
dy DataGeneral

Customer Documentation

Using the Command Processor





Using the Command Processor

093-000706-00

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000706

Copyright © Data General Corporation, 1989, 1990

All Rights Reserved

Unpublished — All rights reserved under the Copyright laws of the United States

Printed in the United States of America

Rev. 00, December 1989

Licensed Material — Property of Data General Corporation



Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN
WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE
OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,

ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA,

PRESENT, PROXI, SWAT, and TRENDVIEW« are U.S. registered trademarks of Data General

Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, AViiON, BaseLink,

BusiGEN, BusiPEN, BusiTEXT, CEO Connection, CEO Connection/LAN, CEO Drawing Board,

CEO DXA, CEO Light, CEO MAILI, CEO Object Office, CEO PXA, CEO Wordview, CEOwrite,

COBOL/SMART, COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/386,

DASHER/LN, DATA GENERAL/One, DESKTOP/UX, DG/500, DG/AROSE, DGConnect,

DG/DBUS, DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO, DG/L, DG/LIBRARY, DG/UX,

DG/XAP, ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE Mv/2500,

ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/7800, ECLIPSE Mv/9500,

ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MvV/20000,

ECLIPSE MV/40000, FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, microECLIPSE,

microMV, MV/UX, PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL,

SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, WALKABOUT,

WALKABOUT/SX, and XODIAC are trademarks of Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company.
NFS is a registered trademark of Sun Microsystems, Inc.

386/ix is a trademark of Interactive Systems Corporation.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as

set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [FAR]

$2.227-7013 (May 1987).

Data General Corporation

4400 Computer Drive

Westboro, MA 01580

Using the Command Processor

093-000706-00

093-000707-00 (Japan only)

Revision History: Effective with:

Original Release - December, 1989

Addendum 086-000167-00 -June, 1990 Mxdb, Rev. 1.10

(086-—000169-00 Japan only)

A vertical bar in the margin of a replacement page indicates

substantive technical change from the previous revision.



Preface

This manual describes how to use the Command Processor (CP), a utility that provides the user

interface to interactive tools, such as Mxdb, that operate from a textual interface. The CP defines

command rules, checks command arguments, and offers several predefined facilities. This manual

contains both tutorial and reference information.

Using the Command Processor is intended for readers who are familiar with the AViiONTM DG/UXTM

or 386/ixTM system, have programming experience, and use interactive tools such as Mxdb.

Manual Organization

Chapter 1 introduces the CP and describes how to create command lines.

Chapter 2 describes the CP utilities such as help, session logging, and execution control-flow.

Chapter 3 describes how to customize your environment by writing macros, creating and managing

realms, and changing the values of arguments.

Chapters 4-7 contain the available on-line help messages in printed form. The messages include

command descriptions and information about a variety of topics.

Reader, Please Note

Data General manuals use certain symbols and styles of type to indicate different meanings. The Data

General symbol and typeface conventions used in this manual are defined in the following list. You

should familiarize yourself with these conventions before reading the manual.

This manual presumes the following meanings for the terms “command line,” “format line,” and

“syntax line.” A command line is an example of a command string that you should type verbatim; it

is preceded by a system prompt and is followed by a delimiter such as the curved arrow symbol for

the New Line Key. A format line shows how to structure a command; it shows the variables that must

be supplied and the available options. A syntax line is a fragment of program code that shows how to

use a particular routine; some syntax lines contain variables.

093-000706 Licensed Materia! -— Property of Data General Corporation iii



Preface

Convention Meaning

boldface

constant width/

monospace

italic

[optional]

$ and %

<, >, >>

In command lines and format lines: Indicates text (including punctuation) that

you type verbatim from your keyboard.

All DG/UX commands, pathnames, and names of files, directories, and

manual pages also use this typeface.

Represents a system response on your screen.

Syntax lines also use this font.

In format lines: Represents variables for which you supply values; for example,

the names of your directories and files, your username and password, and

possible arguments to commands.

In text: Indicates a term that is defined in the manual.

In format lines: These brackets surround an optional argument. Don’t type

the brackets; they only set off what is optional. The brackets are in regular

type and should not be confused with the boldface brackets shown below.

In format lines: Indicates literal brackets that you should type. These brackets

are in boldface type and should not be confused with the regular type brackets

shown above.

In format lines and syntax lines: Means you can repeat the preceding

argument as many times as desired.

In command lines and other examples: Represent the system command

prompt symbols used for the Bourne and C shells, respectively. Note that your

system might use different symbols for the command prompts.

In command lines and other examples: Represents the New Line key, which is

the name of the key used to generate a new line. (Note that on some

keyboards this key might be called Enter or Return instead of New Line.)

Throughout this manual, a space precedes the New Line symbol; this space is

used only to improve readability — you can ignore it.

In command lines and other examples: Angle brackets distinguish a command

sequence or a keystroke (such as <CtrI-D> and <Esc>) from surrounding

text. Note that these angle brackets are in regular type and that you do not

type them; there are, however, boldface versions of these symbols (described

below) that you do type.

In text, command lines, and other examples: These boldface symbols are

redirection operators, used for redirecting input and output. When they

appear in boldface type, they are literal characters that you should type.

Licensed Material - Property of Data General Corporation 093-000706



Preface

Contacting Data General

Manuals

@ To order any Data General manual, please use the enclosed TIPS order form (USA only) or

contact your local Data General sales representative.

@ If you have comments on this manual, please use the prepaid Comment Form that appears at

the back. We want to know what you like and dislike about this manual.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, and you are

within the United States or Canada, contact the Data General Service Center by calling

1-800-DG-HELPS for toll-free telephone support. The center will put you in touch with a member

of Data General’s telephone assistance staff who can answer your questions.

Free telephone assistance is available with your warranty and with most Data General service options.

Lines are open from 8:30 a.m. to 8:30 p.m., Eastern Time, Monday through Friday.

For telephone assistance outside the United States or Canada, ask your Data General sales

representative for the appropriate telephone number.

Related Documents

This section lists the documents referred to in the text of this manual.

@ Using the Multi-extensible Debugger (Mxdb for DG/UX and 386/ix Systems) (093-000710)

End of Preface

093-000706 Licensed Material - Property of Data General Corporation Vv





Contents

Chapter 1 Introduction to the Command Processor

Terms and ConceptS «1... ... eee ce ee ee eee eee eee eee ee ete e eee e ees

Character... cc ee eee ee eee eee eee eee ete e eee eee ee eee eeeeeee

WOT oo ee ee ee eee eee ee eee ee eee eee eee eee eee eee nee

1) 0 or:

Abbreviating Commands and Other Words ........... cece cee ce eee ee eee tenet enn

Creating a Command Line ......... cc eee ee ee eee eee tee ete t teen nee

Entering a Command ....... 6... ccc ccc eee ee ee eee eee eee eee e nen neeeennes

Required ArgumentS ......... ce ccc ee ee ee ee eee ee ene eee eee eee eens

Optional ArgumentS 2.0... ... cee ee ee eee eee eee eee e eee eens

Keyword ArgumentS 2.0... .. cee ce ee ee eee eee eee eee eee ene eee eee eee eee

Values by Position and Name ...... cece ee te ee eee teen ete e nee

Default and Implied Values ....... 0... ccc ccc ete ee tenet eee eee teen eens

Command Arguments ........ ccc eee ce eee eee ee eee ee eee ee eee eee eens

Argument Values and TypeS ........ cece ce eee eee re eee eee ete eee eee eens

Continuing a Command Line ......... ce ec ee ee eee ee eet t ete eee e ene

Inserting COMMEM{S .. 1... ee ee ee eee eee ee ee eee eee nee

Capturing Command Output ........ cee ee eee ee eee eee ee eee tenet ene nees

Putting Special Characters into a Command Line .............. cee eee eee eee

Balancing Character Pairs 2.1... cece eee eee eee eee ee eee en eee eens

Using Backquotes Within Braces ........... ccc eect eee teen ene e eee eens

Evaluating a Series of Commands .......... cece ee cee ee ee ee ee eee eee ee ete e teens

Chapter 2 Using Command Processor Utilities

Getting Help... ee eee ee eee eee eee eee eee eee nee ete eee

The help Command ....... ce cee ee eee ee eee eee eee ee eee ee eee eee

Command Prompting ......... ec cee eee ee ee ee eee ee eee ee eee ee eee ee eee

Invoking Command Prompting .......... ccc cc eee eee re ee ee eee eee ee tees

Issuing Prompting Facility Commands .......... 0. cece cc eee cece eee eee teens

Pushing from a Prompting Session ..... 0... cee cc ec ee eee eee eee ee ee ees

Resuming a Prompting Session ........... cece eee eee ee eee ee eee ee eee eee e eens

Logging a SESSION... ke ee ee eee ee eee eee eee eee eee eee eee eee

Performing CP Control Flow .... 0... 0. cece ee eee eee eee eee eee eee eens

Comparison with Debugger Control Flow .......... cece eee eee ee eee eee eee eens

Executing If Phrase Is Nonnull (c-prif) 2.0... 0... cee ee eee eee nee eee teens

Executing While Phrase Is Nonnull (c-p:while) 2... .. 0... ccc cee ee ec eee eee eee

Protecting Commands from Errors (protect) ... 2... eee ee eee ee ete eee eee tees

Comparing Two CP Variables (equal) ........ ce ccc cee eee eee eee eee nee

Negating a Test (NOt) 2... cee ee eee eee eee eee eee eee

Doing an AND Test (and) ......... cece cc eee ee tee eee cence ete e teens

Doing an OR Test (Or) 0... eee ee eee ee ee eee eee tees

093-000706 Licensed Material — Property of Data General Corporation



Contents

Manipulating Phrases as SequenceS ........ ccc ee tee eee tee ee ee ee eee 2-10

Executing Commands Repeatedly (do-sequence) ....... 0c cece eee eee teen eens 2-11

Writing the First Word of a Phrase (first) 0.0... ccc ete teen eens 2-11

Writing the Rest of a Phrase (rest) 20... cece cece tenet een nets 2-12

Writing the Last Word of a Phrase (last) 0... 0... cece cee cee eee eee enn eens 2-12

Write the Position of an Expression in a Phrase (position) ...... 0... cece cece eee eee 2-13

Write a Subphrase (subphrase) ........ 0 cece cee eee eee teen eee 2-13

Write the Length of a Phrase (length) ...... 0... ccc ccc cece eee eee teens 2-14

Chapter 3 Customizing Your Environment

Terms and Concepts 2.0... . eee eee eee eee eee ee Eee eee 3-1

Command 2... ccc ee ee ee ee eee eee ee ee ete ee eee Eee ees 3-1

Built-in Commands ....... 0. cece ec ee ee ee ee ee ee eee ee ee eee ee ete ees 3-1

IA, 6: oh © un 3-1

CP Variable 0... ee ee ene ee eee ee eee eee eee eee ee eens 3-2

1 Coo 0 3-2

Default Value 2.0... ee ee eee ee eee eee ee ee eee tenet eee ee eens 3-2

Implied Value 21... . ee ee ee ee ee eee eee eee 3-2

Standard Output 2.0... ec ee ee eee ee ee ee eee eee 3-2

Error Output 2... ee ee ee ee ee eee eee EEE Eee 3-2

Standard Input 2.0... .. cee ee ee eee eee eee eee 3-2

Include File 2.0... ee ee ee eee ee eee ee eee Eee eee Eee 3-2

Writing MacroS 2.0... . ec ee ee ee ee ee eee ee ee eee eee E EES 3-3

Creating a Macro (define-macro) ....... cece eee et ee eee teen eens 3-3

Returning from a Macro (return)... 1... ce eee ene tenet ees 3-4

Viewing a Macro (print-command) ........ 00. c cece eee eee nee eens 3-4

Deleting a Macro (delete-command) ........ cc cece eee ee eee te eee eee 3-5

Prompting for User Input (query) ... 1... . cece eee eee eee eee tee ee ee eee eee eens 3-5

Writing a Message (write) 2.0.6... ee ee ee ee eee eee eee ee 3-6

Writing Error Messages (error) «1... . eee ee ee ee eee eee eee eee 3-7

Creating and Managing Realms............ cc eee et eee ee eee ee eee eee eee 3-7

Displaying and Setting the Current Realm (realm) ......... ccc cece eee ene 3-7

Creating a Realm (define-realm) 1.1... cee cee ee eee eee eee ee teens 3-8

Displaying and Setting the Realm Use List (realm-use-list) ...... 0.0... cee eee eee 3-8

Displaying and Setting the Prompt String (prompt-string) ......... 0... eee eee eee 3-9

Deleting a Realm (delete-realm) ...... cece eee ee ee ee eee tne 3-9

Changing an Argument’s Default Value (change-argument-value) ........ 0.0... cece eee eens 3-9

Creating Command Aliases (copy-command) ........ 0.0... cece ee eee eens 3-10

Saving Your Customizations ........ ccc eee ee ee ee eee ee eee eee eee ene 3-11

Writing to a File (redirect-output) 2... 2... eee eee eee eee eee 3-11

Including a File (include) ... 6... ccc ce ee ee eee eee teen eens 3-11

viii Licensed Material - Property of Data General Corporation 093-000706



Contents

Chapter 4 Command Processor Commands

Chapter 5 Command Processor Types

Chapter 6 Command Processor Topics

Chapter 7 Character Commands

093-000706 Licensed Material - Property of Data Genera! Corporation IX



Contents

Tables

Table

1-1 Characters with Syntactic Meaning ........... cece cee ee ete eee ee eee ee eee es 1-2

1-2 A Command and a Required Argument ........ 0... cece ce eee eee eee ee ee ees 1-6

1-3 A Command, a Required Argument, and an Optional Argument ............... 0005005. 1-7

1-4 A Command, a Required Argument, and a Keyword Argument ................. 2.0000. 1-7

1-5 Ways to Enter Various Special Characters ...... 0... cece ce eee ce eee eee ee eens 1-10

2-1 Prompting Facility Commands by Category .......... ccc cc eee ee ee ee eens 2-3

3-1 Tasks and Keywords for change-argument-value .......... cece ccc ce ee eee eee ees 3-10

x Licensed Material — Property of Data General Corporation 093-000706



Chapter 1

Introduction to the Command Processor

The Command Processor (CP) is a command interpreter; it is a utility that provides a uniform user

interface to interactive tools, such as Mxdb, that operate from a textual interface. With the CP, you

can dynamically create variables and tailor your working environment by creating commands (macros),

organizing commands into groups, and modifying commands.

