
q» Data General

Customer Documentation

STREAMS Programmer’s Guide

for the DG/UX System

STREAMS

Programmer's

Guide for the

DG/UXTM System

069-701034-00

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 069-701034

All Rights Reserved

Copyright © Data General Corporation 1989

Revision 00 June 1989

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS

DISTRIBUTED THIS DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES,

AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE

PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF THIS

MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED

OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holders reserve the right to make changes in specifications and other

information contained in this document without prior notice, and the reader should in all

cases determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE

PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF

THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS

CUSTOMERS, AND THE TERMS AND CONDITIONS GOVERNING THE

LICENSING OF THIRD PARTY SOFTWARE CONSIST SOLELY OF THOSE SET

FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION

OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT

INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,

RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE

OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY

BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC

WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT,

SPECIAL.OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT

NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATED TO THIS

DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF DGC HAS

BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF

SUCH DAMAGES.

UNIX is a U.S. registered trademark of AT&T.

DG/UX is a trademark of Data General Corporation.

Copyright © AT&T 1988

Copyright © Data General Corporation 1989

All Rights Reserved

Printed in the United States of America

Certain portions of this document were prepared by Data General Corporation, and the

remaining portions were prepared by AT&T. Addendum 086-000148 updates STREAMS

Programmer's Guide for the DG/UXTM System (069-701034 Rev. 00) with Appendix F, which is

all new information.

STREAMS Programmer’s Guide for the DG/UXTM System

069-701034-00

Revision History: Effective with:

Original Release — June 1989 DG/UX Rel. 4.10

Addendum — August 1989 DG/UX Rel. 4.10

Table of Contents

Part 1: Application Programming

Chapter 1: Basic Operations

A Simple Stream

Inserting Modules

Module and Driver Control

Chapter 2: Advanced Operations

Advanced Input/Output Facilities

Input/Output Polling

Asynchronous Input/Output

Clone Open

Chapter 3: Multiplexed Streams

Multiplexor Configurations

Building a Multiplexor

Dismantling a Multiplexor

Routing Data Through a Multiplexor

Chapter 4: Message Handling

Service Interface Messages

The Message Interface

Datagram Service Interface Example

iil

STREAMS Programmer’s Guide for the DG/UXTM System

iV

Part 2: Module and Driver Programming

Chapter 5: Streams Mechanism

Overview

Stream Construction

Opening a Stream

Adding and Removing Modules

Closing

Chapter 6: Modules

Module Declarations

Module Procedures

Module and Driver Environment

Chapter 7: Messages

Message Format

Filter Module Declarations

Message Allocation

Put Procedure

5-1

5-1

5-3

5-5

5-6

5-7

6-1

6-1

7-1

7-1

7-5

7-8

79

STREAMS Programmer’s Guide for the DG/UXTM System

Chapter 8: Message Queues and Service 8-1

Procedures 8-1

The queue_t Structure 8-1

Service Procedures 8-2

Message Queues and Message Priority 8-4

Flow Control —-8-6

Example 8-8

Chapter 9: Drivers 9-1

Overview of Drivers 9-1

Driver Flow Control 9-3

Driver Programming 9-4

Driver Processing Procedures 9-8

Driver and Module Ioctls 9-12

Driver Close 9-15

Chapter 10: Complete Driver 10-1

Cloning 10-1

Loop-Around Driver 10-2

STREAMS Programmer’s Guide for the DG/UXTM System

Vi

Chapter 11: Multiplexing

Multiplexing Configurations

Multiplexor Construction Example

Multiplexing Driver

Chapter 12: Service Interface

Definition

Example

Chapter 13: Advanced Topics

Recovering From No Buffers

Advanced Flow Control

Signals

Control of Stream Head Processing

Appendix A: Kernel Structures

Appendix B: Message Types

Appendix C: Utilities

Appendix D: Design Guidelines

Appendix E: Configuring

11-1

11-1

11-5

11-8

12-1

12-1

12-3

13-1

13-1

13-4

13-5

13-7

A-1

B-1

D-1

E-1

STREAMS Programmer’s Guide for the DG/UXTM System

Appendix F: Using STREAMS on the F-1
DG/UX System

Glossary G-1

Index I-1

Vil

List of Figures

Figure 1-1: Stream to Communications Driver

Figure 1-2: Case Converter Module

Figure 3-1: Many-to-one Multiplexor

Figure 3-2: One-to-many Multiplexor

Figure 3-3: Many-to-many Multiplexor

Figure 3-4: Protocol Multiplexor

Figure 3-5: Before Link

Figure 3-6: IP Multiplexor After First Link

Figure 3-7: IP Multiplexor

Figure 3-8: TP Multiplexor

Figure 4-1: Protocol Substitution

Figure 4-2: Service Interface

Figure 5-1: Downstream Stream Construction

Figure 5-2: QUEUE Data Structures

Figure 7-1: Message Form and Linkage

Figure 8-1: Message Queue Priority

Figure 9-1: Device Driver Streams

Figure 10-1: Loop Around Streams

Figure 11-1: Internet Multiplexor Before Connecting

Figure 11-2: Internet Multiplexor After Connecting

Figure 11-3: Example Multiplexor Configuration

Figure B-1: M_PROTO and M_PCPROTO Message Structure

1-3

3-1

3-2

3-4

3-6

3-7

3-9

3-11

4-2

10-3

11-5

11-6

11-12

LIST OF FIGURES ix

Introduction to this Guide

This document provides information to developers on the use of the

STREAMS mechanism at user and kernel levels.

STREAMS was incorporated in the DG/UX System to augment the

existing character input/output (I/O) mechanism and to support develop-

ment of communication services. The STREAMS Programmer’s Guide

includes detailed information, with various examples, on the development

methods and design philosophy of all aspects of STREAMS.

This guide is organized into two parts. Part 1: Applications Program-

ming, describes the development of user level applications. Part 2: Module

and Driver Programming, describes the STREAMS kernel facilities for

development of modules and drivers. Although chapter numbers are con-

secutive, the two parts are independent. Working knowledge of the

STREAMS Primer is assumed.

PREFACE xi

STREAMS Overview

This section reviews the STREAMS mechanism. STREAMS is a gen-

eral, flexible facility and a set of tools for development of DG/UX system

communication services. It supports the implementation of services ranging

from complete networking protocol suites to individual device drivers.

STREAMS defines standard interfaces for character input/output within the

kernel, and between the kernel and the rest of the DG/UX System. The

associated mechanism is simple and open-ended. It consists of a set of sys-

tem calls, kernel resources and kerncl routines.

The standard interface and mechanism enable modular, portable

development and easy integration of higher performance network services

and their components. STREAMS provides a framework: It does not

impose any specific network architecture. The STREAMS user interface is

upwardly compatible with the character I/O user interface, and both user

interfaces are available in the DG/UX System.

A Stream is a full-duplex processing and data transfer path between a

STREAMS driver in kernel space and a process in user space (see Figure

1). In the kernel, a Stream is constructed by linking a stream head, a driver

and zero or more modules between the stream head and driver. The Stream

head is the end of the Stream closest to the user process. Throughout this

guide, the word "STREAMS’ will refer to the mechanism and the word

"Stream” will refer to the path between a user and a driver.

A STREAMS driver may be a device driver that provides the services of

an external I/O device, or a software driver, commonly referred to as a

pseudo-device driver, that performs functions internal to a Stream. The

Stream head provides the interface between the Stream and user processes.

Its principal function is to process STREAMS-related user system calls.

Data are passed between a driver and the Stream head in messages.

Messages that are passed from the Stream head toward the driver are said to

travel downstream. Similarly, messages passed in the other direction travel

upstream. The Stream head transfers data between the data space of a user

process and STREAMS kernel data space. Data to be sent to a driver from

a user process are packaged into STREAMS messages and passed down-

stream. When a message containing data arrives at the Stream head from

downstream, the message is processed by the Stream head, which copies the

data into user buffers.

xii STREAMS PROGRAMMER’S GUIDE

STREAMS Overview

PREFACE xiii

STREAMS Overview

User

Process

ne ___y User Space

~ Kernel SpaceTM ~
Stream

Lead
downstream

Module (optional)

j

Driver

upstream

V
External

Interface

Figure 1: Basic Stream

Within a Stream, messages are distinguished by a type indicator. Cer-

tain message types sent upstream may cause the Stream head to perform

specific actions, such as sending a signal to a user process. Other message

types are intended to carry information within a Stream and are not directly

seen by a user process.

xiv STREAMS PROGRAMMER’S GUIDE

STREAMS Overview

One or more kernel-resident modules may be inserted into a Stream
between the Stream head and driver to perform intermediate processing of

_ data as it passes between the Stream head and driver. STREAMS modules
are dynamically interconnected in a Stream by a user process. No kernel

programming, assembly, or link editing is required to create the interconnec-

tion.

PREFACE xv

Development Facilities

General and STREAMS-specific system calls provide the user level facil-

ities required to implement application programs. This system call interface

is upwardly compatible with the character I/O facilities. The open(2) system

call will recognize a STREAMS file and create a Stream to the specified

driver. A user process can receive and send data on STREAMS files using

read(2) and write(2) in the same manner as with character files. The ioctl(2)

system call enables users to perform functions specific to a particular device

and a set of generic STREAMS ioctl commands [see streamio(7)] support a

variety of functions for accessing and controlling Streams. A close(2) will

dismantle a Stream.

In addition to the generic ioctl commands, there are STREAMS-specific

system calls to support unique STREAMS facilities. The poll(2) system call

enables a user to poll multiple Streams for various events. The putmsg(2)

and getmsg(2) system calls enable users to send and receive STREAMS

messages, and are suitable for interacting with STREAMS modules and

drivers through a service interface.

STREAMS provides kernel facilities and utilities to support develop-

ment of modules and drivers. The Stream head handles most system calls

so that the related processing does not have to be incorporated in a module

and driver. The configuration mechanism allows modules and drivers to be

incorporated into the system.

Examples are used throughout both parts of this document to highlight

the most important and common capabilities of STREAMS. The descrip-

tions are not meant to be exhaustive. For simplicity, the examples reference

fictional drivers and modules.

Appendix C provides the reference for STREAMS kernel utilities.

STREAMS system calls are specified in Section 2 of the Programmer's

Reference for the DG/UX System. STREAMS utilities are specified in Sec-

tion 1M of the System Manager’s Reference for the DG/UX System.

STREAMS-specific ioctl calls are specified in streamio(7) of the System

Manager’s Reference for the DG/UX System. The modules and drivers avail-

able with the DG/UX System are described in Section 7 of the System

Manager’s Reference for the DG/UX System.

xvi STREAMS PROGRAMMER’S GUIDE

Introduction to Part 1

Part 1 of the guide, Application Programming, provides detailed infor-

mation, with various examples, on the user interface to STREAMS facili-

ties. It is intended for application programmers writing to the STREAMS

system call interface. Working knowledge of DG/UX system user program-

ming, data communication facilities, and the STREAMS Primer is assumed.

The organization of Part 1 is as follows:

= Chapter 1, Basic Operations, describes the basic operations available

for constructing, using, and dismantling Streams. These operations

are performed using open(2), close(2), read(2), write(2), and ioctl(2).

m= Chapter 2, Advanced Operations, presents advanced facilities pro-

vided by STREAMS, including: poll(2), a user level I/O polling facil-

ity; asynchronous I/O processing support; and a new facility for sam-

pling drivers for available resources.

m= Chapter 3, Multiplexed Streams, describes the construction of sophis-

ticated, multiplexed Stream configurations.

= Chapter 4, Message Handling, describes how users can process

STREAMS messages using putmsg(2) and getmsg(2) in the context of

a service interface example.

APPLICATION PROGRAMMING i

Chapter 1-- BASIC OPERATIONS

A Simple Stream

This chapter describes the basic set of operations for manipulating

STREAMS entities.

A STREAMS driver is similar to a character I/O driver in that it has

one or more nodes associated with it in the file system and it is accessed

using the open system call. Typically, each file system node corresponds to

a separate minor device for that driver. Opening different minor devices of

a driver will cause separate Streams to be connected between a user process

and the driver. The file descriptor returned by the open call is used for

further access to the Stream. If the same minor device is opened more than

once, only one Stream will be created; the first open call will create the

Stream, and subsequent open calls will return a file descriptor that refer-

ences that Stream. Each process that opens the same minor device will

share the same Stream to the device driver.

Once a device is opened, a user process can send data to the device

using the write system call and receive data from the device using the read

system call. Access to STREAMS drivers using read and write is compati-

ble with the character I/O mechanism.

The close system call will close a device and dismantle the associated

Stream.

The following example shows how a simple Stream is used. In the exam-

ple, the user program interacts with a generic communications device that

provides point-to-point data transfer between two computers. Data written

to the device is transmitted over the communications line, and data arriving

on the line can be retrieved by reading it from the device.

BASIC OPERATIONS _ 1-1

A Simple Stream

#include <fcntl.h>

main()

{

char buf [1024];

int fd, count;

if ((fd = open(”/dev/cam01”, O_RDWR)) < 0) {

perror(”open failed”);

exit(1);

}

while ((count = read(fd, buf, 1024)) > 0) {

if (write(fd, buf, count) != count) {

perror(’write failed”);

break ;

exit(0);

In the example, /dev/comm01 identifies a minor device of the communi-

cations device driver. When this file is opened, the system recognizes the

device as a STREAMS device and connects a Stream to the driver. Figure

1-1 shows the state of the Stream following the call to open.

1-2. STREAMS PROGRAMMER’S GUIDE

A Simple Stream

BASIC OPERATIONS = 1-3

A Simple Stream

User

Process

fp User Space
Stream Kernel Space

head

communications

driver

Figure 1-1: Stream to Communications Driver

This example illustrates a user reading data from the communications

device and then writing the input back out to the same device. In short, this

program echoes all input back over the communications line. The example

assumes that a user is sending data from the other side of the communica-

tions line. The program reads up to 1024 bytes at a time, and then writes

the number of bytes just read.

The read call returns the available data, which may contain fewer than

1024 bytes. If no data are currently available at the Stream head, the read

call blocks until data arrive.

Similarly, the write call attempts to send count bytes to /dev/comm01.

However, STREAMS implements a flow control mechanism that prevents a

user from flooding a device driver with data, thereby exhausting system

resources. If the Stream exerts flow control on the user, the write call

blocks until the flow control has been relaxed. The call will not return until

it has sent count bytes to the device. exit(2) is called to terminate the user

process. This system call also closes all open files, thereby dismantling the

Stream in this example.

1-4 STREAMS PROGRAMMER’S GUIDE

Inserting Modules

An advantage of STREAMS over the existing character I/O mechanism

stems from the ability to insert various modules into a Stream to process and

manipulate data that passes between a user process and the driver. The fol-

lowing example extends the previous communications device echoing exam-

ple by inserting a module in the Stream to change the case of certain alpha-

betic characters. The case converter module is passed an input string and

an output string by the user. Any incoming data (from the driver) is

inspected for instances of characters in the module’s input string and the

alphabetic case of all matching characters is changed. Similar actions are

taken for outgoing data using the output string. The necessary declarations

for this program are shown below:

#include <string.h>

#include <fcntl.h>

#include <stropts.h>

/*

* These defines would typically be

* found in a header file for the module

*/

#define OUTPUT_STRING 1

#define INPUT_STRING 2

main()

{

char buf [1024];

int fd, count;

struct strioctl strioctl;

The first step is to establish a Stream to the communications driver and

insert the case converter module. The following sequence of system calls

accomplishes this:

BASIC OPERATIONS 1-5

Inserting Modules

(= open(”/dev/comm01”, O_RDWR)) < 0) {
perror(”open failed”);

exit(1);

}

if (ioctl(fd, I_PUSH, “case_converter”) < 0) {

perror(”ioctl I_PUSH failed”);

exit(2);

The I_PUSH ioctl call directs the Stream head to insert the case con-
verter module between the driver and the Stream head, creating the Stream

shown in Figure 1-2. As with any driver, this module resides in the kernel

and must have been configured into the system before it was booted.

I_PUSH is one of several generic STREAMS ioctl commands that enable a
user to access and control individual Streams [see streamio(7)].

1-6 STREAMS PROGRAMMER’S GUIDE

Inserting Modules

BASIC OPERATIONS _ 1-7

Inserting Modules

User

Process

-~------------ j ________User Space
Stream Kernel Space

head

case

converter

V

communications

driver

Figure 1-2: Case Converter Module

An important difference between STREAMS drivers and modules is

illustrated here. Drivers are accessed through a node or nodes in the file

system and may be opened just like any other device. Modules, on the other

hand, do not occupy a file system node. Instead, they are identified through

a separate naming convention, and are inserted into a Stream using

ILPUSH. The name of a module is defined by the module developer, and is

typically included on the manual page describing the module (manual pages

describing STREAMS drivers and modules are found in section 7 of the Sys-

tem Manager’s Reference for the DG/UX System.

Modules are pushed onto a Stream and removed from a Stream in Last-

In-First-Out (LIFO) order. Therefore, if a second module was pushed onto

this Stream, it would be inserted between the Stream head and the case con-

verter module.

1-8 STREAMS PROGRAMMER’S GUIDE

Module and Driver Control

The next step in this example is to pass the input string and output string

to the case converter module. This can be accomplished by issuing ioctl

calls to the case converter module as follows:

/* set input conversion string */

strioctl.ic_and = INPUT STRING; /* command type */

strioctl.ic timout = 0; /* Gefault timeout (15 sec) */

strioctl.ic_dp = ”“ABCDEFGHIJ”;

strioctl.ic_len = strlen(strioctl.ic dp);

if (ioctl(fd, I_STR, &strioctl) < 0) [{

perror(”ioctl I_STR failed”);

exit(3);

}

/* set output conversion string */

strioctl.ic_and ~ OUTPUT_STRING; /* canmand type */

strioctl.ic dp = “abcdefghij”;

strioctl.ic_len = strlen(strioctl.ic dp);

if (ioctl(fd, I_STR, &strioctl) < 0) [{

perror(”ioctl I_STR failed”);

exit(4);

ioctl requests are issued to STREAMS drivers and modules indirectly,

using the I_STR ioctl call [see streamio(7)]. The argument to I.STR must

be a pointer to a strioctl structure, which specifies the request to be made to

a module or driver. This structure is defined in <stropts.h> and has the

following format:

BASIC OPERATIONS _~ 1-9

Module and Driver Control

struct strioctl {

int ic cmd; /* ioctl request */

int ic timout; /* ACK/NAK timeout */

int ic len; /* length of data argument */

char *ic dp; /* ptr to data argument */

}

where ic_cmd identifies the command intended for a module or driver,

ic_timout specifies the number of seconds an ILSTR request should wait for

an acknowledgement before timing out, ic_len is the number of bytes of data

to accompany the request, and ic_dp points to that data.

I_STR is intercepted by the Stream head, which packages it into a mes-

sage, using information contained in the strioctl structure, and sends the

message downstream. The request will be processed by the module or driver

closest to the Stream head that understands the command specified by

ic._cmd. The ioctl call will block up to ic_timout seconds, waiting for the

target module or driver to respond with either a positive or negative ack-

nowledgement message. If an acknowledgement is not received in ic_timout

seconds, the ioctl call will fail.

I_STR is actually a nested request; the Stream head intercepts I.STR

and then sends the driver or module request (as specified in the strioctl

structure) downstream. Any module that does not understand the command

in ic_cmd will pass the message further downstream. Eventually, the request

will reach the target module or driver, where it is processed and ack-

nowledged. If no module or driver understands the command, a negative

acknowledgement will be generated and the ioctl call will fail.

In the example, two separate commands are sent to the case converter

module. The first contains the conversion string for input data, and the

second contains the conversion string for output data. The ic_cmd field is

set to indicate whether the command is setting the input or output conver-

sion string. For each command, the value of ic_timout is set to zero, which

specifies the system default timeout value of 15 seconds. Also, a data argu-

ment that contains the conversion string accompanies each command. The

ic_dp field points to the beginning of each string, and ic_len is set to the

length of the string.

1-10 STREAMS PROGRAMMER’S GUIDE

Module and Driver Control

NOTE

Only one I_LSTR request can be active on a STREAM at one time. Further

requests will block until the active ILSTR request is acknowledged and the

system call completes.

The strioctl structure is also used to retrieve the results, if any, of an

I_STR request. If data is returned by the target module or driver, ic_dp

must point to a buffer large enough to hold that data, and ic_len will be set

on return to indicate the amount of data returned.

The remainder of this example is identical to the previous example:

While ((count = read(fd, buf, 1024)) > 0) {

if (write(fd, buf, count) != count) {

perror("write failed”);

break;

}

}

exit(0);

The case converter module will convert the specified input characters to

lower case, and the corresponding output characters to upper case. Notice

that the case conversion processing was realized with no change to the com-

munications driver.

As with the previous example, the exit system call will dismantle the

Stream before terminating the process. The case converter module will be

removed from the Stream automatically when it is closed. Alternatively,

modules may be removed from a Stream using the I_POP ioctl call described

in streamio(7). This call removes the topmost module on the Stream, and

enables a user process to alter the configuration of a Stream dynamically, by

pushing and popping modules as needed.

BASIC OPERATIONS _ 1-11

Module and Driver Control

A few of the important ioctl requests supported by STREAMS have

been discussed. Several other requests are available to support operations

such as determining if a given module exists on the Stream, or flushing the

data on a Stream. These requests are described fully in streamio(7).

1-12 STREAMS PROGRAMMER’S GUIDE

Chapter 2-- ADVANCED OPERATIONS

Advanced Input/Output Facilities

The traditional input/output facilities—open, close, read, write, and

ioctl—have been discussed, but STREAMS supports new user capabilities

that will be described in the remaining chapters of this guide. This chapter

describes a facility that enables a uscr process to poll multiple Streams

simultaneously for various events. Also discussed is a signaling feature that

supports asynchronous I/O processing. Finally, this chapter presents a new

mechanism for finding available minor devices, called clone open.

ADVANCED OPERATIONS 2-1

Input/Output Polling

The poll(2) system call provides users with a mechanism for monitoring

input and output on a set of file descriptors that reference open Streams. It

identifies those Streams over which a user can send or receive data. For

each Stream of interest users can specify one or more events about which

they should be notified. These events include the following:

POLLIN Input data is available on the Stream associated with the

given file descriptor.

POLLPRI A priority message is available on the Stream associated with

the given file descriptor. Priority messages are described in

the section of Chapter 4 entitled "Accessing the Datagram

Provider.”

POLLOUT The Stream associated with the given file is writable. That

is, the Stream has relieved the flow control that would

prevent a user from sending data over that Stream.

poll will examine each file descriptor for the requested events and, on

return, will indicate which events have occurred for each file descriptor. If

no event has occurred on any polled file descriptor, poll blocks until a

requested event or timeout occurs. The specific arguments to poll are the

following:

m an array of file descriptors and events to be polled

mTM the number of file descriptors to be polled

mTM the number of milliseconds poll should wait for an event if no events

are pending (-1 specifies wait forever)

The following example shows the use of poll. Two separate minor dev-

ices of the communications driver presented earlier are opencd, thereby

establishing two separate Streams to the driver. Each Stream is polled for

incoming data. If data arrives on either Stream, it is read and then written

back to the other Stream. This program extends the previous echoing exam-

ple by sending echoed data over a separate communications line (minor dev-

ice). The steps needed to establish each Stream are as follows:

2-2 STREAMS PROGRAMMER’S GUIDE

Input/Output Polling

#include <fcntl.h>

#include <poll.hD

#define NPOLL 2 /* number of file descriptors to poll */

main()

{

struct pollfd poll fds{NPOLL] ;

char buf [1024];

int count, i;

if ((pollfds[0].fd = open(”/dev/ocnm01”, O_RDWR|O_NDELAY)) < 0) {

perror(”open failed for /dev/conmm01”);

exit(1);

j

if ((pollfds[1].fd = open(”/dev/ccnm02”, O _RDWR|O_NDELAY)) < 0) {

perror(“open failed for /dev/conm02") ;

exit(2);

The variable pollfds is declared as an array of pollfd structures, where

this structure is defined in <poll.h> and has the following format:

struct pollfd [{

int fd; /* file descriptor */

short events; /* requested events */

short revents; /* returned events */

For each entry in the array, fd specifies the file descriptor to be polled

and events is a bitmask that contains the bitwise inclusive OR of events to be

polled on that file descriptor. On return, the revents bitmask will indicate

which of the requested events has occurred.

ADVANCED OPERATIONS) 2-3

Input/Output Polling

The example opens two separate minor devices of the communications

driver and initializes the pollfds entry for each. The remainder of the exam-

ple uses poll to process incoming data as follows:

/* set events to poll for incoming data */

pollfds[0}.events = POLLIN;

pollfds[1].events = POLLIN;

while (1) {

/* poll and use -1 timeout (infinite) */

if (poll(pollfds, NPOLL, ~1) < 0) {

perror(”poll failed”);

exit(3);

}

for (i = 0; i < NPOLL; i++) [

Switch (pollfds[{i].revents) [

default: /* default error case */

perror(’error event”);

exit(4);

case 0: /* no events */

break;

case POLLIN:

/* echo incaming data on “other” Stream */

while ((count = read(pollfds[i].fd, buf, 1024)) > 0)

/*

* the write loses data if flow control

* prevents the transmit at this time.

*/

if (write((i=0? pollfds[(1].fd: pollfds[0].fd),

buf, count) != count)

fprintf(stderr,”writer lost data\n”) ;

break;

2-4 STREAMS PROGRAMMER’S GUIDE

Input/Output Polling

The user specifies the polled events by setting the events field of the

pollfd structure to POLLIN. This requested event directs poll to notify the

user of any incoming data on each Stream. The bulk of the example is an

infinite loop, where each iteration will poll both Streams for incoming data.

The second argument to poll specifics the number of entries in the

pollfds array (2 in this example). The third argument is a timeout value indi-

cating the number of milliseconds poll should wait for an event if none has

occurred. On a system where millisecond accuracy is not available, timeout

is rounded up to the nearest Iegal value available on that system. Here, the

value of timeout is -1, specifying that poll should block indefinitely until a

requested event occurs or until the call is interrupted.

If poll succeeds, the program looks at each entry in pollfds. If revents 1s

set to 0, no event has occurred on that file descriptor. If reverts is set to

POLLIN, incoming data is available. In this case, all available data is read

from the polled minor device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an crror event must

have occurred on that Stream, because the only requested event was POL-

LIN. The following error events are defined for poll. These events may not

be polled for by the user, but will be reported in revents whenever they

occur. As such, they are only valid in the revents bitmask:

POLLERR _ A fatal error has occurred in some module or driver on the

Stream associated with the specified file descriptor.

Further system calls will fail.

POLLHUP A hangup condition exists on the Stream associated with

the specified file descriptor.

POLLNVAL The specified file descriptor is not associated with an open

Stream.

The example attempts to process incoming data as quickly as possible.

However, when writing data to a Stream, the write call may block if the

Stream is exerting flow control. To prevent the process from blocking, the

minor devices of the communications driver were opened with the

O_NDELAY flag set. If flow control is exerted and O_.NDELAY is set,

write will not be able to send all the data. This can occur if the communica-

tions driver is unable to keep up with the user’s rate of data transmission. If

the Stream becomes full, the number of bytes write sends will be less than

the requested count. For simplicity, the example ignores the data if the

ADVANCED OPERATIONS) 2-5

Input/Output Polling

Stream becomes full, and a warning is printed to stderr.

This program will continue until an error occurs on a Stream, or until

the process 1s interrupted.

2-6 STREAMS PROGRAMMER’S GUIDE

Asynchronous Input/Output

The poll system call described above enables a user to monitor multiple

Streams in a synchronous fashion. The poll call normally blocks until an

event occurs on any of the polled file descriptors. In some applications,

however, it is desirable to process incoming data asynchronously. For exam-

ple, an application may wish to do some local processing and be interrupted

when a pending event occurs. Some time-critical applications cannot afford

to block, but must have immediate indication of success or failure.

A new facility is available for use with STREAMS that enables a user

process to request a signal when a given event occurs on a Stream. When

used with poll, this facility enables applications to asynchronously monitor a

set of file descriptors for events.

The I_LSETSIG ioctl call [see streamio(7)] is used to request that a SIG-

POLL signal be sent to a user process when a specific event occurs. Listed

below are the events for which an application may be signaled:

S_INPUOT Data has arrived at the Stream head, and no data existed

at the Stream head when it arrived.

S_HIPRI A priority STREAMS message has arrived at the Stream

head.

S_OUTPUT = The Stream is no longer full and can accept output. That

is, the Stream has relieved the flow control that would

prevent a user from sending data over that Stream.

S_MSG A special STREAMS signal message that contains a SIG-

POLL signal has reached the front of the Stream head

input queue. This message may be sent by modules or

drivers to generate immediate notification of data or

events to follow.

The polling example could be written to process input from each com-

munications driver minor device by issuing ILSETSIG to request a signal for

the S_LINPUT event on each Stream. The signal catching routine could then

call poll to determine on which Stream the event occurred. The default

action for SIGPOLL is to terminate the process. Therefore, the user pro-

cess must catch the signal using signal(2). SIGPOLL will only be sent to

processes that request the signal using ILSETSIG.

ADVANCED OPERATIONS 2-7

Clone Open

In the earlier examples, each user process connected a Stream to a

driver by opening a particular minor device of that driver. Often, however,

a user process wants to connect a new Stream to a driver regardless of

which minor device is used to access the driver.

In the past, this typically forced the user process to poll the various

minor device nodes of the driver for an available minor device. To alleviate

this task, a facility called clone open is supported for STREAMS drivers. If

a STREAMS driver is implemented as a cloneable device, a single node in

the file system may be opened to access any unused minor device. This spe-

cial node guarantees that the user will be allocated a separate Stream to the

driver on every open call. Each Stream will be associated with an unused

minor device, so the total number of Streams that may be connected to a

cloneable driver is limited by the number of minor devices configured for

that driver.

The clone device may be useful, for example, in a networking environ-

ment where a protocol pseudo-device driver requires each user to open a

separate Stream over which it will establish communication. Typically, the

users would not care which minor device they used to establish a Stream to

the driver. Instead, the clone device can find an available minor device for

each user and establish a unique Stream to the driver. Chapter 3 describes

this type of transport protocol driver.

A user program has no control over whether a given driver supports the

NOTE clone open. The decision to implement a STREAMS driver as a cloneable

device is made by the designers of the device driver.

2-8 STREAMS PROGRAMMER’S GUIDE

Chapter 3-- MULTIPLEXED STREAMS

Multiplexor Configurations

In the earlier chapters, Streams were described as linear connections of

modules, where each invocation of a module is connected to at most one

upstream module and one downstream module. While this configuration is

suitable for many applications, others require the ability to multiplex

Streams in a variety of configurations. Typical examples are terminal win-

dow facilities, and internetworking protocols (which might route data over

several subnetworks).

An example of a multiplexor is one that multiplexes data from several

upper Streams over a single lower Stream, as shown in Figure 3-1. An

upper Stream is one that is upstream from a multiplexor, and a lower

Stream is one that is downstream from a multiplexor. A terminal windowing

facility might be implemented in this fashion, where each upper Stream is

associated with a separate window.

MUX

Figure 3-1: Many-to-one Multiplexor

A second type of multiplexor might route data from a single upper

Stream to one of several lower Streams, as shown in Figure 3-2. An inter-

networking protocol could take this form, where each lower Stream links the

protocol to a different physical network.

MULTIPLEXED STREAMS __ 3-1

Multiplexor Configurations

MUX

Figure 3-2: One-to-many Multiplexor

A third type of multiplexor might route data from one of many upper

Streams to one of many lower Streams, as shown in Figure 3-3.

MUX

Figure 3-3: Many-to-many Multiplexor

3-2 STREAMS PROGRAMMER’S GUIDE

Multiplexor Configurations

A STREAMS mechanism is available that supports the multiplexing of

Streams through special pseudo-device drivers. Using a linking facility,

users can dynamically build, maintain, and dismantle each of the above mul-

tiplexed Stream configurations. In fact, these configurations can be further

combined to form complex, multi-level multiplexed Stream configurations.

The remainder of this chapter describes multiplexed Stream configura-

tions in the context of an example (sce [igure 3-4). In this example, an

internetworking protocol pseudo-device driver (IP) is used to route data

from a single upper Stream to one of two lower Streams. This driver sup-

ports two STREAMS connections beneath it to two distinct sub-networks.

One sub-network supports the IEEE 802.3 standard for the CSMA/CD

medium access method. The second sub-network supports the IEEE 802.4

standard for the token-passing bus medium access method.

The example also presents a transport protocol pseudo-device driver

(TP) that multiplexes multiple virtual circuits (upper Streams) over a single

Stream to the IP pseudo-device driver.

MULTIPLEXED STREAMS 3-3

Building a Multiplexor

Figure 3-4 shows the multiplexing configuration to be created. This con-

figuration will enable users to access the services of the transport protocol.

To free users from the need to know about the underlying protocol struc-

ture, a user-level daemon process will build and maintain the multiplexing

configuration. Users can then access the transport protocol directly by

opening the TP driver device node.

3-4 STREAMS PROGRAMMER'S GUIDE

Building a Multiplexor

MULTIPLEXED STREAMS ~ 3-5

Building a Multiplexor

----+- 1 ----¥-,--- 1 ___User Space
Stream | | | | |] Kernel Space
head \

TP

Driver

IP

Driver

\

802.4 802.3

Driver Driver

Figure 3-4: Protocol Multiplexor

The following example shows how this daemon process sets up the pro-

tocol multiplexor. The necessary declarations and initialization for the dae-

mon program are as follows:

3-6 STREAMS PROGRAMMER’S GUIDE

Building a Multiplexor

ftinclude <fentl.h>

#include <stropts.h>

main()

{

int fd_802_4,

fd_802_3,

fd_ip,

fd tp;

/*

* daemon-ize this process

*/

switch (fork()) [

case 0:

break;

case -l:

perror(”fork failed”);

exit(2);

default:

exit(0);

}

setpgrp();

This multi-level multiplexed Stream configuration will be built from the

bottom up. Therefore, the example begins by constructing the IP multi-

plexor. This multiplexing pscudo-device driver is treated like any other

software driver. It owns a node in the DG/UX file system and is opened

just like any other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver,

creating separate Streams above each driver as shown in Figure 3-5. The

Stream to the 802.4 driver may now be connected below the multiplexing IP

driver using the I_LINK ioctl call.

MULTIPLEXED STREAMS _~— 3-7

Building a Multiplexor

Lf. \ User Space
nT | | DO | [_ Kernel Space

802.4 IP
Driver Driver

Figure 3-5: Before Link

The sequence of instructions to this point is:

if ((fd_802_4 = open(”/dev/802_4”, O_RDWR)) < 0) [

perror(”open of /dev/802_4 failed”);

exit(1);

}

if ((fd_ip = open(”/dev/ip”, O_RDWR)) < 0) [

perror(“open of /dev/ip failed”);

exit(2);

}

/* now link 802.4 to underside of IP */

if (ioctl(fd_ip, I_LINK, fd_802 4) < 0) [

perror(”I_ LINK ioctl failed”);

exit(3);

3-8 STREAMS PROGRAMMER’S GUIDE

Building a Multiplexor

I_LINK takes two file descriptors as arguments. The first file descrip-

tor, fd_ip, must reference the Stream connected to the multiplexing driver,

and the second file descriptor, fd_802_4, must reference the Stream to be

connected below the multiplexor. Figure 3-6 shows the state of these

Streams following the ILLINK call. The complete Stream to the 802.4

driver has been connected below the IP driver, including the Stream head.

