scheduling

Function Description

sched_setparam() sets the priority and time-slice scheduling

parameters of a process (within a class).

sched_getparam() Gets the scheduling parameters of a process.

sched_setscheduler() Sets the scheduling policy and parameters of a

process.

sched_getscheduler() Gets the scheduling policy of a process.

sched_yield() Enables an existing process to give up a JP to an

equal or higher priority VP.

sched_get_priority_max() | Gets the maximum setting of a scheduling policy’s

priority range. This is the highest (best) priority for

that class.

sched_get_priority_min() | Gets the minimum setting (the lowest priority

number) of a scheduling policy’s priority range.

sched_rr_get_interval() Gets the on-JP time limit (the time slice) of a round-

robin process.

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page 16@,

DG/UX 5.4 RTE Semaphores

The DG/UX operating system has always provided general-purpose

counting semaphores as a way of controlling access to shared resources.! In

addition to these general-purpose semaphores, DG/UX 5.4 RTE provides

the counting semaphores that are specified in POSIX 1003.4/D12.

Semaphores are used to control access to a shared resource. An example of

a shared resource is a data buffer into which a “producer” process writes

data and from which a “consumer” process reads data.

If a realtime semaphore’s value is positive, there are no processes blocked

on the resource (or resources) that the semaphore protects. If a semaphore

has a negative value, there are processes that are waiting for the resource

(blocked on the resource’s semaphore).

semaphore System Calls

Table 2 summarizes the system calls that DG/UX 5.4 RTE provides for use

with realtime semaphores.

Table 2 RTE Functions for Semaphores

Function Description

sem_init() Initializes (opens) a semaphore and assigns to it a

descriptor. Used in conjunction with sem_destroy().

sem_destroy() Deallocates (closes) a semaphore. Used in

conjunction with sem_init().

sem_unlink() Unlinks (deletes) a semaphore when all of its

initializations have been destroyed.

sem_lock() Locks a semaphore. If the semaphore is already

locked, the process waits on the semaphore.

sem_trylock() Locks a semaphore only if it is not already locked

(the process does not wait on the semaphore).

sem_unlock() Unlocks a semaphore.

1. The DG/UX operating system’s general purpose counting semaphores are based on the AT&T

UNIX System V semaphore implementation. The use of general-purpose semaphores to control

access to a shared resource is discussed in the Data General Technical Brief Taking Advantage of

Symmetric Multiprocessor Systems (012-004177).

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



q, Page 17

An Example Using Semaphores

Unlocked

§ cn
Locked

Figure 8 on page 18 shows an example of how semaphores can be used to

control access to shared data buffers. The example is of a closed-loop

application that reads temperature data from a piece of production

equipment, analyzes the temperature data, and uses the results to send

commands to a valve that controls the temperature. The application has

three processes, two shared data buffers, and a semaphore to protect each

buffer.

Sensor Data Buffer and Semaphore

The sensor data buffer stores raw temperature data from a sensor in a piece

of production equipment. The data collection process and the data analysis

process share the sensor data buffer; the data collection process writes data

to the buffer and the data analysis process reads data from the buffer.

When either the data collection or data analysis process wants to access the

buffer, the process issues a sem_lock() call (or sem_trylock() call) to try to

lock the buffer’s semaphore.

Let’s say that the data analysis process wants to read data from the sensor

data buffer. The data analysis process issues a sem_lock() call. If the

semaphore that protects the buffer is not locked, the data analysis process

locks the semaphore and accesses the buffer. When the process is finished

accessing the buffer, it unlocks the semaphore with the sem_unlock() call.

If the semaphore is already locked (because the data collection process is

accessing the buffer), the data analysis process goes to sleep (the process

waits on the semaphore) until the data collection process unlocks the

semaphore.

Valve Data Buffer and Semaphore

To close the control loop in Figure 8, the data analysis process reads the

raw temperature data from the sensor data buffer and manipulates the

data. The process might, for example, determine how quickly the

temperature is changing. The data analysis process writes this rate-of-

change information to the valve data buffer.