The CP defines rules for the syntax of commands, checks the syntax and meaning of command

arguments, and offers several predefined facilities, such as help, session logging, execution

control-flow, and command set management.

This chapter discusses CP terms and concepts, and then tells how to do the following tasks:

@ Create a command line

® Continue a line

@® Capture command output by using backquotes

@ Put special characters in a command line

@ Balance character pairs

@ Use backquotes within braces

@ Evaluate a series of commands

@ Insert a comment

For information about the help system, see “Getting Help” in Chapter 2.

Terms and Concepts

This section defines the terms character, word, phrase, and command; it also describes how to

abbreviate commands and other words.

Character

A character is any ASCII character that you can enter from your keyboard. Table 1-1 shows the

characters that have special syntactic meaning to the CP.

093-000706 Licensed Material - Property of Data General Corporation 1-1



Introduction to the Command Processor

Table 1-1 Characters with Syntactic Meaning

Character Symbol Meaning

space Separate words in a phrase

tab <tab> Separate words in a phrase

comma ’ Separate phrases in a command

semicolon ; Separate commands in a line

New Line ) Separate commands on different lines

colon : Connect a realm name and a command name

double quotes

single quotes

Enclose a string in quotation marks

Enclose a string in quotation marks

parentheses 0 Group characters or words

brackets [] Group characters or words

braces {} Group characters or words

backquote ‘ Capture command output

Word

A word is normally composed of one or more printable characters. The ordinary word characters are

as follows: letters (A-Z and a~z), digits (0-9), and the characters !#$%&*+-./<=>?@\*_|-. However,

a word can contain any ASCII character (including those shown in Table 1-1), as explained later in

this chapter in the section “Putting Special Characters into a Command Line.” Grouping characters

(Q. [J], and {}) are considered part of the words they group together, as are any enclosed separators.

Multiple words are separated by whitespace (spaces or tabs), commas, or semicolons.

Phrase

A phrase consists of one or more words. Phrases are separated by commas.

Command

A command contains one or more phrases and is terminated by a New Line character or a semicolon.

The name of a command is normally a word but may be a phrase (see “Putting Special Characters

into a Command Line”). A command name cannot contain a colon.

Abbreviating Commands and Other Words

Commands are generally complete English words. To provide flexibility, the CP enables you to

abbreviate the names of commands, arguments, certain variables, and some argument values. Since an

abbreviation must be unique, the minimum abbreviation depends on the names against which the

abbreviation is being compared. The minimum abbreviation is determined by what commands,

variables, and macros are visible or by what arguments exist for a command or macro.

1-2 Licensed Material - Property of Data General Corporation 093-000706



Introduction to the Command Processor

A name has one or more “syllables” separated by hyphens or underscores; for instance, the command

print-command has two, “syllables.” Names are case-insensitive, and the hyphen (-—) and underscore

(_) are equivalent. The name you specify is resolved to a command (or other name) as follows:

1. The command and the name you specify are an exact match. For example, the specified name

“evaluate” matches the command evaluate exactly.

2. The command has the same number of “syllables” as the specified name, and each syllable

begins with the characters you specify. Thus, you could specify “eval” for the evaluate command

or “pri-com” for the print-command command.

3. The command has more syllables than the specified name has, and begins with the characters

you specify. As an example, you could use “pri” to indicate the print-command command.

66599

Remember that any abbreviations must be unique. For instance, “i” is not a unique abbreviation for

the include command; the if command begins with the same character. You must specify “in” for

include.

Creating a Command Line

This section explains how to create and enter a command line. It also describes the three kinds of

arguments that a command can take, the four ways in which an argument can receive its value, and

the relationship between argument values and types.

Entering a Command

A command takes a series of arguments and performs the appropriate action. Each argument is

classified as required, optional, or keyword, and can receive its value by position, by name, by

default, or implicitly. The output is normally displayed on your screen.

The first phrase of a command starts with the command name as the first word; succeeding words are

values for required or optional arguments of the command. The rest of the phrases each start with a

comma followed by optional whitespace, then a keyword and, optionally, a value for that keyword.

To enter a command, type the command after the prompt on your screen and press the New Line

key. A prompt indicates the realm in which you are working; a realm contains a group of commands

that you can access.

Here are some sample commands that follow the default prompt for the c-p realm (c-p):

(c-p) write Here are some symbols: #$&*<>?\|- )
Here are some symbols: #$&*<>?\|~

(c-p) include script_file, continue )

(c-p)

Above, write and include are commands, Here are some symbols: #$&*<>?\|- and script_file are

required arguments, and continue is a keyword.

093-000706 Licensed Material - Property of Data Generali Corporation 1-3



introduction to the Command Processor

Required Arguments

If an argument is required, you must specify it. You can specify the value by position (usually the

simpler method) or by keyword (if you remember the keyword but forget the order of arguments).

See the “Values by Position and Name” section for more detail.

The following one-phrase command (assign) requires two arguments, one a variable (x, for example),

and the other a phrase (“computer”):

(c-p) assign x computer )

(c-p)

Optional Arguments

You can specify an optional argument by position or keyword. If you omit an optional argument, the

CP uses the default value associated with that argument.

Following is a one-phrase command (prompt-string) with an optional argument that represents a new

prompt:

(c-p) prompt-string (Yes?) )
(Yes?)

Keyword Arguments

A keyword argument cannot receive a value by position; to specify a keyword argument, you must use

the keyword. If you omit a keyword argument, the CP uses the argument’s default value. If the

argument has an implied value, you can specify the keyword and omit the value.

Following is a command (realm-use-list) with a keyword argument name (realm, which specifies

which realm use list to display) and its value (c-p):

(c-p) realm-use-list, realm c-p }
{ { command-processor } { characters } }

(c—p)

In the next example, the realm-use-list command uses the realm keyword without specifying a value;

the implied value is the current realm (c-p in this case):

(c-p) realm-use-list, realm }
{ { command-processor } { characters } }

(c-p)

1-4 Licensed Material — Property of Data General Corporation 093-000706



Introduction to the Command Processor

Values by Position and Name

You can specify arguments by position or by name. A value by position is associated with a particular

argument because of its position in the command line. A value by name follows a keyword.

In the following assign command, the required arguments (variable and phrase) receive their values

(x and “computer”) by position:

(c-p) assign x computer )

(c—p)

In the following equivalent examples the arguments receive their values by name:

(c-p) assign, variable x, phrase computer )

(c—p)

(c-p) assign, phrase computer, variable x }

(c—-p)

Default and Implied Values

Every command argument is given a value when the command is executed. Arguments that are not

given values by name or by position are given values by default. Arguments that are mentioned by

name but are given no explicit value on the command line are given values implicitly. Implied values

are often set up for keywords, so that just mentioning the keyword does something useful.

Command Arguments

Use the help command to find out what arguments a command accepts. To generate a one-line list of

arguments for a command (define-realm, for example), specify the keyword verbosity followed by

the phrases “text none” and “arguments short” in braces:

(c-p) help define-realm, verbosity { text none, arguments short } )

define-realm name [use], prompt, doc

(c—p)

As shown above, the define-realm command accepts arguments in each of the three categories:

required (name), optional (use), and keyword (prompt and doc). The following example shows

argument values being specified by position:

(c—p) define-realm macros { macros command-processor } )

(c-p)

This example shows argument values being specified by name:

(c-p) define-realm, name macros, use { macros c-p }, prompt (m) )

(c-p)

093-000706 Licensed Material - Property of Data Genera! Corporation 1-5



Introduction to the Command Processor

This example shows argument values being specified by default:

(c-p) define-realm macros )

(c-p)

This example shows argument values being specified implicitly:

(c—p) define-realm macros, prompt )

(c—p)

Here is a summary of command argument rules:

e Any argument can be specified by name.

e@ Any argument can have an implied value.

e A keyword argument cannot receive its value by position; you must use the keyword or accept the

argument’s default value.

e A required argument cannot have a default value.

To reset default and implied values, use the change-argument-value command.

The rest of this section goes into more detail about command arguments.

The following tables show possible combinations of command c with required argument al, optional

argument a2, and keyword argument a3. Values assigned explicitly (by name or position) are

indicated as vl, v2, and v3. Values assigned implicitly are indicated as il, i2, and i3. Values assigned

by default are indicated as d2 and d3.

A help message for command c with arguments displayed at the “short” verbosity level (help c, v

{text none, arguments short}) would show the following:

c al [a2], a3

Table 1-2 shows all the combinations of command c and its required argument (which cannot have a

default value). In the example, “def-r” is the define-realm command.

Table 1-2 Combinations of a Command and a Required Argument

How Value Is Specified

By Position By Value Default Implied

Command | c vl c, al vi Cannot have a default value j c, al

yesulting | v1, d2, d3 vi, d2, d3 No resulting values i1, d2, d3

Example def-r macros def-r, name macros Cannot have a default value | def-r, name

1-6 Licensed Material - Property of Data General Corporation 093-000706



Introduction to the Command Processor

Table 1-3 shows the combinations of command c, its required argument (vl, with a value assigned by

position), and its optional argument.

Table 1-3 Combinations of a Command, a Required Argument, and an Optional Argument

How Value Is Specified

By Position By Value Default Implied

Command | c vl v2 c vl, a2 v2 c vl c vl, a2

Resulti
Values > | Vis v2, d3 vi, v2, d3 vi, d2, 43 vi, i2, 43

Table 1-4 shows the combinations of command c, its required argument (v1, with a value assigned by

position), and its keyword argument (which cannot receive a value by position).

Table 1-4 Combinations of a Command, a Required Argument, and a Keyword Argument

How Value Is Specified

By Position By Value Default implied

Command | Cannot have value by position c vi, a3 v3 c vl c vi, a3

Resultin
Values g No resulting values vi, d2, v3 v1, d2, d3 vi, d2, i3

Argument Values and Types

A type is a category of argument values accepted by the CP; each argument of a command has a

type. When you specify an argument value, that value is checked to see whether it conforms to the

syntax of the particular type. If the argument value you specify is invalid, you will receive an error

message and execution will abort instead of having the invalid value passed to the command.

For example, the first argument to Mxdb’s debugger realm’s breakpoint command is the line

argument, which is of type line-number. If you specify a decimal integer, CURRENT (the current line

number, plus or minus an optional value), LAST (the last line number, minus an optional value), or

an abbreviation of CURRENT or LAST for this argument, the CP passes the value to the command.

The line-number type accepts values matching this syntax; the command can then check whether a

specified integer is within the range of the specified module. Other values are rejected. For instance,

if you specify “breakpoint a,” you receive an error message, because “a” is not a recognized value

for a line number.

093-000706 Licensed Material - Property of Data General Corporation 1-7



introduction to the Command Processor

Continuing a Command Line

To continue a command onto the next line, type a backquote and press the New Line key. The

backquote may be followed by blank space.

The CP then adds a backquote to the prompt on the continued line. Here is an example, where zoo

is the variable:

(c-—p) assign zoo lion tigers and ‘ )

(c-p)* bears }

(c—p)

Inserting Comments

You can insert comments after a command. To begin a comment, type two commas; to terminate a

comment, type a semicolon or press the New Line key.