The Stream head of the 802.4 driver will be used by the IP driver to manage

the multiplexor.

MULTIPLEXED STREAMS _~ 3-9

Building a Multiplexor

3-10 STREAMS PROGRAMMER’S GUIDE

Building a Multiplexor

wee eee eee | __..._.. . User Space
| | Kernel Space
i

IP

Driver

802.4

Driver

Figure 3-6: IP Multiplexor After First Link

Y_LINK will return an integer value, called a mux id, which is used by

the multiplexing driver to identify the Stream just connected below it. This

mux id is ignored in the example, but may be useful for dismantling a multi-

plexor or routing data through the multiplexor. Its significance is discussed

later.

The following sequence of system calls is used to continue building the

internetworking multiplexor (IP):

MULTIPLEXED STREAMS _~ 3-11

Building a Multiplexor

if ((fd€_802_3 = open(”/dev/802_3”, O_RDWR)) < 0) {

perror(”open of /dev/802_3 failed”);

exit(4);

}

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) {

perror(”I_LINK ioctl failed”);

exit(5);

All links below the IP driver have now been established, giving the con-

figuration in Figure 3-7.

3-12 STREAMS PROGRAMMER’S GUIDE

Building a Multiplexor

MULTIPLEXED STREAMS -~ 3-13

Building a Multiplexor

User Space

| ! | Kernel Space

controlling S
stream

IP

Driver

802.4 802.3

Driver Driver

Figure 3-7: IP Multiplexor

The Stream above the multiplexing driver used to establish the lower

connections is the controlling Stream and has special significance when dis-

mantling the multiplexing configuration, as will be illustrated later in this

chapter. The Stream referenced by fd_ip is the controlling Stream for the IP

multiplexor.

The order in which the Streams in the multiplexing configuration are

NOTE opened is unimportant. If, however, it is necessary to have intermediate

modules in the Stream between the IP driver and media drivers, these

| modules must be added to the Streams associated with the media drivers
(using ILPUSH) before the media drivers are attached below the multi-

plexor.

The number of Streams that can be linked to a multiplexor is restricted

by the design of the particular multiplexor. The manual page describing

each driver (typically found in section 7 of the System Manager’s Reference

for the DG/UX System) should describe such restrictions. However, only

one I_LLINK operation is allowed for cach lower Stream; a single Stream

3-14 STREAMS PROGRAMMER’S GUIDE

Building a Multiplexor

cannot be linked below two multiplexors simultaneously.

Continuing with the example, the IP driver will now be linked below the

transport protocol (TP) multiplexing driver. As seen earlier in Figure 3-4,

only one link will be supported below the transport driver. This link is

formed by the following sequence of system calls:

if ((fd_tp = open(”/dev/tp”, O_RDWR)) < 0) {

perror(”“open of /dev/tp failed”);

exit(6);

}

if (ioctl(fd_tp, I_LINK, fd_ip) < 0) [

perror(”I_LINK ioctl failed”);

exit(7);

The multi-level multiplexing configuration shown in Figure 3-8 has now

been created.

MULTIPLEXED STREAMS _~ 3-15

Building a Multiplexor

3-16 STREAMS PROGRAMMER’S GUIDE

Building a Multiplexor

~------------ } __..______User Space
[| Kernel Space

controlling §
stream

TP

Driver

IP

Driver

802.4 802.3

Driver Driver

Figure 3-8: TP Multiplexor

Because the controlling Stream of the IP multiplexor has been linked

below the TP multiplexor, the controlling Stream for the new multi-level

multiplexor configuration is the Stream above the TP multiplexor.

At this point the file descriptors associated with the lower drivers can be

closed without affecting the operation of the multiplexor. Closing these file

descriptors may be necessary when building large multiplexors, so that many

devices can be linked together without exceeding the DG/UX system limit

on the number of simultaneously open files per process. If these file

descriptors are not closed, all subsequent read, write, ioctl, poll, getmsg,

and putmsg system calls issued to them will fail. That is because I_LLINK

MULTIPLEXED STREAMS _~ 3-17

Building a Multiplexor

associates the Stream head of each linked Stream with the multiplexor, so

the user may not access that Stream directly for the duration of the link.

The following sequence of system calls will complete the multiplexing

daemon example:

close(fd_802_4);

close(fd_802_3);

close(fd_ip);

/* Hold multiplexor open forever */

pause() ;

Figure 3-4 shows the complete picture of the multi-level protocol multi-

plexor. The transport driver is designed to support several, simultaneous

virtual circuits, where these virtual circuits map one-to-one to Streams

opened to the transport driver. These Streams will be multiplexed over the

single Stream connected to the IP multiplexor. The mechanism for estab-

lishing multiple Streams above the transport multiplexor is actually a by-

product of the way in which Streams are created between a user process and

a driver. By opening different minor devices of a STREAMS driver,

separate Streams will be connected to that driver. Of course, the driver

must be designed with the intelligence to route data from the single lower

Stream to the appropriate upper Stream. :

Notice in ligure 3-4 that the daemon process maintains the multiplexed

Stream configuration through an open Stream (the controlling Stream) to the

transport driver. Meanwhile, other users can access the services of the tran-

sport protocol by opening new Streams to the transport driver; they are

freed from the need for any unnecessary knowledge of the underlying proto-

col configurations and sub-networks that support the transport service.

3-18 STREAMS PROGRAMMER’S GUIDE

Building a Multiplexor

Multi-level multiplexing configurations, such as the one presented in the

above example, should be assembled from the bottom up. That is because

STREAMS does not allow ioctl requests (including ILLINK) to be passed

through higher multiplexing drivers to reach the desired multiplexor; they

must be sent directly to the intended driver. For example, once the IP

driver is linked under the TP driver, ioctl requests cannot be sent to the IP

driver through the TP driver.

MULTIPLEXED STREAMS 3-19

Dismantling a Multiplexor

Streams connected to a multiplexing driver from above with open, can

be dismantled by closing each Stream with close. In the protocol multi-

plexor, these Streams correspond to the virtual circuit Streams above the TP

multiplexor. The mechanism for dismantling Streams that have been linked

below a multiplexing driver is less obvious, and is described below in detail.

The ILUNLINK ioctl call is used to disconnect each multiplexor link

below a multiplexing driver individually. This command takes the following

form:

ioctl(fd, I_UNLINK, mux_id);

where fd is a file descriptor associated with a Stream connected to the multi-

plexing driver from above, and mux_id is the identifier that was returned by

I_LINK when a driver was linked below the multiplexor. Each lower driver

may be disconnected individually in this way, or a special mux_id value of -1

may be used to disconnect all drivers from the multiplexor simultaneously.

In the multiplexing daemon program presented earlier, the multiplexor is

never explicitly dismantled. That is because all links associated with a multi-

plexing driver are automatically dismantled when the controlling Stream

associated with that multiplexor 1s closed. Because the controlling Stream is

open to a driver, only the final call of close for that Stream will close it. In

this case, the daemon is the only process that has opened the controlling

Stream, so the multiplexing configuration will be dismantled when the dae-

mon exits.

For the automatic dismantling mechanism to work in the multi-level,

multiplexed Stream configuration, the controlling Stream for each multi-

plexor at each level must be linked under the next higher level multiplexor.

In the example, the controlling Stream for the IP driver was linked under

the TP driver. This resulted in a single controlling Stream for the full,

multi-level configuration. Because the multiplexing program relied on clos-

ing the controlling Stream to dismantle the multiplexed Stream configuration

instead of using explicit ILUNLINK calls, the mux id values returned by

I_LINK could be ignored.

An important side effect of automatic dismantling on close is that it is

not possible for a process to build a multiplexing configuration and then exit.

That is because exit(2) will close all files associated with the process, includ-

ing the controlling Stream. To keep the configuration intact, the process

must exist for the life of that multiplexor. That is the motivation for

3-20 STREAMS PROGRAMMER’S GUIDE

Routing Data Through a Multiplexor

As demonstrated, STREAMS has provided a mechanism for building

multiplexed Stream configurations. However, the criteria on which a multi-

plexor routes data is driver dependent. For example, the protocol multi-

plexor shown in the last example might use address information found in a

protocol header to determine over which sub-network a given packet should

be routed. It is the multiplexing driver’s responsibility to define its routing

criteria.

One routing option available to the multiplexor is to use the mux id

value to determine to which Stream data should be routed (remember that

each multiplexor link is associated with a mux id). ILLINK passes the mux

id value to the driver and returns this value to the user. The driver can

therefore specify that the mux id value must accompany data routed through

it. For example, if a multiplexor routed data from a single upper Stream to

one of several lower Streams (as did the IP driver), the multiplexor could

require the user to insert the mux id of the desired lower Stream into the

first four bytes of each message passed to it. The driver could then match

the mux id in each message with the mux id of each lower Stream, and route

the data accordingly.

MULTIPLEXED STREAMS _ 3-21

Chapter 4-- MESSAGE ITANDLING

Service Interface Messages

A STREAMS message format has been defined to simplify the design of

service interfaces. Also, two new system calls, getmsg(2) and putmsg(2) are

available for sending these messages downstream and receiving messages

that are available at the Stream head. This chapter describes these system

calls in the context of a service interface example. First, a brief overview of

STREAMS service interfaces is presented.

Service Interfaces

A principal advantage of the STREAMS mechanism is its modularity.

From user level, kernel-resident modules can be dynamically interconnected

to implement any reasonable processing sequence. This modularity reflects

the layering characteristics of contemporary network architectures.

One benefit of modularity is the ability to interchange modules of like

function. For example, two distinct transport protocols, implemented as

STREAMS modules, may provide a common set of services. An applica-

tion or higher layer protocol that requires those services can use either

module. This ability to substitute modules enables user programs and higher

level protocols to be independent of the underlying protocols and physical

communication media.

Each STREAMS module provides a set of processing functions, or ser-

vices, and an interface to those services. The service interface of a module

defines the interaction between that module and any neighboring modules,

and therefore is a necessary component for providing module substitution.

By creating a well-defined service interface, applications and STREAMS

modules can interact with any module that supports that interface. Figure

4-1 demonstrates this.

MESSAGE HANDLING 4-1

Service Interface Messages

4-2 STREAMS PROGRAMMER’S GUIDE

Application

A

TCP

Transport

Protocol

Lower Layer

Protocol

Suite A

Service Interface Messages

Application

A

_ User Space

Kernel Space

Service Interface

ISO

Transport

Protocol

Lower Layer

Protocol

Suite B

Figure 4-1: Protocol Substitution

By defining a service interface through which applications interact with a

transport protocol, it is possible to substitute a different protocol below that

service interface in a manner completely transparent to the application. In

this example, the same application can run over the Transmission Control

Protocol (TCP) and the ISO transport protocol. Of course, the service

interface must define a set of services common to both protocols.

The three components of any service interface are the service user, the

service provider, and the service interface itself, as seen in Figure 4-2.

MESSAGE HANDLING 4-3

Service interface Messages

4-4 STREAMS PROGRAMMER’S GUIDE

Service Interface Messages

Service

User

Request

Primitives

| Service Interface

Response and

Event Primitives

Service

Provider

Figure 4-2: Service Interface

Typically, a user makes a request of a service provider using some well-

defined service primitive. Responses and event indications are also passed

from the provider to the user using service primitives. The service interface

is defined as the set of primitives that define a service and the allowable

state transitions that result as these primitives are passed between the user

and provider.

MESSAGE HANDLING 4-5

The Message Interface

A message format has been defined to simplify the design of service

interfaces using STREAMS. Each service interface primitive is a distinct

STREAMS message that has two parts: a control part and a data part. The

control part contains information that identifies the primitive and includes

all necessary parameters. The data part contains user data associated with

that primitive.

An example of a service interface primitive is a transport protocol con-

nect request. This primitive requests the transport protocol service provider

to establish a connection with another transport user. The parameters asso-

ciated with this primitive may include a destination protocol address and

specific protocol options to be associated with that connection. Some tran-

sport protocols also allow a user to send data with the connect request. A

STREAMS message would be used to define this primitive. The control

part would identify the primitive as a connect request and would include the

protocol address and options. The data part would contain the associated

user data.

STREAMS enables modules to create these messages and pass them to

neighbor modules. However, the read and write system calls are not suffi-

cient to enable a user process to generate and receive such messages. First,

read and write are byte-stream oriented, with no concept of message boun-

daries. To support service interfaces, the message boundary of each service

primitive must be preserved so that the beginning and end of each primitive

can be located. Also, read and write offer only one buffer to the user for

transmitting and receiving STREAMS messages. If control information and

data were placed in a single buffer, the user would have to parse the con-

tents of the buffer to separate the data from the control information.

Two new STREAMS system calls are available that enable user

processes to create STREAMS messages and send them to neighboring ker-

nel modules and drivers or receive the contents of such messages from ker-

nel modules and drivers. These system calls preserve message boundaries

and provide separate buffers for the control and data parts of a message.

The putmsg system call enables a user to create STREAMS messages

and send them downstream. The user supplics the contents of the control

and data parts of the message in two separate buffers. Likewise, the getmsg

system call retricves such messages from a Stream and places the contents

into two user buffers.

4-6 STREAMS PROGRAMMER’S GUIDE

The Message Interface

The syntax of putmsg is as follows:

int putmsg (fd, ctlptr, dataptr, flags)

int fd;

struct strbuf *ctlptr;

struct strbuf *dataptr;

int flags;

fd identifies the Stream to which the message will be passed, ctlptr and

dataptr identify the control and data parts of the message, and flags may be

used to specify that a priority message should be sent.

The strbuf structure is used to describe the control and data parts of a

message, and has the following format:

struct strbuf {

int maxlen; /* maximum buffer length */

int len; /* length of data */

char *buf; /* pointer to buffer */

buf points to a buffer containing the data and /en specifies the number of

bytes of data in the buffer. maxlen specifies the maximum number of bytes

the given buffer can hold, and is only meaningful when retrieving informa-

tion into the buffer using getmsg.

The getmsg system call retrieves messages available at the Stream head,

and has the following syntax:

int getmsg (fd, ctlptr, dataptr, flags)

int fd;

struct strbuf *ctlptr;

struct strbuf *dataptr;

int *flags;

The arguments to getmsg are the same as those for putmsg.

The remainder of this chapter presents an example that demonstrates

how putmsg and getmsg may be used to interact with the service interface of

a simple datagram protocol provider. A potential provider of such a service

might be the IEEE 802.2 Logical Link Control Protocol Type 1. The exam-

ple implements a user level library that would free the user from knowledge

MESSAGE HANDLING 4-7

The Message Interface

of the underlying STREAMS system calls. The Transport Interface of the
Network Services Library in DG/UX System Release 3.0 provides a similar
function for transport layer services. The example here illustrates how a ser-
vice interface might be defined, and is not an example of a complete IEEE
802.2 service interface.

4-8 STREAMS PROGRAMMER'S GUIDE

Datagram Service Interface Example

The example datagram service interface library presented below includes

four functions that enable a user to do the following:

m establish a Stream to the service provider and bind a protocol address

to the Stream

m send a datagram to a remote user

mTM receive a datagram from a remote user

mTM close the Stream connccted to the provider

First, the structure and constant definitions required by the library are

shown. These typically will reside in a header file associated with the service

interface.

/*

* Primitives initiated by the service user.

*/

#define BIND RED 1 /* bind request */

#define UNITDATA_REOQ 2 /* unitdata request */

/*

* Primitives initiated by the service provider.

*/

#define OK_ACK 3. /* bind acknowledgment */

#define ERROR_ACK 4 /* error acknowledgment */

#define UNITDATA_IND 5 /* unitdata indication */

/*

* The following structure definitions define the fomnat of the

* control part of the service interface message of the above

* primitives.

*/

struct bind_reg { /* bind request */

long PRIM type; /* always BIND REO */

long BIND_addr; /* addr to bind */

};

MESSAGE HANDLING 4-9

Datagram Service Interface Example

struct unitdata_reg {

long PRIM_type; /*

long DEST_addr; /*

);

struct ok_ack [/*

long PRIM type; /*

);

struct error_ack [

long PRIM_type; /*

long DG/UX_error;

};

struct unitdata_ind [

long PRIM_type; /*

long SRC_addr;

};

/* union of all primitives

union primitives [{

long

struct bind_reg

/* unitdata request */

always UNITDATA_REQ */

destination addr */

positive acknowledgment */

always OK_ACK */

/* error acknowledgment */

always ERROR_ACK */

/* DG/UX error code */

/* unitdata indication */

always UNITDATA_IND */

/* source addr */

*/

type;

bind req;

struct unitdata_req unitdata_req;

struct ok_ack

struct error_ack

ok_ack;

error _ack;

struct unitdata_ind unitdata_ind;

i;

/* header files needed by library */

#include <stropts.h>

#include <stdio.h>

#include <ermo.h>

continue

Five primitives have been defined. The first two represent requests from

the service user to the service provider. These are:

BIND_REQ This request asks the provider to bind a specified proto-

col address. It requires an acknowledgement from the

provider to verify that the contents of the request were

syntactically correct.

4-10 STREAMS PROGRAMMER’S GUIDE

Datagram Service Interface Example

UNITDATA_REQ

This request asks the provider to send a datagram to the

specified destination address. It does not require an

acknowledgement from the provider.

The three other primitives represent acknowledgements of requests, or

indications of incoming events, and are passed from the service provider to

the service user. These are:

OK_ACK This primitive informs the user that a previous bind

request was received successfully by the service pro-

vider.

ERROR_ACK This primitive informs the user that a non-fatal error

was found in the previous bind request. It indicates that

no action was taken with the primitive that caused the

error.

UNITDATA_IND

This primitive indicates that a datagram destined for the

user has arrived.

The structures defined above describe the contents of the control part of

each service interface message passed between the service user and service

provider. The first field of each control part defines the type of primitive

being passed.

Accessing the Datagram Provider

The first routine presented below, inter_open, opens the protocol driver

device file specified by path and binds the protocol address contained in

addr so that it may receive datagrams. On success, the routine returns the

file descriptor associated with the open Stream; on failure, it returns -1 and

sets errno to indicate the appropriate DG/UX system error value.

MESSAGE HANDLING 4-11

Datagram Service Interface Example

inter open(path, oflags, addr)

char *path;

{

int fd;

struct bind _req bind_req;

struct strbuf ctlbuf;

union primitives rcvbuf;

struct error_ack *error_ack;

int flags;

if ((fd = open(path, oflags)) < 0)

return(-1);

/* send bind request msg down stream */

bind _reg.PRIM type = BIND REO;

bind_req.BIND_addr = addr;

ctlbuf.len = sizeof(struct bind_req);

ctlbuf.buf = (char *)&bind_ reg;

if (putmsg(fd, &ctlbuf, NULL, 0) < 0) {

close(fd);

return(-1);

After opening the protocol driver, infter_open packages a bind request

message to send downstream. putmsg is called to send the request to the

service provider. The bind request message contains a control part that

holds a bind_reg structure, but it has no data part. ctlbuf is a structure of

type strbuf, and it is initialized with the primitive type and address. Notice

that the maxlen field of ctlbuf is not set before calling putmsg. That is

because putmsg ignores this field. The dataptr argument to putmsg is set to

NULL to indicate that the message contains no data part. Also, the flags

argument is 0, which specifies that the message is not a priority message.

After inter_open sends the bind request, it must wait for an ack-

nowledgement from the service provider, as follows:

4-12 STREAMS PROGRAMMER’S GUIDE

Datagram Service Interface Example

/* wait for ack of request */

ctlbuf .maxlen = sizeof(union primitives) ;

ctlbuf.len = 0;

ctlbuf.buf = (char *)&rcvbuf;

flags = RS_HIPRI;

if (getmsg(fd, é&ctlbuf, NULL, &flags) < 0) [{

close(fd);

return(-1);

}

/* did we get enough to determine type */

if (ctlbuf.len < sizeof(long)) [{

close(fd);

ermo = EPROTO;

return(-1);

}

/* switch on type (first long in revbuf) */

switch(revbuf.type) [

default:

ermo = EPROTO;

close(fd) ;

return(-1);

case OK_ ACK:

return(fd);

case ERROR_ACK:

if (ctlbuf.len < sizeof(struct error_ack)) {

ermmo = EPROIO;

close(fd);

return(—1);

}

error_ack = (struct error_ack *)&revbuf;

ermo = error_ack—DG/UX_error;

close(fd);

returm(-1);

MESSAGE HANDLING 4-13

Datagram Service Interface Example

getmsg is Called to retrieve the acknowledgement of the bind request.

The acknowledgement message consists of a control part that contains either

an ok_ack or error_ack structure, and no data part.

The acknowledgement primitives are defined as priority messages. Two

classes of messages can arrive at the Stream head: priority and normal.

Normal messages are queued in a first-in-first-out manner at the Stream

head, while priority messages are placed at the front of the Stream head

queue. The STREAMS mechanism allows only one priority message per

Stream at the Stream head at one time; any further priority messages are dis-

carded until the first message is processed. Priority messages are particu-

larly suitable for acknowledging service requests when the acknowledgement

should be placed ahead of any other messages at the Stream head.

These messages are not intended to support the expedited data capabilities

NOTE of many communication protocols, as evidenced by the one-at-a-time res-

triction just described.

Before calling getmsg, this routine must initialize the strbuf structure for

the control part. buf should point to a buffer large enough to hold the

expected control part, and axlen must be set to indicate the maximum

number of bytes this buffer can hold.

Because neither acknowledgement primitive contains a data part, the

dataptr argument to getmsg is set to NULL. The flags argument points to

an integer containing the value RS_HIPRI. This flag indicates that getmsg

should wait for a STREAMS priority message before returning, and is set

because the acknowledgement primitives are priority messages. Even if a

normal message is available, getmsg will block until a priority message

arrives.

On return from getmsg, the len field is checked to ensure that the con-

trol part of the retrieved message is an appropriate size. The example then

checks the primitive type and takes appropriate actions. An OK_ACK indi-

cates a successful bind operation, and inter_open returns the file descriptor

of the open Stream. An ERROR_ACK indicates a bind failure, and errno

is set to identify the problem with the request.

4-14 STREAMS PROGRAMMER’S GUIDE

Datagram Service Interface Example

Closing the Service

The next routine in the datagram service library is inter_close, which

closes the Stream to the service provider.

inter _close(fd)

{

close(fd);

}

The routine simply closes the given file descriptor. This will cause the

protocol driver to free any resources associated with that Stream. For exam-

ple, the driver may unbind the protocol address that had previously been

bound to that Stream, thereby freeing that address for use by some other

service user.

Sending a Datagram

The third routine, inter_snd, passes a datagram to the service provider

for transmission to the user at the address specified in addr. The data to be

transmitted is contained in the buffer pointed to by buf and contains len

bytes. On successful completion, this routine returns the number of bytes of

data passed to the service provider; on failure, it returns -1 and sets errno to

an appropriate DG/UX system error value.

MESSAGE HANDLING 4-15

Datagram Service Interface Example

inter snd(fd, buf, len, addr)

char *buf;

long addr;

{

struct strbuf ctlbuf;

struct strbuf databuf;

struct unitdata_req unitdata_req;

unitdata_req.PRIM_type = UNITDATA_REQ;

unitdata_reg.DEST_addr = addr;

ctlbuf.len = sizeof(struct unitdata_req);

ctlbuf.buf = (char *)&unitdata_req;

databuf.len = len;

databuf .buf = buf;

if (putmsg(fd, &ctlbuf, s&databuf, 0) < 0)

return(-1);

retumm(len);

In this example, the datagram request primitive is packaged with both a

control part and a data part. The control part contains a unitdata_req struc-

ture that identifies the primitive type and the destination address of the

datagram. The data to be transmitted is placed in the data part of the

request message.

Unlike the bind request, the datagram request primitive requires no ack-

nowledgement from the service provider. In the example, this choice was

made to minimize the overhead during data transfer. Since datagram ser-

vices are inherently unreliable, this is a valid design choice. If the putmsg

call succeeds, this routine assumes all is well and returns the number of

bytes passed to the service provider.

4-16 STREAMS PROGRAMMER’S GUIDE

Datagram Service Interface Example

Receiving a Datagram

The final routine in this example, imter_rcv, retrieves the next available

datagram. buf points to a buffer where the data should be stored, len indi-

cates the size of that buffer, and addr points to a long integer where the

source address of the datagram will be placed. On successful completion,

infer_rcv returns the number of bytes in the retrieved datagram; on failure, it

returns -1 and sets the appropriate DG/UX system error value.

inter _rev(fd, buf, len, addr)

char *buf;

long *addr;

{

struct strbuf ctlbuf;

struct strbuf databuf;

struct unitdata_ind unitdata_ind;

int retval;

int flags;

ctlbuf.maxlen = sizeof(struct unitdata_ind);

ctlbuf.len = 0;

ctlbuf.buf = (char *)sunitdata_ind;

databuf .maxlen = len;

databuf.len = 0;

databuf.buf = buf;

flags = 0;

if ((retval = getmsg(fd, &ctlbuf, édatabuf, &flags)) < 0)

returmn(—1);

if (unitdata_ind.PRIM type != UNITDATA_IND) [

ermo = EPROTIO;

return(-1);

}

if (retval) {

ermo = EIO;

return(-1);

}

*xaddr = unitdata_ind.SRC_addr;

retumm (databuf. len);

MESSAGE HANDLING 4-17

Datagram Service Interface Example

getmsg is called to retrieve the datagram indication primitive, where that

primitive contains both a control and data part. The control part consists of

a unitdata_ind structure that identifies the primitive type and the source

address of the datagram sender. The data part contains the data itself.

In ctlbuf, buf must point to a buffer where the control information will

be stored, and maxlen must be set to indicate the maximum size of that

buffer. Similar initialization is done for databuf.

The flags argument to getmsg is set to zero, indicating that the next mes-

sage should be retrieved from the Stream head, regardless of its priority.

Datagrams will arrive in normal priority messages. If no message currently

exists at the Stream head, getmsg will block until a message arrives.

The user’s control and data buffers should be large enough to hold any

incoming datagram. If both buffers are large enough, getmsg will process

the datagram indication and return 0, indicating that a full message was

retrieved successfully. However, if either buffer is not large enough, getmsg

will only retrieve the part of the message that fits into each user buffer. The

remainder of the message is saved for subsequent retrieval, and a positive,

non-zero value is returned to the user. A return value of MORECTL indi-

cates that more control information is waiting for retrieval. A return value

of MOREDATA indicates that more data is waiting for retrieval. A return

value of MORECTL|MOREDATA indicates that data from both parts of

the message remain. In the example, if the user buffers are not large enough

(that is, getmsg returns a positive, non-zero value), the function will set

errno to EIO and fail.

The type of the primitive returned by getmsg is checked to make sure it

is a datagram indication. The source address is then set and the number of

bytes of data in the datagram is returned.

The above example presented a simplified service interface. The state

transition rules for such an interface were not presented for the sake of

brevity. The intent was to show typical uses of the putmsg and getmsg sys-

tem calls. See putmsg(2) and getmsg(2) for further details.

4-18 STREAMS PROGRAMMER’S GUIDE

Introduction to Part 2

Part 2 of this guide, Module and Driver Programming, describes the use

of STREAMS kernel facilities for developing and installing modules and

drivers. It is intended for system programmers with knowledge of DG/UX

system kernel programming, device driver development, and networking and

other data communication facilities. Knowledge of the STREAMS Primer

and the Driver Design Guide is assumed.

STREAMS provides module and driver developers with integral func-

tions, a set of utility routines, and facilities that expedite design and imple-

mentation. The principle development facilities are listed below:

Message storage management - to maintain STREAMS’ own memory

resources for message storage

Flow control - to conserve STREAMS memory and processing

resources

Scheduling - to control the execution of service procedures

Multiplexing - to switch data among multiple Streams

Error and trace loggers - for debugging and administrative use

Part 2 is organized as follows:

Chapter 5, Streams Mechanism, reviews the operation of STREAMS

and describes how a Stream is constructed and dismantled.

Chapter 6, Modules, describes the basic STREAMS data structures

and the organization of a module.

Chapter 7, Messages, introduces message blocks, read and write sys-

tem calls, and the message storage pool.

Chapter 8, Message Queues and Service Procedures, discusses put

and service procedures, message queueing and basic flow control.

Chapter 9, Drivers, describes STREAMS driver organization and

discusses typical driver processing.

Chapter 10, Complete Driver, provides a full implementation of a

driver and describes the clone mechanism.

MODULE and DRIVER PROGRAMMING

Introduction to Part 2

Chapter 11, Multiplexing, describes the multiplexing facility.

Chapter 12, Service Interface, discusses service interfaces within a

Stream and at the Stream/user boundary.

Chapter 13, Advanced Topics, contains advanced topics including sig-

nals and Stream head options.

Appendix A, Kernel Structures, summarizes kernel structures used by

modules and drivers.

Appendix B, Message Types, describes STREAMS message types.

Appendix C, Utilities, specifies the STREAMS kernel utility routines.

Appendix D, Design Guidelines, summarizes module and driver

design guidelines.

Appendix E, Configuring, describes how modules and drivers are con-

figured into the DG/UX system, tunable parameters and STREAMS

system error messages.

The Glossary defines terms unique to STREAMS.

STREAMS PROGRAMMER’S GUIDE

Chapter 5-- STREAMS MECHANISM

Overview

A Stream implements a connection within the kernel between a driver in

kernel space and a process in user space. It provides a general character

input/output (I/O) interface for user processes which is upwardly compatible

with the interface of the preexisting character I/O facilities. A Stream is

analogous to a shell pipeline except that data flow and processing are

bidirectional to support concurrent input and output.

The components that form a Stream are the Stream head, driver and

optional modules (see Figure 1 in the Preface). A Stream is initially con-

structed as the result of a user process open(2) system call referencing a

STREAMS file. The call causes a kernel resident driver to be connected

with a Stream head to form a Stream. Subsequent ioctl(2) calls select kernel

resident modules and cause them to be inserted in the Stream. A module

represents intermediate processing on messages flowing between the Stream

head and driver. A module can function as, for example, a communication

protocol, line discipline or data filter. STREAMS allows a user to connect

a module with any other module. The user determines the module connec-

tion sequences that result in useful configurations.

A process can send and receive characters on a Stream using write(2)

and read(2), as on character files. When user data enters the Stream head

or external data enters the driver, the data is placed into messages for

transmission on the Stream. All data passed on a Stream is carried in mes-

sages, each having a defined message type identifying the message contents.

Internal control and status information is transmitted among modules or

between the Stream and user process as messages of certain types inter-

leaved on the Stream. Modules and drivers can send certain message types

to the Stream head to cause the generation of signals or errors to be

received by the user process.

A module is comprised of two identical sets of data structures called

QUEUVEs. One QUEUE is for upstream processing and the other is for

downstream processing. The processing performed by the two QUEUES is

generally independent so that a Stream operates in a full-duplex manner.

The interface between modules is uniform and simple. Messages flow from

module to module. A message from one module is passed to the single

entry point of its neighboring module.

STREAMS MECHANISM _ 5-1

Overview

The last close(2) system call dismantles the Stream and closes the file,

semantically identical to character I/O drivers.

STREAMS supports implementation of user level applications with

extensions to the above general system calls and STREAMS specific system

calls: putmsg(2), getmsg(2), poll(2) and a sct of STREAMS generic ioctl(2)

functions.

5-2 STREAMS PROGRAMMER’S GUIDE

Stream Construction

STREAMS constructs a Stream as a linked list of kernel resident data

structures. In a STREAMS file, the inode points to the Stream header

structure. The header is used by STREAMS kernel routines to perform

operations on this Stream gencrally related to system calls. Figure 5-1 dep-

icts the downstream (write) portion of a Stream (see Chapter 3 of the Pri-

mer) connected to the header. There is one header per Stream. From the

header onward, a Stream is constructed of QUEUEs. The upstream (read)

portion of the Stream (not shown in Figure 5-1) parallels the downstream

portion in the opposite direction and terminates at the Stream header struc-

ture.

_ Stream QUEUE QUEUE QUEUE QUEUE

— inode header H P1 P2 D

Figure 5-1: Downstream Stream Construction

At the same relative location in each QUEUE is the address of the entry point, a pro-

cedure to be executed on any message received by that QUEUE. The procedure for QUEUE

H, at one end of the Stream, is the STREAMS provided Stream head routine. QUEUE H is

the downstream half of the Stream head. The procedure for QUEUE D, at the other end, is

the driver routine. QUEUE D is the downstream half of the Stream end. P1 and P2 are push-

able modules, each containing their own unique procedures. That is, all STREAMS com-

ponents are of similar organization.

This similarity results in the uniform manner of navigating in either direction on a Stream:

messages move from one end to the other, from QUEUE to the next linked QUEUE, executing

the procedure specified in the QUEUE.

Figure 5-2 shows the data structures forming each QUEUE: queuce_t, qinit, module_info

and module_stat. queue_t contains various modifiable values for this QUEUE, generally used

by STREAMS. qinit contains a pointer to the processing procedures, module_info contains

limit values and module_stat is used for statistics. The two QUEUEs in a module will generally

each contain a different set of these structures. The contents of these structures are described

in following chapters.

STREAMS MECHANISM _ 5-3

Stream Construction

5-4 STREAMS PROGRAMMER’S GUIDE

Stream Construction

module

_Stat

upstream downstream

q_qinfo g_qinfo init
an . qini

read write

<— >

queue_t queue_t

module

j _info

g—next

g_next

/
q_qinfo q_ginfo

<----- .06Udpt eos >

read write

— >

queue_t queue_t

upstream downstream

Figure 5-2: QUEUE Data Structures

Figure 5-1 shows QUEUE linkage in one direction while Figure 5-2 shows two neighboring

modules with links (solid vertical arrows) in both directions. When a module is pushed onto a

Stream, STREAMS creates two QUEUEs and links each QUEUE in the module to its neigh-

boring QUEUE in the upstream and downstream direction. The linkage allows each QUEUE

to locate its next neighbor. The next relation is implemented between queue_ts in adjacent

modules by the g_next pointer. Within a module, each queue_t locates its mate (see dotted

arrows in Figure 5-2) by use of STREAMS macros, since there is no pointer between the two

queue_ts. The existence of the Stream head and driver is known to the QUEUE procedures

only as destinations towards which messages are sent.

STREAMS MECHANISM — 5-5

Opening a Stream

When a file is opened [see open(2)], a STREAMS file is recognized by a

non-null value in the d_str field of the associated cdevsw entry. d_str points

to a streamtab structure:

struct streamtab [{

struct ginit *st_rdinit; /* defines read QUEUE */

struct ginit *st_wrinit; /* Gefines write QUEUE */

struct ginit *st_muxrinit; /* for multiplexing drivers only */

struct ginit *st_muxwinit; /* for multiplexing drivers only */

};

streamtab defines a module or driver and points to the read and write

qinit structures for the driver.

If this open call is the initial file open, a Stream is created. First, the

single header structure and the Stream head (sce Figure 5-1) queue_t struc-

ture pair are allocated. Their contents arc initialized with predetermined

values including, as noted above (see QUEVE Hi), the Stream head process-

ing routines.

Then, a queue_t structure pair is allocated for the driver. The queue_t

contents are zero unless specifically initialized (see Chapter 8). A single,

common qinit structure pair is shared among all the Streams opened from

the same cdevsw entry, as is the associated module_info and module_stat

structures (see Figure 5-2).

Next, the g_next values are set so that the Stream head write queue_t

points to the driver write queue_t and the driver read queue_t points to the

Stream head read queue_t. The g_next values at the ends of the Stream are

set to NULL. Finally, the driver open procedure (located via qinit) is

called.