The valve control process reads the control data from the buffer and uses

the data to assemble control instructions for the valve. The semaphore that

controls the valve data buffer works the same way as the one that controls

the data buffer.

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page 18 q,

Lock | Pook; ; ock | Data AnalysisData Collection ‘| Semaphore Protecting ,
Process ProcessUnlock ‘| Temperature Data Buffer |: yniock

5 6

—<——

& Raw Datai =
6 4

. :
’ : 

4| a Lock
lenwenncneernceeneenecensnercreree J Unlock

! Valve fie Processed a
Data Buffer ata

‘

TOO wwwwwo ee, *««wewwwwrwwwrwwrwrwrrwwwwwwwen

Valve Control | —°% <taive vontro! | ————-: | Semaphore Protecting

Process Unlock : Valve Data Buffer
——_ a

' 
4

Temperature mmo mmr n noe
Readings

Valve Control

Instructions

Legend

Temperature Sensor Valve Data

Some Piece Pemaphore
of Production Equipment

Figure 8 Using Semaphores to Synchronize Realtime Processes

DG/UX 5.4 RTE Timer Extensions

Timers are useful tools for synchronizing processes in realtime

applications. The getitimer() and setitimer() system calls in the standard

DG/UX operating system are often not sufficient for use in realtime

applications because they support only one timer per process and may not

provide enough time resolution.

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



q, Page 19

DG/UX 5.4 RTE enables you to set as many as four timers! per process.

And, you can specify the resolution of the timers in nanoseconds, rather

than in microseconds as with the standard timers. However, the

granularity of a system’s hardware clocks are system-dependent, and some

systems may not support nanosecond resolution. You can use the new

clock_getres() system call to determine the clock resolution of a system.

There are two kinds of timers: one-shot and periodic (Figure 9). A one-shot

timer runs to completion and generates a signal. At that point, a process

can perform some operation, then reset the timer or delete it.

A periodic timer runs continuously (for the life of its process or until it is

disarmed), and generates a signal at the end of each timing interval.

One-Shot Timer

Start Time Out
Timer (Signal)

Clock Resolution

Periodic Timer

Start

Timer Signal Signal — Signal Signal Stop

Clock Resolution

Figure 9 One-Shot and Periodic Timers

1. POSIX 1003.4/D12 specifies at least 32 timers per process. However, our current

implementation provides four timers per process.

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page 20 q,

Timer System Calls

Table 3 summarizes the system calls that DG/UX 5.4 RTE provides for use

with timers.

Table 3 RTE Functions for Timers

Function Description

timer_create() Creates a per-process timer using a specified

clock and specifies a signal number to

deliver.

timer_delete() Deletes a timer.

timer_settime() Sets a timer to run for a specified time; either

one-shot or periodic.

timer_gettime() Gets the time left before a timer expires.

timer_getoverrun() Returns a count of the timer intervals that

occurred between the time that the timer-

expired signal was generated and the time

that the signal was delivered.

clock_getres() Gets the resolution of a specified clock.

An Example Using Timers

Figure 10 on page 21 shows how multiple periodic timers might be used in

the sample application from the semaphore section.

In this example, the data collection process has two periodic timers:

“slow,” and “fast.” In normal operation, the data collection process

samples data from the sensor at the “slow” rate. If the data analysis

process determines that the temperature is changing too quickly, it can tell

the data collection process to start collecting temperature data at the “fast”

rate of the other periodic timer.

The same approach could be used to create log files of the closed loop

process. For example, the data analysis process could have multiple timers

that could trigger a data logging process at different intervals. The

intervals could become shorter as the temperature’s rate-of-change

increased.

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



qy Page 21

Data Collection !

Process Lock | :{ Semaphore Protecting ; _ Lock | Data Analysis
' ‘ ProcessPeriodic Uniock | Temperature Data Buffer ! Unlock

Timer <}—_$$__—

(Fast)

Periodic Raw ata; Sensor

Timer | Data Buffer : !

