
q¢, Data General
Bringing Common Sense to Computing

DG/UX”

Quick Reference
September 1995

DG/UX for Intel 22
RS os an

I

a

OCOtte

ei DG/UX for 88K

Porting Applications to

DG/UX for Intel

Contents

What’s in This Quick Reference2

What’s New in DG/UX System

Release 4.107..........cccsccssessscsssssenens 2

When Are Source-Code Changes

Required?ssscsssssessssssssssnsssenes 4

Moving DG/UX 88K Applications to

DG/UX for Intelccccssesseesneees 6

Moving UnixWare Applications to

DG/UX for Intel..............:ssccssesseenes 14

Since 1989, Data General has provided solutions for

commercial customers who want to use cost-effective,

open computing solutions instead of expensive,

proprietary solutions.

With its AViiON® line of Symmetric Multiprocessor

(SMP) servers and its CLARiiON® line of disk and tape

arrays, Data General offers its customers a range of high

performance computing solutions. The AViiON SMP

servers are currently available in configurations with one,

two, four, eight, twelve, sixteen, or thirty-two processors.

The CLARiiON disk array systems, which use RAID

47 technology, provide high storage capacities as well as

high availability.

The other key part of this common sense computing solution is the DG/UX® operat-

ing system. This mature and highly regarded implementation of the UNIX® SVR4

operating system provides full support for the SMP hardware used in AViiON serv-

ers. One of the strengths of the DG/UX operating system is its conformance to

important programming standards, such as those from POSIX and X/Open.

Prior to the availability of DG/UX System release 4.10, AViiON servers used only the

Motorola 88K family of CPUs (the 88100 and 88110 CPUs). To provide its customers

with more computing options, the AViiON product line now includes servers that use

Intel Pentium CPUs. For several years, enterprises have used Intel-based

workstations in conjunction with larger servers. Now, the performance capabilities of

the new Pentium CPUs bring with it the opportunity to use these commodity CPUs

in enterprise servers.

To coincide with the availability of the new AViiON for Intel servers, the DG/UX

operating system (starting with release 4.10) supports AViiON 88K servers and

AViiON for Intel servers. These versions of the DG/UX operating system offer

software development environments that are tailored for the two AViiON platforms.

AViiON, CLARiiON, and DG/ UX are registered trademarks of Data General Corporation.

UNIX is a U.S. registered trademark of Novell, Inc.

Other product names are trademarks or registered

trademarks of their respective owners.

©1995 Data General Corporation..

All Rights Reserved.

012-004709-00

Page 2

What’s in This Quick Reference

This Quick Reference provides high-level information about the process of

porting applications to DG/UX for Intel from other. platforms. We assume

that you’re an experienced software developer or porting engineer and that

you're familiar with the software development environment of the DG/UX

operating system. The Quick Reference:

J Introduces the porting-related features and benefits of DG/UX System

release 4.10.

UW Highlights the factors that influence the level of portability that an

application can have.

L} Identifies the architectural differences between the Intel and 88K

architectures that may be visible to applications.

QO) Reviews different factors that can affect the porting processes of

compiling, linking, and debugging.

UI Provides tips on how to create applications that are independent of the

architecture on which they will run.

Although the Quick Reference focuses on moving applications from the

DG/UxX for 88K operating system to the DG/UX for Intel operating sys-

tem, it also outlines issues relating to moving applications to DG/UX for

Intel from the UnixWare and other versions of the UNIX operating system.

What’s New in DG/UX System Release 4.10?

Because of Data General’s commitment to providing an operating system

that conforms to industry programming standards, the DG/UX operating

system has gained a reputation of being an easy platform to which to port

applications. With the availability of DG/UX System release 4.10 and its

support for Intel platforms, the DG/UX operating system (along with the

optional DG/UX Software Development Kits for the Intel and 88K servers)

becomes an even more attractive environment in which to create and run

portable applications.