If this open is not the initial open of this Stream, the only actions per-

formed are to call the driver open and the open procedures of all pushable

modules on the Stream.

5-6 STREAMS PROGRAMMER’S GUIDE

Adding and Removing Modules

As part of constructing a Stream, a module can be added with an ioctl

I_PUSH [see streamio(7)] system call (push). The push inserts a module

beneath the Stream head. Because of the similarity of STREAMS com-

ponents, the push operation is similar to the driver open. First, the address

of the qinit structure for the module is obtained via an fmodsw entry.

fmodsw is an array, analogous to cdevsw. Each fmodsw entry

corresponds to a unique module and contains the name of the module (used

by ILPUSH and certain other STREAMS ioctls) and a pointer to the

module’s streamtab. Next, STREAMS allocates queue_t structures and ini-

tializes their contents as in the driver open, above. As with the driver, the

read and write qinit structures are shared among all the modules opened

from this fmodsw entry (see Figure 5-2).

Then, g_next values are set and modified so that the module is inter-

posed between the Stream head and the driver or module previously con-

nected to the head. Finally, the module open procedure (located via qinit)

is called. Unlike open, no other module or driver open procedure is called.

Each push of a module is independent, even in the same Stream. If the

same module is pushed more than once onto a Stream, there will be multiple

occurrences of that module in the Stream. The total number of pushable

modules that may be contained on any one Stream is limited by the kernel

parameter NSTRPUSH (see Appendix E).

An ioctl ILPOP [see streamio(7)] system call (pop) removes the module

immediately below the Stream head. The pop calls the module close pro-

cedure. On return from the module close, any messages left on the

module’s message queues are freed (deallocated). Then, STREAMS con-

nects the Stream head to the component previously below the popped

module and deallocates the module’s two queue_t structures. I_POP enables

a user process to dynamically alter the configuration of a Stream by pushing

and popping modules as required. For example, a module may be removed

or a new one inserted below a module. In the latter case, the original

module is popped and pushed back after the new module has been pushed.

An I_POP cannot be used on a driver.

STREAMS MECHANISM = 5-7

Closing

The last close system call to a STREAMS file dismantles the Stream.

Dismantling consists of popping any modules on the Stream, closing the

driver and closing the file. Before a module is popped by close, it may

delay to allow any messages on the write message queue of the module to be

drained by module processing. If O_.NDELAY [see open(2)] is clear, close

will wait up to 15 seconds for each module to drain. If O.NDELAY is set,

the pop is performed immediately. close will also wait for the driver’s write

queue to drain. Messages can remain queued, for example, if flow control

(see Chapter 6 in the Primer) is inhibiting execution of the write QUEUE.

When all modules are popped and any wait for the driver to drain is com-

pleted, the driver close routine is called. On return from the driver close,

any messages left on the driver’s message queues are freed, and the queue_t

and header structures are deallocated.

STREAMS frees only the messages contained on a message queue. Any

NOIE] messages used internally by the driver or module must be freed by the

driver or module close procedure.

Finally, the file is closed.

5-8 STREAMS PROGRAMMER’S GUIDE

Chapter 6-- MODULES

Module Declarations

A module and driver will contain, as a minimum, declarations of the fol-

lowing form:

#include “sys/types.h” /* required in all modules and drivers */

#include “sys/stream.h” /* required in all modules and drivers */

#include “sys/param.h”

static struct module_info minfo = { 0, “mod”, 0, INFPSZ, 0, 0 };

static struct module_info wmninfo = { 0, “mod”, 0, INFPSZ, 0, 0 };

static int modopen(), modrput(), modwput(), modclose();

static struct ginit rinit = {

modrput, NULL, modopen, modclose, NULL, &mninfo, NULL

};

static struct ginit winit = {

modwput, NULL, NULL, NULL, NULL, &wninfo, NULL

};

struct streamtab modinfo = [&rinit, &winit, NULL, NULL };

The contents of these declarations are constructed for the null module

example in this section. This module performs no processing: Its only pur-

pose is to show linkage of a module into the system. The descriptions in

this section are general to all STREAMS modules and drivers unless they

specifically reference the example.

The declarations shown are: the header set; the read and write QUEUE

(rminfo and wminfo) module_info structures (see Figure 5-2); the module

open, read-put, write-put and close procedures; the read and write (rinit and

winit) qinit structures; and the streamtab structure.

The minimum header set for modules and drivers is types.h and

stream.h. param.h contains definitions for NULL and other values for

STREAMS modules and drivers as shown in the section titled "Accessible

Symbols and Functions” in Appendix D.

MODULES __ 6-1

Module Declarations

Configuring a STREAMS module or driver (see Appendix E) does not
NOTE/ require any procedures to be externally accessible, only streamtab. The

streamtab structure name must be the prefix used in configuring, appended

with “info”.

As described in the previous chapter, streamtab contains qinit values for

the read and write QUEUES, pointing to a module_info and an optional
module_stat structure. The two required structures, shown in Figure 5-2,

are these:

struct ginit {

int (*qi_putp)(); /* put procedure */
int (*qi_srvp)(); /* service procedure */

int (*qi_gqopen)(); /* called on each open or a push */

int (*qi_qclose)(); /* called on last close or a pop */

int (*qi_gqadmin)(); /* reserved for future use */

struct module_info *qi_minfo; /* information structure */

struct module_stat *qi_mstat; /* statistics structure — optional */

};

struct module_info [

ushort mi_idnum; /* module ID number */

char *mi_idname; /* module name */

short mi_minpsz; /* min packet size accepted, for developer use */

short mi_maxpsz; /* max packet size accepted, for developer use */

short mi_hiwat; /* hi-water mark, for flow control */

ushort mi_lowat; /* lo-water mark, for flow control */

};

qinit contains the QUEUE procedures. All modules and drivers with the same streamtab

(i.e., the same fmodsw or cdevsw entry) point to the same upstream and downstream qinit

structure(s). The structure is meant to be software read-only, as any changes to it affect all

instantiations of that module in all Streams. Pointers to the open and close procedures must be

contained in the read qinit. These fields are ignored in the write side. The example has no ser-

vice procedure on the read or write side.

module_info contains identification and limit values. All modules and drivers with the

same streamtab point to the same upstream and downstream module_info structure(s). As with

qinit, this structure is intended to be software read-only. However, the four limit values are

copied to queue_t (see Chapter 8) where they are modifiable. In the example, the flow control

high and low water marks (see Chapter 9) are zero since there are no service procedures and

messages are not queued in the module.

Three names are associated with a module: the character string in fmodsw, obtained from

the name of the master.d file used to configure the module (see Appendix E); the prefix for

streamtab, used in configuring the module; and the module name field in the module_info

structure. This field is a hook for future expansion and is not currently used. However, it is

recommended that it be the same as the master.d file name. The module name value used in

6-2 STREAMS PROGRAMMER’S GUIDE

Module Declarations

the ILPUSHI or other STREAMS ioctl commands is contained in fmodsw. Each module ID

and module name should be unique in the system. The module ID is currently used only in log-

ging and tracing (see Chapter 6 in the Primer). For the example in this chapter, the module ID

iS zero.

Minimum and maximum packet size are intended to limit the total number of characters

contained in all (if any) of the MLDATA blocks in each message passed to this QUEUE.

These limits are advisory except for the Stream head. For certain system calls that write to a

Stream, the Stream head will observe the packet sizes set in the write QUEUE of the module

immediately below it. Otherwise, the use of packet size is developer dependent. In the exam-

ple, INFPSZ indicates unlimited size on the read (input) side.

module_stat is optional, intended for future use. Currently, there is no STREAMS sup-

port for statistical information gathering. The structure is described in Appendix A.

MODULES_~ 6-3

Module Procedures

The null module procedures are as follows:

static int modopen(q, dev, flag, sflagq)

queue t *q; /* pointer to read queue */

dev_t dev; /* major/fminor device number — zero for modules */

int flag; /* file open flags — zero for modules */

int sflag; /* stream open flags */

/* retum success */

returm 0;

}

static int modwput(g, mp)/* write put procedure */

queue_t *q; /* pointer to the write queue */

mlk t *mp; /* message pointer */

{

putnext(q, mp); /* pass message through */

}

static int modrput(q, mp)/* read put procedure */

queue _t *q; /* pointer to the read queue */

mblk_t *mp; /* message pointer */

{

putnext(q, mp); /* pass message through */

}

static int modclose(qg, flag)

queue _t *q; /* pointer to the read queue */

int flag; /* file open flags - zero for modules */

The form and arguments of these four procedures are the same in all

modules and all drivers. Modules and drivers can be used in multiple

Streams and their procedures must be reentrant.

6-4 STREAMS PROGRAMMER’S GUIDE

Module Procedures

modopen illustrates the open call arguments and return value. The argu-

ments are the read queue pointer (g), the major/minor device number (dev,

in drivers only), the file open flags (flag, defined in sys/file.h), and the

Stream open flag (sflag). For a module, the value of flag and dev are always

zero. The Stream open flag can take on the following values:

MODOPEN normal module open

0 normal driver open (see Chapter 9)

CLONEOPEN clone driver open (see Chapter 10)

The return value from open is >= 0 for success and OPENFAIL for

error. The open procedure is called on the first I.LPUSH and on all subse-

quent open calls to the same Stream. During a push, a return value of

OPENFAIL causes the ILPUSH to fail and the module to be removed from

the Stream. If OPENFAIL is returned by a module during an open call, the

open fails, but the Stream remains intact. For example, it can be returned

by a module/driver that only wishes to be opened by a superuser:

if (!suser()) return OPENFAIL;

In the example, modopen simply returns successfully. modrput and

modwput illustrate the common interface to put procedures. The arguments

are the read or write queue_t pointer, as appropriate, and the message

pointer. The put procedure in the appropriate side of the QUEUE is called

when a message is passed from upstream or downstream. The put pro-

cedure has no return value. In the example, no message processing is per-

formed. All messages are forwarded using the putnext macro (see Appendix

C). putnext calls the put procedure of the next QUEUE in the proper direc-

tion.

The close procedure is only called on an I_POP or on the last close call

of the Stream (see the last two sections of Chapter 5). The arguments are

the read queue_t pointer and the file open flags as in modopen. Fora

module, the value of flag is always zero. There is no return value. In the

example, modclose does nothing.

MODULES 6-5

Module and Driver Environment

As discussed in Chapter 7 of the Primer, user context is not generally

available to STREAMS module procedures and drivers. The exception is

during execution of the open and close routines. Driver and module open

and close routines have user context and may access the u_area structure

(defined in user.h, see "Accessible Symbols and Functions” in Appendix D).

These routines are allowed to sleep, but must always return to the caller.

That is, if they sleep, it must be at priority <= PZERO, or with PCATCH

set in the sleep priority. (A process which is sleeping at priority > PZERO

and is sent a signal via kill(2), never returns from the sleep call. Instead, the

system call is aborted.)

STREAMS driver and module put procedures and service procedures have

no user context. They cannot access the u_area structure of a process and

must not sleep.

6-6 STREAMS PROGRAMMER’S GUIDE

Chapter 7-- MESSAGES

Message Format

Messages are the means of communication within a Stream. A message

contains data or information identified by one of 18 message types (see

Appendix B). Messages may be generated by a driver, a module, or the

Stream head. The contents of certain message types can be transferred

between a process and a Stream by use of system calls. STREAMS main-

tains its own pools for allocation of message storage.

All messages are composed of one or more message blocks. A message

block is a linked triplet, two structures and a variable length buffer block.

The structures are msgb (mblk_t), the message block, and datab (dblk_t),

the data block:

struct msgb {

struct msgb *b next;/* next message on queue */

struct msgb *b prev;/* previous message on queue */

struct msgb *b cont;/* next message block of message */

unsigned char *b rptr;/* first unread byte in buffer */

unsigned char *b wptr;/* first unwritten byte in buffer */

struct datab *b datap;/* data block */

};

typedef struct msgb mb1k_t;

struct datab [{

struct datab *db_freep;/* used internally */

unsigned char *db base;/* first byte of buffer * */

unsigned char *db_ lim;/* last byte+l of buffer */

unsigned char db _ref;/* count of messages pointing to this block */

unsigned char db _type;/* message type */

unsigned char db _class;/* used internally */

hi

typedef struct datab dblk_t;

mblk_t is used to link messages on a message queue, link the blocks in a

message and manage the reading and writing of the associated buffer. b_rptr

and b_wptr are used to locate the data currently contained in the buffer. As

shown in Figure 7-1, mblk_t points to the data block of the triplet. The data

block contains the message type, buffer limits and control variables.

STREAMS allocates message buffer blocks of varying sizes (see below).

db_base and db_lim are the fixed beginning and end (+1) of the buffer.

MESSAGES /7-1

Message Format

A message consists of one or more linked message blocks. Multiple

message blocks in a message can occur, for example, because of buffer size

limitations, or as the result of processing that expands the message. When a

message 1s composed of multiple message blocks, the type associated with

the first message block determines the message type, regardless of the types

of the attached message blocks.

7-2. STREAMS PROGRAMMER’S GUIDE

Message Format

MESSAGES 7-3

Message Format

Message | Message

| 1 | 2
queue b_next : Po b nex t -_--—>
——--4 ' WH HH HK

header | mblk_t b_prev ! mblk_t b_prev

I

]

i | data

|

)

|

3 5
b_datap ,

|

|

|

buffer} , | mblkt
| M | , ,

\ | \

TN STN
V \ V ‘\

Figure 7-1: Message Form and Linkage

buffer

A message may occur singly, as when it is processed by a put procedure, or it

may be linked on the message queue in a QUEUE, generally waiting to be processed

by the service procedure. Message 1, as shown in Figure 7-1, links to message 2. In

the first message on a queue, b_prev points back to the header in the QUEUE. The

last b_next points to the tail.

Note that a data block in message 1 is shared between message 1 and another

message. Multiple message blocks can point to the same data block to conserve

storage and to avoid copying overhead. For example, the same data block, with

associated buffer, may be referenced in two messages, from separate modules that

implement separate protocol levels. (Figure 7-1 illustrates the concept, but data

7-4 STREAMS PROGRAMMER’S GUIDE

Message Format

blocks would not typically be shared by messages on the same queue). The buffer

can be retransmitted, if required by errors or timeouts, from either protocol level

without replicating the data. Data block sharing is accomplished by means of a util-

ity routine (see dupmsg in Appendix C). STREAMS maintains a count of the mes-

sage blocks sharing a data block in the db_ref field.

STREAMS provides utility routines and macros, specified in Appendix C, to

assist In managing messages and message queues, and to assist in other areas of

module and driver development. A utility should always be used when operating on

a message queue or accessing the message storage pool.

Message Generation and Reception

As discussed in the "Message Types” section in Chapter 4 of the Primer,

most message types can be generated by modules and drivers. A few are

reserved for the Stream head. The most commonly used types are

M_DATA, M_PROTO and M_PCPROTO. These, and certain other mes-

sage types, can also be passed between a process and the topmost module in

a Stream, with the same message boundary alignment maintained on both

sides of the kernel. This allows a user process to function, to some degree,

as a module above the Stream and maintain a service interface (see Chapter

12). M_PROTO and M_PCPROTO messages are intended to carry service

interface information among modules, drivers and user processes. Some

message types can only be used within a Stream and cannot be sent or

received from user level.

As discussed previously, modules and drivers do not interact directly

with any system calls except open and close. The Stream head handles all

message translation and passing. Message transfer between process and

Stream head can occur in different forms. For exampic, M_DATA,

M_PROTO or M_PCPROTO messages can be transferred in their direct

form by getmsg(2) and putmsg(2) system calls (see Chapter 12). Alterna-

tively, a write causes one or more MLDATA messages to be created from

the data buffer supplied in the call. M_DATA messages received from

downstream at the Stream head will be consumed by read(2) and copied into

the user buffer. As another example, M_SIG causes the Stream head to

send a signal to a process (see Chapter 13).

MESSAGES 7-5

Message Format

Any module or driver can send any message type in either direction on a

Stream. However, based on their intended use in STREAMS and their

treatment by the Stream head, certain message types can be categorized as

upstream, downstream or bidirectional. MLDATA, M_PROTO or

M_PCPROTO messages, for example, can be sent in both directions. Other

message types are intended to be sent upstream to be processed only by the

Stream head. Downstream messages are silently discarded if received by the

Stream head.

7-6 STREAMS PROGRAMMER’S GUIDE

Filter Module Declarations

The module shown below, crmod, is an asymmetric filter. On the write

side, newline is converted to carriage return followed by newline. On the

read side, no conversion is done. The declarations are essentially the same

as the null module of the preceding chapter:

/* Simple filter — converts newline —> carriage retumm, newline */

#include “sys/types.h”

#include “sys/param.h”

#include “sys/stream.h”

static struct module_info minfo = (0, “cxmod”, 0, INFPSZ, 0, 0 };

static int modopen(), modrput(), modwput(), modclose();

static struct ginit rinit = [

modrput, NULL, modopen, modclose, NULL, &minfo, NULL

};

static struct ginit winit = {

modwput, NULL, NULL, NULL, NULL, aminfo, NULL

};

struct streamtab crmmdinfo = { &Grinit, awinit, NULL, NULL };

Note that, in contrast to the null module example, a single module_info

structure is shared by the read and write sides. A master.d file to configure

crmod is shown in Appendix E.

modopen, modrput and modclose are the same as in the null module of

the preceding chapter.

MESSAGES 7-7

Filter Module Declarations

bappend Subroutine

The module makes use of a subroutine, bappend, which appends a char-

acter to a message block:

/*

* Append a character to a message block.

* If (*bpp) is null, it will allocate a new block

* Returns 0 when the message block is full, 1 otherwise

*/

#define MODBLKSZ 128 /* size of message blocks */

static bappend(bpp, ch)

mbolk_t **bpp;

int ch;

{

mblk_t *bp;

if (bp = *bpp) {

if (bp~>b_wptr >= bp->b_datap~—>db_ lim)

return OQ;

} else if ((*bpp = bp = allocb(MODBLKSZ, BPRI_MED)) == NULL)

yeturm 1;

*bp->b_wptrt+ = ch;

retum 1;

bappend receives a pointer to a message block pointer and a character as

arguments. If a message block is supplied (*bpp != NULL), bappend

checks if there is room for more data in the block. If not, it fails. If there

is no message block, a block of at least MODBLKSZ is allocated through

allocb, described below.

7-8 STREAMS PROGRAMMER’S GUIDE

Filter Module Declarations

If the allocb fails, bappend returns success, silently discarding the char-

acter. This may or may not be acceptable. For TTY-type devices, it is gen-

erally accepted. If the original message block is not full or the allocb is suc-

cessful, bappend stores the character in the block.

MESSAGES 7-9

Message Allocation

The allocb utility (see Appendix C) is used to allocate message storage

from the STREAMS pool. Its declaration ts:

mblk t *allocb(buffersize, priority).

allocb will return a message block containing a buffer of at least the size

requested, providing there is a buffer available at the message pool priority

specified, or it will return NOLL on failure. Three levels of message pool

priority can be specified (see Appendix C). Priority generally does not

affect allocb until the pool approaches depletion. In this case, for the same

internal level of pool resources, allocb will fail low priority requests while

granting higher priority requests. This allows module and driver developers

to use STREAMS memory resources to their best advantage and for the

common good of the system. Message pool priority docs not affect subse-

quent handling of the message by STREAMS. BPRI_II is intended for spe-

cial situations. This transmission of urgent messages relating to time sensi-

tive events, conditions that could result in loss of state, loss of data or ina-

bility to recover. BPRI_MED might be used, for example, when requesting

an M_DATA buffer for holding input, and BPRI_LO might be used for an

output buffer (presuming the output data can wait in user space). The

Stream head uses BPRI_LO to allocate messages to contain output from a

process (e.g., by write or putmsg). Note that allocb will always return a

message of type M_DATA. The type may then be changed if required.

b_rptr and b_wptr are set to db_base (see mblk_t and dblk_t).

allocb may return a buffer larger than the size requested. In bappend, if

the message block contents were intended to be limited to MODBLKSZ, a

check would have to be inserted.

If allocb indicates buffers are not available, the bufcall utility can be

used to defer processing in the module or the driver until a buffer becomes

available (bufcall is described in Chapter 13).

7-10 STREAMS PROGRAMMER’S GUIDE

Put Procedure

modwput processes all the message blocks in any downstream data (type

M_DATA) messages.

/* Write side put procedure */

static modwput(q, mp)

queue_t *q;

mb1lk_t *mp;

{

switch (mp—>b_datap->db_type) [

default:

putnext(q, mp); /* Don't do these, pass them along */

break;

case M_DATA: [{

register mblk_t *bp;

struct mblk_t *nmp = NULL, *nbp = NULL;

for (bp = mp; bp != NULL; bp = bp->b_cont) {

while (bp->b_rptr < bp->b_wptr) {

if (*bp—>>b.xyptr = '\n')

if (tbappend(anbp, '\r'))

goto newblk;

if ('bappend(anbp, *bp->b_rptr))

goto newblk;

bp->b_rptr+t;

continue;

newblk:

if (nmp = NULL)

nmp = nbp;

else linkb(nmp, nbp); /* link message block to tail of nmp */

nbp = NULL;

}

if (omp = NULL)

nmp = nbp;

else linkb(nmp, nbp);

freansg(mp); /* de-allocate message */

MESSAGES 7-11

Put Procedure

continue

if (nmp)

putnext(q, nmp);

break ;

}

}

\ J
Data messages are scanned and filtered. modwput copies the original

message into a new block(s), modifying as it copies. bp points to the

current new message block. nimp points to the new message being formed as

multiple M_DATA message blocks. The outer for() loop goes through each

message block of the original message. The inner while() loop goes through

each byte. bappend is used to add characters to the current or new block.

If bappend fails, the current new block is full. If nmp is NULL, nmp is

pointed at the new block. If nmp is non-NULL, the new block is linked to

the end of nmp by use of the linkb utility.

At the end of the loops, the final new block is linked to nmp. The origi-

nal message (all message blocks) is returned to the pool by freemsg. Ifa

new message exists, it is sent downstream.

7-12 STREAMS PROGRAMMER’S GUIDE

Chapter 8-- MESSAGE QUEUES and SERVICE PROCEDURES

The queue_t Structure

Service procedures, message queues and priority, and basic flow control

are all intertwined in STREAMS. A QUEUE will generally not use its mes-

sage queue if there is no service procedure in the QUEUE. The function of

a service procedure is to process messages on its queue. Message priority

and flow control are associated with message queues.

The operation of a QUEUE revolves around the queue_t structure:

struct queue [

struct qinit *q_qinfo; /* procedures and limits for queue */

struct msgb *q_first; /* head of message queue for this QUEUE */

struct msgb *q_last; /* tail of message queue for this QUEUE */

struct queue *q_next; /* next QUEUE in Stream*/

struct queue *q_ link; /* link to next QUEUE on STREAMS scheduling queue */

caddr_t q_ ptr; /* to private data structure */

ushort q count; /* weighted count of characters on message queue */

ushort q flag; /* QUEUE state */

short q_minpsz; /* min packet size accepted by this QUEUE */

short q maxpsz; /* max packet size accepted by this QUEUE */

ushort q hiwat; /* message queue high water mark, for flow control */

ushort q_lowat; /* message queue low water mark, for flow control */

};

typedef struct queue queue _t;

As described previously, two of these structures form a module. When

a queue_t pair is allocated, their contents are zero unless specifically initial-

ized. The following fields are initialized by STREAMS:

m g_qinfo - from streamtab

@ g_iminpsz, g_maxpsz, g_hiwat, g_lowat - from module_info

Copying values from module_info allows them to be changed in the queue_t

without modifying the template (i.e., streamtab and module_info) values.

qcount is used in flow control calculations and is the weighted sum of

the sizes of the buffer blocks currently on the message queue. The actual

number of bytes in the buffer is not used. This is done to encourage the use

of the smallest buffer that will hold the data intended to be placed in the

buffer.

MESSAGE QUEUES and SERVICE PROCEDURES 8-1

Service Procedures

Put procedures are generally required in pushable modules. Service pro-

cedures are optional. The general processing flow when both procedures are

present is as follows: A message is received by the put procedure in a

QUEUE, where some processing may be performed on the message. The

put procedure transfers the message to the service procedure by use of the

putgq utility. putq places the message on the tail (see g_/ast in queue_t) of

the message queue. Then, putq will generally schedule (using g_link in

queue_t) the QUEUE for execution by the STREAMS scheduler following

all other QUEUES currently scheduled. After some indeterminate delay

(intended to be short), the scheduler calls the service procedure. The ser-

vice procedure gets the first message (q_first) from the message queue with

the getq utility. The service procedure processes the message and passes it

to the put procedure of the next QUEUE with putnext. The service pro-

cedure gets the next message and processes it. This FIFO processing contin-

ues until the queue is empty or flow control blocks further processing. The

service procedure returns to caller.

A service routine must never sleep and it has no user context. It must

always return to its caller.

If no processing is required in the put procedure, the procedure does

not have to be explicitly declared. Rather, putq can be placed in the gqinit

structure declaration for the appropriate QUEUE side, to queue the message

for the service procedure, e.g.:

static struct qinit winit = { putq, modwsrv, };

More typically, put procedures will, as a minimum, process priority mes-

sages (see below) to avoid queucing them.

The key attribute of a service procedure in the STREAMS architecture

is delayed processing. When a service procedure is used in a module, the

module developer is implying that there are other, more time-sensitive activi-

ties to be performed elsewhere in this Stream, in other Streams, or in the

system in general. The presence of a service procedure is mandatory if the

flow control mechanism is to be utilized by the QUEUE.

8-2 STREAMS PROGRAMMER’S GUIDE

Service Procedures

The delay for STREAMS to call a service procedure will vary with

implementation and system activity. However, once the service procedure is

scheduled, it is guaranteed to be called before user level activity is resumed.

Also see the section titled "Put and Service Procedures” in Chapter 5 of

the Primer.

MESSAGE QUEUES and SERVICE PROCEDURES = 8-3

Message Queues and Message Priority

Figure 7-1 depicts a message queue linked by b_next and b_prev pointers.

As discussed in the Primer, message queues grow when the STREAMS

scheduler is delayed from calling a service procedure because of system

activity, or when the procedure is blocked by flow control. When it is called

by the scheduler, the service procedure processes enqueued messages in

FIFO order. However, certain conditions require that the associated mes-

sage (e.g., an M_LERROR) reach its Stream destination as rapidly as possi-

ble. STREAMS does this by assigning all message types to one of the two

levels of message queueing priority—priority and ordinary. As shown in Fig-

ure 8-1, when a message is queued, the putq utility will place priority mes-

sages at the head of the message queue, FIV‘O within their order of queue-

ing.

QUEUE Message queue

queue

header a

_ Priority =| Ordinary /
7 Messages - Messages |

Head Tail

Figure 8-1: Message Queue Priority

Priority messages are not subject to flow control. When they are queued

by putq, the associated QUEUE is always scheduled (in the same manner as

any QUEUE; following all other QUEUEs currently scheduled). When the

service procedure is called by the scheduler, the procedure uses getq to

retrieve the first message on queue, which will be a priority message, if

present. Service procedures must be implemented to act on priority mes-

sages immediately (see next section). The above mechanisms—priority mes-

sage queueing, absence of flow control and immediate processing by a

procedure—result in rapid transport of priority messages between the

8-4 STREAMS PROGRAMMER’S GUIDE

Message Queues and Message Priority

originating and destination components in the Stream.

The priority level for each message type is shown in Appendix B. Mes-

Sage queue management utilities are provided for use in service procedures

(see Appendix C).

MESSAGE QUEUES and SERVICE PROCEDURES __ 8-5

Flow Control

The elements of flow control are discussed in Chapter 6 of the Primer.

Flow control is only used in a service procedure. Module and driver coding

should observe the following guidelines for message priority. Priority mes-

sages, determined by the type of the first block in the message,

(bp->b_datap->db type > QPCTL),

are not subject to flow control. They should be processed immediately and

forwarded, as appropriate.

For ordinary messages, flow control must be tested before any process-

ing is performed. The canput utility determines if the forward path from the

QUEUE is blocked by flow control. The manner in which STREAMS

determines flow control status for modules and drivers is described under

"Driver Flow Control” in Chapter 9.

This is the general processing for flow control: Retrieve the message at

the head of the queue with getq. Determine if the type is priority and not to

be processed here. If both are true, pass the message to the put procedure

of the following QUEUE with putnext. If the type is ordinary, use canput

to determine if messages can be sent onward. If canput indicates messages

should not be forwarded, put the message back on the queue with putbq and

return from the procedure. In all other cases, process the message.

The canonical representation of this processing within a service pro-

cedure is as follows:

while (getq != NULL)

if (priority message || canput)

process message

putnext

else

puthq

retum

8-6 STREAMS PROGRAMMER’S GUIDE

Flow Control

A service procedure must process all messages on its queue unless flow
NOTE; control prevents this.

When an ordinary message is enqueued by putq, putq will cause the ser-

vice procedure to be scheduled only if the queue was previously empty. If

there are messages on the queue, putq presumes the service procedure is

blocked by flow control and the procedure will be automatically rescheduled

by STREAMS when the block is removed. If the service procedure cannot

complete processing as a result of conditions other than flow control (e.g.,

no buffers), it must assure it will return later (c.g., by use of bufcall, see

Chapter 13) or it must discard all messages on queue. If this is not done,

STREAMS will never schedule the service procedure to be run unless the

QUEUPE’s put procedure queues a priority message with putgq.

putbq replaces messages at the beginning of the appropriate section of

the message queue in accordance with their message type priority (see Figure

8-1). This might not be the same position at which the message was

retrieved by the preceding getq. A subsequent getq might return a different

message.

MESSAGE QUEUES and SERVICE PROCEDURES _—_ 8-7

Example

The filter module example of Chapter 7 is modified to have a service

procedure, as shown below. The declarations from the example in Chapter

7 are unchanged except for the following lines (changes are shown in bold):

#include "sys/stropts.h”

static struct module_info minfo = {

0, "ps_crmod”, 0, INFPSZ, 512, 128

);

static int modopen(), modrput(), modwput(), modwsrv(), modclose();

static struct ginit winit = [

modwput, modwsrv, NULL, NULL, NULL, sminfo, NULL

);

stropts.h is generally intended for user level. However, it includes

definitions of flush message options common to user level, modules and

drivers. module_info now includes the flow control high- and low-water

marks (512 and 128) for the write QUEUE (even though the same

module_info is used on the read QUEUE side, the read side has no service

procedure so flow control is not used). qinit now contains the service pro-

cedure pointer. modopen, modclose and modrput (read side put procedure)

are unchanged from Chapters 6 and 7. The bappend subroutine is also

unchanged from Chapter 7.

8-8 STREAMS PROGRAMMER’S GUIDE

Example

Procedures

The write side put procedures and the beginning of the service procedure
are shown below:

static int modwput(g, mp)

queue_t ¥*q;

register mblk_t *mp;

{

if (mp—>b_datap->db type > OPCTL && mp->b_datap—>db_type != M_FLUSH)

putnext(q, mp);

else

putq(q, mp); 7* Put it on the queue */

Static int modwsrv(q) queue_t *q; [

mb1lk_t *mp;

while ((mp = getq(q) != NULL) [{
Switch (mp->b_datap—>db type) [

default:

/* always putnext priority messages */

if (mp~>b_datap~>db_type > QPCTL || canput(q->q_next)) {

putnext(q, mp);

continue;

}

else [{

putbg(q, mp);

retum;

case M_ FLUSH:

if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA) ;

putnext(q, mp) ?
continue;

MESSAGE QUEUES and SERVICE PROCEDURES __ 8-9

Example

ps_crmod performs a similar function to crmod of the previous chapter,

but it uses a service routine.

8-10 STREAMS PROGRAMMER’S GUIDE

Example

modwput, the write put procedure, switches on the message type. Prior-

ity messages that are not type M_FLUSH are putnext to avoid scheduling.

The others are queued for the service procedure. An M_FLUSH message is

a request to remove all messages on one or both QUEUVEs. It can be pro-

cessed in the put or service procedure.

modwsrv is the write service procedure. It takes a single argument, a

pointer to the write queue_t. modwsrv processes only one priority message,

M_FLUSH. All other priority messages are passed through. Actually, no

other priority messages should reach modwsrv. The check is included to

show the canonical form when priority messages are queued by the put pro-

cedure.

For an M_LFLUSH message, modwsrv checks the first data byte. If

FLUSHW (defined in stropts.h) is set in the byte, the write queue is flushed

by use of flushq. flushq takes two arguments, the queue pointer and a flag.

The flag indicates what should be flushed, data messages (FLUSHDATA)

or everything (FLUSHALL). In this case, data includes MLDATA,

M_PROTO, and M_PCPROTO messages. The choice of what types of mes-

sages to flush is module specific. As a general rule, FLUSHDATA should

be used.

Ordinary messages will be returned to the queue if

Canput (q->q_next)

returns false, indicating the downstream path is blocked.

In the remaining part of modwsrv, M_LDATA messages are processed

similarly to the previous example:

MESSAGE QUEUES and SERVICE PROCEDURES __ 8-11

Example

case M DATA: {

mblk_t *nbp = NULL;

molk_t *next;

if (!canput(q->q_next)) [

puthg(q, mp);

return;

J

/* Filter data, appending to queue */

for (; mp '= NULL; mp = next) {

While (mp->b_rptr < mp->b wptr) [

if (*mp->b_rptr = '\n')

if (!bappend(anbp, '\r'))
goto push;

if (!bappend(&nbp, *mp->b_rptr))

goto push;

mMp~>b_rptr++;
continue;

push:

putnext(q, nbp) ;

nbp = NULL;

if (!canput(q->q_next)) [{
if (mp->b_rptr >= mp—b_wptr) [

next = mp->b_ cont; ,

freeb(mp);

mp=next ;

}

if (mp)

puthg(q, Mm) ;
retum;

}

}

next = mp->b_ cont;

freeb(mp) ;

)

if (nbp)

putnext (q, nbp) ;

8-12 STREAMS PROGRAMMER’S GUIDE

Example

The differences in M_DATA processing between this and the previous

example relate to the manner in which the new messages are forwarded and

flow control. For the purpose of demonstrating alternative means of pro-

cessing messages, this version creates individual new messages rather than a

single message containing multiple message blocks. When a new message

block is full, it is immediately forwarded with putnext rather than being

linked into a single, large message (as was done in the previous example).

This alternative may not be desirable because message boundaries will be

altered and because of the additional overhead of handling and scheduling

multiple messages.

When the filter processing is performed (following push), flow control is

checked (canput) after, rather than before, each new message is forwarded.

This is done because there is no provision to hold the new message until the

QUEVE becomes unblocked. If the downstream path is blocked, the

remaining part of the original message is returned to the queue. Otherwise,

processing continues.

Another difference between the two examples is that each message block

of the original message is returned to the pool with freeb when its processing

is completed.

MESSAGE QUEUES and SERVICE PROCEDURES 8-13

Chapter 9-- DRIVERS

Overview of Drivers

This chapter describes the organization of a STREAMS driver, and

discusses some of the processing typically required in drivers. Certain ele-

ments of driver flow control are discussed. Procedures for handling user

ioctls, cominon to modules and drivers, are described.

As discussed under "Stream Construction” in Chapter 5, driver and

module organization are very similar. The call interfaces to all the driver

procedures are identical to module interfaces and driver procedures must be

reentrant. As described under "Environment" in Chapter 6, the driver put

and service procedures have no user environment and cannot sleep. Other

than with open and close, a driver interfaces with a user process by mes-

sages, and indirectly, through flow control.

There are two significant differences between modules and drivers.