The following example shows a comment terminated by a New Line:

(c-p) assi pi 3.14159 ,, The value of pi )}

(c-p) pi }
3.14159

(c-p)

The following example shows a comment terminated by a semicolon:

(c-—p) wri Current realm: ,,show realm; realm }
Current realm:

command-—processor

(c-p)

All input from the comma pair through the New Line or semicolon is ignored, including a line

continuation character.

Capturing Command Output

The CP enables you to capture command output, and then insert it into a command line. To do this,

put a backquote before the command whose output you want to capture. If this command has

arguments, enclose the command and its arguments in a pair of braces.

A simple example follows:

(c-p) write The current realm is ‘{realm}. )

The current realm iS command-processor.

(c-p)

1-8 Licensed Material - Property of Data General Corporation 093-000706



Introduction to the Command Processor

Here is an example using an argument and braces:

(c-p) assign x ‘{realm-use-list, realm c-p} )

(c-p) x }
{ { command-processor } { characters } }

(c—p)

Note that if you type a variable name (such as x above) at the beginning of a line, that variable’s

value is displayed:

(c-p) assi name realm )

(c-p) name }

realm

(c—p)

If you precede such a variable name with a backquote, the CP resolves the variable’s value and

executes it as a command:

(c-p) ‘name }

command - processor

(c-p)

You can also capture output from multiple commands:

(c-p) assi x ‘{realm; realm-use} })

(c-p) x }
command-processor

{ { command-processor } { characters } }

(C—p)

More involved instances using backquotes are covered later in this chapter in the section “Using

Backquotes Within Braces.”

Putting Special Characters into a Command Line

This section explains how to do these tasks:

e@ Put a syntactic character (such as a comma or space) into a command line without having the CP

treat it specially.

e Put a control character other than a tab or New Line into a command line.

Table 1-1 lists the characters that the CP interprets as having syntactic meaning. If you try to create a

CP variable containing one of these characters, you may have difficulty.

Control characters in general may pose difficulties. For example, trying to type a control character

while you are using the debugger may produce an error message.

093-000706 Licensed Material — Property of Data General Corporation 1-9



Introduction to the Command Processor

Four ways exist to put special characters into a command line:

1. Enclose (“group”) the character in braces, brackets, or parentheses.

2. Enclose (“quote”) the character in a pair of double or single quotation marks preceded by a

backquote.

3. Use a command from the characters realm for a specific character (see Chapter 7, “Character

Commands”).

4. Use the character-from-code command (see Chapter 7).

Table 1-5 shows which of the first three methods apply to various special characters. Method 4

applies to any character if you know its ASCII value.

Table 1-5 Ways to Enter Various Special Characters

Character Grouped! Quoted Character Command

space Yes Yes Yes

tab Yes Yes Yes

comma Yes Yes Yes

semicolon Yes Yes Yes

New Line Yes Yes Yes

double quote No Yes Yes

single quote No Yes Yes

brace No Yes Yes

bracket No Yes Yes

parenthesis No Yes Yes

backquote No No Yes

carriage return No Yes Yes

form feed No Yes Yes

null No Yes Yes

‘Enclosed in braces, brackets, or parentheses

Restrictions for putting a character into a command line may depend on context. For example, it is

easy to create a CP variable whose value contains spaces:

(c-p) assi x Now is the time. }

(c-p) x )
Now is the time.

(c-p)

1-10 Licensed Material - Property of Data General Corporation 093-000706



introduction to the Command Processor

However, you must use one of the methods from Table 1-5 to create a CP variable whose name

contains a space. For example, you can use braces as grouping characters to create a variable whose

name is the word ‘{ }’:

(c-p) assi { } braces }

(c-p) {} }
braces

(c-p)

If you want to create a CP variable whose value contains a comma, you can enclose the comma in

quotation marks and use a backquote:

(c-p) assi x ‘”,”phrase containing comma )

(c-p) x }
,»phrase containing comma

(c-p)

You can put a literal backquote into a phrase by using the backquote command from the characters

realm:

(c-p) assi y backquote ‘{char:backquote}phrase }

(c-p) y }
backquote ‘phrase

(c-p)

To put control characters such as the bell (Ctrl-G) into a phrase, you must use the

character-from-code command (see Chapter 7). This example creates a CP variable that produces a

beep on most display units:

(c-p) assi beep ‘{char:char 7}Beep! })

(c-p) beep }
Beep!

(c-p)

You can create a CP variable whose name is a phrase rather than a word, though this is not

recommended (see the note below):

(c-p) define-realm test }

(c-—p) realm test )

(test) assign ‘do it” This is not wise., doc ‘ )

(test)‘ "CP variable whose name is a phrase” )

(test) ‘do it” )

This is not wise.

(test) help, command )

Command: do it Realm: test

Summary CP variable whose name iS a phrase

Arguments <none>

(test)

093-000706 Licensed Material ~ Property of Data General Corporation 1-1 1



Introduction to the Command Processor

NOTE: If you create a CP variable whose name contains a space, tab, or new line, you will not be

able to use that variable in the name-and-phrase argument to a do-sequence command

(described in Chapter 4); do-sequence would treat the name as multiple names.

You can put braces, brackets, and parentheses into a command with no difficulty if they are paired.

However, to use one alone you must take special action, as previously indicated in Table 1-5. The

next section discusses the rules for balancing character pairs.

Balancing Character Pairs

If a command line has a word containing a single quotation mark, double quotation mark,

parenthesis, bracket, or brace, that word normally must contain a matching character to form a pair.

To create a word containing one of these characters unpaired, you can use either of the following two

techniques shown earlier in Table 1-5:

1. Enclose the character in a pair of double or single quotation marks preceded by a backquote; or,

2. Use a command from the characters realm for a specific character.

The relevant character commands are as follows:

single-quote

double-quote

left-parenthesis

right-parenthesis

left-square-bracket

right-square-bracket

left-curly-brace

right-curly-brace

The following example creates and executes a CP variable whose name contains parentheses:

(c-p) assi abc(1) xyz }

(c-p) abc(1) }
XYZ

(c-p)

The following example writes a word containing an unpaired brace:

(c-p) write ab‘” {”cd )

ab{cd

(c-p)

Here is an equivalent example using the left-curly-brace command:

(c-p) wri ab‘{characters:left-curly}cd )

ab{cd

(c-p)

1-1 2 Licensed Material — Property of Data General Corporation 093-000706



introduction to the Command Processor

If you put an unpaired right brace, bracket, or parenthesis in a command line and do not use one of

the above methods, the CP displays an error message. If you put an unpaired left brace, bracket, or

parenthesis in a command line and do not use one of the above methods, the CP changes the prompt

until you provide the matching character. For example:

(c-p) assi bracket-stuff [ })

(c-p)[ line of input )

(c-p)t J 2
(c-p) bracket-stuff }

[

line of input

]

(c-p)

Using Backquotes Within Braces

As described earlier, you can capture command output by putting a backquote before the command

whose output you want to capture.

However, if you use a single backquote within braces, that backquote has no special syntactic

meaning. For example:

(c-p) assi name realm )

(c-p) write {‘name} )}

{ ~name}

(c-p)

To execute a command within braces, use one more backquote than the number of pairs of braces.

To continue the above example:

(c-p) write {‘‘name} }

{realm}

(c-p) write {{

{ {realm} }

(c-p)

666name}} }

Other paired characters, such as parentheses and square brackets, do not affect backquote resolution:

(c-p) write “([{‘name])” )

"([{realm])"

(c-p)

An exception to the rule for using backquotes within braces occurs within the body of a macro

definition. In this case, the CP resolves a command preceded by a backquote. For example:

(c-p) define-macro bang {phrase} {write ! ‘phrase !} )

(c-p) bang two words )

! two words !

(c-p)

093-000706 Licensed Material - Property of Data General Corporation 1-1 3



Introduction to the Command Processor

For more information about macro definitions, see the “Writing Macros” section in Chapter 3.

Evaluating a Series of Commands

The CP evaluate command evaluates one or more commands and displays the output. Use evaluate

to capture command output that contains characters you want the CP to interpret syntactically:

(c-p) assi x ‘”,” verbosity {text short, arg short} )

(c-p) eval { help shell ‘‘x } }

shell Execute a sub-shell or a shell command sequence.

[command-line] .

(c-p)

In the previous example, evaluate is used after the value of x is assigned. In the next example

evaluate is used when a value is assigned to x:

(c-p) assi name realm )

(c-p) assi x ‘{eval { name }} )

(c-p) x }
realm

(c-p)

You can do the same thing by using backquote evaluation:

(c-p) assi name realm )

(c-p) assi x ‘name }

(c-p) x }
realm

(c-p)

By combining evaluate with backquote evaluation, you can carry the command evaluation a step

further:

(c-p) assi name realm )

(c-p) assi x ‘{eval { ‘name }} )

(c-p) x }
command -processor

(c-p)

If the argument is a command containing no captured command output, the evaluate command has

the same effect as if you omitted it:

(c-p) evaluate {realm} }

command—processor

(c-p) realm }

command—processor

(c-p)

End of Chapter

1-1 4 Licensed Material —- Property of Data General Corporation 093~-000706



Chapter 2

Using Command Processor Utilities

This chapter describes various Command Processor (CP) utilities. It tells how to do the following

tasks:

@ Use the help facility, including command prompting

@ Log a session

@ Perform CP control flow

@ Manipulate phrases as sequences

Getting Help

The CP offers two ways to use its help system: a help command and command prompting.

The help Command

The help command displays information about a command, argument, realm, or topic. To use this

command, type help after invoking the tool you are using, such as Mxdb. Then, if you want general

information, press the New Line key. If you want information about a specific command, argument,

realm, or topic, type that name after help and press the New Line key. For example, if you type

help define-realm and press the New Line key, you will see the summary portion of the

define-realm command’s help message, which defines the command and its arguments, and shows

examples:

(c-p) help define-realm )

Command: define_realm Realm: command—processor

Summary Create a new realm.

Arguments Required:

name The name for the new realm

Optional:

use A list of realms grouped uSing braces

Keyword:

prompt The prompt string for this realm

doc Up to three enquoted help text strings

Examples define-realm quick

def-r myrealm ,use {{myrealm c-p}}

For further help, type "help define realm <argument name>".

(c—p)

093-000706 Licensed Material —- Property of Data General Corporation 2-1



Using Command Processor Utilities

To get a more detailed message, add a ,verbosity argument. For example, type this command:

(debug) help define-realm, v )

You will then see the entire define-realm help message, which also elaborates the definitions and

examples.

Command Prompting

The command prompting facility helps you to enter commands interactively. Any command will

prompt you for input if you type the command followed by a comma and no argument. Command

prompting displays each argument name, one at a time, showing the default value in parentheses.

To use the default value, press the New Line key. To use another value, type the value and press

New Line. If no default is shown, the argument is required and you must enter a value.

Invoking Command Prompting

To invoke the command prompting facility for a command, type the command followed by a comma;

then press the New Line key. The comma may be preceded or followed by blank space.

For example, to get command prompting on the write command:

(c—-p) write, )
Type ",help" for help.

text () =

At this point, the prompting facility is asking for a value for the text argument. To enter a value, type

the value and press the New Line key. For example:

(c-—p) write, »
Type ",help" for help.

text () = computer )

You are then prompted for the remainder of the arguments. To use the defaults, press New Line for

each one.

(c-—p) write, )
Type ",help" for help.

text () = computer )

message (no) = )

no-newline (no) = )

The final line asks whether you want to execute the selections you have just made. To answer yes,

press New Line.

Execute? (Yes) = )

computer

(c~—p)

2-2 Licensed Material - Property of Data General Corporation 093-000706



Using Command Processor Utilities

If you want to change one or more of your selections before you execute the command, type No and

the query process repeats. Type your new selection(s):

Execute? (Yes) = No )

text (computer) = Computers are fun. }

message (no) = )

no-newline (no) = Yes )

Execute? (Yes) = )

Computers are fun. (c-—p)

All arguments that have defaults are initialized to their default value unless you have explicitly sup-

plied another value. In the example above, the text argument initially has no default. However, the

default is set to “computer.” Thus, when you go through the prompting a second time, that value is

displayed.

Issuing Prompting Facility Commands

At any time during the prompting session you can issue a command, preceded by a comma, that will

take a particular action. The ,help command displays the available prompting facility commands

(which you may abbreviate). Table 2-1 organizes these commands by topic and task.