Although the most significant enhancement in DG/UX System release 4.10

is its ability to run on both AViiON 88K and AViiON for Intel servers,

DG/UxX System release 4.10 brings with it many enhancements.

FYi—Related Documentation

Because this is a Quick Reference, it doesn’t provide the level of detail that you might need

to address a specific porting question. For more detailed information, you should refer to

Porting and Developing Applications on the DG/UX System (069-701059). This manual provides

information and techniques to help you develop DG/UX applications and port them among

platforms. You can find a more complete list of standards-related documentation at the end

of this Quick Reference (page 17).

Porting Applications to DG/UX for Intel DG/UX Quick Reference

012-004709-00 September 1995

Page 3

In addition, the Intel and 88K versions of the DG/UX operating system

share the same base of source code, which helps ensure compatibility be-

tween the two versions of the operating system. Here are some other

porting-related highlights of the general and Intel-specific enhancements in

DG/UX System release 4.10.

General Enhancements

Some general enhancements in DG/UX System release 4.10 are:

4 Application compatibility from the earlier 3.10 release of the DG/UX

operating system—at the binary, object, and source level for 88K; at the

source level for Intel.

(1 The optional Software Development Kit (SDK) that provides the

necessary components for creating and debugging software.

QO A reorganized library structure that matches more closely the structure

of the libraries as specified in the Intel Application Binary Interface

(ABI) and used by other UNIX implementations. This reorganization is

transparent to 88K applications.

1 For TCP/IP, support for Internet Protocol (IP) multicast configurations,

for the Dynamic Host Configuration Protocol (DHCP), for Point-to-Point

Protocol (PPP); and IP broadcast forwarding.

4 For SNMP, a user-extensible agent and enhanced sysadm package

installation.

OU Several new commands and command options, including GNU’s gzip,

gunzip, and gzcat commands, and a -o argument to the mount command

for displaying ISO-9660 filenames.

1) imake, a utility that enables you to create platform-independent

makefiles.

Intel-Specific Enhancements

From the point of view of someone porting applications to AViiON for

Intel servers, DG/UX System release 4.10 provides important features and

enhancements, including:

QO Device drivers for AViiON for Intel devices, such as SCSI host adapters

and Ethernet adapters.

QO An optional DG/UX Application Capture Option (aco) package that

allows certain UnixWare and SCO applications to run on DG/UX for

Intel without being recompiled.

In addition to these enhancements, the DG/UX System release 4.10 com-

plies with the X/Open XPG4 Portability Guide (XPG4). The R3.10 version

of the DG/UX operating system complied with XPG3.

The operating system’s release notice has more information about these

and other features and enhancements.

DG/UX Quick Reference Porting Applications to DG/UX for Intel

September 1995 012-004709-00

Page 4

When Are Source-Code Changes Required?

If a DG/UX for 88K application has no architectural dependencies, uses no

assembly language routines, and conforms to industry programming stan-

dards, the process of porting the application to DG/UX for Intel can be as

straightforward as compiling and linking the application in the DG/UX for

Intel Software Development Environment (SDE). However, the architec-

tures of the Motorola 88K and Intel processors are different, so you cannot

create a single binary program that will run on both platforms.

Whether you'll need to change an application’s source code (port the appli-

cation) to run on DG/UxX for Intel is determined by the relationship among

three factors:

LI Type of operating system environment for which the application was

written originally

UI Type of processor architecture for which the application was written

originally

“J Degree to which the original application conforms to industry

programming and portability standards (see the “FYI” inset at the

bottom of this page)

FYI—Compatibility and Standards

There are three kinds of compatibility: binary, object, and source.

Binary compatibility enables you to copy an application’s binary program onto a system and

execute the program without any compiling or linking—no porting effort is needed.

Object compatibility enables you to take objects from one system and relink them on another

system.

Source compatibility enables you to compile and link the same source code in the software

development environments of different operating system /hardware platforms.