First, a device driver must also be accessible from an interrupt as well as

from the Stream, and second, a driver can have multiple Streams connected

to it. Multiple connections occur when more than one minor device uses the

same driver and in the case of multiplexors (see Chapter 11). However,

these particular differences are not recognized by the STREAMS mechan-

ism: They are handled by developer-provided code included in the driver

procedures.

Figure 9-1 shows multiple Streams (corresponding to minor devices), to

a common driver. This depiction of two Streams connected to a single

driver (also used in the Primer) is somewhat misleading. These are really

two distinct Streams opened from the same cdevsw (i.c., same major dev-

ice). Consequently, they have the same streamtab and the same driver pro-

cedures. Modules opened from the same fmodsw might be depicted simi-

larly if they had any reason to be cognizant, as do drivers, of common

resources or alternate instantiations.

Multiple instantiations (minor devices) of the same driver are handled

during the initial open for each device. Typically, the queue_t address 1s

stored in a driver-private structure indexed by the minor device number.

The structure is typically pointed at by g_ptr (see Chapter 8). When the

messages are received by the QUEUE, the calls to the driver put and service

procedures pass the address of the queue_t, allowing the procedures to

determine the associated device.

DRIVERS 9-1

Overview of Drivers

In addition to these differences, a driver is always at the end of a

Stream. As a result, drivers must include standard processing for certain

message types that a module might simply be able to pass to the next com-

ponent.

9-2 STREAMS PROGRAMMER’S GUIDE

Overview of Drivers

DRIVERS 9-3

Overview of Drivers

major/dev0 major/dev1

inode inode

\

/

Stream Stream

Head Head

Module(s) Module(s)

| QUEUE Pair | | QUEUE Pair |

Driver Procedures

and

Interrupt Code

Port Port

0 1

Figure 9-1: Device Driver Streams

9-4 STREAMS PROGRAMMER’S GUIDE

Driver Flow Control

The same utilities (described in Chapter 8), and mechanisms used for

module flow control are used by drivers. However, they are typically used in

a different manner in drivers, because a driver generally does not have a ser-

vice procedure. The developer scts flow control values (mi_hiwat and

mi_lowat) in the write side module_info structure, which STREAMS will

copy into g_hiwat and qg_lowat in the queue_t structure of the QUEUE. A

device driver typically has no write service procedure, but does maintain a

write message queue. When a message is passed to the driver write side put

procedure, the procedure will determine if device output is in progress. In

the event output is busy, the put procedure cannot immediately send the

message and calls the putq utility (see Appendix C) to queue the message.

(Note that the driver might have elected to queue the message in all cases.)

putq recognizes the absence of a service procedure and does not schedule

the QUEUE.

When the message is queued, putq increments the value of g_count

(approximately the enqueued character count, see the beginning of Chapter

8) by the size of the message and compares the result against the driver’s

write high water limit (g_hiwaf) value. If the count exceeds g_hiwat, putq

will set the internal FULL (see the section titled "Flow Control” in Chapter 6

of the Primer) indicator for the driver write QUEUE. This will cause mes-

sages from upstream to be halted (canput returns FALSE) until the write

queue count reaches q_lowat. The driver messages waiting to be output are

dequeued by the driver output interrupt routine with getq, which decrements

the count. If the resulting count is below g_lowat, getq will back-enable any

upstream QUEUE that had been blocked. The above STREAMS process-

ing also applies to modules on both write and read sides of the Stream.

Device drivers typically discard input when unable to send it to a user

process. However, STREAMS allows flow control to be used on the driver

read side, possibly to handle temporary upstream blocks. This is described

in Chapter 13 in the section titled “Advanced Flow Control’.

To some extent, a driver or module can control when its upstream

transmission will become blocked. Control is available through the

M_SETOPTS message (see Chapter 13 and Appendix B) to modify the

Stream head read side flow control limits.

DRIVERS 9-5

Driver Programming

The example below shows how a simple interrupt-per-character line

printer driver could be written. The driver is unidirectional and has no read

side processing. It demonstrates some differences between module and

driver programming, including the following:

Open handling A driver is passed a minor device number or is asked to

Flush handling

Ioctl handling

Write side flow control is also illustrated as described above.

select one (see next chapter).

upstream.

Toctls”, below.

Driver Declarations

The driver declarations are as follows:

A driver must loop M_FLUSH messages back

A driver must nak ioctl messages it does not under-

stand. This 1s discussed under "Driver and Module

#include

#include

#include

#include

#endif

#include

#include

#include

#include

#include

#include

};

“sys/types.h”

“sys/param.h”

#include “sys/sysmacros.h”

#ifdef u3b2

“sys/psw.h”

“ sys pcb wh”

"“sys/stream.h”

“sys/stropts.h”

“sys/dir.h”

“sys/signal .h”

“sys/user.h”

“sys/ermo.h”

/* Simple line printer driver.

/*

/*

/*

/*

*/

required for user.h

required for user.h

required for user.h

required for user.h

static struct module_info minfo = [{

0, “1p”, 0, INFPSZ, 150, 50

*/

*/

*/

9-6 STREAMS PROGRAMMER’S GUIDE

Driver Programming

continue

/
ee

DRIVERS 9-7

Driver Programming

continue

static int lpopen(), lpclose(), lpwput();

static struct ginit rinit = [{

NULL, NULL, lpopen, lpclose, NULL, éminfo, NULL

};

static struct ginit winit = [{

lpwput, NULL, NULL, NULL, NULL, &minfo, NULL

};

struct streamtab lpinfo = { &rinit, &winit, NULL, NULL };

tdefine SET_OPTIONS ((‘'1'<<8)|1)/* really must be in a .h file */
/*

x This is a private data structure, one per minor device number.

*/

struct lp {

short flags; /* flags — see below */

mblk_t *msg; /* current message being output */

queue_t *qptr; /* back pointer to write queue */

};

/* Flags bits */

#define BUSY 1 * device is running and interrupt is pending */

extern struct lp lp Ip[]; /* per device lp structure array */

extern int lp cnt; /* number of valid minor devices */

As noted for modules in Chapter 6, configuring a STREAMS driver

does not require the driver procedures to be externally accessible; only

streamtab must be. All STREAMS driver procedures would typically be

declared static.

streamtab must be defined as "prefixinfo", where prefix is the value of

the prefix field in the master.d file for this driver. The values in name and

ID fields in the module_info should be unique in the system. The name

field is a hook for future expansion and is not currently used. The ID is

currently used only in logging and tracing (see Chapter 6 in the Primer). For

the example in this chapter, the ID is zero. Note that, as in character I/O

drivers, extern variables are assigned values in the master.d file when confi-

guring drivers or modules (see Appendix E).

9-8 STREAMS PROGRAMMER’S GUIDE

Driver Programming

There is no read side put or service procedure. The flow control limits

for use on the write side are 50 and 150 characters. The private Jp structure

is indexed by the minor device number and contains these elements:

flags A set of flags. Only one bit is used: BUSY indicates that output is

active and a device interrupt is pending.

msg A pointer to the current message being output.

gptr A back pointer to the write queue. This is needed to find the write

queue during interrupt processing.

Driver Open

The driver open, /popen, has the same interface as the module open:

Static int lpopen(g, dev, flag, sflag)

queue_t *q /* vead queue */

{

struct lp *lp;

/* Check if non-driver open */

if (sflag)

return OPENFAIL;

/* Dev is majorfninor */

dev = minor(dev);

if (dev >= lp cnt)

retum OPENFAIL;

/* Check if open already. q_ptr is assigned below */

if (q->q ptr) [

u.u_error = EBUSY; /* only 1 user of the printer at a time */

return OPENFAIL;

}

lp = &lp_lp{dev];

ip->qptr = WR(q);

q->q_ptr = (char *) lp;

DRIVERS 9-9

Driver Programming

continue

WR(q)->q_ptr = (char *) Ip;

returm dev;

}

The Stream flag, sflag, must have the value 0, indicating a normal driver

open. dev holds both the major and minor device numbers for this port.

After checking sflag, the open flag, [popen extracts the minor device from

dev, using the minor() macro defined in sysmacros.h.

The use of major devices, minor devices and minor() macro the may be

NOTE machine dependent.

|

The minor device number selects a printer and must be less than /p_cnt.

The next check, if (q->q_ptr)..., determines if this printer is already

open. In this case, EBUSY is returned to avoid merging printouts from

multiple users. g_ptr is a driver/module private data pointer. It can be used

by the driver for any purpose and is initialized to zero by STREAMS. In

this example, the driver sets the value of g_ptr, in both the read and write

queue_t structures, to point to a private data structure for the minor device,

lp_lp[dev].

WR is one of three QUEUE pointer macros. As discussed in the sec-

tion titled "Stream Construction,” in Chapter 5, there are no physical

pointers between QUEUES, and these macros (see Appendix C) generate

the pointer. WR(q) generates the write pointer from the read pointer,

RD(q) generates the read pointer from the write pointer and OTHER(q) gen-

erates the mate pointer from either.

9-10 STREAMS PROGRAMMER’S GUIDE

Driver Processing Procedures

This example only has a write put procedure:

static int lpwput(q, mp)

queue_t *q; /* write queue */

register mblk_t *mp; /* message pointer */

{

register struct lp *lp;

int s;

lp = (struct lp *)q->q_ptr;

Switch (mp->b_ datap-—>db type) [

default:

freemsg (mp) ;

break ;

case M_ FLUSH:

/* Canonical flush handling */

if (*mp—>b_rptr & FLUSHW) [

flushg(q, FLUSHDATA) ;

S = spl3();

/* also flush lp~—msg since it is logically

* at the head of the write queue */

if (lp->msg) [

freemsg(1p->msg) ;

lp-—>msg = NULL;

}

splx(s);

}

if (*4mp—>b_rptr & FLUSHR) [

flushq(RD(q), FLUSHDATA) ;

*mp—>b _rptr &= ~FLUSHW;

qreply(q, mp);

} else

freemsg (mp) ;

break;

case M_IOCTL:

case M_DATA:

putq(q, Mp);

s = spl5();

DRIVERS 9-11

Driver Processing Procedures

continue

if (!(lp->flags & BUSY))

lpout (1p);

splx(s);

Driver Flush Handling

The write put procedure, /pwput, illustrates driver M_FLUSH handling:

Note that all drivers are expected to incorporate this flush handling. If

FLUSHW is set, the write message queue is flushed, and also (for this exam-

ple) the leading message (1p->msg). splI5 is used to protect the critical code,

assuming the device interrupts at level 5. If FLUSHR is set, the read queue

is flushed, the FLUSHW bit is cleared, and the message is sent upstream

using qreply. If FLUSHR is not set, the message is discarded.

The Stream head always performs the following actions on flush requests

received on the read side from downstream. If FLUSHR is set, messages

waiting to be sent to user space are flushed. If FLUSHW is set, the Stream

head clears the FLUSHR bit and sends the MLFLUSH message down-

stream. In this manner, a single M_FLUSH message sent from the driver

can reach all QUEUES in a Stream. A module must send two MLFLUSH

messages to have the same affect.

Ipwput enqueues M_DATA and M_IOCTL (see the section titled

"Driver and Module Ioctls”, below) messages and, if the device is not busy,

starts output by calling /pout. Messages types that are not recognized are

discarded.

9-12 STREAMS PROGRAMMER’S GUIDE

Driver and Module loctis

continue

/7* Actual data is in 2nd message block */

lpsetopt(lp, *(short *)mp—>b_cont—>b_rptr);

/* BCK the ioctl */

mp—>b_datap—>db_ type = M_IOCACK;

iocp—>ioc_count = 0;

qreply(q, mp);

break ;

default:

iocnak:

/* NAK the ioctl] */

mp->b_datap—>db type = M_IOCNAK;

qreply(q, mp);

}

}

NS
Ipdoioctl illustrates M_IOCTL processing: The first part also applies to modules.

An M_IOCTL message contains a struct iocblk in its first block. The first block is

followed by zero or more M_LDATA blocks. The optional M_DATA blocks typically

contain any user supplied data.

The form of an iocblk is as follows:

struct iocblk {

int ioc_cmd; /* ioctl command type */

ushort ioc_uid; /* effective uid of user */

ushort ioc_gid; /* effective gid of user */

uint ioc_id; /* ioctl id */

uint 1oc_count; /* count of bytes in data field */

int ioc_error; /* error code */

int 1oc_rval; /7* return value */

};

ioc_cmd contains the command supplied by the user. In this example, only one

command is recognized, SET_OPTIONS. ioc_count contains the number of user sup-

plied data bytes. For this example, it must equal the size of a short (2 bytes). The

user data is sent directly to the printer interface using [psetopt. Next, the MLIOCTL

DRIVERS 9-13

Driver and Module loctlis

message is changed to type M_LIOCACK and the ioc_count field is set to zero to indi-

cate that no data is to be returned to the user. Finally, the message is sent upstream

using qreply. If ioc_count was left non-zero, the Stream head would copy that many

bytes from the 2nd - Nth message blocks into the user buffer.

If the M_TOCTL message is not understood or in error for any reason, the driver

must set the type to M_IOCNAK and send the message upstream. No data can be

sent to a user in this case. The Stream head will cause the ioctl call to fail with the

error number EINVAL. The driver has the option of setting ioc_error to an alternate

error number if desired.

ero value by both MLIOCACK and MLIOCNAK. This

will cause that value to be returned as an error number to the process that sent the

| I_STR ioctl.

ioc_error can be set to a non-

Sa

9-14 STREAMS PROGRAMMER’S GUIDE

Driver Close

The driver close clears any message being output. Any messages left on the mes-

sage queue will be automatically removed by STREAMS.

static int lpclose(q)

queue_t *q; /* read queue */

{[

struct lp *lp;

int s;

lp = (struct lp *) q->q_ptr;
/* Free message, queue is autamatically flushed by STREAMS */

s = spl5();

if (lp-msg) [{

freemsg(1p—>msq) ;

lp->msg = NULL;

}

sp1x(s);

DRIVERS 9-15

Chapter 10- COMPLETE DRIVER

Cloning

The clone mechanism has been developed as a convenience. It allows a

user to open a driver without specifying the minor device. When a Stream is

opened, a flag indicating a clone open is tested by the driver open routine.

If the flag is set, the driver returns an unused minor device number. The

clone driver [see clone(7)] is a system dependent STREAMS pseudo driver.

Knowledge of clone driver implementation is not required to use it. A

description is presented here for completeness and to assist developers who

must implement their own clone driver. A clone-able device has a device

number in which the major number corresponds to the clone driver and the

minor number corresponds to the target driver. When an open(2) system

call is made to the associated (STREAMS) file, open causes a new Stream

to be opened to the clone driver and the open procedure in clone to be

called with dev set to clone/target. The clone open procedure uses

minor(dev) to locate the cdevsw entry of the target driver. Then, clone

modifies the contents of the newly instantiated Stream queue_ts to those of

the target driver and calls the target driver open procedure with the Stream

flag set to CLONEOPEN. The target driver open responds to the

CLONEOPEN by returning an unused minor device number. When the

clone open receives the returned target driver minor device number, it allo-

cates a new inode (which has no name in the file system) and associates the

minor device number with the inode.

COMPLETE DRIVER-_—- 10-1

Loop-Around Driver

The loop-around driver is a pseudo-driver that loops data from one open

Stream to another open Stream. The user processes see the associated files

as a full duplex pipe. The Streams are not physically linked. The driver is a

simple multiplexor (see next chapter), which passes messages from one

Stream’s write QUEUE to the other Stream’s read QUEUE.

To create a pipe, a process opens two Streams, obtains the minor device

number associated with one of the returned file descriptors, and sends the

device number in an I_LSTR ioctl(2) to the other Stream. For each open,

the driver open places the passed queue_t pointer in a driver interconnec-

tion table, indexed by the device number. When the driver later receives the

I_STR as an M_LIOCTL message, it uses the device number to locate the

other Stream’s interconnection table entry, and stores the appropriate

queue_t pointers in both of the Streams’ interconnection table entries.

Subsequently, when messages other than M_LIOCTL or M_FLUSH are

received by the driver on either Stream’s write sidc, the messages are

switched to the read QUEUE following the driver on the other Stream’s

read side. The resultant logical connection is shown in Figure 10-1. Flow

control between the two Streams must be handled by special code since

STREAMS will not automatically propagate flow control information

between two Streams that are not physically interconnected.

10-2 STREAMS PROGRAMMER’S GUIDE

Loop-Around Driver

COMPLETE DRIVER’ 10-3

Loop-Around Driver

CLONE/ CLONE/
loop/dev3 loop/dev7

Stream Stream

Head Hiead

Module(s) Module(s)

, | |
J 7l

Figure 10-1: Loop Around Streams

The declarations for the driver are:

(
* Loop around driver

*/

#include "sys/types.h”

#include “sys/param.h”

#include “sys/sysmacros.h”

#ifdef u3b2

#include “sys/psw.h”

#include “sys/pcb.h”

#tendif

#include “sys/stream.h”

NS
10-4 STREAMS PROGRAMMER’S GUIDE

Loop-Around Driver

#include

#include

ftinclude

#include

#tinclude

static struct module_info minfo = [{

0, “loop”, 0, INFPSZ, 512, 128

};

static int loopopen(), loopclose(), loopwput(), loopwsrv(), looprsrv();

static struct ginit rinit = {

NULL,

};

static struct ginit winit = [

loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL

};

struct streamtab loopinfo = { &rinit, &winit, NULL, NULL };

struct loop {

queue_t *qptr; /* back pointer to write queue */

queue_t *ogptr; /* pointer to connected read queue */

};

#define LOOP_SET (('1'<<8){1) /* should be in a .h file */

extern struct loop loop_loop[];

exter int loop_cnt;

continue

“sys/stropts.h”

"sys air. h”

“sys/signal .h”

“sys/user .h”

“sys/ermo.h”

looprsrv, loopopen, loopclose, NULL, éminfo, NULL

A master.d file to configure the Joop driver is shown in Appendix E.

The Joop structure contains the interconnection information for a pair of

Streams. loop_loop is indexed by the minor device number. When a

Stream is opened to the driver, the address of the corresponding loop_loop

element is placed in g_prr (private data structure pointer) of the read and

write side queue_ts. Since STREAMS clears g_ptr when the queue_t is

COMPLETE DRIVER~ 10-5

Loop-Around Driver

allocated, a NULL value of g_pfr indicates an initial open. /oop_loop is

used to verify that this Stream is connected to another open Stream.

The open procedure includes canonical clone processing which enables a

single file system node to yield a new minor device/inode each time the

driver is opened:

static int loopopen(q, dev, flag, sflag)

queue_t *q;

{

struct loop *loop;

/*

* If CLONEOPEN, pick a minor device number to use.

* Otherwise, check the minor device range.

*/

if (sflag = CLONBOPEN) {

for (dev = 0; dev < loop cnt; devt+) [{

if (loop_loop[dev] .qptr == NULL)

break ;

}

else

dev = minor(dev);

if (dev >= loop cnt)

return OPENFAIL; /* default = ENXIO */

/* Setup data structures */

if (q->q_ptr) /* already open */

return dev;

loop = &loop_loop[dev] ;

WR(q)->q_ptr = (char *) loop;

q->q_ptr = (char *) loop;

loop~>qptr = WR(q);

/*

* The return value is the minor device.

* For CLONBOPEN case, this will be used for

* newly allocated inode

*/

returm dev;

10-6 STREAMS PROGRAMMER’S GUIDE

Loop-Around Driver

In loopopen, sflag can be CLONEOPEN, indicating that the driver

should pick a minor device (i.c., the user does not care which minor device

is used). In this case, the driver scans its private loop_loop data structure to

find an unused minor device number. If sflag has not been set to

CLONEOPEN, the passed-in minor device is used.

The return value is the minor device number. In the CLONEOPEN

case, this value will be used by the clone driver for the newly allocated inode

and will then be passed to the user.

Write Put Procedure

Since the messages are switched to the read QUEUE following the other

Stream’s read side, the driver needs a put procedure only on its write side:

static int loopwput(q, mp)

queue_t *q;

mblk_t *mp;

{

register struct loop *loop;

loop = (struct loop *)q->q_ptr;

switch (mp->b_datap—>db_type) [{

case M IOCTL: {

struct iocblk *iocp;

int error;

iocp = (struct iocblk *)mp->b_rptr;

switch (iocp-—>ioc_and) [

case LOOP_SET: {

int to; /* other minor device */

/*

* Sanity check. ioc_count contains the amount of

* user supplied data which must equal the size of an int.

*/

if (iocp—>ioc_count != sizeof(int)) [

error = EINVAL;

goto iocnak;

COMPLETE DRIVER-~ 10-7

Loop-Around Driver

continue

/* fetch other dev from 2nd message block */

to = *(int *)mp-—>b_cont—>b rptr;

/*

* More sanity checks. The minor must. be in range, open already.

* Also, this device and the other one must be disconnected.

*/

if (to >= loop cnt || to <0 | | !loop_loop[to].qptr) {

error = ENXIO;

goto iocnak;

}

if (loop->ogptr || loop_loop[to] .ogptr) {

error = EBUSY;

goto iocnak;

/*

* Cross connect streams via the loop structures

*/

loop->ogptr = RD(loop_loop[to] .gqptr) ;

loop_loop[to] .oqptr = RD(q);

/*

* Return successful ioctl. Set ioc_count

* to zero, since there is returm no data.

*/

mp->b_ datap-—>db_ type = M_IOCACK;

iocp-—>ioc_count = 0;

qreply(q, mp);

break ;

default:

error = EINVAL;

iocnak:

10-8 STREAMS PROGRAMMER’S GUIDE

Loop-Around Driver

continue

/*

* Bad ioctl. Setting ioc_error causes the

* ioctl call to retum that particular ermo.

* By default, ioctl will return EINVAL on failure

*/

mp->b_datap—>db_type = M_IOCNAK;

iocp->ioe_error = error; /* set returned ermo */

qreply(q, mp);

}

break;

loopwput shows another use of an I_LISTR ioctl call (see the section

titled "Driver and Module Ioctls” in Chapter 9). The driver supports a

LOOP_SET value of ioc_cmd in the iocblk of the M_LIOCTL message.

LOOP_SET instructs the driver to connect the current open Stream to the

Stream indicated in the message. The second block of the IM_IOCTL mes-

sage holds an integer that specifies the minor device number of the Stream

to connect to.

The driver performs several sanity checks: Does the second block have

the proper amount of data? Is the “to” device in range? Is the “to” device

open? Is the current Stream disconnected? Is the “to” Stream discon-

nected?

If everything checks out, the read queue_t pointers for the two Streams

are stored in the respective ogpir fields. This cross-connects the two

Streams indirectly, via loop_loop.

Canonical flush handling is incorporated in the put procedure:

COMPLETE DRIVER--_—‘ 10-9

Loop-Around Driver

case M_FLUSH:

if (*mp->b_rptr & FLUSHW)

flushq(q, 0);

if (*mp->b_rptr & FLUSHR) [{

flushq(RD(q), 0);

*mp—>b_ rptr &= "FLUSHW;

qreply(q, mp);

} else

freemsg (mp) ;

break;

default:

/*

* If this stream isn't connected, send an M_ERROR upstream.

*/

if (loop->ogptr = NULL) {

putct1l1(RD(q)-—>q_next, M_FRROR, ENXIO);

freemsg(mp) ;

break;

}

putq(q, mp);

Finally, Joopwput enqueues all other messages (e.g., M_DATA or

M_PROTO) for processing by its service procedure. A check is made to

see if the Stream is connected. If not, an MLERROR is sent upstream to

the Stream head (see below).

putctll and putctl (see below) are utilities that allocate a non-data (i.e.,

not MLDATA, M_PROTO or M_PCPROTO) type message, place one byte

in the message (for putetl1) and call the put procedure of the specified

QUEUE (see Appendix C).

10-10 STREAMS PROGRAMMER’S GUIDE

Loop-Around Driver

Stream Head Messages

Certain message types (see Appendix B) can be sent upstream by drivers

and modules to the Stream head where they are translated into actions

detectable by user process(es). The messages may also modify the state of

the Stream head:

M_ERROR Causes the Stream head to lock up. Message transmis-

sion between Stream and user processes is terminated.

All subsequent system calls except close(2) and poll(2)

will fail. Also causes an M_FLUSH clearing all mes-

sage queues to be sent downstream by the Stream

head.

M_HANGUP Terminates input from a user process to the Stream.

All subsequent system calls that would send messages

downstream will fail. Once the Stream head read mes-

sage qucue is empty, EOF is returned on reads. Can

also result in SIGHUP signal to the process group.

M_SIG/M_PCSIG Causes a specified signal to be sent to a process (see

Chapter 13).

Service Procedures

Service procedures are required on both the write and read sides for

purposes of flow control:

COMPLETE DRIVER 10-11

Loop-Around Driver

static int loopwsrv(q)

register queue_t *q;

{

mblk_t *mp;

register struct loop *loop;

loop = (struct loop *)q->q_ptr;

while ((mp = getq(q)) != NULL) [

/*

* Check if we can put the message up the other stream read queue

*/

if (mp—>b_datap->db_type <= QPCTL && !canput(loop—ogptr—>q_next)) {

putbq(q, mp); /* read side is blocked */

break;

/* send message */

putnext (loop->ogptr, mp); /* To queue following other stream read queue */

}

static int looprsrv(q)

queue_t *q;

{

/* Enter only when “back enabled” by flow control */

struct loop *loop;

loop = (struct loop *)g->q_ptr;

if (loop->oqgptr = NULL)

return;

/* manually enable write service procedure */

qenable(WR(loop->ogptr)) ;

10-12 STREAMS PROGRAMMER’S GUIDE

Loop-Around Driver

The write service procedure, /oopwsrv, takes on the canonical form (see

Chapter 8) with a difference. The QUEUE being written to is not down-

stream, but upstream (found via ogptr) on the other Stream.

In this case, there is no read side put procedure so the read service pro-

cedure, looprsrv, is not scheduled by an associated put procedure, as has

been done previously. looprsrv is scheduled only by being back-enabled

when its upstream becomes unstuck from flow control blockage. The pur-

pose of the procedure is to re-enable the writer (Joopwsrv) by using ogptr to

find the related queue_t. /oopwsrv can not be directly back-enabled by

STREAMS because there is no direct queue_t linkage between the two

Streams. Note that no message ever gets queued to the read service pro-

cedure. Messages are kept on the write side so that flow control can pro-

pagate up to the Stream head. There is a defensive check to see if the

cross-connect has broken. qenable schedules the write side of the other

Stream.

COMPLETE DRIVER-_- 10-13

Loop-Around Driver

Close

loopclose breaks the connection between the Streams.

static int loopclose(q)

queue _t *q;

{

register struct loop *loop;

loop = (struct loop *)q->q_ptr;

loop->qptr = NULL;

/*

* If we are connected to another stream, break the

* linkage, and send a hangup message.

* The hangup message causes the stream head to fail writes,

* allow the queued data to be read canpletely, and then

* return EOF on subsequent reads.

*/

if (loop—ogptr) {

((struct loop *)loop—ogptr->q_ptr)—>qptr = NULL;

((struct loop *)loop~>ogptr—>q_ptr)—>oqptr = NULL;

putct1(loop->oqgptr—>q_next, M_HANGUP) ;

loop-—>oqptr = NULL;

loopclose sends an MLHANGUP message (see above) up the connected

Stream to the Stream head.

This driver can be implemented much more cleanly by actually linking the

NOTE] q_next pointers of the queue_t pairs of the two Streams.

10-14 STREAMS PROGRAMMER’S GUIDE

Chapter 11-- MULTIPLEXING

Multiplexing Configurations

This chapter describes how STREAMS multiplexing configurations are

created and discusses multiplexing drivers. A STREAMS multiplexor is a

pseudo-driver with multiple Streams connected to it. The primary function

of the driver is to switch messages among the connected Streams. Multi-

plexor configurations are created from user level by system calls. Chapter 6

of the Primer contains the required introduction to STREAMS multiplexing.

STREAMS related system calls are used to set up the “plumbing,” or

Stream interconnections, for multiplexing pseudo-drivers. The subset of

these calls that allows a user to connect (and disconnect) Streams below a

pseudo-driver is referred to as the multiplexing facility. This type of connec-

tion will be referred to as a 1-to-M, or lower, multiplexor configuration (see

Figure 6-2 in the Primer). This configuration must always contain a multi-

plexing pseudo-driver, which is recognized by STREAMS as having special

characteristics.

Multiple Streams can be connected above a driver by use of open(2)

calls. This was done for the loop-around driver of the previous chapter and

for the driver handling multiple minor devices in Chapter 9. There is no

difference between the connections to these drivers, only the functions per-

formed by the driver are different. In the multiplexing case, the driver

routes data between multiple Streams. In the device driver case, the driver

routes data between user processes and associated physical ports. Multiplex-

ing with Streams connected above will be referred to as an N-to-1, or upper,

multiplexor (see Figure 6-1 in the Primer). STREAMS does not provide any

facilities beyond open and close(2) to connect or disconnect upper Streams

for multiplexing purposes.

From the driver’s perspective, upper and lower configurations differ only

in the way they are initially connected to the driver. The implementation

requirements are the same: route the data and handle flow control. All

multiplexor drivers require special developer-provided software to perform

the multiplexing data routing and to handle flow control. STREAMS does

not directly support flow control among multiple Streams.

M-to-N multiplexing configurations are implemented by using both of the

above mechanisms in a driver. Complex multiplexing trees can be created

by cascading multiplexing Streams below one another.

MULTIPLEXING 11-1

Multiplexing Configurations

As discussed in Chapter 9, the multiple Streams that represent minor

devices are actually distinct Streams in which the driver keeps track of each

Stream attached to it. The Streams are not really connected to their com-

mon driver. The same is true for STREAMS multiplexors of any configura-

tion. The multiplexed Streams are distinct and the driver must be imple-

mented to do most of the work. As stated above, the only difference

between configurations is the manner of connecting and disconnecting. Only

lower connections have use of the multiplexing facility.

Connecting Lower Streams

A lower multiplexor is connected as follows: The initial open to a multi-

plexing driver creates a Stream, as in any other driver. As usual, open uses

the first two streamtab structure entries (see the section titled "Opening a

Stream,” in Chapter 5) to create the driver QUEUEs. At this point, the

only distinguishing characteristic of this Stream are non-NULL entries in the

streamtab st_mux[rw]init (mux) fields:

struct streamtab [

struct ginit *st_rdinit; /* defines read QUEUE */

struct ginit *st_wrinit; /* defines write QUEUE */

struct ginit xst_muxrinit; /* for multiplexing drivers only */

struct ginit *st_muxwinit; /* for multiplexing drivers only */

};

These fields are ignored by the open (see the rightmost Stream in Figure

11-1). Any other Stream subsequently opened to this driver will have the

same streamtab and thereby the same mux fields.

Next, another file is opened to create a (soon to be) lower Stream. The

driver for the lower Stream is typically a device driver (see the leftmost

Stream in Figure 11-1). This Stream has no distinguishing characteristics. It

can include any driver compatible with the multiplcexor. Any modules

required on the lower Stream must be pushed onto it now.

Next, this lower Stream is connected below the multiplexing driver with

an I_LINK ioctl call [see streamio(7)|]._ As shown in Figure 5-1, all Stream

components are constructed in a similar manner. The Stream head points to

the stream-head-routines as its procedures (known via its queue_t). An

I_LINK to the upper Stream, referencing the lower Stream, causes

STREAMS to modify the contents of the Stream head in the lower Stream.

The pointers to the stream-head-routines, and other values, in the Stream

11-2 STREAMS PROGRAMMER’S GUIDE

Multiplexing Configurations

head are replaced with those contained in the mux fields of the multiplexing

driver’s streamtab. Changing the stream-head-routines on the lower Stream

means that all subsequent messages sent upstream by the lower Stream’s

driver will, ultimately, be passed to the put procedure designated in

st_muxrinit, the multiplexing driver. The ILLINK also establishes this upper

Stream as the control Stream for this lower Stream. STREAMS remembers

the relationship between these two Streams until the upper Stream is closed,

or the lower Stream is unlinked.

Finally, the Stream head sends to the multiplexing driver an M_IOCTL

message with ioc_cimd set to ILLINK (see discussions of the iocblk structure

in Chapter 9 and Appendix A). The M_DATA part of the MLIOCTL con-

tains a linkblk structure:

struct linkblk {

queue _t *1 gtop; /* lowest level write queue of upper stream */

queue_t *l_qbot; /* highest level write queue of lower stream */

int l_index; /* systenr-unique index for lower stream. */

};

The multiplexing driver stores information from the linkblk in private

storage and returns an MLIOCACK message (ack). /index is returned to

the process requesting the ILLINK. This value can be used later by the pro-

cess to disconnect this Stream, as described below. linkblk contents are

further discussed below.

An I_LINK is required for each lower Stream connected to the driver.

Additional upper Streams can be connected to the multiplexing driver by

open calls. Any message type can be sent from a lower Stream to user

process(es) along any of the upper Streams. The upper Stream(s) provides

the only interface between the user process(es) and the multiplexor.

Note that no direct data structure linkage is established for the linked

Streams. The g_next pointers of the lower Stream still appear to connect

with a Stream head. Messages flowing upstream from a lower driver (a dev-

ice driver or another multiplexor) will enter the multiplexing driver (i.e.,

Stream head) put procedure with /_gbot as the queue_t value. The multi-

plexing driver has to route the messages to the appropriate upper (or lower)

Stream. Similarly, a message coming downstream from user space on the

control, or any other, upper Stream has to be processed and routed, if

required, by the driver.

MULTIPLEXING 11-3

Multiplexing Configurations

Also note that the lower Stream (see the headers and file descriptors in

Figure 11-2) is no longer accessible from user space. This causes all system

calls to the lower Stream to return EINVAL, with the exception of close.

This is why all modules have to be in place before the lower Stream is linked

to the multiplexing driver. As a general rule, the lower Stream file should

be closed after it is linked (see following section). This does not disturb the

multiplexing configuration.

Finally, note that the absence of direct linkage between the upper and

lower Streams means that STREAMS flow control has to be handled by spe-

cial code in the multiplexing driver. The flow control mechanism cannot see

across the driver.

In general, multiplexing drivers should be implemented so that new

Streams can be dynamically connected to, and existing Streams disconnected

from, the driver without interfering with its ongoing operation. The number

of Streams that can be connected to a multiplexor is developer dependent.

However, there is a system limit, NYUXLINK (see Appendix E), to the

number of Streams that can be linked in the system.

Disconnecting Lower Streams

Dismantling a lower multiplexor is accomplished by disconnecting

(unlinking) the lower Streams. Unlinking can be initiated in three ways: an

ILUNLINK ioctl referencing a specific Stream, an IL-UNLINK indicating all

lower Streams, or the last close (i.e., causes the associated file to be closed)

of the control Stream. As in the link, an unlink sends a linkblk structure to

the driver in an M_IOCTL message. The IUNLINK call, which unlinks a

single Stream, uses the index value returned in the I_LLINK to specify the

lower Stream to be unlinked. The latter two calls must designate a file

corresponding to a control Stream which causes all the lower Streams that

were previously linked by this control Stream to be unlinked. However, the

driver sees a series of individual unlinks.

If the file descriptor for a lower Stream was previously closed, a subse-

quent unlink will automatically close the Stream. Otherwise, the lower

Stream must be closed by close following the unlink. STREAMS will

automatically dismantle all cascaded multiplexors (below other multiplexing

Streams) if their controlling Stream is closed. An ILUNLINK will leave

lower, cascaded multiplexing Streams intact unless the Stream file descriptor

was previously closed.