Table 2-1 Prompting Facility Commands by Category

Topic Task Command

Information Describe the current argument ,

Display a help message yhelp

Refresh the screen refresh

Argument Specify a value value

Select the default value default

Select the implied value ,implied

Termination Abort back to the top level abort

Execute the command ,execute

Navigation Move back one argument sprevious

Logging a Session

To create files containing records of command line input, output, or errors during the debugging ses-

sion, use the log command.

This command line creates an input log file named login, an output log file named logout, and an

error log file named logerr:

(c-p) log, input login, output logout, error logerr }

086-000167 updates Licensed Material - Property of Data General Corporation 2-3
093-000706-00



Using Command Processor Utilities

If the files login, logout, and logerr do not exist, the log command creates them. If the fi
les do ex-

ist, output will be appended to them.

If you want one log file that includes input, output, and errors, type a command line like 
this:

(c-p) log logfile )

You can also specify an absolute (complete) pathname:

(c-p) log /usr/mark/mxdb/anotherlogfile )

To create a log file overwriting any existing file, use one of these arguments: input-delete, outp
ut-de-

lete, or error-delete. This command line overwrites any existing input logfile named login:

(c-p) log, input login, input-delete )

To display the current log files, type log with no arguments:

(c-p) log }
input log files:

/usr/chris/login

output log files:

/usr/chris/logout

error log files:

/usr/chris/logerr

To turn all logging off, use the unlog command with no arguments:

(c-p) unlog }
input log files:

/usr/chris/login

output log files:

/usr/chris/logout

error log files:

/usr/chris/logerr

This command turns logging off and writes the names of the log files to the standard outpu
t. You can

also specify a filename to turn off logging to a file:

(c-p) unlog logerr )

2-4 Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Using Command Processor Utilities

Performing CP Control Flow

This section compares CP control flow with Mxdb debugger control flow and describes how to do

these tasks:

@ Execute command(s) if a command writes a nonnull phrase

@ Execute command(s) while a command writes a nonnull phrase

e@ Protect commands in case an error occurs

e@ Check whether two CP variables have the same value

@ Negate a test

@ Perform an AND test

@ Perform an OR test

Comparison with Debugger Control Flow

This section discusses similarities and differences between Mxdb debugger control flow and Command

Processor control flow.

The general semantics of Mxdb and CP control flow are similar. The debugger and the CP both

provide if and while commands to control the flow of command execution. Each if command accepts

three arguments: a predicate, a then phrase, and an else phrase. Each while command accepts two

arguments: a predicate and a command body. The kind of values accepted by the then, else, and

body arguments are the same in the debugger and the CP.

However, the value that the predicate argument accepts is not the same. In the debugger realm, the

predicate argument accepts a language expression that evaluates to true or false as defined by the

language being used. In the command-processor realm, the predicate argument accepts and evaluates

a series of commands, each of which returns a phrase. If any of the phrases is nonnull, the predicate

is considered true.

In the c-p realm, control-flow commands capture and discard the standard output from predicate

commands. If you want to write output in a predicate command that is not discarded, used the write

command’s message argument; this writes to the error output. See “Terms and Concepts” in Chapter

3 for a discussion of standard output and error output.

Executing If Phrase Is Nonnull (c-p:if)

The Command Processor’s if command conditionally executes one or more commands. If evaluates

the predicate. If it returns a nonnull phrase, then it evaluates the then-part argument value; otherwise

it evaluates the else-part value.

This example sets x to the value of abc, if abc is nonnull:

(c-p) assign abe xyz }

(c-p) if { abc } { assign x ‘abc } }

(c-p) x }
XYZ

(c-p)

093-000706 Licensed Material - Property of Data General Corporation 2-5



Using Command Processor Utilities

To evaluate an empty variable, try this example:

(c-p) assign x ‘”” )

(c-p) if {x } {wri x is not empty}, else {wri x is empty} )

x is empty

(c-p)

These commands evaluate a nonempty variable:

(c-p) assign x abc )

(c-p) if {x } {wri x is not empty}, else {wri x is empty} )

x is not empty

(c-p)

Executing While Phrase Is Nonnull (c-p:while)

The Command Processor’s while command executes one or more commands while a predicate is

nonnull. While evaluates the predicate; if the predicate writes a nonnull phrase, while evaluates the

body and repeats.

The following example sets a CP variable, and then displays and shortens the value of the variable

while it is nonnull:

(c-p) assign xabc )

(c-p) while {x} {wri X is ”‘x”; assign x ‘{rest ‘x}} )
x is "a bc"

x is "bc"

X is tol

(c-p)

See Chapter 4 for a description of the rest command.

Protecting Commands from Errors (protect)

The protect command executes commands in a protected region and, optionally, commands specified

as cleanup actions. This command is useful if you want to recover reliably from potential errors that

may occur in the protected region. You can have cleanup actions execute unconditionally or only

when an error occurs; the cleanup actions execute after the main body of commands.

2-6 Licensed Material — Property of Data General Corporation 093-000706



Using Command Processor Utilities

An example of the protect command follows:

(c-p) assign var ‘”” )

(c-p) protect {write 1; if {var} {error E}, else {write 2}; write 3} ‘ )

(c-p)‘ ,cleanup {write 4} }
1

2

3

4

(c-p) assign var test )

(c-p) protect {write 1; if {var} {error E}, else {write 2}; write 3}, cleanup {write 4} )
1

Error: E

4

(c-p)

If you specify the errors-only keyword, you can capture any error output in a CP variable. If you are

writing a macro (see “Writing Macros” in Chapter 3), you can suppress error messages. In many situ-

ations, an error may occur that affects what actions the macro takes.

Following is an example of an error message captured in a CP variable:

(c-p) define-macro capture-error {obj} {assi an-error ‘ )

(c-p) {‘ ‘{protect {eval ‘obj}, errors-only }} )

(c-p) capture-error .z }

(c-p) an-error }

Error: “.z° is not a visible command, macro or variable.

(c-p)

If you rebind the error stream as above, errors in CP flow control commands will not be written to

you in the context of error protection. Since the CP if and while commands capture and discard the

standard output of their predicate phrase to determine whether the predicate is null or nonnull, error

output is discarded, but any errors will affect the flow of control in the execution environment.

The following examples show error output being suppressed while an error controls the flow. The ex-

amples show what happens in three cases:

@ The CP variable *junk* exists and is nonnull.

(c-p) assign *junk* stuff }

(c-p) protect {write *junk*, no-newline; if {*junk*} { )

(c-p) {{ write ‘” is not”, no-newline}, else {write ‘” is”, no-newline}; write ‘” null.”} ° )
(c-p)‘ ,clean { write ‘” does not exist.” }, errors-only }

*junk* is not null.

(c-p)

086-000167 updates Licensed Material - Property of Data General Corporation 2-7
093-000706-00



Using Command Processor Utilities

@ The CP variable *junk* exists and is null.

(c-p) assign *junk* ‘”” }

(c-p) protect {write *junk*, no-newline; if {*junk*} { )

(c-p) {{ write is not”, no-newline}, else {write ‘” is”, no-newline}; write ‘” null.”} ‘ }

(c-p)‘ ,clean { write ‘” does not exist.” }, errors-only )
*junk* is null.

(c—p)

69

@ The CP variable *junk* does not exist (see Chapter 4 for a description of delete-command).

(c-p) delete-command *junk* )

(c-p) protect {write *junk*, no-newline; if {*junk*} { }

(c-p) {{ write is not”, no-newline}, else {write ‘” is”, no-newline}; write ‘” null.”} ‘ )
(c-p)‘ ,clean { write ‘” does not exist.” }, errors-only )
*junk* does not exist.

(c—p)

Comparing Two CP Variables (equal)

The equal command determines whether two arguments are equal, and then writes a phrase to the

standard output. If the arguments are equal, “true” is written. If the arguments are not equal, a null

string (‘””) is written. Equal is useful as a predicate evaluator for the c-p:if command.

Comparisons are case insensitive unless equal’s case-sensitive argument has a “yes” value. Case in-

sensitivity includes considering the hyphen (—) and underscore (_) to be equivalent.

The following example assigns a value to CP variables x and y, and then compares them:

(c-p) assi x foo )

(c-p) assi y foo )

(c-p) if { eq ‘x ‘y } { write same } )
same

(c-p)

The next example resets the value of y and compares x and y again:

(c-p) assi y bar }

(c-p) if { equ ‘x ‘y } { write equal } }

(c-p)

The following example demonstrates case insensitivity:

(c-p) assi x foo-bar )

(c-p) assi y Foo Bar }

(c-p) if { equ ‘x ‘y } { write yes } )

yes

(c-p)

2-8 Licensed Material — Property of Data General Corporation 086~000167 updates
093-000706-00



Using Command Processor Utilities

Here are two examples that use the case-sensitive argument:

(c-p) if { equ Foo_Bar foo-bar, cas } { wri yes } { wri no} }

no

(C-p)

(c-p) if { equal ‘x ‘X, cas } { wri Yes‘”,” indeed. } )
Yes, indeed.

(c-p)

Note that when a comparison involves the output of commands, case sensitivity applies to the values

being output into the command line, not to the names of the commands producing the output.

Command names (including CP variables) are always case insensitive.

Negating a Test (not)

The not command negates a value and writes the negated value to the standard output. Not converts

‘»” (the null string) into “true” and everything else into the null string. The following example negates

a null string:

(c-p) not 69999 )

true

(c-p)

The next example negates a nonnull string:

(c-p) not ‘{ not ‘”” } )

(c-p)

The following example uses the not command with other commands:

(c-p) if {not ‘{equal foo bar}} {write hello} }
hello

(c-p)

Doing an AND Test (and)

To do an AND test, use the and command.

(c-p) assi x one }

(c-p) assi y two )

(c-p) if { and {x} {y} } { write x and y} }
x and y

(c-p)

(c-p) assi x one )

(c-p) assi y ‘*”” }

(c-p) if { and {x} {y} } { write x and y } »

(c-p)

093-000706 Licensed Material - Property of Data General Corporation 2-9



Using Command Processor Utilities

Doing an OR Test (or)

To do an OR test, use the or command. Two examples follow:

You can do an exclusive OR test with the if command. Two examples follow:

(c-p) assi x *”” )

(c-p) assi y two )

(c-p) if { or {x} {y} } { write x or y}
x or y

(c-p)

(c-p) assix ‘”” )

(c-p) assi y ‘”” )
(c-p) if { or {x} {y} } { write x or y} )
(c-p)

(c-p) assi x ‘”” )

(c-p) assi y two )

(c-p) if { if {x} {not ‘y}; if {y} {mot ‘x}} {wr x xor y} }
xX XOr y

(c-p)

(c-p) assi x one )

(c-p) assi y two )

(c-p) if { if {x} {not ‘y}; if {y} {not ‘x}} {wr x xor y} }

(c-D)

Manipulating Phrases as Sequences

This section discusses commands that manipulate phrases as sequences: do-sequence, first, rest, last,

position, subphrase, and length. The tasks you can perform with them are as follows:

Execute a command repeatedly (do-sequence)

Write the first word of a phrase (first)

Write all but the first word of a phrase (rest)

Write the last word of a phrase (last)

Write the position of an expression in a phrase (position)

Write a subphrase (subphrase)

Write the length of a phrase (length)

2-1 0 Licensed Material — Property of Data General Corporation 093-000706



Using Command Processor Utilities

Executing Commands Repeatedly (do-sequence)

The do-sequence command executes a command repeatedly. The command has two required argu-

ments: name-and-phrase and body. Do-sequence executes the body once for each word in the

phrase with the specified name bound to the nth word on the nth iteration. If the phrase is the null

string, do-sequence does nothing.

The following examples show different uses of do-sequence:

(c-p) assign list all good boys )

(c-p) do-sequence {x list} {write .. ‘x .. } }
list

(c-p) do-sequence {x ‘list} {write .. ‘x ..} )
all good boys

(c-p) do-sequence {x “‘list} {write .. ‘x .. } )
all

. good ..

. boys

(c-p)

If you want to eliminate the space after the x value, you must enclose x with braces:

(c-p) do-sequence {x ‘list} {write ..‘{x}.. } }
..all good boys..

The next example shows how to use do-sequence to set variables AA through JJ to 1 to 10:

(c-p) debug:define-variable j 0 )

(c-p) do {x AA BB CC DD EE FF GG HH II JJ } ‘ }

(c-p)‘ { debug:as j j+1; as ‘x ‘{debug:eval j} } )

(c-p) AA }
1

(Cc-p)

Writing the First Word of a Phrase (first)

The first command writes the first word of a phrase. This is useful in macros (see “Writing Macros”

in Chapter 3). If you use the character keyword, first writes the first character of a phrase.