Lock

; Weewenenennnncerwnerernncceererens Unlock

pO
‘

: 3
Processed

; Data ~~
‘
‘
‘ ;

GO OO CC ‘

Sensor :
ock :Control Valve Control : ( Semaphore Protecting | ‘<

#1 Process Unlock | Valve Data Buffer

! —_—
! !

, Lecwerneneneecennncererenereccereee 4

¢ Temperature

¢ Readings Valve Control

, Instructions

Legend
4
4

Data

yn Temperature Sensor Valve “eon A
FPF PHF PAE LAE FEET ES an

5 Pj Semaphore
ome Piece

of Production Equipment Control .

Figure 10 Using Periodic Timers

DG/UX Technical Brief POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

December 22, 1992 012-004244-00



Page 22 ¢,

FYi—Comments About DG/UX 5.4 RTE and POSIX P1003.4 /D12

Data General is actively involved with formulating the POSIX P1003.4

standard and other POSIX standards, and we are committed to providing

products that meet these standards. Therefore, the standard version of the

DG/UX 5.4 operating system already provides many of the options that

are described in POSIX P1003.4/D12. For example, standard DG/UX 5.4

already provides support for memory locking, memory mapping, and

shared memory, which are part of POSIX P1003.4/D12.

POSIX P1003.4/D12 describes fifteen functional options and a performance

measurement option. The functional options specify new system calls or

specify changes to existing system calls. In general, the options are

independent and can be implemented incrementally, as we have done with

the process scheduling, process synchronization, and timer options in

DG/UX 5.4 RTE.

Table 4 on page 23 summarizes the options that are described in POSIX

1003.4/D12 and shows to what level the options are implemented in the

DG/UxX 5.4 RTE operating system. The following list describes the icons

that are used to describe the implementation levels.

A complete implementation of the functions of an option

7 that is described in POSIX 1003.4/D12.

Full Note: Full implementation does not necessarily imply

conformance to a draft option, because of differences in

header files and types.

some of the system calls within an option are

implemented as specified in the POSIX draft. An example

is the Clock and Timer option, for which DG/UX 5.4 RTE

Partial implements the timer system calls, but not all of the clock

system calls. In this category, some of the system calls

that are not fully implemented may have an equivalent

(next category).

some of the names or syntaxes of system calls within an

option are different, but the result of using the call is the

same for DG/UX 5.4 RTE and POSIX 1003.4/D12.

The option is not implemented in DG/UX 5.4 RTE and

| | there are no equivalent functions.
None

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992



@y Page 23

Table 4 POSIX 1003.4D/12 and the DG/UX 5.4 RTE Implementations

POSIX 1003.4/D12 p1003.4/p12, | Support in Comments
Options System Calls 5 ARTE

Counting semaphores sem_init Support for counting
sem_destroy semaphores.

sem_unink Full POSIX draft
sem_lock implementation added to
sem_trylock Full | DG/UX5.4 RTE. This is in
sem_unlock

addition to the traditional

counting semaphores of

standard DG/UX 5.4.

Process memory locking mlockall

munlockall

%

ee

Equivalent

Allows locking of all of the

address space of a process.

Equivalent to System V.4

functions of the same name.

Page memory mapping mlock

munlock

Allows page-by-page locking

of the address space of a

process.

Equivalent to System V.4

functions of the same name.

Memory mapped files mmap

munmap

Adds file-system name space

to provide names for shared

memory segments,

semaphores, and message

queues.

Equivalent to System V.4

functions of the same name.

Memory protection mprotect

msync

Full

Sets protection of memory

mapping and synchronization

of memory with physical

storage.

Fully implemented (already

supported by standard

DG/UX 5.4). Equivalent to

System V.4 functions of the

same name.

DG/UX Technical Brief

December 22, 1992

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

012-004244-00



Page 24@,

Table 4 POSIX 1003.4D/12 and the DG/UX 5.4 RTE Implementations (Continued)

POSIX 1003.4/D12 p1003.4/D12 | Suppor in Comments
Options System Calls 5 ARTE

Shared memory objects | shm_open Allows adding shared

shm_unlink memory segments. Similar to

System V.4 except that the file

: system name space provides

Equivalent | "ames for the shared

segments.

standard DG/UX 5.4 and

DG/UX 5.4 RTE provide

equivalent System V.4

functionality (without file-

system based names).