11-4 STREAMS PROGRAMMER’S GUIDE

Multiplexor Construction Example

This section describes an example of multiplexor construction and usage.

A multiplexing configuration similar to the Internet of Figure 6-2 in the Pri-

mer is discussed. Figure 11-1 shows the Streams before their connection to

create the multiplexing configuration of Figure 11-2. Multiple upper and

lower Streams interface to the multiplexor driver. The user processes of

Figure 11-2 are not shown in Figure 11-1.

MULTIPLEXING 11-5

Multiplexor Construction Example

41-6 STREAMS PROGRAMMER’S GUIDE

Multiplexor Construction Example

poe -- ee ee ee ee ee ee ee Le

! Setup and Supervisory Process

. |

coonprnescnefeneeanafpocsccrecpene anf
file desc. A file desc. B file desc. C file desc. file desc.

A A \ A \

V V V V V
Stream Head Stream Head Stream [lead Stream Head Stream Head

QUEUE Pr. A QUEUE Pr. B QUEUE Pr. C QUEUE Pair QUEUE Pair

|
Net 1 Net 2 802.2

Module Module Driver

:
LAPB

Driver

Ethernet

Driver

IP

Multiplexor

Driver

Figure 11-1: Internet Multiplexor Before Connecting

The Ethernet, LAPB and IEEE 802.2 device drivers terminate links to other

nodes. IP (Internet Protocol) is a multiplexor driver. IP switches datagrams

among the various nodes or sends them upstream to a user(s) in the system.

The Net modules would typically provide a convergence function which

matches the IP and device driver interface.

Figure 11-1 depicts only a portion of the full, larger Stream. As shown

in the dotted rectangle above the IP multiplexor, there generally would be an

upper TCP multiplexor, additional modules and, possibly, additional multi-

plexors in the Stream. Multiplexors could also be cascaded below the IP

driver if the device drivers were replaced by multiplexor drivers.

MULTIPLEXING 11-7

Multiplexor Construction Example

41-8 STREAMS PROGRAMMER’S GUIDE

Setup and Supervisory

Process

header header header header

User

Processes

VVV

Upper

Multiplexor or

Module

QUEUE Pair QUEUE Pair

Multiplexor Construction Example

Internet Protocol

Multiplexor Driver

QUEUE Pair A QUEUE Pair B QUEUE Pair C

Net 1 Module Net 2 Module
802.2

Driver

|

\

Ethernet

Driver

LAPB

Driver

Figure 11-2: Internet Multiplexor After Connecting

Streams A, B and C are opened by the process, and modules are pushed as needed. Two

upper Streams are opened to the IP multiplexor. The rightmost Stream represents multiple

Streams, each connected to a process using the network. The Stream second from the right

provides a direct path to the multiplexor for supervisory functions. It is the control Stream,

leading to a process which sets up and supervises this configuration. It is always directly con- |

nected to the IP driver. Although not shown, modules can be pushed on the control Stream.

MULTIPLEXING 11-9

Multiplexor Construction Example

After the Streams are opened, the supervisory process typically transfers routing informa-

tion to the IP drivers (and any other multiplexors above the IP), and initializes the links. As

each link becomes operational, its Stream is connected below the IP driver. If a more complex

multiplexing configuration is required, the IP multiplexor Stream with all its connected links

can be connected below another multiplexor driver.

As shown in Figure 11-2, the file descriptors for the lower device driver Streams are left

dangling. The primary purpose in creating these Streams was to provide parts for the multi-

plexor. Those not used for control and not required for error recovery (by reconnecting them

through an ILUNLINK ioctl) have no further function. As stated above, these lower Streams

can be closed to free the file descriptor without any effect on the multiplexor. A setup process

installing a configuration containing a large number of drivers should do this to avoid running

out of file descriptors.

11-10 STREAMS PROGRAMMER’S GUIDE

Multiplexing Driver

This section contains an example of a multiplexing driver that imple-

ments an N-to-1 configuration, similar to that of Figure 6-3 in the Primer.

This configuration might be used for terminal windows, where each

transmission to or from the terminal identifies the window. This resembles

a typical device driver, with two differences: the device handling functions

are performed by a separate driver, connected as a lower Stream, and the

device information (i.e., relevant user process) is contained in the input data

rather than in an interrupt call.

Each upper Stream is connected by an open(2), identical to the driver of

Chapter 9. A single lower Stream is opened and then it is linked by use of

the multiplexing facility. This lower Stream might connect to the tty driver.

The implementation of this example is a foundation for an M to N multi-

plexor.

As in the loop-around driver, flow control requires the use of standard

and special code, since physical connectivity among the Streams is broken at

the driver. Different approaches are used for flow control on the lower

Stream, for messages coming upstream from the device driver, and on the

upper Streams, for messages coming downstream from the user processes.

The multiplexor declarations are:

MULTIPLEXING 11-11

Multiplexing Driver

#include “sys/types.h”

#include “sys/param.h”

#include “sys/sysmacros.h”

#include “sys/stream.h”

#include “sys/stropts.h”

#include “sys/ermo.h”

static int muxopen(), muxclose(), muxuwput(), muxlwsrv(), muxlrput();

static struct module_info info = {

0, “mux”, 0, INFPSZ, 512, 128

};

static struct ginit urinit = { /* upper read */

NULL, NULL, muxopen, muxclose, NULL, &info, NULL

};

static struct ginit uwinit = { /* upper write */

muxuwput, NULL, NULL, NULL, NULL, &info, NULL

};

static struct ginit lrinit = { /* lower read */

muxLrput, NULL, NULL, NULL, NULL, &info, NULL

};

static struct ginit lwinit = { /* lower write */

NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL

};

struct. streamtab muxinfo = { &urinit, &uwinit, &lrinit, &lwinit }j;

struct mx [{

queue_t *qptr; /* back pointer to read queue */

);

exter struct mux mux_mux[j;

exter int mux_cnt;

queue_t *muxbot; /* linked lower queue */

int muxerr; /* set if error of hangup on lower stream */

static queue _t *get_next_q();

11-12 STREAMS PROGRAMMER’S GUIDE

Multiplexing Driver

The four streamtab entries correspond to the upper read, upper write,

lower read, and lower write qinit structures. The multiplexing qinit struc-

tures replace those in each (in this case there is only one) lower Stream head

after the ILLINK has completed successfully. In a multiplexing configura-

tion, the processing performed by the multiplexing driver can be partitioned

between the upper and lower QUEUVEs. There must be an upper Stream

write, and lower Stream read, put procedures. In general, only upper write

side and lower read side procedures are used. Application specific flow

control requirements might modify this. If the QUEUE procedures of the

opposite upper/lower QUEUE are not needed, the QUEUE can be skipped

over, and the message put to the following QUEUE.

In the example, the upper read side procedures are not used. The lower

Stream read QUEUE put procedure transfers the message directly to the

read QUEUE upstream from the multiplexor. There is no lower write put

procedure because the upper write put procedure directly feeds the lower

write service procedure, as described below.

The driver uses a private data structure, mux. mux_mux[dev] points

back to the opened upper read QUEUE. This is used to route messages

coming upstream from the driver to the appropriate upper QUEUE. It is

also used to find a free minor device for a CLONEOPEN driver open case.

The upper QUEUE open contains the canonical driver open code:

MULTIPLEXING 11-13

Multiplexing Driver

static int mixopen(q, dev, flag, sflag)

queue _t *q;

{

struct mux *mux;

if (sflag = CLONDOPEN) {

for (dev = 0; dev < mx_cnt; dev++)

if (mux_mux{dev] .qptr = 0)

break;

)

}

else

dev = minor(dev) ;

if (dev >= mx_cnt)

retum OPENFAIL;

mux = amx_ mux (dev) ;

mux—>qptr = q;

q->q_ptr = (char *) mux;

WR(q)—>q_ptr = (char *) mux;

retum dev;

NO
muxopen checks for a clone or ordinary open call. It loads g_ptr to

point at the mux_mux[] structure.

The core multiplexor processing is the following: downstream data writ-

ten to an upper Stream is queued on the corresponding upper write message

queue. This allows flow control to propagate towards the Stream head for

each upper Stream. However, there is no service procedure on the upper

write side. All MLDATA messages from all the upper message queues are

ultimately dequeued by the service procedure on the lower (linked) write

side. The upper write Streams are serviced in a round-robin fashion by the

lower write service procedure. A lower write service procedure, rather than

a write put procedure, is used so that flow control, coming up from the

driver below, may be handled.

11-14 STREAMS PROGRAMMER’S GUIDE

Multiplexing Driver

On the lower read side, data coming up the lower Stream is passed to
the lower read put procedure. The procedure routes the data to an upper
Stream based on the first byte of the message. This byte holds the minor
device number of an upper Stream. The put procedure handles flow control
by testing the upper Stream at the first upper read QUEUE beyond the
driver. That is, the put procedure treats the Stream component above the
driver as the next QUEUE.

N1 N2

i i

f /

U1 U2

[Matix Routines

L

j

Figure 11-3: Example Multiplexor Configuration

This is shown (sort of) in Figure 11-3. Multiplexor Routines are all the
above procedures. U1 and U2 are queue_t pairs, each including a write
queue_t pointed at by an /_gtop in a linkblk (sce beginning of this chapter).
L is the queue_t pair which contains the write queue_t pointed at by L_gbot.
N1 and N2 are the modules (or Stream head or another multiplexing driver)
seen by L when read side messages are sent upstream.

MULTIPLEXING 11-15

Multiplexing Driver

Upper Write Put Procedure

muxuwput, the upper QUEUE write put procedure, traps ioctls, in par-

ticular ILLINK and ILUNLINK:

11-16 STREAMS PROGRAMMER’S GUIDE

Multiplexing Driver

static int muxuwput(q, mp)

queue_t *q;

mb1lk_t *mp;

{

int s;

struct mux *mx;

mux = (struct mux *)q->q_ptr;

switch (mp—>b_datap—>db type) [

case M_IOCTL: [{

struct iocblk *iocp;

struct linkblk *linkp;

/*

* Toctl. Only channel 0 can do ioctls. ‘Two

* calls are recognized: LINK, and UNLINK

*/

if (mux != mux_mux)

goto iocnak;

iocp = (struct iocblk *) mp->b_rptr;

switch (iocp—>ioc_amd) {

case I_LINK:

/*

* Link. The data contains a linkblk structure

* Remember the bottom queue in muxbot.

*/

if (muxbot != NULL)

goto iocnak;

linkp = (struct linkblk *) mp->b_cont-—>b_rptr;

muxbot = linkp~—>1_gbot;

muxerr = 0;

mp->b_ datap—>db_type = M_IOCACK;

jiocp->ioc_count = 0;

qreply(q, mp);

break;

case I_UNLINK:

Mi

MULTIPLEXING 11-17

Multiplexing Driver

continue

/*

* Unlink. The data contains a linkblk structure.

* Should not fail an unlink. Null out muxbot.

*/

linkp = (struct linkblk *) mp->b_cont-—>b_rptr;

muxbot = NULL;

mp->b_ datap->db type = M_IOCACK;

locp->ioc_count = 0;

qreply(q, mp);

break;

default:

locnak:

/* fail ioctl */

mp->b datap->db type = M_TOCNAK;

qreply(q, mp);

}

break;

First, there is a check to enforce that the Stream associated with minor

device 0 will be the single, controlling Stream. Ioctls are only accepted on

this Stream. As described previously, a controlling Stream is the one that

issues the ILLINK. Having a single control Stream is a recommended prac-

tice. T.LINK and ILUNLINK include a linkblk structure, described previ-

ously, containing:

l_gtop The upper write QUEUE from which the ioctl is coming. It

should always equal gq.

11-18 STREAMS PROGRAMMER’S GUIDE

Multiplexing Driver

lL_qbot The new lower write QUEUE. It is the former Stream head

write QUEUE. It is of most interest since that is where the

multiplexor gets and puts its data.

l_index A unique (system wide) identifier for the link. It can be used

for routing, or during selective unlinks, as described above.

Since the example only supports a single link, Lindex is not

used.

For I_LINK, [gqbot is saved in muxbot and an ack is generated. From

this point on, until an LUNLINK occurs, data from upper queues will be

routed through muxbot. Note that when an I_LINK, is received, the lower

Stream has already been connected. This allows the driver to send messages

downstream to perform any initialization functions. Returning an

M_IOCNAK message (nak) in response to an I_LLINK will cause the lower

Stream to be disconnected.

The ILUNLINK handling code nulls out muxbot and generates an ack.

A nak should not be returned to an IUNLINK. The Stream head assures

that the lower Stream is connected to a multiplexor before sending an

TUONLINK M_IOCTL.

muxuwput handles M_FLUSH messages as a normal driver would:

case M_ FLUSH:

if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA) ;

if (*mp-—>b_rptr & FLUSHR) [{

flushq(RD(q), FLUSHDATA) ;

mp->b_rptr &= “FLUSHW;

qreply(q, mp);

} else

freemsg(mp) ;

break ;

case M_DATA:

/*

* Data. If we have no bottom queue —> fail

* Otherwise, queue the data, and invoke the lower

* service procedure.

*/

if (muxerr || moxbot — NULL)

goto bad;

MULTIPLEXING 11-19

Multiplexing Driver

continue

putq(q, mp); /* place message on upper write message queue */
genable(muxbot); /* lower service write procedure */

break;

default:

bad:

/*

* Send an error message upstream.

*/

mp->b_datap-—>db type = M_ERROR;

mp->b_rptr = mp->b_wptr = mp—>b datap—>db_ base;

+mp->b wptr++ = EINVAL;

qreply(q, mp);

M_DATA messages are not placed on the lower write message queue.

They are queued on the upper write message queue. putq recognizes the

absence of the upper service procedure and does not schedule the QUEUE.

Then, the lower service procedure, muxlwsrv is scheduled with qenable (see

Appendix C) to start output. This is similar to starting output on a device

driver. Note that muxuwput can not access muxlwsrv (the lower QUEUE

write service procedure, contained in muxbot) by the conventional

STREAMS calls, putq or putnext (to a muxlwput). Both calls require that a

message be passed, but the messages remain on the upper Stream.

Lower QUEUE Write Service Procedure

muxlwsrv, the lower (linked) queue write service procedure is scheduled

directly from the upper service procedures. It is also scheduled from the

lower Stream, by being back-enabled when the lower Stream becomes

unblocked from downstream flow control.

11-20 STREAMS PROGRAMMER’S GUIDE

Multiplexing Driver

static int muxlwsrv(q)

register queue_t *q;

{

register mblk_t *mp, *bp;

register queue_t *nq;

/*

* While lower stream is not blocked, find an upper queue to

* service (get_next_q) and send one message fran it downstream.

*/

while (canput(q->q_next)) {

nq = get_next_q();

if (nq = NULL)

break;

mp = getq(nqg);
/*

* Prepend the outgoing message with a single byte header

* that indicates the minor device number it came fran.

*/

if ((bp = allocb(1, BPRI_MED)) = NULL) [{

printf(“mux: allocb failed (size 1)\n”);

freemsg (mp) ;

continue;

}

*bp-—>b_wptrHt = (struct mux *)nq->q_ptr — mux_mux;

bp->b_cont = mp;

putnext(q, bp) ;

muxlwsrv takes data from the upper queues and puts it out through mux-

bot. The algorithm used is simple round robin. While we can put to

muxbot—>q next, we select an upper QUEUE (via get_next_q) and move a

message from it to muxbot. Each message is prepended by a one byte

header that indicates which upper Stream it came from.

MULTIPLEXING 11-21

Multiplexing Driver

Finding messages on upper write queues is handled by get_next_q:

* Round-robin scheduling.

* Returm next upper queue that needs servicing.

* Returns NULL when no more work needs to be done.

*/

static queue _t *

get_next_q()

{

static int next;

register queue_t *q;

start = next;

for (i = next; i < mx_ent; i++)

if (q = mx_mx[i].qptr) f{

q = WR(q);

if (q->>q_first) [

next = i+1;

retum q;

}

for (i = 0; i < start; i++)

if (q = mx _mx[i].qptr) {

gq = WR(q);

if (q->q_first) {

next = itl;

retum q;

returm NULL;

11-22 STREAMS PROGRAMMER’S GUIDE

Multiplexing Driver

get_next_q searches the upper queues in a round robin fashion looking

Lower Read Put Procedure

The lower (linked) queue read put procedure is:

static int muxlrput(q, mp)

queue _t *q;

Mmblk_t *mp;

{

queue _t *uq;

mblk_t *b_cont;

int dev;

Switch(mp->b_ datap-—>db_type) [{

case M_FLUSH:

/*

* Flush queues. NOTE: sense of tests is reversed

* since we are acting like a “stream head”

*/

if (*mp—>b_rptr & FLUSHR)

flushq(q, 0);
if (*mp—b rptr & FLUSHW) [

*mp->b rptr &= "FLUSHR;

qreply(q, mp);

} else

freemsg(mp) ;

break;

case M_ERROR:

case M_HANGUP:

muxerr = 1;

freemsg (mp) ;

break;

case M_DATA:

MULTIPLEXING

for the first one containing a message. It returns the queue_t pointer or

NULL if there is no work to do.

11-23

Multiplexing Driver

11-24

/*

Route message. First byte indicates

device to send to. No flow control.

Extract and delete device number. If the leading block is

now empty and more blocks follow, strip the leading block.

The stream head interprets a leading zero length block

as an BOF regardless of what follows (sigh).

*/

+ +¢ 6 &€ & HF
dev = *mp->b_rptrH;

if (mp~>b_rptr = mp—>b_wptr && (b_cont = m—b_cont)) [

freeb(mp) ;

mp = b cont;

/* Sanity check. Device must be in range */

if (dev < 0 || dev >= mx_cnt) [

freemsg (np) ;

break ;

/*

* If upper stream is open and not backed up,

* send the message there, otherwise discard it.

*/

ug = mux_mux([dev] .gptr;

if (ug != NULL && canput(uq->q_next))

putnext(uq, mp);

else

freemsg (mp) ;

break;

default:

freemsg (mp) ;

continue

STREAMS PROGRAMMER’S GUIDE

Multiplexing Driver

muxlrput receives messages from the linked Stream. In this case, it is

acting as a Stream head. It handles M_FLUSH messages. Note the code is

reversed from that of a driver, handling M_FLUSH messages from

upstream.

muxlirput also handles MLERROR and MLHANGUP messages. If one

is received, it locks-up the upper Streams.

M_DATA messages are routed by looking at the first data byte of the

message. This byte contains the minor device of the upper Stream. If

removing this byte causes the leading block to be empty, and more blocks

follow, the block is discarded. This is done because the Stream head inter-

prets a leading zero length block as an EOF [see read(2)]. Several sanity

checks are made: Does the message have at least one byte? Is the device in

range? Is the upper Stream open? Is the upper Stream not full?

This mux does not do end-to-end flow control. It is merely a router

(like the Department of Defense’s IP protocol). If everything checks out,

the message is put to the proper upper QUEUE. Otherwise, the message is

silently discarded.

The upper Stream close routine simply clears the mux entry so this

queue will no longer be found by get_next_queue:

a >
* Upper queue close

*/

static int muxclose(q)

queue_t *q;

{

((struct mux *)q->q_ptr)-—>qptr = NULL;

\ J

MULTIPLEXING 11-25

Chapter 12-- SERVICE INTERFACE

Definition

STREAMS provides the means to implement a service interface between

any two components in a Stream, and between a user process and the top-

most module in the Stream. A service interface is defined at the boundary

between a service user and a service provider (see Figure 4-2). A service

interface is a set of primitives and the rules for the allowable sequences of

primitives across the boundary. These rules are typically represented by a

state machine. In STREAMS, the service user and provider are imple-

mented in a module, driver, or user process. The primitives are carried

bidirectionally between a service user and provider in M_PROTO and

M_PCPROTO (generically, PROTO) messages. M_PCPROTO is the prior-

ity version of M_PROTO.

Message Usage

As described in Appendix B, PROTO messages can be multi-block, with

the second through last blocks of type M_DATA. The first block in a

PROTO message contains the control part of the primitive in a form agreed

upon by the user and provider and the block is not intended to carry proto-

col headers. (Although its use is not recommended, upstream PROTO mes-

sages can have multiple PROTO blocks at the start of the message. getmsg

will compact the blocks into a single control part when sending to a user

process.) The M_DATA block(s) contains any data part associated with the

primitive. The data part may be processed in a module that receives it, or it

may be sent to the next Stream component, along with any data generated by

the module. The contents of PROTO messages and their allowable

sequences are determined by the service interface specification.

PROTO messages can be sent bidirectionally (up and downstream) on a

Stream and bidirectionally between a Stream and a user process. putmsg(2)

and getmsg(2) system calls are analogous, respectively, to write(2) and

read(2) except that the former allow both data and control parts to be

(separately) passed, and they observe message boundary alignment across

the user-Stream boundary. putmsg and getmsg separately copy the control

part (M_PROTO or M_PCPROTO block) and data part (M_DATA blocks)

between the Stream and user process.

SERVICE INTERFACE 12-1

Definition

An M_PCPROTO message is normally used to acknowledge M_PROTO

messages and not to carry protocol expedited data. M_PCPROTO insures

that the acknowledgement reaches the service user before any other mes-

sage. If the service user is a user process, the Stream head will only store a

single MLPCPROTO message, and discard subsequent MLPCPROTO mes-
sages until the first one is read with getmsg(2).

The following rules pertain to service interfaces:

= Modules and drivers that support a service interface must act upon all

PROTO messages and not pass them through.

mTM Modules may be inserted between a service user and a service pro-

vider to manipulate the data part as it passes between them. How-

ever, these modules may not alter the contents of the control part

(PROTO block, first message block) nor alter the boundaries of the
control or data parts. That is, the message blocks comprising the

data part may be changed, but the message may not be split into

separate messages nor combined with other messages.

In addition, modules and drivers must observe the rule that priority mes-

Sages are not subject to flow control and forward them accordingly (e.g., see

the beginning of modwsrv in Chapter 8). Priority messages also bypass flow

control at the user-Stream boundary [e.g., see putmsg(2)].

12-2. STREAMS PROGRAMMER’S GUIDE

Example

The example below is part of a module which illustrates the concept of a

service interface. The module implements a simple datagram interface and

mirrors the example in Chapter 4.

Declarations

The service interface primitives are defined in the declarations:

#include “sys/types.h”

#include “sys/param.h”

#include “sys/stream.h”

#include “sys/ermo.h”

/*

* Primitives initiated by the service user:

*/

#define BIND _REQ 1 /* bind request */

#define UNITDATA_REQ 2 /* unitdata request */

/*

* Primitives initiated by the service provider:

*/

#define OK_ACK 3. /* bind acknowledgment */

#define ERROR_ACK 4 /* error acknowledgment */

#define UNITDATA_IND 5 /* unitdata indication */

/*

* The following structures define the format of the

* stream message block of the above primitives.

*/

struct bind reg { /* bind request */

long PRIM type; /* always BIND_REO */

long BIND addr; /* addr to bind */

};

struct unitdata_reg { /* unitdata request */

long PRIM type; /* always UNITDATA_REQ */

long DEST addr; /* dest addr */

};

struct ok_ack [/* OK acknowledgment */

long PRIM type; /* always OK_ACK */

};

SERVICE INTERFACE 12-3

Example

continue

struct error_ack { /* error acknowledgment */

long PRIM type; /* always ERROR _ACK */

long DG/UX_error; /* DG/UX error code */

}i

struct unitdata_ind { /* unitdata indication */

long PRIM type; /* always UNITDATA_IND */

long SRC_addr; /* source addr */

}i

union primitives [/* union of all primitives */

long type;

struct bind_req bind req;

struct unitdata_req unitdata_req;

struct ok_ack ok_ack;

struct error_ack error _ack;

struct unitdata_ind unitdata_ind;

hi

struct dgproto { /* structure per minor device */

short state; /* current provider state */

long addr; /* net address */

};

/* Provider states */

#define IDLE 0

#define BOUND 1

In general, the MLPROTO or M_PCPROTO block is described by a

data structure containing the service interface information. In this example,

union primitives is that structure.

Two commands are recognized by the module:

BIND_REQ Give this Stream a protocol address, i.e. give it a name

on the network. After a BIND_REQ is completed,

datagrams from other senders will find their way

through the network to this particular Stream.

12-4 STREAMS PROGRAMMER’S GUIDE

Example

UNITDATA_REQend a datagram to the specified address.

Three messages are generated:

OK_ACK A positive acknowledgement (ack) of BIND_REQ.

ERROR_ACK ~ A negative acknowledgement of BIND_REQ.

UNITDATA_INDA datagram from the network has been received (this

code is not shown).

The ack of a BIND_REQ informs the user that the request was syntacti-

cally correct (or incorrect if ERROR_ACK). The receipt of a BIND_REQ

is acknowledged with an M_PCPROTO to insure that the acknowledgement

reaches the user before any other message. For example, a

UNITDATA_IND could come through before the bind has completed, and

the user would get confused.

The driver uses a per-minor device data structure, dgproto, which con-

tains the following:

state current state of the Stream (endpoint) IDLE or BOUND

addr network address that has been bound to this Stream

It is assumed (though not shown) that the module open procedure sets

the write queue g_ptr to point at one of these structures.

Service Interface Procedure

The write put procedure is:

(__ int protowput(q, mp) \
queue_t *q;

mblk_t *mp;

{

union primitives *proto;

struct dgproto *dgproto;

int err;

ve = (struct dgproto *) q->q_ptr; /

SERVICE INTERFACE 12-5

Example

continue

switch (mp->b_datap-—>db type) [

default:

/* don't understand it */

mp—>b_Gatap->db_ type = M_ERROR;

mp->b_rptr = mp->b_wptr = mp->b_ datap—>db base;

*mp—>b_ wpetrH = EPROIO;

qreply(q, mp);

break;

case M_ FLUSH:

/* standard flush handling goes here ... */

break;

case M_PROTO:

/* Protocol message —> user request */

proto = (union primitives *) mp->b_rptr;

switch (proto->type) [{

default:

mp->b_datap—>db_ type = M_ERROR;

mp->b_ rptr = mp->b_wptr = mp—>b datap—>db_base;

amp->b wptrt++ = EPROTO;

qreply(q, mp);

retumm;

case BIND_REQ:

if (dgproto—>state != IDLE) [{

err = EINVAL;

goto error ack;

}

if (mp->b_wptr ~ mp->b_rptr != sizeof(struct bind_req)) [{

err = EINVAL;

goto error_ack;

}

if (err = chkaddr(proto—>bind_req.BIND_addr))

goto error ack;

dgproto—>state = BOUND;

dgproto—>addr = proto—>bind req.BIND_ addr;

IMmp->b_ datap-—>db_ type = M_PCPROTO;

proto—>type = OK_ACK;

mp—>b_wptr = mp->b_rptr + sizeof(struct ok_ack);

qreply(q, mp);

break ;

12-6 STREAMS PROGRAMMER’S GUIDE

Example

continue

error_ack:

mp->b datap->db_ type = M_PCPROIU;

proto—>type = ERROR_ACK;

proto—>error_ack.DG/UX_error = err; .

mp->b wetr = mp—>b_rptr + sizeof(struct error_ack);

greply(q, mp);

break;

case UNITDATA RHQ:

if (dgproto—>state != BOUND)

goto bad;

if (mp>->b_wptr —- mp->b_rptr != sizeof(struct unitdata_req))

goto bad;

if (err = chkaddr(proto—>unitdata_reg.DEST addr))

goto bad;

if (mp->b_cont) [{

putq(q, mp->b_cont);

/7* start device or mux output ... */

} .

break;

bad:

freemsg (mp) ;

break;

The write put procedure switches on the message type. The only types

accepted are M_FLUSH and M_PROTO. For M_FLUSTI messages, the

driver will perform the canonical flush handling (not shown). For

M_PROTO messages, the driver assumes the message block contains a

union primitive and switches on the type field. Two types are understood:

BIND_REQ, and UNITDATA_REQ.

SERVICE INTERFACE 12-7

Example

For a BIND_REQ, the current state is checked; it must be IDLE. Next,

the message size is checked. If it is the correct size, the passed-in address is

verified for legality by calling chkaddr. If everything checks, the incoming

message is converted into an OK_ACK and sent upstream. If there was any

error, the incoming message is converted into an ERROR_ACK and sent

upstream.

For UNITDATA_REQ, the state is also checked; it must be BOUND.

As above, the message size and destination address are checked. If there is

any error, the message is simply discarded. (This action may seem rash, but

it is in accordance with the interface specification, which is not shown.

Another specification might call for the generation of a

UNITDATA_ERROR indication.) If all is well, the data part of the mes-

sage, if it exists, is put on the queue, and the lower half of the driver is

started.

If the write put procedure receives a message type that it does not under-

stand, either a bad b_ datap->db_type or bad proto—>type, the message is

converted into an MLERROR message and sent upstream.

Another piece of code not shown is the generation of UNITDATA_IND

messages. This would normally occur in the device interrupt if this is a

hardware driver (like STARLAN) or in the lower read put procedure if this

is a multiplexor. The algorithm is simple: The data part of the message is

prepended by an M_PROTO message block that contains a unitdata_ind

structure and sent upstream.

12-8 STREAMS PROGRAMMER’S GUIDE

Chapter 13-- ADVANCED TOPICS

Recovering From No Buffers

The bufeall utility (see Appendix C) is used to recover from an allocb

failure. The call syntax is as follows:

bufcall(size, pri, func, arg);

int size, pri, (*func)();

long arg;

bufcall will call (*func)(arg) when a buffer of size bytes at pri priority is

available. When func is called, it has no user context and must return

without sleeping. Also, because of interrupt processing, there is no guaran-

tee that when func is called, a buffer will actually be available (someone else

may steal it). bufcall returns 1 on success, indicating that the request has

been successfully recorded, or 0 on failure. On a failure return, the

requested function will never be called.

Care must be taken to avoid deadlock when holding resources while wait-

ing for bufcall to call (*func)(arg). bufcall should be used sparingly.

Two examples are provided. Example one is a device receive interrupt

handler:

#include “sys/types.h”

#include “sys/param.h”

#include “sys/stream.h”

dev_rintr(dev)

{

/* process incoming message ... */

/* allocate new buffer for device */

dev_re_load(dev) ;

}
/*

* Reload device with a new receive buffer

*/

ADVANCED TOPICS 13-1

Recovering From No Buffers

continue

dev_re_load(dev)

{

mblk_t *bp;

if ((bp = allocb(DEVBLKSZ, BPRI_MED)) == NULL) {

printf(”dev: allocb failure (size %d)\n”, DEVBLKSZ);

/*

* Allocation failed. Use bufcall to

* schedule a call to ourself.

*/

(void) bufcall](DEVBLKSZ, BPRI_MED, dev_re_ load, dev);

returm;

}

/* pass buffer to device ... */

dev_rintr is called when the device has posted a receive interrupt. The

code retrieves the data from the device (not shown). dev_rintr must then

give the device another buffer to fill by a call to dev_re_load, which calls

allocb with the appropriate buffer size (DEVBLKSZ, definition not shown)

and priority. If allocb fails, dev_re_load uses bufcall to call itself when

STREAMS determines a buffer of the appropriate size and priority is avail-

able.

Since bufcall may fail, there is still a chance that the device may hang. A

NOTE better strategy, in the event bufcall fails, would be to discard the current

input message and resubmit that buffer to the device. Losing input data is

T generally better than hanging.

The second example is a write service procedure, mod_wsrv, which

needs to prepend each output message with a header (similar to the multi-

plexor example of Chapter 11). mod_wsrv illustrates a case for potential

deadlock:

13-2. STREAMS PROGRAMMER’S GUIDE

Recovering From No Buffers

static int mod_wsrv(q)

queue_t *q;

{

int genable();

mblk_t *mp, *bp;

while (mp = getq(q)) [

/* check for priority messages and canput ... */

/*

* Allocate a header to prepend to the message. If

* the allocb fails, use bufcall to reschedule ourself.

*/

if ((bp = allocb(HDRSZ, BPRI_MED)) == NULL) [{

if (!bufcall(HDRSZ, BPRI_MED, qgenable, q)) [

/*

* The bufcall request has failed. Discard

* the message and keep running to avoid hanging.

*/

freemsg (mp) ;

continue;

}
/*

* Put the message back and exit, we will be re-enabled later

*/

putbq(q, mp);

return;

}

/* process message */

However, if allocb fails, mod_wsrv wants to recover without loss of data

ands calls bufcall. In this case, the routine passed to bufcall is qenable (see

below and Appendix C). When a buffer is available (of size HDRSZ, defin-

ition not shown), the service procedure will be automatically re-enabled.

Before exiting, the current message is put back on the queue. This example

deals with bufcall failure by discarding the current message and continuing in

the service procedure loop.

ADVANCED TOPICS = 13-3

Advanced Flow Control

Streams provides mechanisms to alter the normal queue scheduling pro-

cess. putq will not schedule a QUEUE if noenable(q) had been previously

called for this QUEVE. noenable instructs putq to queue the message when

called by this QUEUE, but not to schedule the service procedure. noenable

does not prevent the QUEUE from being scheduled by a flow control back-

enable. The inverse of noenable is enableok(q).

An example of this is driver upstream flow control. Although device

drivers typically discard input when unable to send it to a user process,

STREAMS allows driver read side flow control, possibly for handling tem-

porary upstream blocks. This is done through a driver read service pro-

cedure which is disabled during the driver open with noenable. If the driver

input interrupt routine determines messages can be sent upstream (from can-

put), it sends the message with putnext. Otherwise, it calls putq to queue

the message. The message waits on the message queue (possibly with queue

length checked when new messages are enqucued by the interrupt routine)

until the upstream QUEUVE becomes unblocked. When the blockage abates,

STREAMS back-enables the driver read service procedure. The service

procedure sends the messages upstream using getq and canput, as in

Chapter 8. This is similar to Jooprsrv in Chapter 10 where the service pro-

cedure is present only for flow control.

qenable, another flow control utility, allows a module or driver to cause

one of its QUEUES, or another module’s QUEUES, to be scheduled. In

addition to the usage shown in Chapters 10 and 11, qenable might be used

when a module or driver wants to delay message processing for some reason.

An example of this is a buffer module that gathers messages in its message

queue and forwards them as a single, larger message. This module uses

noenable to inhibit its service procedure and queues messages with its put

procedure until a certain byte count or “in queue” time has been reached.

When either of these conditions is met, the put procedure calls qenable to

cause its service procedure to run.

Another example 1s a communication line discipline module that imple-

ments end-to-end (i.e., to a remote system) flow control. Outbound data is

held on the write side message queue until the read side receives a transmit

window from the remote end of the network. Then, the read side schedules

the write side service procedure to run.

13-4 STREAMS PROGRAMMER’S GUIDE

Signals

STREAMS allows modules and drivers to cause a signal to be sent to

user process(es) through an M_SIG or M_PCSIG message (see Appendix B)

sent upstream. M_PCSIG is a priority version of M_SIG. For both mes-

sages, the first byte of the message specifies the signal for the Stream head

to generate. If the signal is not SIGPOLL [sce signal(2) and sigset(2)], then

the signal is sent to the process group associated with the Stream (see

below). If the signal is SIGPOLL, the signal is only sent to processes that

have registered for the signal by using the ILSETSIG ioctl(2) [also see

streamio(7)] call.

A process group is associated with a Stream during the open of the

driver or module. If u.u_ttyp is NULL prior to the driver or module open

call, the Stream head checks u.u_ttyp after the driver or module open call

returns. If u.u_ttyp is non-zero, it is assumed to point to a short that holds

the process group ID for signaling. The process group and indirect TTY

(/dev/tty) inode are recorded in the Stream head.