Following is a simple example:

(c-p) first abe )
a

(c-p)

This example uses the character keyword:

(c-p) first abc def, character )

a

(c-p)

086~-000167 updates Licensed Material - Property of Data Genera! Corporation 2-1 1
093-000706-00



Using Command Processor Utilities

In the next two examples the first word contains spaces:

(c-p) first {ab}cd}

{ ab }
(c-p)

(c-p) first foo( bar ) baz }

foo( bar )

(c-p)

The following two examples use first with other commands (including rest, described below):

(c-p) assign x now is the time }

(c-p) write ”‘{first ‘x} ‘{rest ‘x} ...” )

"now is the time ..."

(c-p)

(c-p) write ”‘{rest ‘x} ‘{first ‘x} ?” )

"is the time now ?"

(c-p)

Writing the Rest of a Phrase (rest)

The rest command writes all but the first word of a phrase. Following is a simple example:

(c-p) restabc )

be

(c-p)

Here are two more examples:

(c-p) rest {ab}cd}

cd

(c-p)

(c-p) rest foo( bar ) baz )

baz

(c-p)

Writing the Last Word of a Phrase (last)

The last command writes the last word of a phrase. This is useful in macros (see “Writing Macros” in

Chapter 3). If you use the character keyword, last writes the last character of a phrase.

Following is a simple example:

(c-p) lastabc }

Cc

(c-p)

2-1 2 Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Using Command Processor Utilities

This example uses the character keyword:

(c-p) last abc def, character )

f

(c-p)

In the next example the last word contains spaces:

(c-p) latab{cd}}

{ cd }
(C-p)

Write the Position of an Expression in a Phrase (position)

The position command writes the numeric position (starting with position 0) of the first character in a

phrase that matches a specified regular expression. See Chapter 6 for a discussion of regular

expressions.

In this example, a CP variable x is assigned a pathname for a file, my_inventory_file. The position

command then returns the numeric position of and number of characters in my_inventory_file:

(c-p) assign x /somedir/otherdir/my_inventory_file )

(C-p) position my_inventory_file ‘x )

18 17

(c-p)

Write a Subphrase (subphrase)

Use the subphrase command to write part of a phrase. If you use the character keyword, subphrase

writes the specified number of characters from a phrase.

The following example continues the example from the position command. If you just want the

filename my_inventory_file instead of the entire pathname to be contained in a CP variable (here,

file), use the assign and subphrase commands:

(c-p) assign file ‘{subphrase 18 17 ‘x, character} }

(c-p) file )

my_inventory_ file

(c—p)

093-000706 Licensed Material ~ Property of Data General Corporation 2-1 3



Using Command Processor Utilities

Write the Length of a Phrase (length)

The length command calculates the size of a phrase (in words,

are lining up formatted output. If you use the character keyword,

phrase in characters.

by default), which is useful when you

length writes the length of the

In the following example, the CP variables var1 and var2 receive values. Then, length writ
es the size

(in characters) of the two variables:

(c-p) assign varl 987654321 })

(c-p) assign var2 32 )

(c-p) length ‘var1, character; length ‘var2, character )
9

2

(c-p)

End of Chapter

2-1 4 Licensed Material - Property of Data General Corporation 093-000706



Chapter 3

Customizing Your Environment

This chapter describes how you can customize your environment. After defining terms and concepts,

the chapter tells how to do the following tasks:

@ Write a macro

@ Create and manage realms

e@ Change an argument’s default and implied values

@ Create command aliases

® Save your customizations

Terms and Concepts

This section defines several terms that relate to customizing the environment.

Command

A command is a keyword that tells the CP what to do. Commands can occur at the beginning of a

line or following a semicolon. The CP recognizes three kinds of entities as commands: built-in

commands, macros, and CP variables.

When you execute a command, there is no visible difference among the various types of commands.

This regularity lets you concentrate on the task you are doing instead of learning a different syntax for

each kind of command. One exception to this regularity is that you cannot write a macro to

permanently set the current realm; a macro is executed in the realm in which it is defined and then

returns to the realm from which it was invoked. A macro can, however, set the current realm for the

remainder of the macro’s execution.

Built-in Commands

Built-in commands are part of the standard environment. Normally, for most common tasks you will

invoke built-in commands directly. For more complicated tasks you can use the built-in commands as

building blocks to create macros.

Macro

A macro is a collection of commands saved as a single unit for later invocation. Macros are especially

useful if you have a complex invocation of a series of commands that you use repeatedly.

093-000706 Licensed Material - Property of Data General Corporation 3-1



Customizing Your Environment

CP Variable

A CP variable is a Command Processor environment variable that is created by the c-p:assign

command. When executed, a CP variable displays its value.

Realm

All commands are organized into groups called realms. Realms organize commands similar to the way

directories organize files, except that a realm cannot contain another realm. As every file in a file

system is in a directory, every command is in a realm. Realms also control command visibility.

Default Value

The default value is the value associated with an argument if you omit the argument in a command

line.

Implied Value

The implied value is the value associated with an argument if you specify the argument name but omit

the value in a command line.

Standard Output

The standard output is the file to which a command’s normal output is written. The standard output is

by default the display unit associated with your debugging process.

Error Output

The error output is the file to which a command’s error output is written. The error output is by

default the display unit associated with your debugging process.

Standard Input

The standard input is the input device currently associated with your debugging process. This is by

default the keyboard of your terminal or workstation.

Include File

Normally, command input comes from the keyboard associated with your process. An include file is a

file containing commands to be executed by the include command. When you execute the include

command, the standard input is temporarily changed from the keyboard to the include file.

3-2 Licensed Material ~ Property of Data General Corporation 093-000706



Customizing Your Environment

Writing Macros

This section tells how to do the following tasks:

@® Create a macro

@e Return from a macro

e View a macro definition

@ Delete a macro

@ Prompt for user input

e@ Write a message

@® Write an error message

Creating a Macro (define-macro)

The define-macro command creates a new command with the name and interface you specify. This

command has three required arguments:

name

arguments

body

This is the macro’s name. If you choose the name of an existing command, that com-

mand will be overwritten unless it is built in. To overwrite a built-in command, you must

explicitly delete it first.

This value (or values), which must be enclosed in braces, specifies the names of the new

macro’s arguments and whether they are required (the default), optional, or keyword.

You can set default and implied values for CP variables and for each macro argument,

and you can document each argument. If you omit the argument documentation, the help

facility uses a short string from the documentation for the argument’s type. You can also

define macro variables with this argument.

The body contains one or more commands enclosed in braces. A macro typically uses

backquotes in the body to substitute the value of the specified arguments into the defini-

tion.

a Define-macro also accepts two keyword arguments: doc and invocation-realm. The doc argument

accepts up to three quoted help text strings. The first string is displayed by a help message of short,

medium, or long text verbosity. The second is displayed by a help message of medium or long text

verbosity. The third is displayed only by a help message of long text verbosity.

If you specify the invocation-realm argument, the defined macro will always execute in the realm in

which it is invoked. By default, a macro executes in the realm in which it is defined. The following

macro usually would not work, as shown below, because the realm changes only for the duration of

the macro; this is due to the behavior of CP variables:

(debug) define-macro my-change-realm {,optional name} {c-p:realm ‘name} )

(debug) my-change-realm c-p )

(debug)

086-000167 updates Licensed Material - Property of Data General Corporation 3-3
093-000706-00



Customizing Your Environment

However, using the invocation-realm argument enables you to define a macro that has a permanent

realm change as a side effect:

(debug) define-macro my-change-realm {,optional name} { )

(debug) { c-p:realm ‘name}, invocation-realm )

(debug) my-change-realm c-p )

(c-p)

With the arguments argument, you can specify arguments and local variables; the specifications can

be fairly complex or very simple, depending upon the macro. For instance, the macro write-two-

words accepts two required arguments, word! and word2,; you don’t need to specify that the argu-

ments are required since that is the default.

(c-p) define-macro write-two-words {word1 word2} {write ‘word]1; write ‘word2} )

(c-p) write-two-words Hi there! )

Hi

there!

(Cc—p)

The next macro, write-more-words, is defined with a required argument, an optional argument, a

keyword argument, and a local variable (which must be explicitly defined); it also uses the doc key-

word:

(c-p) define-macro write-more-words {reqword, optional optword, keyword kword, )

(c-p) { variable varword} {assign varword words )

(c-p) { write ‘reqword ‘optword ‘kword ‘{eval varword} 2

(c-p) { }, doc "This macro writes words.” )

(c-p) write-more-words )

Error: No value supplied for the required argument ‘reqword’ of the “write-

more-words’ command/macro.

(c-p) write-more-words Here are, kword four )

Here are four words

(c-p) help write—more—words )
Command: write-more-—words Realm: command—-processor

Summary This macro writes words.

Arguments Required:

reqword Any value

Optional:

optword Any value

Keyword:

kword Any value

For further help, type "help write-more-words <argument name>"

(c-p)

3-3.a Licensed Material — Property of Data General Corporation 086--000167 updates
0Q93-000706-00



Customizing Your Environment

The next example adds types, default and implied values, and more documentation to the write-

more~—words macro:

(c-p) define-macro write-more-words { }

(c-p) { {reqword, implied Godzilla, type anything, )

(c-p) {{ doc ”reqword accepts anything”},
(c-p) { optional }

(c—p) { {optword, default Meets, implied Eats, type anything, }

(c-p) {{ doc ”so does optword”}, }

(c-p) { keyword )

(c-p) { {kword, default The, implied The, type anything, }

(c-p) { { doc "ditto kword”}, }

(c-p) { variable }

(c-p) { {varword, default Blob, }

(c-p) {{ doc ”varword is a local variable to this macro”} )

(c-p) { } {write ‘reqword ‘optword ‘kword ‘{eval varword} }

(c-p) { }, doc ”This macro still writes words.” }

(c-p) write—-more-words )

Error: No value supplied for the required argument “reqword’ of the ’“write-—

more-words’ command/macro.

(c—p) w-m-w King Kong, optword )

King Kong Eats The Blob

(c-p) w-m-w, reqword }

Godzilla Meets The Blob

(c-p) help write-more-words, v }

Command: write-more-words Realm: command-processor

Summary This macro still writes words.

Arguments Required:

reqword reqword accepts anything

Implied: Godzilla

Optional:

optword so does optword

Default: Meets

Implied: Eats

Keyword:

kword ditto kword

Default: The

Implied: The

For further help, type "help write-more-words <argument name>".

(c-p)

086-000167 updates Licensed Material — Property of Data Generai Corporation 3-3.b
093--000706-00



Customizing Your Environment

This defines an up macro for viewing source text:

(c-—p) def-mac up ‘ )

(c-p)> {,optional {screens, default 1, type ordinal }} ‘ }

(c-p) * {debug:view, up ‘screens } )

(C—p)

The next example defines a down macro for viewing source text:

(c-p) def-mac down ‘ )

(c-p)~ {,optional {screens, default 1, type ordinal }} ‘ )

(c-p) ~ {debug:view, down ‘screens } )

(c—p)

Since the down macro specifies the ordinal type for the screens variable, the CP provides type check-

ing the same as for commands:

(c-—p) down 0 )
Error: “0% is not a valid ordinal expression.

(c—p)

Returning from a Macro (return)

The return command writes a phrase to the standard output and terminates the execution of a mac-

ro. Following is an example of the return command:

(c-p) define-macro star {x} {return *‘{x}*‘characters:new-line}

(c-p) star foo )

*foo*

(c-p)

Viewing a Macro (print-command)

The print-command command displays the definition of a macro or a CP variable. It displays a

macro’s definition as an invocation of the define-macro command and a CP variable’s definition as

an invocation of the c-p:assign command. Invoking print-command for a built-in command writes a

null string to the standard output.

The following example sets the CP variable my_var to 32 with documentation, then displays the defi-

nition:

(c-p) assi my_var 32, doc “value of my_var” )

(c-p) print-com my_var )

command-processor:assign command-processor:my_var 32

,doc "value of my_var"

(c-p)

3-4 Licensed Material ~ Property of Data General Corporation 086-000167 updates
093-000706-00



Customizing Your Environment

This defines and prints the definition of a macro named say-hello:

(c-p) define-macro say-hello {} { )

(c-p) { write hello } )

(c-—p) print-command say-hello )

command-processor:define-macro debugger:say-hello {

} {

write hello }

(c-p)

Print-command lets you save a macro or variable definition to a file if you use the redirect-output

command (comments in the macro body are retained). You can then include the macro in another

session. The names of printed variables or macros are displayed in their fully qualified form (with a

realm prefix) to ensure that they will be defined in the same realm later in case you are using

redirect-output.

For example, to save the macro say-hello to a file named hellofile, you could use this command:

(c-p) redirect-output {print-com say-hello} hellofile )

(c-p)

Deleting a Macro (delete-command)

The delete-command command deletes a command. The command can be any variable, macro, or

built-in command. You cannot abbreviate when you specify the command name.

