
Addendum to Programming in

the DG/UXTM Kernel Environment

086-000426-00

This addendum updates manual 093-701083-00. See Updating Instructions on

reverse.

Ordering No. 086-000426

Copyright © Data General Corporation, 1992

Unpublished—all rights reserved under the copyright laws of the United States

Printed in the United States of America

Revision 00, February 1992

Licensed Material—Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS DOCUMENT FOR USE BY DGC

PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE

COPYRIGHT HOLDER(S); AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART

NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes in specifications and other information contained in this document without prior

notice, and the reader should in all cases determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS

AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE

WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND

CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST

SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT

INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME

PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED

HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE

RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST

PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION

CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN

OF THE POSSIBILITY OF SUCH DAMAGES.

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph

(c)(1)Gi) of the Rights in Technical Data and Computer Software clause at [FAR] 52.227-7013 (May 1987).

DATA GENERAL CORPORATION

4400 Computer Drive

Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,

ECLIPSE MV/8000, PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General

Corporation. CEO Connection, CEO Connection/LAN, DASHER/One, DASHER/286, DASHER/286-

12c, DASHER/286-12j, DASHER/386, DASHER/386-16c, DASHER/386-25, DASHER/386-25k,

DASHER/386SX, DASHER/386SX-16, DASHER/386SX-20, DASHER/386SX-25, DASHER/LN,

DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000,

ECLIPSE MV/2500, ECLIPSE MV/3500, ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/5600,

ECLIPSE MV/7800, ECLIPSE MV/9300, ECLIPSE MV/9500, ECLIPSE MV/9600, ECLIPSE MV/10000,

ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/30000,

ECLIPSE MV/40000, Intellibook, microECLIPSE, microMV, MV/UX, PC Liaison, RASS,

SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of

Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company. NFS is a U.S.

registered trademark of Sun Microsystems, Inc. and ONC is a trademark of Sun Microsystems, Inc.

Addendum to Programming in the DG/UXTM Kernel Environment

086-000426-00

Revision History: Effective with:

Original Release - February 1992 DG/UX Release 5.4.1

Updating Instructions

This addendum updates Programming in the DG/UX Kernel Environment (093-701083-
00) with a new appendix, Appendix D, that describes how to take advantage of the
symmetric multiprocessing environment with the DG/UX STREAMS facility.

To update your copy of 093-701083-00, please remove the manual pages listed below

and replace them with addendum pages as follows:

REMOVE INSERT

Title/Notice Page Title/Notice Page

- D-1/D25

Insert this instruction sheet immediately behind the new Title/Notice page.

Programming in the DG/UXTM

Kernel Environment

093-701083-00

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 093-701083

Copyright © Data General Corporation, 1991

Unpublished—all rights reserved under the copyright laws of the United States

Printed in the United States of America

Revision 00, March 1991

Licensed Material—Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS DOCUMENT FOR USE BY DGC

PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE

COPYRIGHT HOLDER(S); AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART

NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright hokler(s) reserves the right to make changes in specifications and other information contained in this document ‘without prior

notice, and the reader should in all cases determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS

AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE

WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND

CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST
SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT

INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME

PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED

HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE

RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST

PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION

CONTAINED INIT, EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN

OF THE POSSIBILITY OF SUCH DAMAGES.

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph

(¢)(1)Gi) of the Rights in Technical Data and Computer Software clause at [FAR] $2.227-7013 (May 1987).

DATA GENERAL CORPORATION

4400 Computer Drive

Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,

ECLIPSE MV/8000, PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General

Corporation. CEO Connection, CEO Connection/LAN, DASHER/One, DASHER/286, DASHER/286-

12c, DASHER/286-12j, DASHER/386, DASHER/386-16c, DASHER/386-25, DASHER/386-25k,

DASHER/386SX, DASHER/386SX-16, DASHER/386SX-20, DASHER/386SX-25, DASHER/LN,

DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000,

ECLIPSE MV/2500, ECLIPSE MV/3500, ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/5600,

ECLIPSE MV/7800, ECLIPSE MV/9300, ECLIPSE MV/9500, ECLIPSE MV/9600, ECLIPSE MV/10000,

ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/30000,

ECLIPSE MV/40000, Intellibook, microECLIPSE, microMV, MV/UX, PC Liaison, RASS,

SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of

Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company. NFS is a U.S.

registered trademark of Sun Microsystems, Inc. and ONC is a trademark of Sun Microsystems, Inc.