If the driver or module wants to have a process group associated with

the Stream, it should include code of the following form in its open pro-

cedure:

(. | procp; /* pointer to process structure */
pdp=... /* private data pointer */

if (pp->p_pid = pp->p_pgrp /* process group leader */
&& u.u_ttyp == NULL /* with no controlling tty */

&& pdp->pgrp = 0) [/* and this stream is unassigned */

/* assign controlling tty */

u.u_ttyp = &pdp->pgrp;

pdp->pgrp = pp—>p_pgrp;

ADVANCED TOPICS 13-5

Signals

A private data structure containing a short perp element is required.

M_SIG can be used by modules or drivers that wish to insert an explicit

inband signal into a message stream. For example, an M_SIG message can

be sent to the user process immediately before a particular service interface

message to gain the immediate attention of the user process. When the

M_SIG reaches the head of the Stream head read message queue, a signal

will be generated and the M_SIG message will be removed. This leaves the

service interface message as the next message to be processed by the user.

Use of M_SIG would typically be defined as part of the service interface of

the driver or module.

13-6 STREAMS PROGRAMMER’S GUIDE

Control of Stream Head Processing

The M_SETOPTS message (see Appendix B) allows a driver or module

to exercise control over certain Stream head processing. An M_SETOPTS

can be sent upstream at any time. The Stream head responds to the mes-

sage by altering the processing associated with certain system calls. The

options to be modified are specified by the contents of the stroptions struc-

ture (see Appendix B) contained in the message.

Six Stream head characteristics can be modified. As described in

Appendix B, four correspond to fields contained in queue_t (min/max

packet sizes and high/low water marks). The other two are discussed here.

Read Options

The value for read options (so_readopt) corresponds to the three modes

a user can set via the ISRDOPT ioctl (see streamio) call:

byte-stream (RNORM)

The read(2) call completes when the byte count is satisfied,

the Stream head read queue becomes empty, or a zero length

message is encountered. In the last case, the zero length

message is put back on the queue. A subsequent read will

return 0 bytes.

message non-discard (RMSGN)

The read call completes when the byte count is satisfied or

at a message boundary, whichever comes first. Any data

remaining in the message is put back on the Stream head

read queue.

message discard (RMSGD)

The read call completes when the byte count is satisfied or

at a message boundary. Any data remaining in the message

is discarded.

Byte-stream mode approximately models pipe data transfer. Message

non-discard mode approximately models a TTY in canonical mode.

ADVANCED TOPICS = 13-7

Control of Stream Head Processing

Write Offset

The value for write offset (so_wroff) is a hook to allow more efficient

data handling. It works as follows: In every data message generated by a

write(2) system call and in the first M_DATA block of the data portion of

every message generated by a putmsg(2) call, the Stream head will leave

so_wroff bytes of space at the beginning of the message block. Expressed as

a C language construct:

bp->b rptr = bp->b datap-—>db base +write offset.

The write offset value must be smaller than the maximum STREAMS mes-

sage size, STRMSGSZ (see the section titled "Tunable Parameters” in

Appendix E). In certain cases (e.g., if a buffer large enough to hold the

offset+data is not currently available), the write offset might not be included

in the block. To be general, modules and drivers should not assume that the

offset exists in a message, but should always check the message.

The intended use of write offset is to leave room for a module or a

driver to place a protocol header before user data in the message rather than

by allocating and prepending a separate message. This feature is not gen-

eral, and its use 1s discouraged. A more general technique is to put protocol

header information in a separate message block and link the user data to it.

13-8 STREAMS PROGRAMMER’S GUIDE

Chapter A-- APPENDIX A: KERNEL STRUCTURES

Appendix A: Kernel Structures

This appendix summarizes previously described kernel structures com-
monly encountered in STREAMS module and driver development.

STREAMS kernel structures are contained in <sys/stream.h>

These and other STREAMS structures (shown in bold) contained in both
NOTE] parts of this guide will remain fixed in subsequent releases of DG/UX Sys-

tem, subject to the following: The offset of all defined elements in each
| structure will not change. However, the size of the structure may be

increased to add new elements.

streamtab

As discussed in Chapter 5, this structure defines a module or driver:

struct streamtab {

struct ginit

struct ginit

struct qinit

struct ginit

};

*st_rdinit;

*st_wrinit;

*st_muxrinit;

*st_muxwinit;

/*

/*

/*

/*

defines read QUEUE */

defines write QUEUE */

for multiplexing drivers only */

for multiplexing drivers only */

APPENDIX A: KERNEL STRUCTURES § A-1

Appendix A: Kernel Structures

QUEUE Structures

Two sets of QUEUE structures form a module. The structures, dis-

cussed in Chapters 5 and 8, are queue_t, qinit, module_info and, optionally,

module_stat:

struct queue {

struct ginit *q_ginfo; /*

struct msgb *q_first; /*

struct msgb *q_last; /*

struct queue *q next; /*

struct queue *q link; /*

caddr_t q_ptr; /*

ushort q_count; /*

ushort q_flag; /*

short q_minpsz; /*

short q_maxpsz; /*

ushort q_hiwat; /*

ushort q_lowat; /*

);

typedef struct queue queue_t;

procedures and limits for queue */

head of message queue for this QUEUE */

tail of message queue for this QUEUE */

next QUEUE in Stream*/

link to next QUEUE on STREAMS scheduling queue */

to private data structure */

weighted count of characters on message queue */

QUEDE state */

min packet size accepted by this QUEUE */

max packet size accepted by this QUEUE */

message queue high water mark, for flow control */

message queue low water mark, for flow control */

When a queue_t pair is allocated, their contents are zero unless specifi-

cally initialized. The following fields are initialized:

TM q_qinfo - from streamtab.st_[rd/wr]init (or st_mux[rw]init)

@ g_minpsz, gq_maxpsz, q_hiwat, q_lowat - from module_info

@ q_ptr - optionally, by the driver/module open routine

struct ginit [{

int (%*qgi_putp)(); /* put procedure */

int (*qi_srvp)(); /* service procedure */

int (%*qi_qopen)(); /* called on each open or a push */

int (*qi_qclose)(); /* called on last close or a pop */

int (*qi_qadmin)(); /* reserved for future use */

struct module_info *qi_minfo; /* information structure */

struct module_stat *qi_mstat; /* statistics structure — optional */

};

A-2 STREAMS PROGRAMMER’S GUIDE

struct module_info [{

ushort mi_idnun;

char *mi_idname;

short mi_minpsz;

short mi_maxpsz;

short mi_hiwat;

ushort mi_lowat;

};

struct module stat [{

long ms_pent ;

long ms_sent;

long ms_ocnt;

long ms_cent;

long ms_acnt;

char *ms_xptr;

short ms _xsize;

};

J*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Appendix A: Kernel Structures

module ID number */

module name */

min packet size accepted, for developer use */

max packet size accepted, for developer use */

hi-water mark, for flow control */

lo-water mark, for flow control */

count of calls to put proc */

count of calls to service proc */

count of calls to open proc */

count of calls to close proc */

count of calls to admin proc */

pointer to private statistics */

length of private statistics buffer */

Note that in the event these counts are calculated by modules or drivers,

the counts will be cumulative over all instantiations of modules with the

same fmodsw entry and drivers with the same cdevsw entry.

APPENDIX A: KERNEL STRUCTURES A-3

Appendix A: Kernel Structures

Message Structures

As described in Chapter 7, a message is composed of a linked list of tri-

ples, consisting of two structures and a data buffer:

struct msgb {

struct msgb *b_next;

struct msgb *b_ prev;

struct msgb *b cont;

unsigned char *b_rptr;

unsigned char *b_wptr;

struct datab *b datap;

};

typedef struct msgb mblk_t;

struct datab {

struct datab *db freep; /*

unsigned char *db base; /*

unsigned char *db_ lim;

unsigned char db ref;

/*

/*

unsigned char db type; /*

unsigned char db_class; /*

};

typedef struct datab dblk t;

iocblk

/* next message on queue */

/* previous message on queue */

/* next message block of message */

/* first unread data byte in buffer */

/* first unwritten data byte in buffer */

/* data block */

used internally */

first byte of buffer * */

last byte+1 of buffer */

count of messages pointing to this block */

message type */

used internally */

As described in Chapter 9 and Appendix B, this is contained in an

M_IOCTL message block:

struct iocblk [

int ioc_cmd;

ushort ioc_uid;

ushort ioc_gid;

uint ioc_id;

uint ioc_count;

int ioc_error;

int loc_rval;

};

/*

/*

/*

/*

/*

/*

/*

ioctl command type */

effective uid of user */

effective gid of user */

ioctl id */

count of bytes in data field */

error code */

return value */

A-4 STREAMS PROGRAMMER’S GUIDE

Appendix A: Kernel Structures

linkblk

As described in Chapter 11, this is used in lower multiplexor drivers:

struct linkblk {

queue_t *l_qtop; /* lowest level write queue of upper stream */

queue_t *l_qbot; /* highest level write queue of lower stream */

int l_index; /* system-unique index for lower stream. */

};

APPENDIX A: KERNEL STRUCTURES A-5

Chapter B-- APPENDIX B: MESSAGE TYPES

Appendix B: Message Types

Eighteen STREAMS message types are defined. The message types

differ in their intended purposes, their treatment at the Stream head, and in

their message queueing priority (see Chapter 8).

STREAMS does not prevent a module or driver from generating any

message type and sending it in any direction on the Stream. However, esta-

blished processing and direction rules should be observed. Stream head

processing according to message type is fixed, although certain parameters

can be altered.

The message types are described below, classified according to their

message queueing priority. Ordinary messages are described first, with

priority messages following. In certain cases, two message types may per-

form similar functions, differing in priority. Message construction is

described in Chapter 7. The use of the word module will generally imply

"module or driver.”

APPENDIX B: MESSAGE TYPES ___B-1

Ordinary Messages

These message types are subject to flow control. These are referred to

as non-priority messages when received at user level.

M_DATA

M_PROTO

Intended to contain ordinary data. Messages allocated by

the allocb routine (see Appendix B) are type M_DATA by

default. M_DATA messages are generally sent bidirec-

tionally on a Stream and their contents can be passed

between a process and the Stream head. In the getmsg(2)

and putmsg(2) system calls, the contents of M_DATA

message blocks are referred to as the data part. Messages

composed of multiple message blocks will typically have

M_DATA as the message type for all message blocks fol-

lowing the first.

Intended to contain internal control information and asso-

ciated data. The message format is one M_PROTO mes-

sage block followed by zero or more MLDATA message

blocks as shown below: The semantics of the MLDATA

and M_PROTO message block are determined by the

STREAMS module that receives the message.

The M_PROTO message block will typically contain

implementation dependent control information.

M_PROTO messages are generally sent bidirectionally on

a Stream, and their contents can be passed between a pro-

cess and the Stream head. The contents of the first mes-

sage block of an M_LPROTO message is generally referred

to as the control part, and the contents of any following

M_DATA message blocks are referred to as the data part.

In the getmsg(2) and putmsg(2) system calls, the control

and data parts are passed separately. These calls refer to

M_PROTO messages as non-priority messages.

Note that, although its use is not recommended, the for-

mat of M_PROTO and M_PCPROTO (generically

PROTO) messages sent upstream to the Stream head

allows multiple PROTO blocks at the beginning of the

message. getmsg will compact the blocks into a single

control part when passing them to the user process.

B-2 STREAMS PROGRAMMER’S GUIDE

Ordinary Messages

APPENDIX B: MESSAGE TYPES _ B-3

Ordinary Messages

B-4 STREAMS PROGRAMMER’S GUIDE

M_PROTO

or

M_PCPROTO

~

M_DATA

M_DATA

Ordinary Messages

~~
—~
~

=.

control

info.

data

data

Figure B-1: M_PROTO and M_PCPROTO Message Structure

M_IOCTL Generated by the Stream head in response to an I_LSTR,

and certain other, ioctl(2) system calls [see streamio(7)].

When one of these ioctls is received from a user process,

the Stream head uses values from the process and sup-

plied in the call to create an M_LIOCTL message contain-

ing them, and sends the message downstream. M_IOCTL

messages are intended to perform the general ioctl func-

tions of character device drivers.

The user values are supplied in a structure of the follow-

ing form, provided as an argument to the ioctl call (see

I_STR in streamio):

struct strioctl

{

int ic aw; /* downstream request */

int ic timout; /* ACK/NAK timeout */

int ic_len; /* length of data arg */

char *ic dp; /* ptr to data arg x/

};

where ic_cimd is the request (or command) defined by a

downstream module or driver, ic_timout is the time the

APPENDIX B: MESSAGE TYPES-~ B-5

Ordinary Messages

Stream head will wait for acknowledgement to the

M_IOCTL message before timing out, ic_dp is a pointer

to an optional data argument. On input, ic_len contains

the length of the data argument passed in and, on return

from the call, it contains the length of the data, if any,

being returned to the user.

The form of an M_IOCTL message is one MLIOCTL

message block linked to zero or more MLDATA message

blocks. STREAMS constructs an M_LIOCTL message

block by placing an iocblk structure in its data buffer:

struct iocblk

{

int ioc_awd; /* ioctl cammand type */

ushort ioc_uid; /* effective user id number */

ushort ioc_gid; /* effective group id number */

uint ioc_id; /* ioctl identifier */

uint ioc_count; /* byte count for ioctl data */

int ioc_error; /* error code */

int ioc_rval; /* returm value */

};

The iocblk structure is defined in <sys/stream.h>.

ioc.cmd corresponds to ic_cmd. ioc_uid and ioc_gid are

the effective user and group IDs for the user sending the

ioctl, and can be tested to determine if the user issuing

the ioctl call is authorized to do so. ioc_count is the

number of data bytes, if any, contained in the message

and corresponds to ic_len.

ioc_id is an identifier generated internally, and is used to

match each M_IOCTL message sent downstream with a

response which must be sent upstream to the Stream

head. The response is contained in an MLIOCACK

(positive acknowledgement) or an MLIOCNAK (negative

acknowledgement) messages. Both these message types

have the same format as an M_IOCTL message and con-

tain an iocblk structure in the first block with optional

data blocks following. If one of these messages reaches

the Stream head with an identifier which does not match

that of the currently-outstanding M_IOCTL message, the

response message is discarded. A common means of

assuring that the correct identifier is returned, is for the

B-6 STREAMS PROGRAMMER’S GUIDE

Ordinary Messages

replying module to convert the MLIOCTL message type

into the appropriate response type and set ioc_count to 0,

if no data is returned. Then, the qreply utility (see

Appendix C) is used to send the response to the Stream

head.

ioc_error holds any return error condition set by a down-

stream module. If this value is non-zero, it is returned to

the user in errno. Note that both an MLIOCNAK and an

M_IOCACK may return an error. ioc_rval holds any

M_IOCACK return value set by a responding module.

If a user supplies data to be sent downstream, the Stream

head copies the data, pointed to by ic_dp in the strioctl

structure, into M_DATA message blocks and links the

blocks to the initial MLIOCTL message block. ioc_count

is copied from ic_len. If there is no data, ioc_count is

zero.

If a module wants to send data to a user process as part

of its response, it must construct an M_IOCACK mes-

sage that contains the data. The first message block of

this message contains the iocb/k data structure, with any

data stored in one or more M_LDATA message blocks

linked to the first message block. The module must set

ioc_count to the number of data bytes sent. On comple-

tion of the call, this number is passed to the user in

ic_len. Data associated with an MLIOCNAK message is

not returned to the user process, and is discarded by the

Stream head.

The first module or a driver that understands the request

contained in the M_LIOCTL acts on it, and generally

returns an M_TIOCACK message. Intermediate modules

that do not recognize a particular request must pass it on.

If a driver does not recognize the request, or the receiv-

ing module can not acknowledge it, an MLIOCNAK mes-

sage must be returned.

The Stream head waits for the response message and

returns any information contained in an M_IOCACK to

the user. The Stream head will "time out” if no response

is received in ic_timeout interval.

APPENDIX B: MESSAGE TYPES___B-7

Ordinary Messages

M_CTL

M_BREAK

M_DELAY

M_PASSFP

Generated by modules that wish to send information to a

particular module or type of module. M_CTL messages

are typically used for inter-module communication, as

when adjacent STREAMS protocol modules negotiate the

terms of their interface. An M_CTL message cannot be

generated by a user-level process and is always discarded

if passed to the Stream head.

Sent to a driver to request that BREAK be transmitted

on whatever media the driver is controlling.

The message format is not defined by STREAMS and its

use is developer dependent. This message may be con-

sidered a special case of an M_CTL message. An

M_BREAK message cannot be generated by a user-level

process and is always discarded if passed to the Stream

head.

Sent to a media driver to request a real-time delay on out-

put. The data buffer associated with this message type is

expected to contain an integer to indicate the number of

machine ticks of delay desired. M_DELAY messages are

typically used to prevent transmitted data from exceeding

the buffering capacity of slower terminals.

The message format is not defined by STREAMS and its

use is developer dependent. Not all media drivers may

understand this message. This message may be con-

sidered a special case of an M_CTL message. An

M_DELAY message cannot be generated by a user-level

process and is always discarded if passed to the Stream

head.

This is used by STREAMS to pass a file pointer from the

Stream head at one end of a Stream pipe to the Stream

head at the other end of the same Stream pipe. (A

Stream pipe is a Stream that is terminated at both ends

by a Stream head; one end of the Stream can always find

the other by following the g_next pointers in the Stream.

The means by which such a structure is created is not

described in this document.)

B-8 STREAMS PROGRAMMER’S GUIDE

M_SETOPTS

Ordinary Messages

The message is generated as a result of an ISENDFD

ioctl [see streamio(7)] issued by a process to the sending

Stream head. STREAMS places the M_PASSFP mes-

sage directly on the destination Stream head’s read queue

to be retrieved by an ILRECVFD ioctl [see streamio(7)].

The message is placed without passing it through the

Stream (i.c., it is not seen by any modules or drivers in

the Stream). This message type should never be present

on any queue except the read queue of a Stream head.

Consequently, modules and drivers do not need to recog-

nize this message type, and it can be ignored by module

and driver developers.

Alters some characteristics of the Stream head. It is gen-

erated by any downstream module, and is interpreted by

the Stream head. The data buffer of the message has the

following structure:

struct stroptions

{

short so_flags; /* options to set */

short so_readopt; /* read option */

ushort so_wroff; /* write offset */

short so_minpsz; /7* minimum read packet size */

short so _maxpsz; /* maximum read packet size */

ushort so_hiwat; /* read queue high-water mark */

ushort so_lowat; /* read queue low-water mark */

};

where so_flags specifies which options are to be altered,

and can be any combination of the following:

[J] SO_ALL - Update all options according to the

values specified in the remaining fields of the strop-

tions structure.

[J] SO_LREADOPT - Set the read mode [see read(2)]

to RNORM (byte stream), RMSGD (message dis-

card), or RMSGN (message non-discard) as speci-

fied by the value of so_readopt.

[] SO_WROFF - Direct the Stream head to insert an

offset specified by so_wroff into the first message

block of all ML_DATA messages created as a result

of a write system call. The same offset is inserted

APPENDIX B: MESSAGE TYPES'- B-9

Ordinary Messages

into the first MLDATA message block, if any, of

all messages created by a putmsg system call. The

default offset is zero.

The offset must be less than the maximum message

buffer size (system dependent). Under certain cir-

cumstances, a write offset may not be inserted. A

module or driver must test that b_rptr in the mblk_t

structure is greater than db_base in the dblk_t

structure to determine that an offset has been

inserted in the first message block.

SO_MINPSZ - Change the minimum packet size

value associated with the Stream head read queue

to so_minpsz (see g_minpsz in the queue_t struc-

ture, in Appendix A). This value is advisory for

the module immediately below the Stream head. It

is intended to limit the size of MLDATA messages

that the module should put to the Stream head.

There is no intended minimum size for other mes-

sage types. The default value in the Stream head is

SO_MAXPSZ - Change the maximum packet size

value associated with the Stream head read queue

to so_maxpsz (see g_maxpsz in the queue_t struc-

ture, in Appendix A). This value is advisory for

the module immediately below the Stream head. It

is intended to limit the size of M_DATA messages

that the module should put to the Stream head.

There is no intended maximum size for other mes-

sage types. The default value in the Stream head is

INFPSZ, the maximum STREAMS allows.

SO_HIWAT - Change the flow control high water

mark on the Stream head read queue to the value

specified in so_hiwat.

SO_LOWAT - Change the flow control low water

mark (see g_minpsz in the queue_t structure,

Appendix A) on the Stream head read queue to the

value specified in so_lowat.

B-10 STREAMS PROGRAMMER’S GUIDE

Ordinary Messages

M_SIG Sent upstream by modules or drivers to post a signal to a

process. When the message reaches the Stream head, the

first data byte of the message is transformed into a signal,

as defined in <sys/signal.h>, to the process(es) accord-

ing to the following.

If the signal is not SIGPOLL and the Stream containing

the sending module or driver is a controlling TTY, the

signal is sent to the associated process group. A Stream

becomes the controlling TTY for its process group if, on

open(2), a module or driver sets u.u_ttyp to point to a

(short) "process group value.”

If the signal is SIGPOLL, it will be sent only to those

processes that have explicitly registered to receive the sig-

nal [see I_LSETSIG in streamio(7)].

APPENDIX B: MESSAGE TYPES_ B-11

Priority Messages

Priority messages are not subject to flow control.

M_PCPROTO This message type has the same format and characteristics

as the M_PROTO message type, except for priority and

the following additional attributes.

When an M_PCPROTO message is placed on a queue, its

service procedure is always enabled. The Stream head

will allow only one M_PCPROTO message to be placed in

its read queue at a time. If an M_PCPROTO message is

already in the queue when another arrives, the second

message is silently discarded and its message blocks

freed.

This message type is intended to allow data and control

information to be sent outside the normal flow control

constraints.

The getmsg(2) and putmsg(2) system calls refer to

M_PCPROTO messages as priority messages.

M_ERROR __ This message type is sent upstream by modules or drivers

to report some downstream error condition. When the

message reaches the Stream head, the Stream is marked

so that all subsequent system calls issued to the Stream,

excluding close(2) and poll(2), will fail with errno set to

the first data byte of the message. POLLERR is set if the

Stream is being polled [see poll(2)]. All processes sleep-

ing on a system call to the Stream are awakened. An

M_FLUSH message with an FLUSHRW argument is sent

downstream.

M_HANGUP This message type is sent upstream by a driver to report

that it can no longer send data upstream. As example,

this might be due to an error, or to a remote line connec-

tion being dropped. When the message reaches the

Stream head, the Stream is marked so that all subsequent

write(2) and putmsg(2) system calls issued to the Stream

will fail and return an ENXIO error. Those ioctls that

cause messages to be sent downstream are also failed.

B-12 STREAMS PROGRAMMER’S GUIDE

Priority Messages

M_IOCACK

M_IOCNAK

M_FLUSH

POLLHUP is set if the Stream is being polled [see

poll(2)].

Tiowever, subsequent read(2) or getmsg(2) calls to the

Stream will not generate an error. These calls will return

any messages (according to their function) that were on,

or in transit to, the Stream head read queue before the

M_HANGUP message was received. When all such mes-

sages have been read, read will return 0, and getmsg will

set each of its two length fields to 0.

This message also causes a SIGHUP signal to be sent to

the process group, if the device is a controlling TTY (see

M_SIG).

This message type signals the positive acknowledgement

of a previous M_LIOCTL message. The message may con-

tain information sent by the receiving module or driver.

The Stream head returns the information to the user if

there is a corresponding outstanding M_IOCTL request.

The format and use of this message type is described

further under M_LIOCTL.

This message type signals the negative acknowledgement

(failure) of a previous M_IOCTL message. When the

Stream head receives an M_LIOCNAK, the outstanding

ioctl request, if any, will fail. The format and usage of

this message type is described further under M_LIOCTL..

This message type requests all modules and drivers that

receive it to flush their message queues (discard all mes-

sages in those queues) as indicated in the message. An

M_FLUSH can originate at the Stream head, or in any

module or driver. The first byte of the message contains

flags that specify one of the following actions:

[.] FLUSHR: Flush the read queue of the module.

[.] FLUSHW: Flush the write queue of the module.

[} FLUSHRW: Flush both the read and the write

queue of the module.

APPENDIX B: MESSAGE TYPES _ B-13

Priority Messages

Each module passes this message to its neighbor after

flushing its appropriate queue(s), until the message

reaches one of the ends of the Stream.

Drivers are expected to include the following processing

for M_LFLUSH messages. When an M_FLUSH message

is sent downstream through the write queues in a Stream,

the driver at the Stream end discards it if the message

action indicates that the read queues in the Stream are

not to be flushed (only FLUSHW set). If the message

indicates that the read queues are to be flushed, the

driver sets the MLFLUSH message flag to FLUSHR, and

sends the message up the Stream’s read queues. When a

flush message is sent up a Stream’s read side, the Stream

head checks to see if the write side of the Stream is to be

flushed. If only FLUSHR is set, the Stream head dis-

cards the message. However, if the write side of the

Stream is to be flushed, the Stream head sets the

M_FLUSH flag to FLUSHW and sends the message

down the Stream’s write side. All modules that enqueue

messages must identify and process this message type.

M_PCSIG This message type has the same format and characteristics

as the M_SIG message type except for priority.

M_START and M_STOP

These messages request devices to start or stop their out-

put. They are intended to produce momentary pauses in

a device’s output, not to turn devices on or off.

The message format is not defined by STREAMS and its

use is developer dependent. These messages may be con-

sidered special cases of an M_LCTL message. These mes-

sages cannot be generated by a user-level process and

each is always discarded if passed to the Stream head.

B-14 STREAMS PROGRAMMER’S GUIDE

Chapter C-- APPENDIX C: UTILITIES

Appendix C: Utilities

This appendix specifies the set of utilities that STREAMS provides to

assist development of modules and drivers. There are over 30 utility rou-

tines and macros.

The general purpose of the utilities is to perform functions that are com-

monly used in modules and drivers. However, some utilities also provide

the required interrupt environment. A utility must always be used when

operating on a message queue and when accessing the buffer pool.

The utilities are contained in either the system source file io/stream.c

or, if they are macros, in <sys/stream.h>.

The utilities contained in this appendix represent an interface that will be

NOTE] maintained in subsequent versions of the DG/UX System. Other than

these utilities (also see the section titled "Accessible Symbols and Func-
| tions” in Appendix D), functions contained in the STREAMS kernel code

may change between versions.

All structure definitions are contained in Appendix A unless otherwise indi-

cated. All routine references are found in this appendix unless otherwise

indicated. The following definitions are used.

Blocked A queue that can not be enabled due to flow control

(see the section titled "Flow Control” in Chapter 6 of

the Primer).

Enable To schedule a queue.

Free De-allocate a STREAMS storage.

Message block (bp)

A triplet consisting of an mblk_t structure, a dblk_t

structure, and a data buffer. It is referenced by its

mblk_t structure (see Chapter 7).

Message (mp) One or more linked message blocks. A message is

referenced by its first message block.

Message queue Zero or more linked messages associated with a queue

(queue_t structure).

APPENDIX C: UTILITIES C-1

Appendix C: Utilities

Queue (q) A queue_t structure. This is generally the same as

QUEUE in the rest of this document (e.g., see the

definitions for enable and schedule). When it appears

with “message” in certain utility description lines, it

means "Message queue”.

Schedule Place a queue on the internal linked list of queues which

will subsequently have their service procedure called by

the STREAMS scheduler.

The word module will generally mean "module and/or driver”. The phrase

“"next/following module” will generally refer to a module, driver, or Stream

head. Message queueing priority (see Chapter 8 and Appendix B) can be

ordinary or Priority (to avoid "priority priority”).

C-2 STREAMS PROGRAMMER’S GUIDE

Utility Descriptions

The utilities are described below. A summary table is contained at the

end of this appendix.

adjmsg — trim bytes in a message

int adjmsg(mp, len)

mblk_t *mp;

int len;

adjmsg trims bytes from either the head or tail of the message specified by

mp. If len is greater than zero, it removes len bytes from the beginning of

mp. If len is less than zero, it removes (-)/en bytes from the end of mp. If

len is zero, adjmsg does nothing. adjmsg only trims bytes across message

blocks of the same type. It will fail if »7p points to a message containing

fewer than Jen bytes of similar type at the message position indicated.

adjmsg returns 1 on success, and 0 on failure.

allocb — allocate a message block

mblk_t *allocb(size, pri)

int size, pri;

allocb returns a pointer to a message block of type M_DATA, in which the

data buffer contains at least size bytes. pri indicates the priority of the allo-

cation request, and can have the values BPRI_LO, BPRI_MED or BPRI_HI

(see the section titled "Buffer Allocation Priority” in this appendix). Ifa

block can not be allocated as requested, allocb returns a NULL pointer.

backgq — get pointer to the queue behind a given queue

queue_t *backq(q)

queue_t *q;

backq returns a pointer to the queue behind a given queue. That is, it

returns a pointer to the queue whose g_next (see queue_t structure) pointer

is g. If no such queue exists (as when q is at a Stream end), backq returns

NULL.

APPENDIX C: UTILITIES C-3

Utility Descriptions

bufcall — recover from failure of allocb

int bufcall(size, pri, func, arg)

int (*func) 0;

int size, pri;

long arg;

bufcall is provided to assist in the event of a block allocation failure. If

allocb returns NULL, indicating a message block is not currently available,

bufcall may be invoked.

bufcall arranges for (*func)(arg) to be called when a buffer of size bytes at

pri priority (see the section titled "Buffer Allocation Priority” below) is avail-

able. When func is called, it has no user context. It cannot reference the

u_area and must return without sleeping. bufcall does not guarantee that the

desired buffer will be available when func is called since interrupt processing

may acquire it.

bufcall returns 1 on success, indicating that the request has been successfully

recorded, or 0 on failure. On a failure return, func will never be called. A

failure indicates a (temporary) inability to allocate required internal data

structures.

canput — test for room in a queue

int canput(q)

queue_t *q;

canput determines if there is room left in a message queue. If q does not

have a service procedure, canput will search further in the same direction in

the Stream until it finds a queue containing a service procedure (this is the

first queue on which the passed message can actually be enqueued). If such

a queue cannot be found, the search terminates on the queue at the end of

the Stream. canput tests the queue found by the search. If the message

queue in this queue is not full (see the section titled "Flow Control” in

Chapter 6 of the Primer), canput returns 1. This return indicates that a mes-

sage can be put to queue g. If the message queue is full, canput returns 0.

In this case, the caller is generally referred to as blocked.

C-4 STREAMS PROGRAMMER’S GUIDE

Utility Descriptions

copyb — copy a message block

mblk_t *copyb(bp)

mblk_t *bp;

copyb copies the contents of the message block pointed at by bp into a

newly-allocated message block of at least the same size. copyb allocates a

new block by calling allocb with pri set to BPRI_MED (see the section titled

"Buffer Allocation Priority’, below). All data between the b_rptr and b_wptr

pointers of a message block are copied to the new block, and these pointers

in the new block are given the same offset values they had in the original

message block. On successful completion, copyb returns a pointer to the

new message block containing the copied data. Otherwise, it returns a

NULL pointer.

copymsg — copy a message

mblk_t *copymsg (mp)

mblk_t *mp;

copymsg uses copyb to copy the message blocks contained in the message

pointed at by mp to newly-allocated message blocks, and links the new mes-

sage blocks to form the new message. On successful completion, copymsg

returns a pointer to the new message. Otherwise, it returns a NULL

pointer.

datamsg — test whether message is a data message

#define datamsg(mp) ...

The datamsg macro returns TRUE if mp (declared as mblk_t *mp) points

to a data type message. In this case, types MLDATA, M_PROTO, or

M_PCPROTO (see Appendix B). If ip points to any other message type,

datamsg returns FALSE.

APPENDIX C: UTILITIES C-5

Utility Descriptions

dupb — duplicate a message block descriptor

mblk_t *dupb(bp)

mblk_t *bp;

dupb duplicates the message block descriptor (mblk_t structure) pointed at

by bp by copying it into a newly allocated message block descriptor. A mes-

sage block is formed with the new message block descriptor pointing to the

same data block as the original descriptor. The reference count in the data

block descriptor (dbIk_t structure) is incremented. dupb does not copy the

data buffer, only the message block descriptor.

On successful completion, dupb returns a pointer to the new message block.

If dupb cannot allocate a new message block descriptor, it returns NULL.

This routine allows message blocks that exist on different queues to refer-

ence the same data block. In general, if the contents of a message block

with a reference count greater than 1 are to be modified, copyb should be

used to create a new message block and only the new message block should

be modified. This insures that other references to the original message

block are not invalidated by unwanted changes.

dupmsg — duplicate a message

mblk_t *dupmsg(mp)

mblik_t *mp;

dupmsg calls dupb to duplicate the message pointed at by mp, by copying all

individual message block descriptors, and then linking the new message

blocks to form the new message. dupmsg does not copy data buffers, only

message block descriptors. On successful completion, dupmsg returns a

pointer to the new message. Otherwise, it returns NULL.

enableok — re-allow a queue to be scheduled for service

#define enableok(q) ...

The enableok macro cancels the effect of an earlier noenable on the same

queue q (declared as queue_t *q). It allows a queue to be scheduled for ser-

vice that had previously been excluded from queue service by a call to noen-

able.

C-6 STREAMS PROGRAMMER’S GUIDE

Utility Descriptions

flushq — flush a queue

int flushq(q, flag)

queue_t *q;

int flag;

flushq removes messages from the message queue in queue g and frees

them, using freemsg. If flag is set to FLUSHDATA, then flushq discards

all MLDATA, M_PROTO, and M_PCPROTO messages (see datamsg), but

leaves all other messages on the queue. If flag is set to FLUSHALL, all

messages are removed from the message queue and freed. FLUSHALL and

FLUSHDATA are defined in <sys/stream.h>.

If a queue behind g 1s blocked, flushq may enable the blocked queue, as

described in putq.

freeb — free a message block

int freeb(bp)

mblk_t *bp;

freeb will free (de-allocate) the message block descriptor pointed at by bp,

and free the corresponding data block if the reference count (see dupb) in

the data block descriptor (dblk_t structure) is equal to 1. If the reference

count is greater than 1, freeb will not free the data block, but will decrement

the reference count.

freemsg — free all message blocks in a message

int freemsg (mp)

mblik_t *mp;

freemsg uses freeb to free all message blocks and their corresponding data

blocks for the message pointed at by mp.

APPENDIX C: UTILITIES C-7

Utility Descriptions

getq — get a message from a queue

mblk_t *getq(q)

queue_t *q;

getq gets the next available message from the queue pointed at by g. getq

returns a pointer to the message and removes that message from the queue.

If no message is queued, getq returns NULL.

'getq, and certain other utility routines, affect flow control in the Stream as

follows: If getq returns NULL, the qucue is internally marked so that the

next time a message is placed on it, it will be scheduled for service (enabled,

see qenable). Also, if the data in the enqueued messages in the queue drops

below the low-water mark, g_lowat, and a queue behind the current queue

had previously attempted to place a message in the queue and failed (i.e.,

was blocked, see canput), then the queue behind the current queue is

scheduled for service (see the section titled "Flow Control” in Chapter 6 of

the Primer).

insq — put a message at a specific place in a queue

int insq(q, emp, nmp)

queue_t *q;

mblk_t *emp, *nmp;

insq places the message pointed at by mmp in the message queue contained

in the queue pointed at by g immediately before the already-enqueued mes-

sage pointed at by emp. If emp is NULL, the message is placed at the end

of the queue. If emp is non-NULL, it must point to a message that exists on

the queue gq, or a system panic could result.