Industry organizations have published standards that help ensure binary and source com-

patibility. The DG/UX for Intel operating system implements a subset of the Intel ABI

supplement to the System V Application Binary Interface (gABI); the DG/UX for 88K ver-

sion implements a subset of the Motorola 88K supplement to the gABI. The DG/UX

operating system conforms to the following source-level standards: POSIX, FIPS 151,

System V, BSD, and XPG4.

Porting Applications to DG/UX for Intel DG/UX Quick Reference

012-004709-00 September 1995

Page 5

Table 1 provides some general guidelines that can help you determine

whether you'll need to make changes to an application’s source code be-

fore you move the application to DG/UX for Intel. The sections that follow

discuss the guidelines in detail.

Table 1 What to Look For When Porting an Application

September 1995

Application Characteristics Porting Considerations

Uses 88K assembly language If possible, rewrite the assembly language routines in

routines C, then compile and link in the DG/UX for Intel

© environment. If assembly routines are required (for

= reasons of performance or to access some special

= 3 hardware features), then rewrite the routines in Intel

Sc y assembly language before compiling and linking.
Ce

2 3 2 | Has dependencies on the 88K Rewrite the routines that have the dependencies and

8 0 & | processor’s byte ordering convert existing data. Or if the application is to runon
2 E < | (“endianess”) both platforms, rewrite the data-handling routines so

© : :

© Oo © that they are endian independent.
“oo
co &

a)

& Eee See eee Seer Se eee SES Seen

Adheres to the Intel ABI May run without recompilation.

Depends on features of the DG/UX | May run with no or with minor changes.

Application Capture Option

Uses features specific to UnixWare Will require source code changes, compilation, and

(features not supported by the linking in either the DG/UX for Intel or UnixWare

DG/UxX Application Capture environments.

Option)

Built for other UNIX Many of these applications will compile, link, and run

implementations in the DG/UX for Intel environment. However,

applications that use an operating system’s

proprietary features may require source code

changes.

DG/UX Quick Reference Porting Applications to DG/UX for Intel

012-004709-00

Page 6

Moving DG/UX 88K Applications to DG/UX for Intel

Because this is a Quick Reference, it doesn’t provide step-by-step instruc-

tions for the porting process—every application is different. However, we

can review the general porting process and provide tips about what to look

for when you’re moving applications from DG/UX for 88K to DG/UX for

Intel.

Before You Start—Qualifying an Application

In many cases, the easiest way to determine what (if any) parts of your ap-

plication’s source code have to be changed to run on DG/UX for Intel is to

“let the computer do the work”—by compiling the application’s source

code in the DG/UxX for Intel Software Development Environment (SDE). If

the application compiles and links without errors, you can continue and

test the application.

If the compiler or linker generates errors, you can fix the errors, and then

recompile and relink. During this iterative process, you might consider

characterizing the fixes so that you can incorporate what you learn into

your development group’s programming standards or porting guide.

Another approach, before compiling, is to make changes to your applica-

tion’s source code based on your own porting experiences or the tips that

are provided in this section. For example, you'll probably know before-

hand whether your application has dependencies on the big-endianess of

the 88K processor. In that case, you can take steps to make the application

independent of the way that multi-byte data is stored—perhaps by using

the DG/UX xdr library routines.

Figure 1 on page 7 highlights the porting process. The figure points to pag-

es that provide more information about features or changes in DG/UX

System release 4.10 that can affect the porting process. We’ve placed the

items into the general categories of:

UW Build environment differences (page 8), which include a reorganization

of the libraries.

MO Architectural (hardware) differences (page 8), which include byte-

ordering (endianess), use of assembly language, and new device names.

“J Updates to the development environment (page 13), which include

updates to the compiler, to porting standards, and to the window

manager.

“) Updates to the runtime (windows) environment (page 13).