Programming in the DG/UXTM Kernel Environment

093-701083-00

Revision History: Effective with:

Original Release - March 1991 DG/UX Release 5.4

Addendum 083-000426 - Feb. 1992 DG/UX Release 5.4.1

Contents

Appendix D — Using STREAMS in the DG/UX Multiprocessor

Environment

What Are Concurrency Sets?csscscsccscscssccsecsssescccscsssscsesseccssecseeseceees D-1

Terminology-ccceccsecseccacccsccccecccevccscesccsscsesecsccccrscserscccesssscesssesscesees D-2

How Different Types of Concurrency Sets Workccsseccosscncccnseceeseresees D-5

Recommendations on How to Use Concurrency Sets.sccssssescesssecseeereee D-9

Notes on Creating STREAMS Code on the DG/UX Systemccscceeeseeeees D-9

Notes on Porting STREAMS Code to the DG/UX Systemccceceseeeeeeee D-10

SU_SUT_SICEPccccccscececcscccsccecccrceesccceccecececscscesesescencseseseneseenssecnesseeeses D-12

SU_STY_WAKCUPcccecccsccscecscncncccsenecccscceceeesscecesescccensneresereeeeeeseenessoeeees D-13

SU_SIT_NEXt_EVENE-csceccec cnc cscccceccccn cco seconscccccscescccemecccnesscceneceessseeseseeenes D-14

086-000426 updates Licensed material—property of Data General Corporation Vil
0$3-701083-00 .

Figures

Figure

D-1 Basic STREAM Layoutcccccesccsssceconssscesecnceeessesenssesenseoeesoeess D-3

D-2 Multiplesor STREAM.::scesccseesesssessseesenssesesecesseceesceseseocesesecees D4

D-3 Per-stream Concurrencysscscscesscensccceenescesccescasensecsecceneecaeeeasens D-6

D4 Per-module Concurrency-csccccsceescscensenceeenceocecscsenesceessascesewoes D-7

D-5 Set COmcurrencycccccssssscecssseceecceresssceeeesceessssaeceeansceanssssesoesoeeoeas D-8

viii Licensed material—property of Data General Corporation 086-000426 updates
093-701083-00

Appendix D

Using STREAMS in the DG/UX

Multiprocessor Environment

DG/UX STREAMS is fully compatible with industry standard STREAMS. As

Chapter 1 notes, the Programmer’s Guide: STREAMS (UNIX System V Release 4)

describes how to write code for such industry standard STREAMS. You need only

create a master file entry with default settings for each STREAMS module and driver

to integrate industry standard code transparently into the DG/UX system.

However, DG/UX STREAMS also allows you to access some additional features of

the DG/UX kernel that are not available under the basic industry standard

STREAMS. Chapter 1 mentions that you can add some additional routines via a

routines vector. The Writing a Device Driver for the DG/UX System manual describes

how to create this routines vector and these additional routines. This appendix looks

at a second, more important option under DG/UX STREAMS, how to take

advantage of the symmetric multiprocessor environment without changing your code.

The feature that allows you to do this is called concurrency sets. Concurrency sets are

controlled solely through your master file entries.

This appendix describes what concurrency sets are and how to use them and then

discusses how different concurrency sets affect performance.

What Are Concurrency Sets?

Industry standard STREAMS does not yet support symmetric multiprocessing and

portability is very important in a STREAMS program. As we’ve seen, one of the

keys to programming in a fully symmetric environment is guaranteeing that only one

process has access to critical sections of code or shared data at the same time.

Normally, to run concurrently you would have to add locks to your code to guarantee

exclusivity when the process is accessing critical code or data. But adding locks makes

the code less portable. Concurrency sets allow you to define which modules/drivers

can run concurrently and which cannot by setting a flag in their master file entry.

Thus, concurrency sets support multiprocessing STREAMS while maintaining

complete portability.

A concurrency set is most easily understood as a set of modules that are associated

with a common lock. Notice that different modules sharing a common lock means

that modules in the same set cannot run at the same time because only one member

of the set can hold the common lock at a time. On the other hand, modules that do

not share the same lock can run at the same tiem. Thus, paradoxically members of

the samme concurrency set cannot run concurrently while members of different

concurrency sets can.

086-000426 updates Licensed material—property of Data Genera! Corporation D-1
093-701083-00

What Are Concurrency Sets?

The master file entry lets the kernel’s STREAMS management code know which

modules/drivers share a common lock. Whenever a message is passed between

modules, this management code checks to see if the receiving module’s lock is

available. If it is, the new module can run. If it is not, the new module is put on a

deferral list awaiting its lock’s release.