This example deletes the macro named say-hello:

(c-p) delete-command say-hello »

(c—-p)

Prompting for User Input (query)

The query command writes a prompt to the standard output and reads a one-line user response from

the standard input, as in this example:

(c-p) query How many? )

How many? 7 )

7

(c-p)

093-000706 Licensed Material - Property of Data Genera! Corporation 3-5



Customizing Your Environment

Here is query in a macro definition:

(c-p) define-macro ask { name } { assign x ‘name; )

(c-p){ assign y ‘{query Number: }; )

(c-p) { write Name = ‘x; write Number = ‘y } }

(c-p) ask Fred Rogers )

Number: 12345 }
Name = Fred Rogers

Number =12345

(c-p)

Writing a Message (write)

The write command writes the value of its text argument, plus a New Line character, to the standard

output. If the value of the message argument is “yes,” the text is written to the error output instead

of the standard output. If the value of the no-newline argument is “yes,” the New Line is omitted.

To specify characters that are special to the CP (for example, braces, a comma, or a semicolon), use

either backquote substitution or characters from the characters realm as specified in Chapter 1.

The following example writes “Hello everybody.”:

(c-p) wri Hello everybody. )
Hello everybody.

(c-p)

This example writes “Hello, Mark.”:

(c-p) write Hello‘char:comma Mark. )
Hello, Mark.

(c-p)

This example does the same thing, but encloses the comma in quotation marks:

(c-p) write Hello‘”,” Mark. )
Hello, Mark.

(c-p)

This command specifies that both writes will be on the same line with no intervening space:

(c-p) evaluate {wr hello, no-new; wr hello} )
hellohello

(c-p)

If you want to write a message to the error output, type this command:

(c-p) write An error has occurred., message )

(c-p)

3-6 Licensed Material - Property of Data General Corporation 093~000706



Customizing Your Environment

Writing Error Messages (error)

The error command writes a message to the error output and signals that an error has occurred. If

this command occurs in a macro outside a protected region, the CP abandons execution of the macro

at that point. If this command occurs inside a protected region, the CP executes the cleanup action

for the statement. For information about protected regions, see “Protecting Commands from Errors”

in Chapter 2.

Following is an example of the error command:

(c~p) error Something is wrong. )

Error: Something is wrong.

(c—p)

Here is an example in a macro; if the argument arg is null, you will receive the value of the error

command’s message argument:

(c-p) define-mac assert-not-null {arg message} { )

(c-p){ c-p:if {not ‘arg} {error ‘message}} }

(c~p) assert-not—null ‘”” arg is null )

Error: arg is null

(c-p)

Creating and Managing Realms

All commands are organized into groups called realms. Realms control command visibility. If you use

a specific group of commands often, you may want to create a realm that includes just those com-

mands. This section tells how to do the following tasks:

@ Display and set the name of the current realm

@ Create a realm

@ Display or set a realm’s realm use list

@ Display or set a realm’s prompt string

@® Delete a realm

Displaying and Setting the Current Realm (realm)

To display the name of the current realm, use the realm command with no arguments:

(c—p) realm )

command-—-processor

(c—p)

To set the current realm, use the realm command with an argument value:

(debug) rea c-p }

(c-~p) rea )

command-processor

(c-p)

086-000167 updates Licensed Material - Property of Data General Corporation 3-7
093-000706-00



Customizing Your Environment

Creating a Realm (define-realm)

To create a realm, use the define-realm command. For example, this creates a realm named macros:

(debug) def-rea macros )

When a realm is created, it contains no commands. You can put commands into the realm using

copy-command for built-in commands (see “Creating Command Aliases” later in this chapter), de-

fine-macro for macros (see “Creating a Macro” earlier in this chapter), or c-p:assign for CP vari-

ables (see Chapter 4).

Although a newly created realm contains no commands itself, many commands are immediately avail-

able in that realm through its realm use list; see the next section for more information.

Displaying and Setting the Realm Use List (realm-use-list)

The realm-use-list command displays or sets a realm use list. The realm keyword argument indicates

the target realm whose use list is being displayed or set. The default is the current realm.

Without arguments, realm-use-list displays the realms that are used by the target realm. With a used-

realms argument, realm-use-list replaces the use list of the target realm.

When you create a realm using the define-realm command, you can supply an explicit realm use list

via the use argument. The default use list contains the new realm and the command-processor. For

example:

(c—p) def-realm macros )

(c—p) realm macros )

(macros) realm-use-list )

{ { macros } { command-processor } }

Which realms are in the target realm use list affect how you can abbreviate command names, because

each abbreviated command name must be unique among the commands in the realms on the current

realm use list.

This command displays the current realm use list:

(c-p) realm-use-list )

{{command-processor foo}}

To set the realm use list for the foo realm so that the CP first looks in realms foo and bar to find

commands, macros, and CP variables, and then looks in the c-p realm, type this command:

(c-p) realm-use-list {{foo bar} {c-p}}, realm foo )

(c-p)

3-8 Licensed Material — Property of Data Generai Corporation 086-000167 updates
093-~—000706-00



Customizing Your Environment

Displaying and Setting the Prompt String (prompt-string)

The prompt-string command displays or sets the prompt string of the current realm.

To display the prompt, omit the new-prompt argument. To set the prompt string for a realm, specify

a value for the new-prompt argument. The CP automatically adds a space after the phrase that you

specify for the prompt.

This example displays the prompt string:

(c-p) prompt )
(c-p)

(c-p)

The next example sets the prompt string of the macros realm to (mac):

(c-p) rea macros )

(macros) prom (mac) )

(mac )

Deleting a Realm (delete-realm)

The delete-realm command deletes a user-created realm. The character, command-processor,

graphical-interface, icobol, options, and debugger realms cannot be deleted.

To delete a realm, you must type the complete realm name; it cannot be abbreviated. This command

deletes a realm named macros:

(debug) del-rea macros )

Changing an Argument’s Default Value

(change-argument-value)

The change-argument-value command sets the default or implied value for a command’s argument.

You can change a default or implied value, remove an existing one, or create one where none

existed.

Change-argument-value has two required arguments: command and argument. These arguments

specify which command argument is being changed to what value. Change-argument-value also

accepts several keyword arguments. Table 3-1 shows tasks you can accomplish using these keyword

arguments.

093-000706 Licensed Material - Property of Data General Corporation 3-9



Customizing Your Environment

Table 3-1 Tasks and Keywords for change-argument-value

Task Keyword

Set the default value to a value default

Set the default value to the null string empty-default

Set the implied value to a value implied

Set the implied value to the null string empty-implied

Take away an argument’s implied behavior no-implied

The following example changes the default value of help’s command argument to “realm”:

(c-p) change-argument-value help command, default realm )

To reverse the default and implied values for the instructions argument of the step command, type

this command:

(c-p) change-arg-value debug:step instruct, default yes ‘ }

(c-p)~ ,implied no )

Creating Command Aliases (copy-command)

The copy-command command copies a command. You can use copy-command to make a copy of a

built-in command, macro, or variable that has exactly the same interface and semantics as the

original.

Changing a copy does not affect the original command, and assignment to a copied variable does not

affect the original variable. Resetting the default or implied values of a copied command or macro

does not affect the original command or macro.

A copy of a built-in command does not have the same permanence as the built-in command. The

copy can be overwritten by a define-macro or cp:assign command.

This example copies variable vari (which already exists) to var2:

(c-p) copy varl var2 }

You could create an exit command identical to the bye command:

(c-p) copy-command bye exit )

3-1 0 Licensed Material - Property of Data General Corporation 093-000706



Customizing Your Environment

Saving Your Customizations

This section tells how to save your customized environment. It explains how to write macros to a file

and how to include such a file into a debugging session later.

Writing to a File (redirect-output)

The redirect-output command sends output to a file. You can redirect the standard output and the

error output independently. You can also independently control whether the output appends to or

overwrites existing data.

This command writes the help message for the assign command to a file called help.messages,

deleting that file if it already exists:

(c-p) redirect-output {help assign} help.messages }

This command appends the help message for the evaluate command to help.messages; it uses the

standard-append keyword:

(c-p) redir-o {help eval} help.messages, standard-append )

To save all of your macros to the file savefile, use this command:

(c-p) redir-o {do-seq {x ‘‘{help, c ”.”, v {text no, arg no}}} {print-command ‘x}} savefile }

Including a File (include)

The include command reads and executes the contents of a specified file.

Type the following to include a file named savefile:

(c-p) include savefile )

The following command includes a file named crowd and keeps going if errors are encountered:

(c-p) include crowd, continue }

End of Chapter

093-000706 Licensed Material - Property of Data General Corporation 3-11





Chapter 4

Command Processor Commands

This chapter contains the on-line help messages for the command-processor (c-p) realm and for the

commands in that realm. The realm help message is first, followed by the help messages for the indi-

vidual commands, listed in alphabetical order. The c-p realm contains general commands that perform

tasks such as getting help, manipulating the debugging environment, or controlling the flow of macros.

Help messages for commands use the following conventions:

Message format

Command syntax

Arguments

Argument keywords

Argument values

Argument semantics

<name>

Each command help message in this chapter has the following sections:

“Summary,” “Description,” “Arguments” (if the command takes arguments),

“Examples,” and “See Also.”

Each command follows the regular syntax described under “Creating a

Command Line” in Chapter 1.

Each argument is classified as required, optional, or keyword in the

Arguments subsection of the Summary Section.

Each argument, regardless of its classification, has a keyword identifying it.

The kind of value the argument accepts is listed to the right of the keyword.

This information and occasionally additional syntactic information is given

under an entry’s Arguments section.

The “To get” and “To do” subsections of the c-p realm help message use

angle brackets to indicate a value that you supply.

Each command’s help message is divided into two sections: the first part shows what you would see if

you typed help <command-name>; the first and second parts together show what you would see if you

typed help <command-name> ,verbosity {text long, arguments long}.

086-000167 updates

083-—000706-00

Licensed Material - Property of Data General Corporation 4-1



Command Processor Commands

Summary

To get

To do

Description

To get

To do

Environment

4-2

Realm: command-processor

Introduction to the Command Processor (CP)

Here is how to perform some common tasks:

A list of CP help topics:

A list of CP commands:

Help on a specific topic:

Help on a specific command:

More information about the CP,

with CP commands categorized:

Insert input from a file:

Redirect command output:

Set a CP variable:

Display CP variable’s value:

Delete a CP variable:

Create a command alias:

Exit from an interactive tool:

help, topic, r c-p

help, command, r c-p

help <topic-name>

help <command-name>

help, v, r c-p

include <file>

redirect <commands> <stdout>

assign <var-name> <value>

<var-name>

delete-command <var-name>

copy-command <old> <new>

quit

The Command Processor (CP) is the command interpreter. The CP lets you dy-

namically create CP variables and tailor your working environment by creating

commands (macros), organizing commands into groups (realms), and modifying

commands (resetting the default and implied values of arguments).

Here are some more tasks you can perform:

A list of all help topics:

A list of all commands:

A list of all realms:

Help on a specific realm:

TASK

Manipulate the CP environment

Control the flow of CP commands

Display or create a help message

Control command input and output

Manipulate realms

Manipulate phrases

Perform another task

help, topic, realm

help, command, realm

help, realm

help <realm-name>

CATEGORY

Environment

Flow

Help

1/O

Realms

Phrases

Misc.

Following is a summary of CP commands by category; capital letters indicate the

shortest unique abbreviation:

ASsign*

CHange-argument-value

COpy-command

DEFine-Macro

DELete-Command

Evaluate *

Licensed Material - Property of Data General Corporation

Assign a value to a CP variable

Change default or implied value

Copy a command or a variable

Create a macro

Delete a command or variable

Evaluate a series of commands

086-000167 updates
093-000706-00



ma

Environment expression

Flow

Help

VO

Realms

Phrases

LET

PRInt-command

PROMpt-string

Trace-Commands

Trace-Status

Untrace-Commands

ANd

DO-Sequence

EQual

ERror

Greater

Greater-Equal

IF*

LESs

LESs-Equal

Not

Not-Equal

OR

PROTect

RETurn

WHile*

DEFine-Topic

DELete-Topic

Help

INclude

QUEry

REDirect-output

WRite

DEFine-Realm

DELete-Realm

Realm

Realm-Use-list

FIRst

LAst

LENgth

RESt

SUbphrase

Bye

DIrectory

LOg

OPtion-status

PAge

POsition

QUIt

SHell

Unlog

Command Processor Commands

Evaluate an integer expression

Evaluate commands in a dynamic binding environment

Display a macro’s definition

Return or change the prompt string

Trace execution of commands, variables, and macros

Display the status of traced objects

Stop tracing commands, variables, and macros

Test for logical AND

Execute a series of commands

Compare whether arguments are equal

Signal an error in a macro

Compare strings

Compare strings

Execute commands conditionally

Compare strings

Compare strings

Test for a null string

Compares whether arguments are unequal

Test for logical OR

Execute commands in protected region

Return from a macro

Execute while predicate nonnull

Create a topic help message

Delete a topic

Display a help message

Read the contents of a file

Display a prompt and read user input

Make a file the default output

Write arguments to standard output

Create a new realm

Delete a realm

Display or set the current realm

Display or set the realm use list

Return the first word in a phrase

Return the last word in a phrase

Return the length of a phrase

Return all but first word of phrase

Write part of a phrase

Exit from interactive tool

Display or set working directory

Start logging

Display or set global options

Page through command output

Return the position of a regular expression

Exit from interactive tool

Execute a subshell or a shell command

Turn off logging

* A command with the same name but different action exists in the debugger (Mxdb) realm.