Porting Applications to DG/UX for Intel DG/UX Quick Reference

012-004709-00 September 1995

Original application

+“

Application with “ported”

source code

t
Set up the build

environment

44 When moving an application

Y
Compile

Test and debug

Y
Ported application

Figure 1 The Porting Process

Source code changes

Page 7

to DG/UxX for Intel from

DG/UX for 88K, the need for

source code changes can result

from:

1} Build environment

differences (see page 8).

Architectural (processor)

differences (see page 8).

(1 Updates to the software

development environment

(see page 13).

QO Updates to the window

environment (see page 13).

DG/UX Quick Reference

September 1995

Porting Applications to DG/UX for Intel

012-004709-00

Page 8

Build Environment Differences

In DG/UX System release 4.10, the library structure was reorganized to

more closely match the structure that is specified in the Intel ABI and other

UNIX implementations. The library libdge has been removed and its func-

tions were moved to libc, libnsl, libsocket, and libresolv.

Because of this reorganization, you may find that some 88K link-lines (in

makefiles or shell scripts) generate linking errors for “undefined referenc-

es” when used in the DG/UX for Intel environment. (The reorganization

has no effect on 88K applications that are compiled and linked only in the

88K SDE.)

You can take the following steps to determine the minimum common li-

braries that you can use with DG/UX for Intel:

1. If you have the -ldge argument in your link line, remove it.

2. Run the linker. If the linker returns no errors, the functions that you

need are in libe. You can stop at this point and run the application.

3. If the linker produces unresolved symbol errors, add the following

arguments, one at a time (in this order), and run the linker. Stop when

there are no more errors and use the one, two, or three arguments in

your link line.

-Ins]

-lsocket

-lresolv

It’s important to note that the same link lines that work correctly in the

Intel SDE will work correctly in the 88K SDE. This provides you with the

convenience of using the same link lines in both SDEs.

Chapter 7 of Porting and Developing Applications on the DG/UX System pro-

vides more details about how to create link lines that work with both SDEs.

88K and Intel—Architectural Differences

In most cases, a platform’s DG/UX SDE hides the architectural differences

of processors, so the porting process can be as simple as compiling an ap-

plication’s source code in the target system’s development environment.

However, if routines in your existing application’s source code “see” some

architectural differences, you'll have to change the routine to make it work

properly with the other architecture.

Porting Applications to DG/UX for Intel DG/UX Quick Reference

012-004709-00 September 1995

Page 9

From an architectural point of view, the things that can affect the porting

process include:

Ordering of multi-byte data—”endianess”

“ Use of assembly language

(J New device names

J The way that 88K and Intel systems format and store data on disks

Ordering of Multi-Byte Data (Endianess)

The 88K and Intel processors handle and store multi-byte data, such as

shorts, longs, bit fields, and floating point numbers, in fundamentally

different ways.

) The Motorola 88K is a big-endian CPU; it stores multi-byte data by

placing the data’s most significant byte at the data’s starting address in

memory.

Qi The Intel Pentium is a little-endian CPU; it stores multi-byte data by

placing the data’s least significant byte at the data’s starting address in

memory.

If the application you are porting to DG/UX for Intel was written for a big-

endian processor, you will need to evaluate the application to ensure that

byte and bit accesses are not endian-dependent. This includes an examina-

tion of the structure of the data that the application uses (or generates) to

ensure that the data does not depend on the byte ordering for proper

interpretation.

If your application or its data is byte-order dependent, you'll need to take

steps to either:

(J Perform a one-time conversion of your data to change its format to that

of the target platform. For example, if your application works with

database data, you'll find that many database management systems,

such as ORACLE, Sybase, Informix, and Progress, provide utilities that

enable you to import and export data in different endian formats.

(J Make your application completely “endian-neutral” by storing data in

non-binary format or by using conversion routines. You could write

your own conversion routines. However, a better choice might be to use

the xdr(3) library routines, which are designed to work across different

languages, operating systems, and hardware platforms, and translate

different types of data into a machine-independent format.