This is the basic idea of concurrency sets. In order to describe their use we need to

look more carefully at STREAMS modules and drivers in action. To do this let us

first introduce some basic terminology.

Terminology

The three basic components of a stream are: a stream head, modules, and a driver.

e Stream Head — The stream head is the code segment at the top of the stream. It

is the interface between user space and kernel space for a stream and provides

synchronization between the stream and kernel/user space.

© Module — A module is a stream component that manipulates data. Users can

push one or more modules onto the stream between the stream head and the

driver using a special ioctl system call. Every module has a read queue and a

write queue. The read queue holds data that is going up the stream and the write

queue holds data that is going down the stream. A module’s job is to respond to

messages coming in on its own read/write queues and send messages to the

read/write queues of modules above and below it on the stream.

® Driver — The driver is a special case of a module; it is the module at bottom of

the stream. Because it is at the bottom, it serves as the external interface for the

stream. Drivers often address hardware devices, but they may also address

pseudodevices.

@ Messages — Messages are the items that are passed along the stream. They

contain data and other state information about the type of message etc.

Messages can be passed downstream (from the stream head towards the driver)

or upstream (from the driver towards the stream head). Modules perform

various operations on message information as it is passed up and down the

stream.

Figure D-1 shows a basic stream. The stream head is at the top, the driver is at the

bottom, and in between you have some number of optional modules.

D-2 Licensed material—property of Data General Corporation 086-000426 updates
093-701083-00

What Are Concurrency Sets?

User Process

| i User Space

\ Kernel Space
Stream

Downstream Head

1 |
module

(optional)

, |
v Driver Upstream

y 7
External

Interface

A

Figure D-1 Basic STREAM Layout

086-000426 updates Licensed material—property of Dat
.

093-701083-00 al-—property a General Corporation D-3

What Are Concurrency Sets?

Figure D-2 shows an example of a more complicated set of streams, the type that

frequently arise in real world applications. This example shows multiple streams

feeding into a TCP/IP communications driver.

timod
fd 1 sockets fd 2 (TPI)

User

Space t t !

Space

Kernel i
Stream

Head

Socket

Manager

Stream

Head

Stream

Head

timod

(TPI)

PNG
XXX Socsys

;
TCP/IP

ixe

x.25 ARP

LAPB Ether

' f
SSID

Driver
Driver

Figure D-2 Multiplexor STREAM

Because several streams end at TCP/IP, it is a driver. But the TCP/IP module also

branches out into several other streams. A module that maps one or more upper

streams to one or more lower streams is called a multiplexor.

086-000426 updatesD-4 Licensed material—property of Data Genera! Corporation
093-701083-00

How Different Types of Concurrency Sets Work

How Different Types of Concurrency Sets

Work

A concurrency set associates a lock with a set of modules. It provides mutual

exclusion for all the modules belonging to the set. A single lock protects all the

modules in the set from colliding with each other.

There are four types of concurrency sets, that is, four ways that you can associate a

lock with a module. The four types are: per-stream, per-module, set and default

concurrency. Note that the label “none” is reserved for future use and should not be

used as a concurrency set name.

You define a module/driver’s concurrency in its master file entry by entering “stream”

for per-stream, "module" for per-module, a set name for set concurrency and "default"

for default concurrency. Thus, in the example shown below, hken is per-stream, sd is

per-module, the xdev driver belongs to a set concurrency set named "george" and the’

cird driver used "default" concurrency.

#

Disks:

Name Restriction Concurrency

Prefix Flags Set

¢ or ee mma me eae me ee me ee

hken D stream

inen n module

ttcodpat n george

ldtern n default

#

#

If a module or driver has per-stream concurrency, it uses the same lock as its stream

head. Figure D-3 shows per-stream concurrency.

086-000426 updates Licensed materiaproperty of Data General Corporation D-5
093-701083-00

How Different Types of Concurrency Sets Work

Per—stream Concurrency

* Within each stream, the stream—head, module,

and driver all share a common lock.

Stream 1 Stream 2

—

Stream

Head

module module

(MOD-A) (MOD-A)

1 | |
driver

(DRV—A)

Figure D-3 Per-stream Concurrency

A stream-head is by definition in per-stream concurrency. This cannot be changed.

In this example, the module, MOD-A, and the driver, DRV-A, have also been

defined as per-stream concurrency in their master file entries. Notice that both

streams have instances of MOD-A and DRV-A. Per-stream concurrency means that

the instances of MOD-A and DRV-A share a lock with their respective stream heads.