Process priority sched_setparam Support for additional

scheduling sched_getparam realtime scheduling policies

sched_setscheduler (FIFO and round robin).

sched_getscheduler
Full implementation added to

sched_yield Full | DG/UX5.4RTE, in addition to
sched_get_priority_max standard time-share
sched_get_priority_min scheduling.

sched_get_rr_interval

Realtime signals sig waitrt Allows a process to define and

extension sigtimed wait wait for arbitrary,

sigqueue asynchronous events, and

poll those events.

None

Clocks and Timers clock_settime The five timer_ system calls

clock_gettime and the clock_getres system

clock_getres call are included in DG/UX

timer_create 5.4 RTE. The timer system calls

timer_delete Partial support only four timers per

timer_settime process.

timer_gettime The remaining clock_ and
timer_getoverrun nanosleep system calls are not
nanosleep implemented.

Interprocess message mq_open Defines and manipulates

passing mq_close messages and message
mq_send queues.

md_tecelve DG/UX 5.4 and DG/UX 5.4
mq_getatir RTE support System V.3/V.4
mq_setatir message queues, which are
mq_destroy similar to those of POSIX, but
mq_notify

do not use the file system as

the basis for their name space.

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

012-004244-00

DG/UX Technical Brief

December 22, 1992



@, Page 25

Table 4 POSIX 1003.4D/12 and the DG/UX 5.4 RTE Implementations (Continued)

POSIX 1003.4/D12 p1003.4/D12 | SUPPOM in Comments
Options System Calls 5 4RTE °

Synchronized files fsync Provides a mechanism for

enabling applications to

ensure the integrity of file data

and attributes, by specifying

when the data and attributes

are written to disk.

Synchronized I/O fdatasync Similar to the standard

DG/UX 5.4 fsync system call,

but requires that file data

(without attributes) be written

to disk.

Prioritized I/O N/A Changes the semantics of

several I/O system calls, such

as aio_read and aio write, to

allow specification of the

None priority that is used to queue

I/O requests.

Asynchronous I/O aio_read Permits starting, cancelling,

aio_write and waiting for asynchronous

lio_listio I/O requests.

alo_etror Equivalent implementation in
aro_return Equivalent | DG/UX 5.4 and DG/UX 5.4
aio_cancel RTE.

aio_suspend

aio_fsync

Realtime files rf_create Allows the creation and

rf_getattr manipulation of realtime files,

rf_setattr or files with realtime

rf_getalloccap ee attributes.

rf_getcachecap Equivalent | Equivalent implementation in
rf_getbiocap DG/UX 5.4 and DG/UX 5.4
rf_getaiocap RTE.

rf_getdiocap

rf_getincr

rf_getbuf

rf_freebuf

Performance metrics N/A Not implemented in DG/UX

5.4 RTE.

None

DG/UX Technical Brief

December 22, 1992

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System

012-004244-00



Page 26@

For More Information

The following articles and documents discuss realtime operating systems

and process scheduling in more detail.

DG/UXTM Technical Brief: A Second Look at Multiprocessor SMPs

(012-003886), July 31, 1991, Data General Corporation

DG/UXTM Technical Brief: Taking Advantage of Symmetric Multiprocessor

Systems (012-004177), June 17, 1992, Data General Corporation

IEEE Standards Project. P1003.4 Draft 12. Draft Standard for Information

Technology— Portable Operating System Interface (POSIX)—Part 1: System

Application Program Interface (API)—Amendment 1: Realtime Extension [C

Language]. February 1992

IEEE Standards Office

PO Box 1331

445 Hoes Lane

Piscataway, N.J. 08855-1331

(909) 562-3811

(,

POSIX Realtime Extensions in the DG/UX 5.4 R2.01 Operating System DG/UX Technical Brief

012-004244-00 December 22, 1992