The approach you take depends on the degree of portability you want your

application to have. If you are doing a one-time port, a one-time conver-

sion might be appropriate. However, if your application needs to run on

different platforms, a change to the use of endian-independent data may be

the best long-term approach.

DG/UX Quick Reference Porting Applications to DG/UX for Intel

September 1995 012-004709-00

Page 10

Chapter 3 of Porting and Developing Applications on the DG/UX System

describes big- and little-endian byte ordering and its effect on applications.

The chapter also discusses the xdr(3) library routines.

Endianess and Bit Fields

Bit fields, like integers, are multi-byte data types and have similar big-en-

dian and little-endian differences. However, unlike integers and doubles,

bit fields are not restricted to sizes that are multiples of a byte.

The compiler can pack several bit fields into a single word (in different or-

der, depending on the endianess of the platform) and add padding

between fields when they don’t fit on word or byte boundaries. The exact

format of the packing and padding is implementation-dependent and de-

fined by the ABI for the target machine. Therefore, you should look for

places in your application where bit-field data moves across hardware

boundaries that use different endian protocols.

For example, instead of manipulating bits directly, you can use shift opera-

tions and masks, which are independent of a hardware platform’s

endianess. In addition, you remove byte-order dependencies by using byte

streams (instead of multi-byte structure members).

Endianess and Device Drivers

If your 88K application interacts with devices for which you have written a

device driver, you may have to provide an Intel version of that driver.

As with the rest of your application, you should examine your device driv-

er code to ensure that the code has no byte-ordering or bit-field

dependencies. In particular, you should examine device drivers that you

have written for use with SCSI adapters or SCSI devices. Like the 88K pro-

cessor family, SCSI was designed to use the big-endian protocol.

If your device drivers have byte-order dependencies (if a driver uses multi-

byte data) or if a driver manipulates bit fields directly, you will have to re-

move endian dependencies from the code in order to port the drivers to the

little-endian Intel platform.

As mentioned above, you should also avoid writing bit fields to peripheral

devices (across hardware boundaries). The resulting data will require a

careful analysis to determine if it can be read on a different (endian) plat-

form. You can eliminate bit-field dependencies by using bit-shift and

masking operations.

With DG/UxX, all user-written device drivers must be linked into the kernel

and the machine rebooted before the device driver becomes active.

Porting Applications to DG/UX for Intel DG/UX Quick Reference

012-004709-00 September 1995

Page 17

Chapter 7 of Porting and Developing Applications on the DG/UX System

describes how to set the proper feature test macros for linking with

DG/UX kernel libraries. Programming in the DG/UX Kernel Environment

(093-701083) contains information about preparing device drivers for use

with DG/UX platforms.

Assembly Language

Assembly language routines are platform-dependent. If your 88K applica-

tion uses Motorola assembly language routines, you'll have to rewrite the

routines in C (to make them platform-independent) or in Intel assembler.

If you need to use assembly language routines, for reasons of performance

or to work with a special device, you can simplify the job of porting by iso-

lating the assembly language routines when you move the application

among platforms.

The syntax of the DG/UX assembler for Intel (as) is compatible with UNIX

SVR4 assemblers, such as the UnixWare assembler. Chapter 10 of Porting

and Developing Applications on the DG/UX System provides details about the

differences between the as assembler’s syntax and the syntax used by In-

tel /Microsoft assemblers.

New Device Names

The characteristics of the AViiON for Intel servers requires new boot com-

mands for disks and tapes (see Table 2).

Table 2 AViiON 88K and AVON for Intel Boot Command Examples

AViiON 88K AViiON for Intel

b sd(ncsc(),0)root:dgux -3 | sd(npsc(pci(),C),0)root:dgux -3

b sd(ncsc(),4)root:dgux -3 | st(npsc(pci(),C),4)

DG/UX Quick Reference Porting Applications to DG/UX for Intel

September 1995 012-004709-00

Page 12

A related change involves incorporating the names of the AViiON for Intel

hardware into the DG/UX for Intel operating system’s /dev directory.