The big box around each stream shows that the stream’s components are in the same

D-6 Licensed materiat—property of Data General Corporation 086-000426 updates
093-701083-00

How Different Types of Concurrency Sets Work

concurrency set and in a different concurrency set from the neighboring stream. This

means that STREAM-1 and STREAM-2 can run concurrently because they use

different locks. Conversely, the stream-head, MOD-A, and DRV-A in each stream

run separately because they all share the same lock.

In per-module concurrency, all instances of a module or driver have the same lock.

Figure D-4 shows per-module concurrency.

Per—module Concurrency

* All instances of a module share a common

lock.

Stream 1 Stream 2

Stream | Stream

Head Head

=
module module .

* | (MOD-A) (MOD-A) | :

driver driver

(DRV-—A) (DRV—A) |

|

J

co
Figure D-4 Per-module Concurrency

Q86-000426 updates Licensed materialt—property of Data General Corporation D-7
033-701083-00

How Different Types of Concurrency Sets Work

The module, MOD-A and the driver, DRV-A have been defined as having per-

module concurrency. Both STREAM-1 and STREAM-2 contain instances of the

module, MOD-A. The box around these two instances of MOD-A show that they

‘share the same lock, which means each instance will run exclusive of the other. The

same logic holds for the two instances of DRV-A as well. The stream heads are, as

always, per-stream concurrency and thus use a different lock from both MOD-A and

DRV-A. Consequently, the stream-head, MOD-A, and DRV-A of STREAM-1 can

all run concurrently. In this example, exclusivity holds only between instances of

MOD-A and DRV-A.

Note that module concurrency for drivers is handled on a major number basis. Thus,

if you have the same driver with different major numbers for it, then only instances

with the same major number will have the same lock.

The final type of concurrency is called set concurrency. In set concurrency, modules

belong to the set named in the master file. The set name can be any legitimate UNIX

name string. Figure D-5 shows set concurrency in which modules MOD-A and

MOD-B are both part of the the "george” concurrency set.

Set Concurrency

common lock.

Stream 1

Stream

Head

A

|

module

(MOD-—A)

module

(MOD-B)

driver

(DRV—A)

* AJ] instances of one or more modules share a

Stream 2

Stream

Head

module

(MOD-A)

module

(MOD-B)

driver

(DRV—A)

Figure D-S Set Concurrency

Licensed material—property of Data General Corporation

vv ‘ e ® e §

|

al

086-000426 updates

093-701083-00

How Different Types of Concurrency Sets Work

Default concurrency is actually a special case of set concurrency. All modules with

default concurrency belong to the same set. Thus, members of the default set run

exclusively of each other and concurrently with other sets.

Note that if you define a driver to be in set concurrency, all instances of that driver

will have the same lock regardless of the major number. Only in per-module

concurrency does the major number make a difference.

Recommendations on How to Use

Concurrency Sets.

We recommend you define all modules/drivers as per-stream concurrency except in

the three special case conditions listed below. Using per-stream concurrency provides

more concurrency than the default concurrency set and it avoids complicated

overhead costs that can arise in other forms of concurrency. Note that stream heads

are always defined as per-stream concurrency.

The three exceptions to this recommendation are as follows:

e All multiplexors must be defined as per-module, set or default concurrency.

They cannot be defined as per-stream concurrency because they don’t belong

exclusively to any one stream-head (they map multiple upper streams to multiple

lower streams).

@ Because you must provide mutual exclusion for shared data, instances of modules

that share data, or multiple modules that share data must belong to the same

concurrency set.

e If you must be guaranteed that a putnext procedure runs immediately when

called, then adjacent modules must be in the same concurrency set. The need to

guarantee that the putnext runs immediately sometimes arises in state driven

situations; for example, a module needs to know that a particular action has

occurred when it thinks it has occurred, and it relies on the return value of the

putnext. Thus, if you set up the putext procedure to return an integer and it

must come back accurately, then two adjacent modules must be in the same set.

Notes on Creating STREAMS Code on the

DG/UX System

STREAMS kernel programming is generally the same as other kernel programming.

If you are creating STREAM code from scratch and portability is not an issue, you

can use fine-grained locks, eventcounters and most of the other facilities described in

the body of this manual. However, there are a few kernel facilitites, such as buffer

vectors and select management routines, that are not appropriate for STREAMS

code. STREAMS restrictions, if any, are noted in the chapters that cover particular

topics. Be sure to create master file entries for all STREAMS modules and drivers.