Note that the message is placed where indicated, without consideration of

message queueing priority. The queue will be scheduled in accordance with

the rules described in putq for ordinary priority messages.

linkb — concatenate two messages into one

int linkb(mp1, mp2)

mblk_t *mp1;

mblk_t *mp2;

linkb puts the message pointed at by mp2 at the tail of the message pointed

C-8 STREAMS PROGRAMMER’S GUIDE

Utility Descriptions

at by mpl.

msgdsize — get the number of data bytes in a message

int msgdsize(mp)

mblik_t *mp;

msgdsize returns the number of bytes of data in the message pointed at by

mp. Only bytes included in data blocks of type M_DATA are included in

the total.

noenable — prevent a queue from being scheduled

#define noenable(q)

The noenable macro prevents the queue g (declared as queue_t *q) from

being scheduled for service by putq or putbq when these routines enqueue

an ordinary priority message, or by insq when it enqueues any message.

noenable does not prevent the scheduling of queues when a Priority message

is enqueued, unless it is enqueued by insq.

OTHERQ - get pointer to the mate queue

#define OTHERQ(q) ...

The OTHERQ macro returns a pointer to the mate queue of q (declared as

queue _t *q). If gq is the read queue for the module, it returns a pointer to

the module’s write queue. If g is the write queue for the module, it returns a

pointer to the read queue.

pullupmsg — concatenate bytes in a message

int *pullupmsg(mp, len)

mblk_t *mp;

int len;

pullupmsg concatenates and aligns the first Jen data bytes of the passed mes-

sage into a single, contiguous message block. Proper alignment is hardware-

dependent. To perform its function, pullupmsg allocates a new message

block by calling allocb with pri set to BPRI_LMED (see the section titled

APPENDIX C: UTILITIES C-9

Utility Descriptions

"Buffer Allocation Priority” below). pullupmsg only concatenates across

message blocks of similar type. It will fail if mp points to a message of less

than Jen bytes of similar type. A Jen value of -1 requests a pull-up of all the

like-type blocks in the beginning of the message pointed at by mp.

At completion of concatenation, pullupmsg replaces mp with a pointer to

the new message block, so that mp still points to the same message block at

the end of the operation. However, the contents of the message block may

have been altered. On success, pullupmsg returns 1. On failure, it returns

0.

putbq — return a message to the beginning of a queue

int putbq(q, bp)
queue_t *q;

mblk_t *bp

putbq puts the message pointed at by bp at the beginning of the queue

pointed at by q, in a position in accordance with the message’s type. Priority

messages are placed at the head of the queue, and ordinary messages are

placed after all Priority messages, but before all other ordinary messages.

The queue will be scheduled in accordance with the same rules described in

putq. This utility is typically used to replace a message on a queue from

which it was just removed.

putctl — put a control message

int putctl(q, type)

queue_t *q;

int type;

putctl creates a control (not data, see datamsg, above) message of type type,

and calls the put procedure in the queue pointed at by g, with a pointer to

the created message as an argument. putctl allocates new blocks by calling

allocb with pri set to BPRI_HI (see the section titled "Buffer Allocation

Priority” below). On successful completion, putetl returns 1. It returns 0 if

it cannot allocate a message block, or if type MLDATA, M_PROTO or

M_PCPROTO was specified.

C-10 STREAMS PROGRAMMER’S GUIDE

Utility Descriptions

putctll — put a control message with a one-byte parameter

int putctll(q, type, p)

queue_t *q;

int type;

int p;

putctll creates a control (not data, see datamsg, above) message of type

type with a one-byte parameter p, and calls the put procedure in the queue

pointed at by qg, with a pointer to the created message as an argument.

putctll allocates new blocks by calling allocb with pri set to BPRI_HI (see

the section titled "Buffer Allocation Priority” below). On successful comple-

tion, putctl1 returns 1. It returns 0 if it cannot allocate a message block, or

if type MLDATA, M_PROTO or M_PCPROTO was specified.

putnext — put a message to the next queue

#define putnext(q, mp) ...

The putnext macro calls the put procedure of the next queue in a Stream,

and passes it a message pointer as an argument. The parameters must be

declared as queue_t *q and mblk_t *mp. g is the calling queue (not the next

queue) and mp is the message to be passed. putnext is the typical means of

passing messages to the next queue in a Stream.

putq — put a message on a queue

int putq(q, bp)
queue_t *q;

mblk_t *bp;

putq puts the message pointed at by bp on the message queue contained in

the queue pointed at by g and enables that queue. putq queues messages

appropriately by type (i.e., message queueing priority, see Chapter 8).

putq will always enable the queue when a Priority message is queued. putq

will enable the queue when an ordinary message is queued if the following

condition is set, and enabling is not inhibited by noenable: The condition is

set if the module has just been pushed [see ILPUSH in streamio(7)], or if no

message was queued on the last getq call and no message has been queued

since.

APPENDIX C: UTILITIES C-11

Utility Descriptions

putq is intended to be used from the put procedure in the same queue in

which the message will be queued. A module should not call putq directly

to pass messages to a neighboring module. putq may be used as the

gi_putp() put procedure value in either or both of a module’s qinit struc-

tures. This effectively bypasses any put procedure processing and uses only

the module’s service procedure(s).

qenable — enable a queue

int qenable(q) queue_t *q;

int putq(q, bp)
queue_t *q;

mblk_t *bp;

qenable places the queue pointed at by g on the linked list of queues that

are ready to be called by the STREAMS scheduler (see the definition for

"Schedule” above, and the section titled "Put and Service Procedures” in

Chapter 5 of the Primer).

qreply — send a message on a stream in the reverse direction

int qreply(q, bp)
queue_t *q;

mblk_t *bp;

qreply sends the message pointed at by bp up (or down) the Stream in the

reverse direction from the queue pointed at by g. This is done by locating

the partner of g (see OTHERQ, below), and then calling the put procedure

of that queue’s neighbor (as in putnext). qreply is typically used to send

back a response (M_IOCACK or M_LIOCNAK message) to an M_LIOCTL

message (see Appendix B).

qsize — find the number of messages on a queue

int qsize(q)

queue_t *q;

qsize returns the number of messages present in queue g. If there are no

messages on the queue, qsize returns 0.

C-12 STREAMS PROGRAMMER’S GUIDE

Utility Descriptions

RD — get pointer to the read queue

#define RD(q) ...

The RD macro accepts a write qucue pointer, g (declared as queue _t *q), as

an argument and returns a pointer to the read queue for the same module.

rmvb — remove a message block from a message

mblk_t *rmvb(mp, bp)

mblk_t *mp;

mblk_t *bp;

rmvb removes the message block pointed at by bp from the message pointed

at by mp, and then restores the linkage of the message blocks remaining in —

the message. rmvb does not free the removed message block. rmvb returns

a pointer to the head of the resulting message. If bp is not contained in mp,

rmyb returns a -1. If there are no message blocks in the resulting message,

rmvb returns a NULL pointer.

rmvq — remove a message from a queue

int rmvq(q, mp)

queue_t *q;

mblk_t *mp;

rmvq removes the message pointed at by mp from the message queue in the

queue pointed at by qg, and then restores the linkage of the messages remain-

ing on the queue. If mp does not point to a message that is present on the

queue g, a system panic could result.

splstr — set processor level

int splstrQ

splstr increases the system processor level to block interrupts at a level

appropriate for STREAMS modules when those modules are executing criti-

cal portions of their code. splstr returns the processor level at the time of

its invocation. Module developers are expected to use the standard kernel

function splx(s), where s is the integer value returned by splstr, to restore

APPENDIX C: UTILITIES C-13

Utility Descriptions

the processor level to its previous value after the critical portions of code

are passed.

strlog — submit messages for logging

int strlog(mid, sid, level, flags, fmt, arg1, ...)

short mid, sid;

char level;

ushort flags;

char *fmft;

unsigned arg];

strlog submits messages containing specified information to the log(7)

driver. Required definitions are contained in <sys/strlog.h> and

<sys/log.h>. mid is the STREAMS module id number for the module or

driver submitting the log message. sid is an internal sub-id number usually

used to identify a particular minor device of a driver. level is a tracing level

that allows selective screening of messages from the tracer. flags are any

combination of SLLERROR (the message is for the error logger),

SL_TRACE (the message is for the tracer), SL_FATAL (advisory notifica-

tion of a fatal error), and SLLNOTIFY (request that a copy of the message

be mailed to the system administrator). fmt is a printf(3S) style format

string, except that %s, Ye, %E, %g, and %G conversion specifications are

not handled. Up to NLOGARGS numeric or character arguments can be

provided. (See Chapter 6 of the Primer, and log(7).)

testb — check for an available buffer

int testb(size, pri)

int size, pri;

testb checks for the availability of a message buffer of size size at priority pri

(see the section titled "Buffer Allocation Priority”, below) without actually

retrieving the buffer. testb returns 1 if the buffer is available, and 0 if no

buffer is available. A successful return value from testb does not guarantee

that a subsequent allocb call will succeed (e.g., in the case of an interrupt

routine taking buffers).

C-14. STREAMS PROGRAMMER’S GUIDE

Utility Descriptions

unlinkb — remove a message block from the head of a message

mblk_t *unlinkb (mp)

mblk_t *mp;

unlinkb removes the first message block pointed at by mp and returns a

pointer to the head of the resulting message. unlinkb returns a NULL

pointer if there are no more message blocks in the message.

WR - get pointer to the write queue

#define WR(q) ...

The WR macro accepts a read queue pointer, q (declared as queue_t *q), as

an argument and returns a pointer to the write queue for the same module.

APPENDIX C: UTILITIES C-15

Buffer Allocation Priority

STREAMS buffers are normally allocated with allocb, described above.

An associated set of allocation priorities has been established, which are

also used in other utility routines:

BPRI_LO Low priority. At this priority, allocb may fail even though

the requested buffer size is available. This priority is used by

the Stream head write routine to hold data associated with

user calls.

BPRI_MEDMedium priority. This priority is typically used for normal

data and control block allocation. As above, allocb may fail

at this priority even though a buffer of the requested size is

available. However, for a given block size, an BPRI_LO

allocb call will fail before a BPRI_MED allocb call.

BPRI_HI High priority. This priority is typically used only for critical

control message allocations. Calls to allocb will succeed if a

buffer of the appropriate size is available. Developers should

exercise restraint in use of BPRI_HI allocation requests.

The values BPRI_LO, BPRI_MED,and BPRI_HI are defined in

<sys/stream.h>.

STREAMS does not guarantee successful buffer allocation—any set of

resources can be exhausted under the right conditions. The bufcall function

will help modules recover from buffer allocation failures, but it does not

guarantee that the resources will ever be available. Developers should be

aware of this when implementing modules.

C-16 STREAMS PROGRAMMER’S GUIDE

ROUTINE

adjmsg

allocb

backg

bufcall

canput

copyb

copymsg

datamsg

dupb

dupmsg

enableok

flushg

freeb

freemsg

getq
insq

linkb

msgdsize

noenable

OTHERQ

pullupmsg

putbgq

putctl

putctll

putnext

putq
qenable

qreply

qsize

RD

rmvb

rmyq

splstr

strlog

testb

unlinkb

WR

Utility Routine Summary

DESCRIPTION

trim bytes in a message

allocate a message block

get pointer to the queue behind a given queue

recover from failure of allocb

test for room in a queue

copy a message block

copy a message

test whether message is a data message

duplicate a message block descriptor

duplicate a message

re-allow a queue to be scheduled for service

flush a queue

free a message block

free all message blocks in a message

get a message from a queue

put a message at a specific place in a queue

concatenate two messages into one

get the number of data bytes in a message

prevent a queue from being scheduled

get pointer to the mate queue

concatenate bytes in a message

return a message to the beginning of-a queue

put a control message

put a control message with a one-byte parameter
put a message to the next queue

put a message on a queue

enable a queue

send a message on a stream in the reverse direction

find the number of messages on a queue

get pointer to the read queue

remove a message block from a message

remove a message from a queue

set processor level

submit messages for logging

check for an available buffer

remove a message block from the head of a message

get pointer to the write queue

APPENDIX C: UTILITIES C-17

Utility Routine Summary

C-18 STREAMS PROGRAMMER’S GUIDE

Chapter D-- APPENDIX D: DESIGN GUIDELINES

Appendix D: Design Guidelines

This appendix summarizes STREAMS module and driver design guide-

lines and rules presented in previous chapters. Additional rules that

developers must observe are included. Where appropriate, the section of

this document containing detailed information is named. The end of the

appendix contains a brief description of error and trace logging facilities.

Unless otherwise noted, “module” implies "modules and drivers’.

General Rules

The following are general rules that developers should follow when writ-

ing modules.

1. Modules cannot access information in the u_area of a process.

Modules are not associated with any process, and therefore have no

concept of process or user context.

The capability to pass u_area information upstream using messages

has been provided where required. This can be done in M_LIOCTL

handling (see Chapter 9 and Appendix B). A module can send error

codes upstream in a M_LIOCACK or M_LIOCNAK message, where

they will be placed in u_error by the Stream head. Return values

may also be sent upstream in a M_LIOCACK message, and will be

placed in u_rvall. Information can also be passed to the u_area via

a M_ERROR message (see Chapter 10 and Appendix B). The

Stream head will recognize this message type and inform the next

system call that an error has occurred downstream by setting

u_error. Note that in both instances, the downstream module cannot

access the u_area, but it informs the Stream head to do so.

In general, modules should not require the data in an MLDATA

message to follow a particular format, such as a specific alignment.

This makes it easier to arbitrarily push modules on top of each other

in a sensible fashion. Not following this rule may limit module re-

usability (the ability to use the module in multiple applications).

I:very module must process an M_FLUSH message according to the

value of the argument passed in the message. (See Chapters 8 and

9, and Appendix B.)

APPENDIX D: DESIGN GUIDELINES D-1

Appendix D: Design Guidelines

A module should not change the contents of a data block whose

reference count is greater than 1 (see dupmsg in Appendix C)

because other modules that have references to the block may not

want the data changed. To avoid problems, it is recommended that

the module copy the data to a new block and then change the new

one.

Modules should only manipulate message queues and manage buffers

with the routines provided for those purpose, (see Appendix C).

Filter modules pushed between a service user and a service provider

(see Chapter 12) may not alter the contents of the M_PROTO or

M_PCPROTO block in messages. The contents of the data blocks

may be manipulated, but the message boundaries must be preserved.

System Calls

These rules pertain to module and drivers as noted.

1.

D-2

open and close routines may sleep, but the sleep must return to the

routine in the event of a signal. That is, if they sleep, they must be

at priority <= PZERO, or with PCATCH set in the sleep priority.

The open routine must return >= zero on success or OPENFAIL if

it fails. This ensures that a failure will be reported to the user pro-

cess. errno may be set on failure. However, if the open routine

returns OPENFAIL and errno is not set, STREAMS will automati-

cally set errno to ENXIO.

If a module or driver recognizes and acts on an M_IOCTL message,

it must reply by sending a M_LIOCACK message upstream. A

unique id is associated with each M_IOCTL, and the MLIOCACK

or M_LIOCNAK message must contain the id of the M_LIOCTL it is

acknowledging. |

A module (not a driver) must pass on any M_LIOCTL message it

does not recognize (see Appendix B). If an unrecognized M_LIOCTL

reaches a driver, the driver must reply by sending a MLIOCNAK

message upstream.

STREAMS PROGRAMMER’S GUIDE

Appendix D: Design Guidelines

Data Structures

Only the contents of g_ptr, q_minpsz, q_maxpsz, q_hiwat, and g_lowat.

in a queue_t structure may be altered. The latter four quantities are set when

the module or driver is opened, but may be modified subsequently.

As described in Appendix E, every module and driver is configured in

with the address of a streamtab structure (see Chapter 5). For a driver, a

pointer to its streamtab is included in cdevysw. For a module, a pointer to

its streamtab is included in fmodsw.

Header Files

The following header files are generally required in modules and drivers:

types.h contains type definitions used in the STREAMS header

files

stream.h contains required structure and constant definitions

stropts.h primarily for users, but contains definitions of the argu-

ments to the M_FLUSH message type also required by

modules

One or more of the header files described below may also be included

(also see the following section). No standard DG/UX system header files

should be included except as described in the following section. The intent

is to prevent attempts to access data that cannot or should not be accessed.

errno.h defines various system error conditions, and is needed if

errors are to be returned upstream to the user

sysmacros.h contains miscellaneous system macro definitions

param.h defines various system parameters, particularly the value of

the PCATCH sleep flag

signal.h defines the system signal values, and should be used if sig-

nals are to be processed or sent upstream

APPENDIX D: DESIGN GUIDELINES D-3

Appendix D: Design Guidelines

file.h defines the file open flags, and is needed if O_LNDELAY is

interpreted

Accessible Symbols and Functions

The following lists the only symbols and functions that modules or

drivers may refer to (in addition to those defined by STREAMS), if

hardware and DG/UX system release independence is to be maintained.

Use of symbols not listed here is unsupported.

D-4

mTM user.h (from open/close procedures only)

struct proc *u_procp process structure pointer

short *u_ttyp tty group ID pointer

char u_error system call error number

ushort u_uid effective user ID

ushort u_gid effective group ID

ushort u_ruid real user ID

ushort u_rgid real group ID

proc.h (from open/close procedures only)

short p_pid process ID

short p_pgerp process group ID

functions accessible from open/close procedures only

flg = sleep(chan, pri) sleep until wakeup

delay(ticks) delay for a specified time

universally accessible functions

bcopy(from, to, nbytes) copy data quickly

bzero(buffer, nbytes) zero data quickly

= max(a, b) return max of args

t = min(a, b) return min of args

mem=malloc(mp, size) allocate memory space

mfree(mp, size, i) de-allocate memory space

mapinit(mp, mapsize) initialize map structure

addr = vtop(vaddr, NULL) translate from virtual to physical address

printf(format, ...) print message

cmn_err(level, ...) print message and optional panic

s = spln(Q) set priority level

STREAMS PROGRAMMER’S GUIDE

Appendix D: Design Guidelines

id = timeout(func, arg, ticks) schedule event

untimeout(id) cancel event

wakeup(chan) wake up sleeper

@ sysmacros.h

t = major(dev) return major device

t = minor(dev) return minor device

= systm.h

time_t Ibolt clock ticks since boot in HZ

time_t time seconds since epoch

@ param.h

PZERO zero sleep priority

PCATCH catch signal sleep flag

HZ clock ticks per second

NULL 0

@ types.h

dev_t combined major/minor device

time_t time counter

All data elements are software read-only except:

u_error - may be set on a failure return of open

u_ttyp - may be set in open to create a controlling tty

Rules for Put and Service Procedures

To ensure proper data flow between modules, the following rules should
be observed in put and service procedures. The following rules pertain to

put procedures.

1. A put procedure must not sleep.

2. Each QUEUE must define a put procedure in its qinit (see Appen-

dix A) structure for passing messages between modules.

3. A put procedure must use the putq (see Appendix C) utility to

enqueue a message on its own message queue. This is necessary to

ensure that the various fields of the queue_t structure are maintained

consistently.

APPENDIX D: DESIGN GUIDELINES D-5

Appendix D: Design Guidelines

When passing messages to a neighbor module, a module may not call

putq directly, but must call its neighbor’s put procedure (see putnext

in Appendix C). Note that this rule is distinct from the one above

it. The previous rule states that a module must call putq to place

messages on its own message queue, whereas this rule states that a

module must not call putq directly to place messages on a neighbor’s

queue.

However, the q_qinfo structure that points to a module’s put pro-

cedure may point to putq (i.e. putq is used as the put procedure for

that module). When a module calls a neighbor’s put procedure that

is defined in this manner, it will be calling putq indirectly. If any

module uses putq as its put procedure in this manner, the module

must define a service procedure. Otherwise, no messages will ever

be sent to the next module. Also, because putq does not process

M_FLUSH messages, any module that uses putq as its put pro-

cedure must define a service procedure to process M_LFLUSH mes-

sages.

The put procedure of a QUEUE with no service procedure must call

the put procedure of the next QUEUE directly, if a message is to be

passed to that QUEUE. If flow control is desired, a service pro-

cedure must be provided.

Service procedures must observe the following rules:

1.

2.

D-6

A service procedure must not sleep.

The service procedure must use getq to remove a message from its

message queue, so that the flow control mechanism is maintained.

The service procedure should process all messages on its message

queue. The only exception is if the Stream ahead is blocked (i.e.,

canput fails, see Appendix C). Adherence to this rule is the only

guarantee that STREAMS will enable (schedule for execution) the

service procedure when necessary, and that the flow control mechan-

ism will not fail.

If a service procedure exits for any other reason (e.g., buffer alloca-

tion failure), it must take explicit steps to assure it will be re-

enabled.

STREAMS PROGRAMMER’S GUIDE

Appendix D: Design Guidelines

4. The service procedure must follow the steps below for each message

that it processes. STREAMS flow control relies on strict adherence

to these steps.

Step 1:

Step 2:

Step 3:

Step 4:

Remove the next message from the message queue using

getq. It is possible that the service procedure could be

called when no messages exist on the queue, so the service

procedure should never assume that there is a message on its

message queue. If there is no message, return.

If all the following conditions are met:

[_] canput fails and

[_] the message type is not a priority type (see Appendix B)

and

[_] the message is to be put on the next QUEUE.

then, continue at Step 3. Otherwise, continue at Step 4.

The message must be replaced on the head of the message

queue from which it was removed using putbq (see Appen-

dix C). Following this, the service procedure is exited. The

service procedure should not be re-enabled at this point. It

will be automatically back-enabled by flow control.

If all the conditions of Step 2 are not met, the message

should not be returned to the queue. It should be processed

as necessary. Then, return to Step 1.

Error and Trace Logging

STREAMS error and trace loggers are provided for debugging and for

administering modules and driver. Chapter 6 of the STREAMS Primer con-

tains a description of this facility which consists of log(7), strace(1M),

strclean(1M) strerr(1M) and the strlog function described in Appendix C.

APPENDIX D: DESIGN GUIDELINES D-7

Chapter E- APPENDIX E: CONFIGURING

Appendix E: Configuring

This appendix contains information about configuring STREAMS

modules and drivers into the DG/UX System. The information is incremen-

tal and presumes the reader is familiar with the configuration mechanism,

which may vary on different processors. An example of how to configure a

driver and a module is included.

This appendix also includes a list of STREAMS system tunable parame-

ters and system error messages.

Configuring STREAMS Modules and Drivers

Each character device that is configured into a DG/UX system results in

an entry being placed in the kernel cdevsw table. Entries for STREAMS

drivers are also placed in this table. However, because system calls to

STREAMS drivers must be processed by the STREAMS routines, the con-

figuration mechanism distinguishes between STREAMS drivers and charac-

ter device drivers in their associated cdevsw entries.

The distinction is contained in the d_str field which was added to the

cdevsw structure for this purpose. d_str provides the appropriate single

entry point for all system calls on STREAMS files, as shown below:

extern struct cdevsw_ {f{

struct streamtab *d_str;

} cdevsw[];

The configuration mechanism forms the d_str entry name by appending the

string “info” to the STREAMS driver prefix. The “info” entry is a pointer to

a streamtab structure (see Appendix A) that contains pointers to the qinit

structures for the read and write QUEUES of the driver. The driver must

contain the external definition:

struct streamtab prefixinfo = {

If the d_str entry contains a non-NULL pointer, the operating system will

recognize the device as a STREAMS driver and will call the appropriate

STREAMS routine. If the entry is NULL, a character I/O device cdevsw

interface is used. Note that only streamtab must be externally defined in

STREAMS drivers and modules. streamtab is used to identify the

APPENDIX E: CONFIGURING E-1

Appendix E: Configuring

appropriate open, close, put, service, and administration routines. These

driver/module routines should generally be declared static.

The configuration mechanism supports various combinations of block,

character, STREAMS devices and STREAMS modules (see below). For

example, it is possible to identify a device as a block and STREAMS dev-

ice, and entries will be inserted in the appropriate system switch tables. On

the 3B2 Computer, a device cannot be both a character and STREAMS dev-

ice.

When a STREAMS module is configured, an fmodsw table entry is gen-

erated by the configuration mechanism. fmodsw contains the following:

#define FMNAMESZ 8

extern struct fmodsw {

char f_name[{FMNAMES2+1] ;

struct streamtab *f_str;

} fmodsw[];

f_name is the name of the module, used in STREAMS -related ioctl

calls. f_str is similar to the d_str entry in the cdevsw table. It is a pointer to

a streamtab structure which contains pointers to the qinit structures for the

read and write QUEUES of this STREAMS module (as in STREAMS

drivers). The module must contain the external definition:

struct streamtab prefixinfo = { ...

3B2 Computer Configuration Mechanism

The 3B2 Computer configuration mechanism differentiates STREAMS

devices from character devices by a special type in the flag field of master

files contained in /etc/master.d [see master(4)]. The ¢ flag specifies a non-

STREAMS character I/O device driver. The f flag specifies that the associ-

ated cdevsw entry will be a STREAMS driver. The special file (node) that

identifies the STREAMS driver must be a character special file, as is the file

for a character device driver, because the system call entry point for

STREAMS drivers is also the cdeysw table

STREAMS modules are identified by an m in the flag field of master

files contained in /etc/master.d and the configuration mechanism creates an

associated fmodsw table entry for all such modules.

E-2. STREAMS PROGRAMMER’S GUIDE

Appendix E: Configuring

Any combination of block, STREAMS drivers and STREAMS module may

NOTE| be specified. However, on the 3B2 Computer, it is illegal to specify a

STREAMS device or module with a character device.

Configuration Examples

This section contains examples of configuring the following STREAMS

driver and module:

loop the STREAMS loop-around software driver of Chapter 10

crmod the conversion module of Chapter 7

To configure the STREAMS software (pseudo-device) driver, Joop, and

assign values to the driver extern variables, the following must appear in the

file /etc/master.d/loop [see master(4)]:

* LOOP — STREAMS loop around software driver

*

*FLAG #VEC PREFIX SOFT #DEV IPL DEPENDENCIES/VARIABLES

fs - loop 62 _ -

loop_loop[NLP] (%1%31)

loop_cnt (%1) ={NLP}

$$$

NLP = 2

The flag field is set to "fs" which signifies that it is a STREAMS driver and a

software driver. The prefix “loop” requires that the streamtab structure for

the driver be defined as loopinfo. "62" is an unused, but otherwise arbitrary,

software driver major number. If this field contained "-”, an unused

software driver major number would be assigned by drivinstall(1M).

To configure the STREAMS module crmod, the following must appear

in the file /etc/master.d/crmod:

* CRMOD stream conversion module

*FLAG #VEC PREFIX SOFT #DEV IPL DEPENDENCIES/VARIABLES

m _ crm,

The flag field is set to "m", which signifies that it is a STREAMS

module. The prefix "crmd” (cannot exceed four characters) requires that the

streamtab structure for the module be defined as crmdinfo. The configura-

tion mechanism uses the name of the master.d file (crmod in this case) to

APPENDIX E: CONFIGURING E-3

Appendix E: Configuring

create the module name field (/_name) of the associated fmodsw entry. The

prefix and module name can be different.

mkboot(1M) should be run on the corresponding object files in the

appropriate directories for these master files. Also, if it is desired to have

these objects loaded at boot time, then the file /ete/system must contain the

following entries:

INCLUDE: LOOP

INCLUDE: CRMOD

Neither of the above examples are hardware drivers. Configuring a

STREAMS hardware driver is a similar to configuring a character I/O

hardware driver: The major device number is the hardware board address

and no INCLUDE is required.

Tunable Parameters

Certain system parameters referenced by STREAMS are configurable

when building a new operating system (sce the System Administrator’s Guide

for further details). This can be done by including the appropriate entry in

the kernel master file. “queues” refers to queue_t structures. These parame-

ters are:

NQUEUE Total number of queues that may be allocated at one time

by the system. Queues are allocated in pairs. Each

STREAMS driver, Stream head and pushable module

requires a pair of queues. A minimal Stream contains 4

queues (two for the Stream head, two for the driver).

NSTREAM Total number of Streams that may be open at one time in

a system.

NBLK4096 Total number of 4096 byte data blocks available for

STREAMS operations. The pool of data blocks is a

system-wide resource, so enough blocks must be config-

ured to satisfy all Streams.

NBLK2048 Total number of 2048 byte data blocks available for

STREAMS operations.

NBLK1024 Total number of 1024 byte data blocks available for

STREAMS operations.

E-4 STREAMS PROGRAMMER’S GUIDE

NBLK512

NBLK256

NBLK128

NBLK64

NBLK16

NBLK4

NMUXLINK

NSTREVENT

MAXSEPGCNT

NSTRPUSH

STRMSGSZ

Appendix E: Configuring

Total number of 512 byte data blocks available for

STREAMS operations.

Total number of 256 byte data blocks available for

STREAMS operations.

Total number of 128 byte data blocks available for

STREAMS operations.

Total number of 64 byte data blocks available for

STREAMS operations.

Total number of 16 byte data blocks available for

STREAMS operations.

Total number of 4 byte data blocks available for

STREAMS operations.

Total number of Streams in system that can be linked as

lower Streams to multiplexor drivers [by an ILLINK

ioctl(2), see streamio(7)].

Initial number of internal event cells available in system

to support bufcall (see Appendix C) and poll(2) calls.

The number of additional pages of memory that can be

dynamically allocated for event cells. If this value is 0,

only the allocation defined by NSTREVENT is available

for use. If the value is not 0 and if the kernel runs out of

event cells, it will under some circumstances attempt to

allocate an extra page of memory from which new event

cells can be created. MAXSEPGCNT places a limit on

the number of pages that can be allocated for this pur-

pose. Once a page has been allocated for event cells,

however, it cannot be recovered later for use elsewhere.

Maximum number of modules that may be pushed onto a

single Stream.

Maximum bytes of information that a single system call

can pass to a Stream to be placed into the data part of a

message (in M_DATA blocks). Any write(2) exceeding

this size will be broken into multiple messages. A

putmsg(2) with a data part exceeding this size will fail.

APPENDIX E: CONFIGURING E-5

Appendix E: Configuring

STRCTLSZ

STRLOFRAC

Maximum bytes of information that a single system call

can pass to a Stream to be placed into the control part of

a message (in an M_PROTO or M_PCPROTO block). A

putmsg(2) with a control part exceeding this size will fail.

The percentage of data blocks of a given class at which

low priority block allocation requests are automatically

failed. For example, if STRLOFRAC is 80 and there are

48 256-byte blocks, a low priority allocation request will

fail when more than 38 256-byte blocks are already allo-

cated. This value is used to prevent deadlock situations

in which a low priority activity might starve out more

important functions. For example, if STRLOFRAC is 80

and there are 100 blocks of 256 bytes, then when more

than 80 of such blocks are allocated, any low priority allo-

cation request will fail. This value must be in the range

0 <= STRLOFRAC <= STRMEDFRAC.

STRMEDFRAC The percentage of data blocks of a given class at which

medium priority block allocation requests are automati-

cally failed.

System Error Messages

Messages are reported to the console as a result of various error condi-

tions detected by STREAMS. These messages and the action to be taken

on their occurrence are described below. In certain cases, a tunable param-

eter (see previous section) may have to be changed.

stropen: out of streams

A Stream head data structure could not be allocated during the

open of a STREAMS device. If this occurs repeatedly, increase

NSTREAM.

stropen: out of queues

A pair of queues could not be allocated for the Stream head during

the open of a driver. If this occurs repeatedly, increase

NQUEUE.

E-6 STREAMS PROGRAMMER’S GUIDE

Appendix E: Configuring

KERNEL: allocq: out of queues

A pair of queues could not be allocated for a pushable module

(ILPUSH ioctl) or driver (open). If this occurs repeatedly,

increase NQUEUE.

strinit: can not allocate stream data blocks

During system initialization, the system was unable to allocate

enough memory for the STREAMS data blocks. The system must

be rebuilt with fewer data blocks specified.

KERNEL: strinit: odd value configured for v.v_nqueue

KERNEL: strinit: was gcnt, set to ngcnt

During system initialization, the total number of queues allocated,

qcnt, was not a multiple of 2. The system resets this to an

appropriate value, ngcnt.

WARNING: bufcall: could not allocate stream event

A call to bufcall has failed because all Stream event cells have

been allocated. If this occurs repeatedly, increase NSTREVENT.

KERNEL: sealloc: not enough memory for page allocation

An attempt to dynamically allocate a page of Stream event cells

failed. If this occurs repeatedly, decrease MAXSEPGCNT.

KERNEL: munlink: could not perform ioctl, closing anyway

A linked multiplexor could not be unlinked when the controlling

Stream for that link was closed. The linked Stream will be

unlinked and the controlling Stream will be closed anyway.

APPENDIX E: CONFIGURING E-7

Appendix F: Using STREAMS on the

DG/UX System

The DG/UX system provides a full implementation of the AT&T

System V.3.1 STREAMS mechanism. From the user’s (system

call) point of view, DG/UX STREAMS behaves just as AT&T’s

does.

From a streams driver or module point of view, however, the

implementation differs. The major areas of difference are as

follows:

e Driver Interface to the Streams File Manager — The

DG/UX system kernel unifies its stream functions into a

Streams File Manager. Streams drivers must follow a

well defined interface to this Streams File Manager.

Specifically, each driver must supply a set of routines that

handle the operations listed in "The Streams Driver

Interface to the Streams File Manager" section of this

appendix. The driver then gives the Streams File Manager

access to these routines via a routines vector structure

containing the addresses of its routines.

e Streams Utilities — The DG/UX system provides all the

AT&T streams utilities except splstrO. The DG/UX

system also provides a number of additional streams

utilites including several specifically aimed at inter-module

operations. These DG/UX streams utilites are described

in the "Streams Utilities” section of this appendix.

@ Kernel Functions — The DG/UX system provides a

number of kernel utilites useful for general driver

operations. These kernel utilites are described in Writing

a Device Driver for the DG/UXTM System (manual number

093-701053).

If you are porting AT&T streams code, note that AT&T

kernel calls are accomplished by the DG/UX system’s

own versions of these functions.

e Enviroment Issues — The DG/UX kernel is designed to

work as a fully symmetric multiprocessor operating

system. Consequently, the kernel and drivers within it

must deal with locking and other protection issues not

found in single-processor systems. In particular, there

are restrictions on which streams and kernel utilities may

be called from interrupt level.

Streams drivers use many of the same features and are integrated

into the kernel in much the same way as other device drivers

under the DG/UX system. Therefore, you may want to see

Writing a Device Driver for the DG/UXTM System for background

on device drivers on the DG/UX system. In particular, the

manual Writing a Device Driver for the DG/UXTM System describes

a large number of kernel utility routines that your streams driver

can use. It also covers issues such as system and master file

entries, the concept of a routines vector, and how to build a

kernel that includes your object module.

The Kernel and Streams File Manager

Interfaces

Like other drivers, streams drivers establish an interface to the

kernel via entries in the system and master files. However, unlike

other drivers, they must also establish an interface to the Streams

File Manager. This section describes these two types of

interfaces.

System File and Master File Entries

The config program establishes the streams driver’s interface to

the kernel from the driver’s entries in the system and master files.

Entries for the system and master files are described in system(4)

and master(4), respectively. Note that streams drivers appear as

character special files.

Streams driver entries appear in the $device section of the master

file and use a 1- to 8-character driver name. Streams module

entries appear in the $stream section of the master file and use a

1- to 8-character symbolic name. Note that the "s"” restriction flag

is used to specify a streams device.