Table 3 summarizes these names.

Table 3 New /dev Names for AViiON for Intel Servers

DG/UX for Intel Name Comment

/dev/console The SVGA console that you use when you

boot the system. This is essentially an

ASCII system console with no virtual

console support.

/dev/ floppy The first floppy disk device (instead of the

88K platform’s /dev/pdsk/X (where X is

a unit number)

/dev/keyboard The AT-101 keyboard device. On AViiON

for Intel platforms, the keyboard runs in

mode 1 rather than in mode 3 as on the 88K

platforms. This is done to adhere to the

ad-hoc convention that vendors have for

using keyboards in mode 1.

/dev/mouse The integrated mouse port on the back of

the AViiON for Intel server or on the

keyboard (for an integrated

mouse/keyboard combination). You can

also use a serial mouse on the port COM1

or COM2, if desired.

/dev/tty00 The server’s COM1 port

/dev/tty01 The server’s COM2 port

/dev/parallel/lpt(0, X) | The server’s parallel printer port

where X is 1-3 (typically 2)

A Note About Transferring Disk Drives Among Systems

The AViiON 88K and Intel servers use different disk formats. Therefore,

you cannot perform a “plug and play” transfer of hard drives between the

two platforms. Instead, you can copy a drive’s data to tape (with tar, for

example), move the drive to the other platform, format the drive, create the

appropriate file systems, and reload the data. Or if your source and target

platforms are on a LAN, and the source platform has multiple drives (and

adequate space), you can copy the data to a different drive, move the drive

to the target platform, NFS mount the appropriate file systems from the

AViiON 88K server, and copy the data to the AViiON for Intel server.

Porting Applications to DG/UX for Intel DG/UX Quick Reference

012-004709-00 September 1995

Page 13

Updates to the Software Development Environment

DG/UX System release 4.10 includes updates to the development environ-

ment that could require some source code changes. These updates include

some header file modifications and a new default for the cc command’s

-X option.

Note — You need to be concerned with these changes only if you are

rebuilding your DG/UX R3.10 application—DG/UX System release 4.10

maintains binary compatibility with DG/UX R3.10. Note also that these

updates are independent of Intel and 88K platform differences.

To comply with X/Open’s XPG4 specification, the DG/UX System release

4.10 system headers introduced a number of new function prototypes and

were modified so that some headers define additional functions. Some of

the new prototypes are for new functions (such as fputwc—write a wide

character), while others are for those traditional functions (such as write),

that didn’t have function prototypes in previous releases. This change may

cause sources that formerly compiled correctly to get compilation errors if

they are recompiled with release 4.10.

The typical kinds of problems this change can cause are:

LI Redefinition errors caused by local use of names defined in an included

header. The fix is to change your program to not use the offending

name.

LI Interface mismatch error messages. These are caused by incorrect

invocations of header-defined functions. These invocations may have

“worked” in a previous version, but are a potential source of failure in

your software. The best fix for this problem is to code the invocation

correctly.

Another change is a new default for the -X option of the cc command. The

default has changed from -Xt (traditional) to -Xa (ANSI). The simple fix

(if you get compilation errors) is to supply an explicit -Xt on your compile

line.

Porting Applications That Have a Graphical User Interface

The DG/UxX for Intel X Window System is essentially the same as it is on

DG/UxX for 88K platforms. DG/UX for Intel supports version X11R5 of the

X Window System and version 1.2.4 of the OSF/Motif window manager.

DG/UX for Intel provides local X display support, as well as all of the

components needed to build X applications that are displayed on X termi-

nals, workstation X servers, or other remote X displays.