Stream-heads do not require master file entries because their concurrency set is

always per-stream concurrency. Use the system file entry to request either a default

086-000426 updates Licensed material—property of Data General Corporation D-9
093-701083-00

Notes on Creating STREAMS Code on the DG/UX System

routines vector or your own. See Writing a Standard Device Driver for the DG/UX

System for more information on how to create your own routines vector.

In addition, you should observe the following guidelines:

@ Use the standard STREAMS utilities to manipulate queues and pass messages to

other modules. Using your own routines to traverse the stream and manipulate

queues is particularly dangerous in a multiprocessing environment. In particular,

always use putnext() to pass messages between modules. Do not create your own

queue_t structures and manipulate them with standard STREAMS utilities.

@ Use only the putg and qenable STREAMS utilities in your interrupt handler at

interrupt level. No other STREAMS utilites may be used.

e Explicitly protect shared data in interrupt handlers.

© Don’t make assumptions about major number assignments for device drivers.

Notes on Porting STREAMS Code to the

DG/UX System

The list of programming guidelines given above holds for ported code as well as newly

created code. Check your program for violations of these guidelines before

attempting to port. In particular, note the restrictions on STREAMS utilities at

interrupt level.

In addition, there are four AT&T STREAMS utilities that do not hold on the

DG/UX system. These are: splstr(Q, splxQ, sleepQ, and wakeupQ). Splistr0Q and

splx(Q) are used to enable and disable interrupts. In AT&T's single-processor

environment, such routines can be used to provide mutual exclusion. However, on a

symmetric multiprocessor system, disabling interrupts does not provide exclusivity (as

Chapter 1 describes). SleepQ and wakeupQ do not work in the DG/UX environment

for similar multiprocessing reasons.

Remove instances of splstrQ and splxQ. Review the code to see if the exclusion that

these functions provided must be replaced through concurrency sets or by adding your

own locks using the kernel-supplied locking routines. Replace instances of wakeupQ)

with su_str_wakeup(). Replace instances of sleep(with su_str_get_next_event(Q) and

su_str_sleep() as shown in the coding examples below. Be sure to use

su_str_get_next_event() to get the event before using su_str_sleep() to await it. The

first example shows the AT&T version of the code, followed by the DG/UX

equivalent.

D-1 0 Licensed material—property of Data Genera! Corporation 086-000426 updates
093-701083-00

Notes on Porting STREAMS Code to the DG/UX System

AT&T CODE

n = splstr();

while (condition)

f

if (sleep(resource, PCATCH))

{

/*a signal was detected*/

}

}

[optionally perform mutually exclusive operati
ons

after event has occurred.]

splx (n);

DG/UX CODE

next _event = su_str_next_event (resource i

while (condition)

{

if (su_str_sleep(resource, next event))

{

/*a Signal was detected*/

}

}

[mutual exclusion is now guaranteed.]

The routines used in these examples are described on the next several pages.

086-000426 updates Licensed material—property of Data General Corporation D-1 1
093-701083-00

sSu_str_sieep

su_str_sleep

Syntax

int su_str_sleep(

caddr_t resource, /* READ ONLY*/

vp_ec_value_type next_ec_ value /* READ ONLY*/

)

Summary

This routine awaits an event specified by the eventcount value next_ec_value or

the eventcounter specified by resource or a process interrupt event.

Parameters

resource — A pointer to the resource being awaited.

next_ec_value — The value of the eventcount to await.

Description

This routine awaits a su_str_wakeup(resource) operation that advances the

eventcounter associated with resource to next_ec_value. This routine should be

used only by a module or driver open/close routine.

Return Values

0 — sleep was awakened by wakeup

1 — sleep was awakened by an interrupt signal (process is either

being terminated or ut must handle a signal).

D-1 2 Licensed material—property of Data Genera! Corporation 086-000426 updates
093-701 083-00

su_str_wakeup

su_str_wakeup

Syntax

void su_str_wakeup (

caddr_t resource /7* READ ONLY*/

)

Summary

This routine causes the eventcount associated with resource to be advanced.

Parameters

resource — A pointer to a resource being freed.

Description

See Summary.

Return

None.

Exceptions

None.

086-000426 updates Licensed materiai—property of Data General Corporation D-1 3
0$93-701083-00

su_str_next_event

su_str_next_event

Syntax

vp_ec_ value_type su_str_next_event(

caddr_t resource /* READ ONLY*/

Summary

This routine returns the next value of an eventcount associated with resource.

Parameters

resource — A pointer to a resource being sought.

Description

See Summary.

Return

The value that the eventcount associated with resource will attain when it is next

advanced is returned.

Exceptions

None.

D-1 4 Licensed material—property of Data General Corporation 086-000426 updates
093-701083-00