Streamtab Structures

On the DG/UX system, the streamtab structure must follow the

naming conventions: module_nameinfo for modules and

sfm_driver_nameinfo for drivers. For example, the xdey driver’s

streamtab structure would be sfm_xdevinfo and the module’s

streamtab structure would be xdevinfo.

The streamtab structure contains pointers to other structures that

point to all module routines and most of the driver routines.

Drivers, however, must have an additional set of routines to

interface to the Streams File Manager described in the next

section. The Streams File Manager gets pointers to these

additional driver routines in the routines vector structure not the

streamtab structure.

If your system and master file entries are correct, after the

config(I1M) program runs, the driver and module routine

information will be recorded in conf.c. Module information is

found in the table cf_sfm_module_table. Each entry in this table

contains a module’s symbolic name (1 to 8 characters) and a

pointer to its streamtab structure. Driver information will appear

in the table, cf_sfm_driver_vector. This table is indexed by major

device number. Each of its entries contains a pointer to a

streamtab structure and a pointer to the

su_driver_routines_vector_type routines vector, which together

define the driver.

The Streams Driver Interface to the Streams File

Manager

In addition to the standard streams routines, streams drivers must

supply the following set of routines:

xdev_init,

xdev_configure,

xdev_deconfigure,

xdev_name to device,

xdev_device_to_name;

Where: xdev is your driver’s 1-to-8 character name, as given in its

system file entry.

We describe the interface to these routines in the "Driver-Supplied

Routines” section.

The driver uses a routines vector to pass pointers to these routines

to the Streams File Manager. The driver routines vector should

be named as follows:

sfm_ driver_name_routines vector

The format of the vector is as follows:

su_driver_ routines vector type

sim_xdev_routines vector =

{SU_ROUTINES VECTOR VERSION _1,

xdev_init,

xdev_configure,

xdev_deconfigure,

xdev_name_ to device,

xdev_device to_name};

In many cases drivers will not need some of the routines listed in

the Streams File Manager interface. For example, the clone driver

does not need name-to-device, or device-to-name routines because

there is no particular node name for it. You should supply a

program stub in routines vector entry if your driver does not

supply the actual routine. The DG/UX system provides such

stubs under the device prefix name nodevice. For example, if

your driver does not deconfigure, use sfm_nodevice_deconfigure

as your routines vector entry.

Enter the SULROUTINES_VECTOR_VERSION_1 exactly as

shown. This field identifies the DG/UX STREAMS release being

used.

Include Files

In order to access the necessary variable types, DG/UX streams

drivers must include the i_sfm.h header file (in

/usr/sre/uts/aviion/ii). This header file provides access to the

STREAMS portion of the DG/UX kernel. It includes stream.h,

stropts.h, and strlog.h, so that these normally needed streams

definitions will be available. In addition, this file includes i_su.h,

providing all the streams utilities routines, and definitions. The

compiler name, _PRODUCT_DGUX, must be #defined before

these definitions are available.

Driver-Supplied Routines

This section gives the syntax and describes the parameters for the

routines that drivers must supply to the Streams File Manager.

Writing a Device Driver for the DG/UXTM System details the

operation of the initialization, configure, deconfigure, name-to-

device, and device-to-name routines. The listings here reflect

stream-specific differences, particularly in the routine’s calling

sequence.

xdev_init

Syntax

void xdev_init ()

Summary

This routine initializes the driver. (See Writing a Device

Driver for the DG/UXTM System for details on_ this

routine.)

Parameters

None.

xdev_configure

Syntax

status type xdev_configure

(device_name_ ptr, major_number)

char ptr_ type device_name ptr; /*READ ONLY*/

io major_device_number type

major number; /*READ ONLY*/

Summary

This routine configures the device. (See Writing a Device

Driver for the DG/UXTM System for details on_ this

routine.)

Parameters

device_name_ptr

A pointer to the null-terminated device

specification string identifying the device to be

configured.

major_number
The major device number on which the device is

to be configured.

xdev_deconfigure

Syntax

status_type xdev_deconfigure

(device name ptr)

char _ptr_type device_name ptr; /*READ ONLY*/

Summary

This routine deconfigures the device. (See Writing a

Device Driver for the DG/UXTM System for details on this

routine.)

Parameter

device_name_ptr

A pointer to the null-terminated device

specification string identifying the device to be

deconfigured.

xdev_name_to_device

Syntax

status_type xdev_name_to device

(device_name_ptr, number ptr)

char_ptr_type device_name_ ptr; /*READ ONLY*/

io _device_number ptr _ type

number ptr; /*WRITE ONLY*/

Summary

This routine returns a device number for the specified

device name. (See Writing a Device Driver for the

DG/UXTM System for details on this routine.)

Parameter

device_name_ptr

A pointer to the null-terminated device

specification string identifying the device name

that is to be translated.

number_ptr

A pointer to where the corresponding device

number is to be written.

10

xdev_device_to_name

Syntax

status type xdev_device_to_name

(device_number, name_ptr, size)

io device_number type

device number; /*READ ONLY*/

char _ptr_type name ptr; /*WRITE ONLY*/

uint32 type size; /*READ ONLY*/

Summary

This routine returns a device name for the specified

device number. (See Writing a Device Driver for the

DG/UXTM System for details on this routine.)

Parameter

device_number

The device number for which the character

string name is wanted.

name_ptr

A pointer to where the null-terminated character

string name is to be written.

size The maximum number of bytes, including the

terminating null, that is to be written to

name_ptr.

11

Streams Utilities

12

The streams utilities perform commonly used operations for

Streams queues, scheduling control, and the buffer pool

management. You can call them from streams drivers and

modules.

Streams modules and drivers are not allowed to directly alter

message queue links. Therefore, drivers and modules must use

streams utilities when operating on message queues.

The DG/UX system provides the following AT&T STREAMS

utilities:

adjmsg freeb putnext

allocb freemsg putq

backq getq qenable

bufcall insq qreply

canput linkb qsize

copyb msgdsize RD

copymsg noenable rmvb

datamsg OTHERQ rmvq

dupb pullupmsg strlog

dupmsg putbg testb

enableok putctl unlinkb

flushq putctll WR

The DG/UX system also provides the timeout and untimeout

AT&T kernel utilities as streams utilities. The DG/UX system

does not provide AT&T’s splstr utility. Splstr is not an effective

tool for synchronization under a multprocessor system.

Additional DG/UX Streams Utilities

The DG/UX kernel also provides an additional set of utilities for

common streams driver operations. The following sections

describe these additional utilities.

Inter-module Communication Utilities

The following utilities are useful for communicating between

modules.

su_put_procedure

void su_put_procedure (queue_ptr, message_ptr)

queue _t *queue_ptr;

mblk_ t *message_ptr;

Description

You use this routine to send a message to the next

QUEUE on a stream, regardless of flow control

constraints. This routine performs basically the same

function as putnext(.

su_flow_put_procedure

void su_flow_put_procedure (queue_ptr, message_ptr)

queue _t *queue_ptr;

mblk t *message ptr;

Description

You use this routine to send a message to the next

QUEUE, while obeying the normal flow control

constraints. When flow control prevents message flow,

13

the message is enqueued on the present QUEUE for later

processing by the QUEUP’s service procedure.

su_service_procedure

void su_service_ procedure (queue_ptr)

queue_t *queue_ptr;

Description

You use this generic-service routine when a service

procedure needs to dequeue messages and send them to

the next QUEUE on a stream.

Kernel Utilties

The DG/UX system provides a number of kernel utilities for

handling buffers, memory, scheduling, etc. These routines are

described in Writing a Device Driver for the DG/UXTM System.

If you are porting an AT&T streams driver, you should replace

the AT&T kernel utilties with DG/UX equivalents. For example,

you can use vm_perhaps_get_wired_memory for mallocQ;

vm_release_wired_memory for mfreeQ); and vp_advance_ec for

wakeup().

14

Notes for Streams Drivers Under the

DG/UX System

On the DG/UX system, streams drivers and modules are

considered part of the kernel and therefore have access to the

kernel environment. This section describes features of the

DG/UX kernel and its environment that have implications for

streams drivers and modules. (See Writing a Device Driver for the

DG/UXTM System for further information on the DG/UX kernel

environment.)

Locking Strategy and Multiprocessor Considerations

Unlike AT&T’s STREAMS, DG/UX STREAMS, occurs in a

multiprocessor environment. Rather than have individual streams

drivers and modules deal with multiprocessing, the Streams File

Manager was structured to handle these issues.

The major concern in a multiprocessor environment is collision —

multiple processes trying to access critical areas of common code

or data at the same time. Currently, the Streams File Manager

controls access to the various streams queues and databases using

a combination of two strategies. The Streams File Manager uses a

sequenced lock to single-thread streams system calls. It also uses

a streams daemon that processes deferred putq, timeout, and

scheduling operations while holding the streams sequenced lock.

(This approach will be revised in a future release because it

single-threads streams activity.)

Streams daemon operations come from three sources that are

handled in the following descending priority order: 1) deferred

putq(s; 2) scheduling; and 3) timeout operations. All operations

of a given priority are handled before lower priority operations.

15

16

We recommend that you do not sleep, delay, use eventcounters or

locks in the streams environment because deadlock may arise.

While in streams, streams drivers hold the global streams lock.

Streams drivers awaiting or trying to obtain another lock could

cause deadlock because the streams daemon must hold the global

lock.

Streams Daemon Operations

In order to preserve the integrity of the queues, putq operations

cannot be interrupted until they complete (they must be atomic).

The Streams File Manager uses locking and the streams daemon

to keep putq atomic. Thus, if putq(Q is called from interrupt level

or any process other than the streams daemon, the operation is

deferred until it can be handled by the streams daemon. The

message is linked onto the Streams daemon’s putq request list.

On the other hand, if putqQ is called from the streams daemon, it

is done immediately.

The streams daemon processes the putq list in FIFO order. By

giving deferred putq operations a higher priority than scheduling

service procedures, the daemon ensures that messages get queued

before the queue’s service procedure operations are performed.

Scheduling requests occur both as side effects of many of the

streams utilities and as direct driver or module requests made with

the qenableQ utility. The streams daemon maintains a list of

queues that have requested service procedure scheduling. Queues

are scheduled in FIFO order. The scheduling of service

procedures takes precedence over streams system call processing,

the daemon guarantees that once a service procedure is scheduled,

it will be called before user-level streams activity is resumed.

The streams daemon also maintains a list of functions that have

requested timeout operations. The streams daemon calls the

associated function when its timeout interval elapses.

Interrupt-Level Processing

Use the putq(Q) and qenable() streams utilities to invoke your

streams driver service procedure from interrupt level. (These two

utilities are the only streams utilities that may be called from the

interrupt level.)

There are some restrictions on which kernel utilities may be called

from interrupt-level. Restrictions for each utility are given with its

description in Writing a Device Driver for the DG/UXTM System.

User-Area Variables

Rather than accessing data directly via pointers to the process

area, the DG/UX system provides a procedural interface to

variables in the user area. Writing a Device Driver for the

DG/UXTM System describes the DG/UX conventions concerning

user-area access.

Per-Process Data

Because they are part of the kernel and have access to per-process

memory, streams modules and drivers can access user ID, group

ID, effective user ID, effective group ID, process ID, and process

group of the currently running process. Drivers and modules must

not use these functions and variables except during their open and

close procedures, because streams drivers/modules are not

guaranteed to run under the necessary process context.

17

Controlling TTY Process Group

A stream must establish its controlling TTY process group if it is

to send signals to the process group. Signals that a stream may

send include SIGHUP (when a streams head receives an

M_HANGUP message) and any signal specified in an M_SIG

message. The SIGPOLL signal (established with the ISETSIG

ioctl(2) command) is not affected, since this signal is only sent to

a list of registered processes.

In the DG/UX system, the driver’s open routine may set the

stream’s process group by establishing its own process group. The

Streams File Manager checks the stream’s process group before it

calls the streams driver’s open routine. If the stream’s process

group has not been established, the Streams File Manager will

monitor the open routine’s process group. If the open routine

establishes its process group, the Streams File Manager sets the

streams process group to match the open routine’s process group.

The open routine can get its process group by calling

ts_get_my_controlling_tty_pgrp(Q.

Status Reporting

Streams drivers and modules pass status information to the

Streams File Manager via two global variables: su_my_errno and

su_my_extended_errno. The su_my_errno provides the major

type of the status, and su_my_extended_errno refines the status

within this major type. Both variable may be set by the open

procedures of drivers and modules and may be inspected by either

open or close procedures. If the module or driver open procedure

sets su_my_extended_errno to a status other than OK, the status

is reported back to the process doing the open(2) call. If it sets

the su_my_errno but not su_my_extended_errno, su_my_errno

status is reported alone.

(Streams do not use the error numbers used by other drivers as

described in Writing a Device Driver for the DG/UXTM System).

19

Chapter G-- GLOSSARY

Glossary

Back enable

Blocked

Clone device

Close procedure

Control stream

Downstream

Device driver

Driver

Enable

Flow control

To enable (by STREAMS) a preceding blocked

QUEDVE when STREAMS determines that a

succeeding QUEUE has reached its low water mark.

A QUEUE that cannot be enabled due to flow con-

trol.

A STREAMS device that returns an unused minor

device when initially opened, rather than requiring

the minor device to be specified in the open(2) call.

The module routine that is called when a module is

popped from a Stream and the driver routine that is

called when a driver is closed.

In a multiplexor, the upper Stream on which a previ-

ous I_LINK ioctl [to the associated file, see

streamio(7)] caused a lower Stream to be connected

to the multiplexor driver at the end of the upper

Stream.

The direction from Stream head towards driver.

The end of the Stream closest to an external inter-

face. The principle functions of a device driver are

handling an associated physical device, and

transforming data and information between the exter-

nal interface and Stream.

A module that forms the Stream end. It can be a

device driver or a pseudo-device driver. In

STREAMS, a driver is physically identical to a

module (i.e., composed of two QUEUEs), but has

additional attributes in a Stream and in the DG/UX

system.

Schedule a QUEUE.

The STREAMS mechanism that regulates the flow of

messages within a Stream and the flow from user

space into a Stream.

GLOSSARY G-1

Glossary

Lower Stream

Message

Message block

Message queue

Message type

Module

Multiplexor

Open procedure

A Stream connected below a multiplexor pseudo-

device driver, by means of an I_LLINK ioctl. The far

end of a lower Stream terminates at a device driver

or another multiplexor driver.

One or more linked message blocks. A message is

referenced by its first message block and its type is

defined by the message type of that block.

Carries data or information, as identified by its mes-

sage type, in a Stream. A message block is a triplet

consisting of a data buffer and associated control

structures, an mbIk_t structure and a dblk_t struc-

ture.

A linked list of zero or more messages connected to

a QUEUE.

A defined set of values identifying the contents of a

message block and message.

A pair of QUEUVEs. In general, module implies a

pushable module.

A STREAMS mechanism that allows messages to be

routed among multiple Streams in the kernel. A

multiplexor includes at least one multiplexing

pseudo-device driver connected to one or more upper

Streams and one or more lower Streams.

The routine in each STREAMS driver and module

called by STREAMS on each open(2) system call

made on the Stream. A module’s open procedure is

also called when the module is pushed.

A STREAMS ioctl [see streamio(7)] that causes the

pushable module immediately below the Stream head

to be removed (popped) from a Stream [modules can

also be popped as the result of a close(2)].

Pseudo-device driver

A software driver, not directly associated with a phy-

sical device, that performs functions internal to a

Stream such as a multiplexor or log driver.

G-2 STREAMS PROGRAMMER’S GUIDE

Glossary

Push

Pushable module

Put procedure

QUEUE

Read queue

Schedule

Service interface

A STREAMS ioctl [see streamio(7)] that causes a

pushable module to be inserted (pushed) in a Stream

immediately below the Stream head.

A module interposed (pushed) between the Stream

head and driver. Pushable modules perform inter-

mediate transformations on messages flowing

between the Stream head and driver. A driver is a

non-pushable module and a Stream head includes a

non-pushable module.

The routine in a QUEUE which receives messages

from the preceding QUEUE. It is the single entry

point into a QUEUE from a preceding QUEUE.

The procedure may perform processing on the mes-

sage and will then generally either queue the message

for subsequent processing by this QUEUE’s service

procedure, or will pass the message to the put pro-

cedure of the following QUEUE.

A STREAMS defined set of C-language structures.

A module is composed of a read (upstream) QUEUE

and a write (downstream) QUEUE. A QUEUE will

typically contain a put and service procedure, a mes-

sage queue, and private data. The read QUEUE (cf.

read queue) in a module will also contain the open

procedure and close procedure for the module.

The primary structure is the queue_t structure, occa-

sionally used as a synonym for a QUEUE.

The message queue in a module or driver containing

messages moving upstream. Associated with a

read(2) system call and input from a driver.

Place a QUEUE on the internal list of QUEUEs

which will subsequently have their service procedure

called by the STREAMS scheduler.

A set of primitives that define a service at the boun-

dary between a Service user and a service provider and

the rules (typically represented by a state machine)

for allowable sequences of the primitives across the

GLOSSARY G-3

Glossary

boundary. At a Stream/user boundary, the primi-

tives are typically contained in the control part of a

message; within a Stream, in M_PROTO or

M_PCPROTO message blocks.

Service procedure The routine in a QUEUE which receives messages

queued for it by the put procedure of the QUEUE.

The procedure is called by the STREAMS scheduler.

It may perform processing on the message and will

generally pass the message to the put procedure of

the following QUEUE.

Service provider In a service interface, the entity (typically a module or

driver) that responds to request primitives from the

service user With response and event primitives.

Service user In a service interface, the entity that generates request

primitives for the service provider and consumes

response and event primitives.

Stream The kernel aggregate created by connecting

STREAMS components, resulting from an applica-

tion of the STREAMS mechanism. The primary

components are the Stream head, the driver, and

zero or more pushable modules between the Stream

head and driver.

Stream end The end of the Stream furthest from the user pro-

cess, containing a driver.

Stream head The end of the Stream closest to the user process. It

provides the interface between the Stream and the

user process.

STREAMS A kernel mechanism that supports development of

network services and data communication drivers. It

defines interface standards for character input/output

within the kernel, and between the kernel and user

level. The STREAMS mechanism comprises

integral functions, utility routines, kernel facilities

and a set of structures.

G-4 STREAMS PROGRAMMER’S GUIDE

Upper stream

Upstream

Water marks

Write queue

Glossary

A Stream terminating above a multiplexor pseudo-

device driver. The far end of an upper Stream ori-

ginates at the Stream head or another multiplexor

driver.

The direction from driver towards Stream head.

Limit values used in flow control. Each QUEUE has

a high water mark and a low water mark. The high

water mark value indicates the upper limit related to

the number of characters contained on the message

queue of a QUEUE. When the enqueued characters

in a QUEUE reach its high water mark, STREAMS

causes another QUEUE that attempts to send a mes-

sage to this QUEUE to become blocked. When the

characters in this QUEUE are reduced to the low

water mark value, the other QUEUE will be

unblocked by STREAMS.

The message queue in a module or driver containing

messages moving downstream. Associated with a

write(2) system call and output from a user process.

GLOSSARY G-5

Chapter I-- INDEX

Index

accessible symbols ... 6:1, 6; C:1;

D:4 |

adjmsg ... C:3, 17

allocb ... 7:5-7; 13:1-3; B:2; C:3-5,

10-11, 15-17

asynchronous input/output ... 2:7

backq ... C:3, 17

bufcall ... 7:7; 8:6; 13:1-3; C:4, 16-

17; E:5, 7

buffer ... 1:8; 4:3-4, 11-12, 14-15;

7:1-3, 7; 8:1, 6; 9:14; 13:1-4, 8;

A:2, 4; B:3, 6-8; C:1, 3-6, 10-

11, 15-17; D:2, 5-6

canput ... 8:5, 9, 11; 9:3; 13:4; C:4,

8, 17; D:6-7

cdevsw ... 5:5-6; 6:2; 9:1; 10:1; A:3;

D:3; E:1-2

clone ... 2:1, 8; 6:5; 10:1, 4-5; 11:10

clone open ... 2:1, 8; 6:5; 10:1, 4;

11:10

close call ... 1:1, 3, 8; 3:15; 5:2, 6-

7; 6:2, 5; 7:3; 10:9; 11:4; A:2;

B:10

close procedure ... 5:6-7; 6:1-2, 5-6;

9:1; A:2

close routines ... 6:6; D:2; E:2

configuring ... 6:2; 9:5-6; E:1, 3-4

control message ... 4:3-4, 8-9, 11,

13, 15; 5:1, 7; 6:2; 7:1; 8:1-2,

4-7, 11; 9:1, 3; 10:11; 11:3-4, 7,

9-10; 12:1-2; 13:4, 7; A:2; B:2,

10-11; C:4, 8, 11, 16-17; D:6-7;

E:6

control part ... 4:3, 8-9, 11, 13, 15;

12:1-2; B:2; E:6

controlling Stream ... 1:3; 2:2, 5, 7;

3:6-14; 4:3-4; 5:1; 8:1-2, 4; 9:3;

10:11; 11:3-5, 7, 10-11, 13, 15;

12:1; 13:7; A:2; B:2, 8-9; C:8;

D:6; E:6-7

copyb ... C:5-6, 17

copymsg ... C:5, 17

data block ... 2:5; 7:1-2, 5; 9:13;

10:7; 12:1-2, 4, 8; 13:8; A:4;

B:2-5, 7; C:3, 5-7, 10-11, 16-17;

D:2

data buffer ... 1:8; 4:3-4, 12, 14;

7:1-3, 7; 8:1; 13:2, 8; A:4; B:3,

7; C1, 3, 6, 11, 16-17; D:5

data part ... 4:3, 9, 11, 13, 15; 8:9;

12:1-2, 8; B:2, 4; Fe:5

datamsg ... C:5, 7, 11, 17

driver close ... 3:8, 10; 4:12; 5:2, 7;

6:6; 7:3; 9:1, 15; 11:4, 6; B:10;

E:1

driver declarations ... 6:1; 9:4; 10:2

driver flow control ... 1:3; 2:5; 5:7;

8:5, 7; 9:1, 3; 11:1, 4, 7, 10-11;

12:2; 13:4

driver open ... 1:1-2, 5; 2:2, 4-5, 8;

3:3-14; 4:8-9; 5:1, 5-6; 6:5-6;

7:3; 9:1, 4, 6-7; 10:1-4, 7; 11:1-

3,5, 7, 9; 13:4-5; B:9; D:3;

I:1, 6-7

driver procedures ... 5:3-7; 6:2, 4,

6; 8:5, 7; 9:1, 3, 5, 8-9; 10:1,

4-5; 11:3, 9-11, 15; 12:8; 13:4-5

dupb ... C:6-7, 17

dupmsg ... 7:2; C:6, 17; D:2

enableok ... 13:4; C:6, 17

environment ... 2:8; 9:1; Cs1

flow control ... 1:3; 2:2, 5, 7; 5:7;

6:2; 8:1-2, 4-7, 11; 9:1, 3-4, 6;

10:2, 9, 11; 11:1, 4, 7, 9-11, 15,

20; 12:2; 13:4; A:2; B:2, 8, 10;

C:1, 8; D:6-7

INDEX I-1

index

flush handling ... 9:4, 9; 10:7;

11:14, 20; 12:7

flushq ... 8:9; C:7, 17

fmodsw ... 5:6; 6:2-3; 9:1; A:3; D:3;

E:2, 4

freeb ... 8:11; C:7, 17

freemsg ... 7:9; C:7, 17

getmsg ... 3:11; 4:1, 3-4, 11, 15;

5:2; 7:3; 12:1-2; B:2, 10-11

getq ... 8:2, 4-6; 9:3; 13:4; C:8, 12,

17; D:6-7

header files ... D:3

initial open ... 5:5; 9:1; 10:3-4; 11:2

insq ... C:8-9, 17

interrupt ... 9:1, 3, 6, 10-11; 11:7;

12:8; 13:1-2, 4; C:1, 4, 15

iocblk ... 9:13; 10:7; 11:3; A:4;

B:3-5

ioctl call ... 1:5-8; 2:7; 3:4, 10; 5:6;

9:12, 14; 10:7; 11:2; 13:5, 7;

B:3-4

ioctl commands ... 1:5; 6:3

ioctl processing ... 5:1

ioctl requests ... 1:9; 3:11

I_LINK ... 3:5-10, 12-16; 11:2-4, 9,

13-14; 500:5

I_PUSH ... 1:5; 3:9; 5:6; 6:3, 5;

300:12; 500:7

I_SETSIG ... 2:7; 13:5; 200:9

I_STR ... 1:6-8; 9:12,14; 10:2;

200:3

ILUNLINK ... 3:14; 11:4-5, 11, 13-

14

link ... 3:5-10, 12-14, 16; 7:1; 8:1-2;

11:4, 14; 13:8; As2

linkb ... 7:9; C:9, 17

linkblk ... 11:3-4, 11, 13; A:5

log ... C:14-15

lower Stream ... 3:1-12; 11:2-4, 7,

9, 11, 14-15

I-2 STREAMS PROGRAMMER’S GUIDE

mate queue ... 5:3-4; C:9, 17

message allocation ... 7:1, 7; C:3-5,

10-11, 15-16

message block ... 1:7; 4:11, 15; 6:3;

721-2, 5-9; 8:1-2, 4-6, 11; 9:3,

12-14; 10:7; 11:20; 12:1-2, 7-8;

13:8; A:4; B:2-5, 7-8, 10; C:1,

3-11, 13, 15, 17; D:2, 6; E:5-6

message priority ... 2:2, 7; 4:4, 9,

11, 15; 7:7; 8:1-2, 4-6, 9; 12:1-

2; 13:5; B:1, 10, 12; C:2-3, 5,

8-12, 15-16; D:5, 7

message queue ... 2:7; 4:11; 5:3-4,

6-7; 6:2-3, 5; 721-2; 8:1-2, 4-7,

9, 11; 9:1, 3, 9, 15; 10:2, 5, 8-

9, 11; 11:3, 9-11, 15-18, 20;

12:8; 13:3-4, 6-7; A:2, 4; Bs1,

7, 10-12; C:1-2, 4, 6-14, 17;

D:2, 5-7

message storage ... 7:1-2, 7; 11:3

message type ... 4:8-9, 11, 13; 5:1;

7:1-3, 7-8; 8:4-6, 9; 9:2, 9, 14;

10:8-9; 11:3; 12:1, 7-8; A:4;

B:1-2, 4, 6-8, 10-12; C:3, 5, 9-

12; Dz1, 3, 7

minor device ... 1:1-2; 2:1-2, 4-5,

7-8; 3:11; 9:1, 4, 6-7; 10:1-3, 5,

7; 11:1-2, 9, 11, 13, 20; C:14;

D:5

module declarations ... 6:1; 7:4; 8:7

module flow control ... 5:7; 6:2;

8:2, 5, 7; 9:1, 3; 12:2; 13:4;

A:2

module id ... 6:2-3; 13:5; A:2; C314;

D:2

module name ... 1:5; 5:6; 6:2-3;

9:5; A:2; E:2-4

module open ... 1:5; 3:6; 5:1, 5-7;

6:1-2, 5-6; 7:3; 9:1, 6; 11:5;

12:5; 13:5; A:2; B:9; D:3; Es1,

index

7

msgdsize ... C:9, 17

multiplex ... 3:1

M_DATA ... 6:3; 7:2-3, 7-9; 8:9,

11; 9:9, 13; 10:8; 11:3, 10, 15,

20; 12:1; 13:8; B:2-5, 7-8;

300:3, 5, 7, 9, 11; D:1; 500:5

M_IOCNAK ... 9:12, 14; 11:14;

B:4-5, 11; C:13; D:1-2

M_IOCTL ... 9:9, 12, 14; 10:2, 7;

11:3-4, 14; A:4; B:3-S, 11;

C:13; D:1-2

M_PCPROTO ... 7:2-3; 8:9; 10:8;

12:1-2, 4-5; B:2, 10; 300:5, 7,

11; D:2; 500:6

M_PROTO ... 7:2-3; 8:9; 10:8;

12:1-2, 4, 7-8; B:2, 10; 300:5,

7, 11; D:2; 500:6

noenable ... 13:4; C:6, 9, 12, 17

open call ... 1:1-3; 2:1-2, 5, 8; 3:11,

14; 4:9; 5:1, 5-6; 6:2, 5; 7:3;

10:1; 11:1, 3, 10; 13:5; A:2

open procedure ... 5:5-6; 6:1-2, 5-6;

9:1; 10:1, 4; 12:5; 13:4-5; A:2

OTHERQ ... C:9, 13, 17

packet size ... 6:2-3; 8:1; A:2; B:7-8

poll ... 2:1-5, 7-8; 3:11; 5:2; 10:9;

B:10-11; E:5

pollfd ... 2:3, 5

pop ... 5:6-7; 6:2; A:2

priority ... 2:2, 7; 4:4, 9, 11, 15;

6:6; 7:7; 8:1-2, 4-6, 9; 12:1-2;

13:1-2, 5; B:1, 10, 12; C:2-5,

8-12, 15-16; D:2, 5, 7; E:6

procedures ... 5:3-7; 6:1-2, 4-6; 7:2,

8; 8:1-7, 9; 9:1, 3, 5-6, 8-9, 11;

10:1, 4-5, 7-9, 11; 11:2-3, 9-11,

15, 18; 12:5, 7-8; 13:2-5; A:2;

B:10; C:2, 4, 11-13; D:4-7

pullupmsg ... C:10, 17

push ... 5:63; 6:2, 5; 8:11; A:2; D:1

pushable modules ... 5:3, 5-6; 8:2;

E:4, 7

put procedure ... 6:2, 5; 7:2; 8:2,

5-7, 9; 9:3, 6, 8-9; 10:5, 7-8, 11;

11:3, 9-11, 18; 12:5, 7-8; 13:3-

4; A:2; C:11-13; D:5-6

putbq ... 8:5-6; C:9-10, 17; D:7

putctl ... C:11, 17

putctll ... 10:8; C:11

putmsg ... 3:8; 4:1, 3-4, 9, 13, 15;

5:2; 7:3, 7; 12:1-2; 13:8; B:2, 8,

10; E:5-6

putnext ... 6:5; 8:2, 5, 9, 11; 11:15;

13:4; C:11, 13, 17; D:6

putq ... 8:2, 4, 6; 9:3; 11:15; 13:4;

C:7-10, 12, 17; D:5-6

qenable ... 10:11; 11:15; 13:3-4;

C:8, 12, 17

qreply ... 9:9, 14; B:4; C:13, 17

qsize ... C:13, 17

RD ... 9:7; C:13, 17

read ... 1:1-3; 2:1-2; 3:11; 4:4; 5:1,

3, 5-6; 6:1-3, 5; 7:3-4; 8:7; 9:3-

4, 6-7, 9; 10:2-3, 5, 7, 9, 11;

11:2, 9, 11, 18, 20; 12:1-2, 8;

13:4, 6-7; A:1; B:7-8, 10-12;

C:9, 13, 15, 17; E:1-2

read call ... 1:1, 3; 4:3; 6:5; 7:3;

10:9; 12:1; 13:7; B:11; C:12

read options ... 8:7; 13:7; B:7

rmvb ... C:13, 17

rmvq ... C:14, 17

schedule ... 8:6; 9:3; 13:4; C:1-2;

D:5-6

scheduler ... 8:2, 4; C:12

service interface ... 4:1-6, 8, 15;

7:2-3; 9:1; 12:1-5; 13:6

INDEX 1-3

index

service procedure ... 6:2, 6; 7:2;

8:1-7, 9; 9:1, 3, 6, 11; 10:8-9,

11; 11:9-10, 15; 12:5; 13:2-4;

A:2; B:10; C:2, 4, 12; D:5-7

service provider ... 4:1-9, 12-13;

12:1-2; D:2

service user ... 4:1-4, 6-8, 12; 6:6;

7:2-3; 8:2-3, 7; 9:1; 1231-2;

13:4, 6; D:2

signal ... 2:7; 6:6; 7:3; 10:9; 13:5-6;

B:9, 11; D:2-3, 5

splstr ... C:14, 17

strbuf ... 4:4, 9, 11

Stream head ... 1:3, 5, 7; 2:7; 3:4,

7, 11; 4:1, 4, 11, 15; 5:1, 3-6;

6:3; 7:1-3, 7; 8:1; 9:1; 9:3, 9,

12, 14; 10:8-9, 11-12; 112-3, 9-

11, 14, 20; 12:2; 13:5-8; A:2;

B:1-12; C:2, 16; D:1; E:4, 6

streamtab ... 5:5-6; 6:1-3; 8:1; 9:1,

5; 11:2-3, 9; A:1-2; D:3; E:1-3

strioctl ... 1:6-8; B:3-4

strlog ... C:14, 17

testb ... C:15

Tunable Parameters ... 13:8; E:4

unlinkb ... C315, 17

upper Stream ... 3:1-3, 11, 15;

11:2-3, 5, 7, 9-11, 14-16, 20

user context ... 6:6; 8:2; 13:1; C:4;

D:1

user interface ... 4:2-4, 6, 8; 5:1;

7:2-3; 9:1, 14; 11:3, 5; 12:1;

13:6

write ... 1:1, 3; 2:1, 5; 3:11; 4:4;

5:1, 3, 5-7; 621-3, 5; 7:3-4, 7;

8:7, 9; 9:3, 6-9; 10:2-3, 5, 9,

11; 11:2-3, 9-11, 13-15, 17;

12:1, 5, 7-8; 13:2, 4, 8; As1, 5;

B:7-8, 10-12; C:9, 13, 15-17;

E:1-2, 5

-4 STREAMS PROGRAMMER’S GUIDE

write call ... 1:1, 3; 2:5; 3:8; 4:3;

5:3, 7; 6:3, 5; 7:3; 9:3; 11:15;

12:1; 13:8; B:7, 10; C:16; E:5

index

INDEX I-5

moisten & seal

a

CUSTOMER DOCUMENTATION COMMENT FORM

Your Name Your Title

Company Phone

Street

City State Zip ———___

We wrote this book for you, and we made certain assumptions about who you are and how you would

use it. Your comments will help us correct our assumptions and improve the manual. Please take a

few minutes to respond. Thank you.

Manual Title Manual No.

Who are you? OEDP/MIS Manager OiAnalyst/Programmer ([JOther

LSenior Systems Analyst LC) Operator

LJ Engineer LiEnd User

How do you use this manual? (List in order: 1 = Primary Use)

—— Introduction to the product —— Tutorial Text __ Other

—. Reference —— Operating Guide

About the manual: Is it easy to read?

Is it easy to understand?

Are the topics logically organized?

Is the technical information accurate?

Can you easily find what you want?

Does it tell you everything you need to know?

Do the illustrations help you? ooooocoas ooooooo2
If you wish to order manuals, contact your sales representative or dealer.

Comments:

SALVLS GALINA

JH NI

QS TVW al

AYVSSAOAN

JDVLSOd ON

0686-18S10 YW ‘Cr1oqise

00h XOd “Od
SALIG IeINduloy OOPP

TlIl-d SN

uoT}DJUSUINIOG] 1euWIO}sNyD

ferous ee 4D
ASSSSAYGdV Ad dIVd 3d TIM ADVLSOd

|
=

L8SL0 VW ‘OHOELSAM 92 'ON LINHSd SSV19 LSHl4

TIVIN Aldad SSANISNG

STREAMS |
Programmer’s !

Guide |

forthe |

DG/UXTM |
System :

|069-701034-00

Cut here and insert in binder spine pocket

(DataGeneral __IMIIHIIMINMINMINNIN
Data General Corporation, Westboro, Massachusetts 01580 ”Gg- —-791034- -AB