DG/UX Quick Reference Porting Applications to DG/UX for Intel

September 1995 012-004709-00

Page 14

Motif 1.2.4

The DG/UX System release 4.10 software package includes an update from

version 1.2.2 of Motif to Motif 1.2.4 and a new Motif window manager.

Motif 1.2.4 is a bug fix enhancement of the Motif 1.2 product. Applications

that were originally written to work with Motif 1.2 should work with this

new revision with no or minor modifications.

If your application was built using DG/UX shared libraries you should

need to do nothing but recompile. At run time, your application will be dy-

namically linked with the new 1ibXm.so and should work properly.

However, your application may not run properly if it used a “feature” of

Motif 1.2 or Motif 1.2.2 that was reported as a bug and later fixed by OSF

as part of Motif 1.2.4. In this case your application will reflect the new be-

havior of the library.

Applications that were linked statically, using 1ibXm.a, will experience no

behavioral changes. However, if you want your application to pick up the

behavior of the new library, you will need to relink your application.

Support for Fonts

Starting with DG/UX System release 4.10, the DG/UX operating system

will provide only Portable Compiled Fonts (.pcf fonts). Prior to DG/UX

System release 4.10, the operating system provided both .pcf fonts and

Server Neutral Fonts (.snf fonts). If your application uses its own fonts, you

should consider providing .pcf fonts to maximize portability.

Moving UnixWare Applications to DG/UX for Intel

The DG/UX and UnixWare operating systems have a common history and

follow many of the same source standards. Therefore, a UnixWare applica-

tion is likely to compile and run on DG/UX for Intel without any

modifications.

However, if your UnixWare application uses features of UnixWare that are

not supported in DG/UX for Intel, you must modify your application to

use the equivalent DG/UX for Intel features. Table 4 lists some UnixWare

features that DG/UX for Intel implements differently or does not support.

You may find that features of the DG/UX Application Capture Option

Package, described in the aco release notice, will provide an environment

for your application that is more like UnixWare. If you’re moving a Unix-

Ware application to DG/UX for Intel, you may not have to do any porting.

You may be able to move a UnixWare application’s binary onto a DG/UX

for Intel server, load and set up the optional aco package, and run the

application.

Porting Applications to DG/UX for Intel DG/UX Quick Reference

012-004709-00 September 1995

Page 15

Note — The aco package is a dynamic package—over time, it will be

updated to provide support for additional UnixWare functions. However,

because the aco package is not available on all DG/UX platforms and

contains functions specific to UnixWare, using it limits the portability of

your application.

Table 4 UnixWare Features that Affect Portability

UnixWare Implementation DG/UX for Intel Implementation

/dev/kmem DG/UX for Intel does not support UnixWare-style

/dev/kmem devices. DG/UX for Intel applications should

not read /dev/kmem and should be changed to use the

DG/UX system call interface to obtain the needed

information.

/etc/cmos Not supported

/proc DG/UxX for Intel provides the ct race and dg_xtrace calls,

which are similar in function to /proc.

Asynchronous I/O DG/UxX for Intel contains limited binary support for some

operations UnixWare async I/O operations, provided for support of

existing UnixWare applications. Applications ported to

DG/UxX for Intel should use DG/UX async I/O or listio

interfaces.

BSD compatibility in Not supported. However, the DG/UX system supports some

libucb.a BSD compatibility through its feature test macros.

COFF and ELF DG/UX for Intel does not support linking COFF objects with

ELF objects. An application cannot link a COFF object built on

another OS with ELF objects built on DG/UX.

Cumulative model of

starting init scripts

Not supported in plain DG/UX for Intel. If the system is

taken from init S to init 3 on DG/UxX for Intel, only those

RC scripts in init 3 are run. However, the optional aco

package does provide support for the cumulative init script

model. (Taking the system from initS to init3 causes all

init scripts in the successive levels to be run.)

DDI/DKI interface for Not supported. Refer to Programming in the DG/UX Kernel

drivers Environment for information about writing device drivers for

DG/UX systems.