086-000167 updates

093-000706-00

Licensed Material —- Property of Data General Corporation 4-3



Command Processor Commands

Command: and Realm: command-processor

Summary Write a phrase representing the logical AND of the arguments

Arguments Required:

left A string

right A string

Examples c-p:and *{some-variable} ~{some-other-variable}

c-p:and ~{sh cmp foo bar} *{sh cmp bar bletch}

Description And writes “true” when both arguments are nonnull strings. Otherwise, it writes an
empty string.

Arguments eft A string

right A string

Examples This and command composes the OR operation:

(c-p) not {and {not ‘{al}} {not ‘{as}}} )

See Also Commands: or, not, if

4-4 Licensed Material — Property of Data General Corporation 086-000167 updates
093~-000706-00



Command Processor Commands

Command: assign Realm: command-processor

Summary Assign a value to a CP variable

Arguments Required:

variable A word

phrase One or more words

Keyword:

doc Up to three quoted help text strings

Examples c-p:as x computer

c-p:assi s some words for "s"

c-p:asSign jar box

c-p:assign jar “box, d "jar has box’s value."

Description Assign assigns a phrase to a CP variable (a function without arguments). If the
variable does not exist, assign creates it. If a variable with the specified name

already exists, assign overwrites it.

Arguments variable You must spell the variable name exactly. This is necessary to let
you create a new variable that is a prefix of some other name.

You can qualify the variable to a particular realm by preceding the

variable name with a realm name and a colon.

phrase For more information about words and phrases, see the syntax

help topic.

doc This text will be visible to the help command (see the

documentation help topic).

Examples To assign the word “computer” to x:

(c-p) as x computer }

To assign the phrase ‘some words for “s”’ to s:

(c-p) assi s some words for ”s” )

To assign the word “box” to jar and display the value:

(c-p) assign jar box }

(c-p) write The value of jar is: ‘jar )

The value of jar is: box

093-000706 Licensed Material — Property of Data General Corporation 4-5



Command Processor Commands

See Also

To assign a value to a CP variable named “box,” and then assign the value of box

to jar, document the jar variable, and display the value:

(c-p) assign box strawberries )

(c-p) assign jar ‘box, doc "jar has box’s value.” ” }

(c-p)" Description<tab>The variables are as follows: }

(c-p)" <tab><tab>box: the original variable }

(c-p)" <tab><tab>jar: the copied variable” )

(c-p) write jar = ‘jar )}

jar =strawberries

(c-p) evaluate { jar } )

strawberries

(c-p) help jar }
Command: jar Realm: command-processor

Summary jar has box’s value.

Arguments <none>

Description The variables are as follows:

box: the original variable

jar: the copied variable

(c-p)

Commands: c-p:evaluate, print-command, debug:assign

Topics: substitution, syntax

Licensed Material - Property of Data General Corporation 093-000706



Command Processor Commands

Command: bye Realm: command-processor

Summary Exit from an interactive tool

Examples bye

Description Bye exits from the current interactive tool (such as Mxdb).

Examples (debug) bye }

(c-p) bye }

See Also Commands: quit, terminate

Note The bye and quit commands do exactly the same thing.

093-000706 Licensed Material ~ Property of Data General Corporation 4-7



Command Processor Commands

Command: change-argument-value Realm: c-p

Summary

Arguments

Examples

Reset the default or implied value for a command argument

Required:

command Command name

argument Argument name

Keyword:

default New default value

empty-default yes or no

implied New implied value

empty-implied yes or no

no-implied yes or no

cha help command, default prompt-string

change-arg-value debug:step instruct, default yes

Description

Arguments

Examples

See Also

4-8

Change-argument-value overrides the default and/or implied values for a

command’s argument. You can also give an implied value to an argument that did

not have one, or take away its implied behavior.

command This name can be abbreviated.

argument This name can be abbreviated.

default Set the default value.

empty-default Set the default value to the null string.

implied Set the implied value.

empty-implied Set the implied value to the null string.

no-implied Take away an argument’s implied behavior.

To set “help” equal to “help, command realm”:

(c-p) cha help command, default realm })

To change the default value for the step command’s instructions argument:

(debug) change-arg-value step instruct, default yes )

Commands: copy-command, define-macro, print-command

Licensed Material — Property of Data General Corporation 093-000706



en

Command Processor Commands

Command: copy-command Realm: command-processor

Summary Copy a command, macro, or variable

Arguments Required:

old-prefix The name of a command, macro, or variable

new-name The name of the new command, macro, or variable

Keyword:

doc Up to three quoted strings of help message text

Examples copy varl var2

copy-command bye exit

Description Copy-command makes a new command, macro, or CP variable that has exactly
the same interface and semantics as the old one. Assignment to a copied variable

does not affect the original variable. Changing the default or implied values of a

copied command or macro does not affect the original command or macro.

Arguments old-prefix This name is case insensitive and can be abbreviated.

new-name This name is case insensitive.

doc This text is visible to the help command (see the documentation

help topic).

Examples To copy variable vari to var2:

(debug) copy varl var2 }

To create an exit command identical to the bye command:

(debug) copy-command bye exit )

See Also Commands: define-realm, realm

086-000167 updates

093-000706-00

Licensed Material — Property of Data General Corporation 4-9



Command Processor Commands

Command: define-macro Realm: command-processor

Summary Create a new command

Arguments Required:

name The name of the macro being defined

arguments An argument list enclosed in braces; each argument name

can also have with it the following keywords: optional or

keyword; default; implied; type; and variable (to create a

CP variable)

body One or more commands enclosed in braces

Keyword:

doc Up to three strings of help message text enclosed in

quotation marks

invocation-realm Yes or no

Default: no

Implied: yes

Examples def-mac bang {phrase} { write ! ‘phrase ! }

def-mac up {,optional { screens, default 1, type ordinal }

} { view, up “screens }

Description Define-macro creates a new “command” with a name and interface you specify.
The interface ranges from simple to complex.

A macro typically uses backquotes in the body to substitute the value of the speci-

fied arguments into the definition.

Arguments name This is a word (see the syntax help topic). You can qualify a
macro to a particular realm by preceding the macro name with

a realm name and a colon.

arguments You can specify required, optional, and keyword arguments.

The optional and keyword arguments may have default and

implied values.

body These commands compose the macro body.

doc This text will be visible to the help command (see the

documentation help topic).

invocation-realm If you specify this argument, the defined macro will always

execute in the realm in which it is invoked. By default, macros

execute in the realm in which they are defined.

4-1 0 Licensed Material -— Property of Data General Corporation 086-000167 updates
093-000706-00



See Also

093-000706

Command Processor Commands

To define an up macro for viewing source text:

(debug) def-mac up { )

(debug) {, optional { screens, default 1, type ordinal } )

(debug) { } { view, up ‘screens } )

To define a down macro for viewing source text:

(debug) def-mac down { )

(debug) {, optional { screens, default 1, type ordinal } }

(debug) { } { view, down ‘screens } )

To define a frame macro for positioning to a frame:

(c-p) define-mac debug:frame {, optional level} { )

(c-p){ c-p:if {level} {position, f ‘level} {position}}°‘ )
(c-p)*, d Display or set the current frame position.” }

Commands: define-realm, delete-command, help, realm, redirect-output

Topics: substitution, syntax

Licensed Material - Property of Data General Corporation 4-1 1



Command Processor Commands

Command: define-realm Realm: command-processor

Summary Create a new realm

Arguments Required:

name The name for the new realm

Optional:

use A list of realms grouped using braces

Keyword:

prompt The prompt string for this realm

doc Up to three strings of help message text enclosed in quotation

marks

Examples define-realm quick

def-realm macros, prompt (mac)

def-r myrealm, use {{myrealm c-p}}

Description Define-realm creates a new realm. If a user-defined realm with that name already

exists, define-realm overwrites it. To delete a realm explicitly, use the

delete-realm command. The built-in realms (debugger, command-processor,

characters, etc.) cannot be overwritten or deleted.

By default the realm use list of the newly created realm is { { new-realm

command-processor } }. To override this, specify the use argument.

When you create a realm, it contains no commands, macros, or CP variables. You

can create these with the copy-command, define-macro, and cp:assign

commands, respectively.

Arguments name This is a word (see the syntax help topic).

use Define the realm use list for the new realm. This determines the

uniqueness of command abbreviations. See the realm-use-list

command.

prompt Set the new realm’s prompt string to the specified value. The

default is the name of the new realm in parentheses.

doc This text will be visible to the help command (see the

documentation help topic).

4-1 2 Licensed Material — Property of Data General Corporation 093-000706



Examples

See Also

093-000706

Command Processor Commands

To create a realm named quick:

(debug) define-realm quick )

To create and document a realm named macros (<tab> indicates a tab character):

(debug) define-realm macros, prompt (mac) ‘ }

(debug) *, doc "This realm contains my macros.” ‘ }

(debug) * ”These macros are defined automatically }

(debug)" <tab><tab>in my .mxdb_init file.” }

Commands: c-p:assign, copy-command, define-macro, delete-realm, include,

realm, realm-use-list, redirect-output

Topic: syntax

Licensed Material - Property of Data General Corporation 4-1 3



Command Processor Commands

Command: define-topic Realm: command-processor

Summary Create a new topic

Arguments =Required:

name The name of the new topic

text Up to three quoted strings of help message text

Examples def-t quotes "The quotation marks are “ and ""."

define-topic i/o "Input and output commands" ~

"<tab><tab>Following are the I/O commands:

<tab><tab>include query redirect write"

Description Define-topic creates a new topic accessible by the help command.

Arguments name This can be any word (see the syntax help topic). You can qualify

a topic to a particular realm by preceding the topic name with a

realm name and a colon.

text See the help message for the documentation topic.

Examples To create a simple quote topic:

(c-p) def-t quotes ”The quote marks are ’ and ””.” )

To create a more complex quote topic:

(c-p) def-t quotes ’The quote marks are’ and ””.” ‘ }

(c-p)* ”Examples<tab>write ‘quoted stuff’ }

(c-p)" <tab><tab>write ”” another example””” ‘ )
(c-p)*> ”Description<tab>The CP recognizes two kinds of )

(c-p)" <tab><tab>quote marks: single and double.” }

(c-p)

In the following example, <tab> represents the tab character:

(debug) define-topic c-p:i/o "Input and output commands” ‘ )

(debug) * ”<tab><tab>Following are the I/O commands: )

(debug) " <tab><tab>include query redirect write” )

See Also Commands: define-realm, delete-topic, help

4-14

Topics: documentation, syntax

Licensed Material - Property of Data General Corporation 093-000706



Command Processor Commands

Command: delete-command Realm: c-p

Summary Remove a command, macro, or variable

Arguments Required:

name The name of a command, macro, or variable

i Examples = del-c vari

delete-command create-realm

Description Delete-command removes a specified command, macro, or CP variable.

Arguments name This word cannot be abbreviated. You can qualify the name to a

particular realm by preceding the name with a realm name and a

colon.

Examples To delete a variable named vart:

(debug) del-c varl }

To delete a macro named bang:

(debug) delete-command bang }

See Also Commands: c-p:assign, copy-command, define-macro
Topic: abbreviation

086-000167 updates Licensed Material - Property of Data General Corporation 4-1 5
093-000706-00



Command Processor Commands

Command: delete-realm Realm: command-processor

Summary Delete a realm

Arguments — Required:

name The name of a user-created realm

Examples del-r macros

delete-realm myrealm

Description Delete-realm deletes a user-created realm.

Arguments name This is the name of any user-created realm. You cannot abbreviate

the name.

Examples To delete a realm named macros:

(debug) del-r macros )

To delete a realm named myrealm:

(debug) delete-realm myrealm }

See Also Commands: define-realm, realm, realm-use-list

4-16 Licensed Material — Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: delete-topic Realm: command-processor

Summary Remove a topic

Arguments Required:

name The name of the topic to be deleted

Examples del-t quotes

delete-topic i/o

del-top debug:i/o

Description Delete-topic removes a specified help topic. You can qualify a topic to a particu-
lar realm by preceding the topic name with a realm name and a colon.