DG/UX Quick Reference Porting Applications to DG/UX for Intel

September 1995 012-004709-00

Page 16

Table 4 UnixWare Features that Affect Portability (Continued)

UnixWare Implementation DG/UX for Intel Implementation

Device naming conventions Conventions for naming devices differ between DG/UX for

Intel and UnixWare. An example of a tape device naming

difference is:

DG/UX: /dev/rmt /0

UnixWare: /dev/rmt/ctapel

Floppy device names also differ on the two operating

systems. Some compatibility for UnixWare device names is

provided in the optional aco package.

Dynamically loadable
modules

Not supported

File systems (proprietary to

UnixWare): ufs, s5,

Not supported. Use standard file systems.

vxfs, bfs, or sfs

Internationalization: Support for /etc/default/lang is provided only in the

/etc/default/lang optional aco package. To maintain portability, applications

should use DG/UX /etc/TIMEZONE.

Persistent /dev In DG/UX for Intel, /dev is a memory resident directory and

is re-created every time the system is rebooted. Applications

should not put entries in /dev.

Physical disk format DG/UxX for Intel does not support the physical disk format of

UnixWare. Applications will fail if they attempt to read the

UnixWare VTOC or other UnixWare internal structures

directly from raw disk. Use standard interfaces to request

information.

Remote File System (RFS) Not supported. DG/UX System release 4.10 supports NFS.

Security features Not supported. However, the DG/UX DSO security option

provides a range of features, including B2 level of assurance,

virus protection, access control lists, mandatory access

control, auditing, capability access control, and Trusted IP.

Streams-based sockets DG/UxX for Intel supports Berkeley-style sockets.

Applications should not send streams ioctls to sockets or

attempt to perform any other streams operations on sockets.

System administration

utility (sysadm)

DG/UX for Intel uses a proprietary interface description

language, idl, to define sysadm menus and options. System

administrators can use idl to customize sysadm.

uname command The output of this command is different in DG/UX for Intel

and UnixWare; applications should not depend on output of

this command.

Porting Applications to DG/UX for Intel

012-004709-00

DG/UX Quick Reference

September 1995

Page 17

Table 4 UnixWare Features that Affect Portability (Continued)

UnixWare Implementation DG/UX for Intel Implementation

Tape ioctls DG/UxX for Intel does not support many of the UnixWare

tape ioct1s. Applications should use Data General’s

multithreaded ioct1s to make ioct1 calls on tape devices.

Threads DG/UxX for Intel implements POSIX threads (Pthreads).

Xenix support in libx.a Not supported

XTI library network Not supported. The DG/UX system supports the TLI library

interface interface.

Other Documentation

In addition to Porting and Developing Applications on the DG/UX System

(069-701059), several other documents (and providers of documents) may

be of interest to porting engineers and programmers.

(Y Release Notice: DG/UX System 4.10 Software

QO Programming in the DG/UX Kernel Environment (093-701083)

LY Novell— information about UnixWare

LY X/Open Company Limited—information about the X/Open Portability

Guide (XPG) and the Common Application Environment (CAE)

J IEEE—information about POSIX standards

) Dr. Dobb’s Journal—Endian Neutral Software—October 1994 and

November 1994 (a two-part article)

UO) DG/UX Technical Brief Support for Threads in the DG/UX 5.4 Operating

System (012-004405)

Please Recycle

%O
The Terms and Conditions governing the sale of DGC hardware products and the licensing of DGC software consist solely of

those set forth in the written contracts between DGC and its customers. No representation or other affirmation of fact

contained in this document, including, but not limited to, statements regarding capacity, response-time performance, up-time

performance, suitability for use or performance of products described herein shall be deemed to be a warranty by DGC for

any purpose, or give rise to any liability of DGC whatsoever.

DG/UX Quick Reference Porting Applications to DG/UX for Intel

September 1995 012-004709-00