Arguments name This word cannot be abbreviated.

Examples To delete a topic named quotes:

(debug) del-t quotes )

To delete a topic named i/o:

(debug) delete-topic i/o }

To delete i/o from the debugger realm:

(c-p) del-top debug:i/o }

See Also Commands: define-topic, delete-command, delete-realm, help

086-000167 updates Licensed Material — Property of Data General Corporation 4-1 7
093-000706-00



Command Processor Commands

Command: directory Realm: command-processor

Summary

Arguments

Examples

Description

Arguments

Examples

See Also

4-17.a

Set or display the current working directory

Optional:

pathname Any syntactically valid file system pathname

dir

dir /tmp

To display the current working directory, use the directory command with no ar-

guments.

To set the current working directory, specify a pathname argument.

pathname Any syntactically valid file system pathname

This directory command displays the current working directory:

(c-p) directory )

/usr/chris

(c-p)

The next example sets the current working directory to /tmp:

(c-p) directory /tmp 2

(c-p) directory }

/tmp

(c-p)

Commands: debug:directory-list

Licensed Material — Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

This page intentionally left blank.

086-000167 updates Licensed Material — Property of Data General Corporation 4-1 7.b
093-000706-00



Command Processor Commands

Command: do-sequence Realm: command-processor

Summary Execute a command repeatedly

Arguments Required:

name-and-phrase A variable name and an associated phrase

body Command(s) enclosed in braces

Examples do-sequence {x list} { write ..*{x}.. }

do-sequence {x ‘list} { write ..*{x}.. }

do-sequence {x **‘list} { write ..°{x}.. }

Description Do-sequence executes the body once for each word in the phrase with the speci-

fied name bound to the nth word on the nth iteration. If the phrase is the null

string (‘””), do-sequence does nothing.

Arguments name-and-phrase The name (word) must be separated from the phrase by one

or more blanks (spaces or tabs). The variable-phrase pair

must be enclosed in braces.

body If you specify more than one command, the body argument

must be enclosed in braces. Otherwise, braces are optional.

Examples The following examples show different uses of do-sequence:

(c-p) assign list all good boys }

(c-p) do-sequence {x list} {write .. ‘x ..} }

list

(c-p) do-sequence {x ‘list} {write .. ‘x .. } )

all good boys

(c-p) do-sequence {x ‘‘list} {write .. ‘x ..} }

all

good ..

boys

(c-p)

See Also Commands: assign, write
Topic: substitution, syntax

4-1 8 Licensed Materia! - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: equal Realm: command-processor

Summary Compare whether two arguments are equal

Arguments Required:

left Any value

right Any value

Keyword:

case-sensitive yes or no

Examples c-p:if { eq foo FOO } { write same }

c-p:if { equ foo bar } { write equal }

c-p:if { equ Foo_Bar foo-bar } { write yes }

c-p:if { equ Foo_Bar foo-bar, case-sens } { wri y }

c-p:if { equal *X bar} { write X equals bar. }

Description Equal compares two arguments, writing “true” to the standard output if they are

equal and a null string (‘””) if they are not. Equal is useful as a predicate

evaluator for the cp:if command.

Arguments left This is a word (see the syntax help topic).

right This is a word (see the syntax help topic).

case-sensitive If the value of the case-sensitive argument is “yes,” equal checks

for an exact match.

Examples The following are valid:

(c-p) if { eq foo FOO } { write same } )

same

(c-p) if { equ foo bar} { write equal } }

(c-p) if { equ Foo Bar foo-bar } { write yes } )

yes

(c-p) if { equ Foo Bar foo-bar, cas } { wri y } }

(c-p) assign X foo )

(c-p) if { equal ‘X bar } { wri X equals bar. } }

See Also Commands: cp:if, not
Topic: syntax

093-000706 Licensed Material — Property of Data General Corporation 4-1 9



Command Processor Commands

Command: error Realm: command-processor

Summary Display a message and signal an error

Arguments Required:

message The text of the error message

Examples error Something is wrong.

define-mac assert-not-null {arg message} {

c-p:if {not ‘arg} {error ~‘message} }

Description Error writes a message to the error output and signals that an error has occurred.
This is a useful command for macros.

Arguments message This will be displayed immediately after “Error: ”.

Examples Following are two examples:

(debug) error Something is wrong. }
Error: Something is wrong.

(debug)

(c-p) define-mac assert-not-null {arg message} { }

(c-p) { c-p:if {not ‘arg} {error ‘message}} })

(c-p) assign x something )

(c-p) assert-not-null ‘x X is null )}

(c-p) assign y ‘”” )

(c-p) assert-not-null ‘y Y is null )
Error: Y is null

See Also Command: define-macro, protect, redirect-output

4-20 Licensed Material - Property of Data General Corporation 093-000706



Command Processor Commands

Command: evaluate Realm: command-processor

Summary Evaluate a series of commands

Arguments Required:

commands Command(s) enclosed in braces

Examples c-p:assign x help *","realm

c-p:evaluate { **x }

define-mac set {x} {c-p:eval {c-p:assign *x}}

Description The evaluate command evaluates a series of commands and writes to the standard

output the value returned by the last command evaluated. If the commands are

enclosed in braces ({}), the braces are removed before evaluation.

Arguments commands If you specify more than one command, you must separate them
with semicolons or New Lines and enclose the entire series in

braces.

Examples To set x to a command string, and then execute the command in x:

(c-p) assign x help ‘”,”realm }

(c-p) evaluate { ‘‘x } }

To define a macro using evaluate:

(c-p) define-mac set {x} {c-p:eval {c-p:assign ‘x}} )

See Also Commands: cp:assign, define-macro, debugger:evaluate

Topic: substitution

086-000167 updates Licensed Material - Property of Data General Corporation 4-21
093-000706-00



Command Processor Commands

Command: expression Realm: command-processor

Summary Evaluate an integer expression and display the result

Arguments Required:

expr An integer

Keywords:

mode A display format: decimal, octal, or hexadecimal

Default: decimal

Implied: hexadecimal

boolean Yes or no

Default: no

Implied: yes

Examples = expression (3 * (4 * 3) -— 1)

expr -(1), mode hex

expr ((1 + 0)), bool

Description The expression command evaluates an integer expression and displays the result

in octal, decimal, or hexadecimal format. Optionally, the result can be displayed

as a CP-style boolean.

Arguments expr An integer expression

mode A display format: decimal, octal, or hexadecimal. The default

value is decimal and the implied value is hexadecimal.

boolean Specify this argument if you want to display the integer expression

as a CP-style boolean value.

Examples To evaluate an integer expression and display the result in decimal format:

(c-p) expression (3 * (4 * 3) - 1) }

191

(c-p)

To evaluate an integer expression and display the result in hexadecimal format:

(c-p) expr -(1), mode hex )}

ffffffff

(c-p)

4-21 .a Licensed Material — Property of Data General Corporation 086-000167 updates
093-000706-00



Ae

See Also

086-000167 updates
093-000706-00

Command Processor Commands

To evaluate an integer expression and display the result as a CP-style boolean:

(c-p) expr ((1 + 0)), bool )

true

(C-p)

Commands: debugger:evaluate

Licensed Material ~ Property of Data General Corporation 4-21 .b



Command Processor Commands

Command: first Realm: command-processor

Summary Write the first word of a phrase

Arguments Required:

phrase One or more words

Keyword

character yes or no

Examples first abc

first foo( bar ) baz

write "*{first *x} *{rest “x}"

Description First writes the first word or character of a phrase. This is useful in macros.

Arguments phrase For more information about phrases, see the syntax help topic.

character Write the first character instead of the first word if the value is yes

Examples Following are valid examples:

(c-p) first a bc }
a

(c-p) first {ab}cd)

{ ab }
(c-p) first foo( bar ) baz }

foo( bar )

(c-p) assign x now is the time )

(c-p) write "‘{first ‘x} ‘{rest ‘x} ...” }

"now is the time "

(c-p) write ”‘{rest ‘x} ‘{first ‘x} 2..” )

"is the time now ?.."

See Also Commands: c-p:evaluate, last, rest

4-22

Topic: syntax

Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: greater Realm: command-processor

Summary Determine if the left operand is greater than the right operand

Arguments Required:

left Left string

right Right string

Keyword:

case-sensitive yes or no

Examples = greater *{some variable} *{some-other-variable}

Description Greater writes a nonnull string when the left operand is greater than the right
operand when both are considered as strings.

Arguments left Left operand

right Right operand

case-sensitive Take the case of the operands into account for the comparison.

Examples The following is valid:

(c-p) greater ‘{some-variable} ‘{some-other-variable} )

See Also Commands: equal, greater-equal, less, less-equal, not-equal

093-000706 Licensed Material - Property of Data General Corporation 4-23



Command Processor Commands

Command: greater-equal Realm: command-processor

Summar y Determine if the left operand is greater than or equal to the right operand

Arguments Required:

left Left string

right Right string

Keyword:

case-sensitive yes or no

Examples greater—equal *~{some variable} *{some-other-variable}

Description Greater-equal writes a nonnull string when the left operand is greater than or
equal to the right operand when both are considered as strings.

Arguments left Left operand

right Right operand

case-sensitive Take the case of the operands into account for the comparison.

Examples The following is valid:

(c-p) greater—equal ‘{some-variable} ‘{some-other-variable} )

See Also Commands: equal, greater, less, less-equal, not-equal

4-24 Licensed Material — Property of Data General Corporation 093-000706



ee,

Command Processor Commands

Command: help Realm: command-processor

Summary Display information about a command, realm, or topic

Arguments Optional:

item A command name, realm name, type, or topic

argument The name of a command argument

Keyword:

realm A realm name or a realm use list

command The name of a command

type The name of a type

topic The name of a topic

verbosity { text level, arguments level }

level is none, short, medium, or long

Examples help

help breakpoint

help find, v

Description Help displays information about a command, realm, type, or topic. By default,
help looks first for a command whose name or abbreviation is the value you

specify. If no such command exists, help looks for a realm, then for a type, and

then for a topic. Information on the first item found is displayed.

The help message for each item has the following sections: “Summary,”

“Description,” “See Also,” and, optionally, “Notes.” Help messages for

commands also have “Arguments” and “Examples” subsections and sections.

The “Arguments” subsection of the “Summary” section in on-line help messages

for commands is generated dynamically from the current command interface. If

you change default or implied values with the change-argument-value command,

the information for those changed values will differ between the “Arguments”

subsection under “Summary” and the “Arguments” section later in the help

message.

To search for help on an item whose name matches a regular expression, enclose

the regular expression in double quotation marks. Such an expression can be the

value for an item, argument, command, realm, type, or topic argument.

Ar guments item A command name, macro name, or topic may be preceded by a
realm name and a colon. You can abbreviate the name of the

item.

argument If you specify this argument name, you must specify a command

093-000706

name as the value for the item.

Licensed Material - Property of Data General Corporation 4-25



Command Processor Commands

realm

command

type

topic

verbosity

4-26

If you specify a realm name, look for help on only a realm with

that name. If you specify a realm or realm use list and a

command or topic with no value, list all commands or topics in

the specified realm(s). If you specify a realm or realm use list and

a command or topic with a value, look for that command or topic

in the specified realm(s). The initial implied value is to list all the

realms. Type help, topic realm for more information about

realms.

If you specify a value, look for help on only a command with that

name. If you also specify a realm, look for help on the command

only in the specified realm. The initial implied value is all the

commands in the current realm (or in the specified realm if the

realm argument has a value).

If you specify a value, look for help on only a type with that

name. If you also specify a realm, look for help on the type only

in the specified realm. The initial implied value is to list all the

types in the current realm (or in the specified realm if the realm

argument has a value). Type help, topic type for more

information about types.

If you specify a value, look for help on only a topic with that

name. If you also specify a realm, look for help on the topic only

in the specified realm. The initial implied value is to list all the

topics in the current realm (or in the specified realm if the realm

argument has a value).

This argument controls the amount of text and arguments

information that help displays. The default and implied levels are

initially medium and long, respectively. The levels have the

following meanings:

none Omit the specified category (text or arguments). If both

levels are none, display only command names.

short For text, display only the one-line summary. For

arguments, display a one-line list of arguments.

medium For text, display the one-line summary and the

Examples subsection of the Summary Section. For

arguments, display each argument name on a separate

line with a brief description of the value the argument

accepts.

long For text, display all the help text available. For

arguments, display the medium-level information plus

the default and implied values for each argument.

Licensed Material - Property of Data General Corporation 093-—000706



Command Processor Commands

Examples To get help on the breakpoint command:

(debug) help breakpoint }

To see a verbose help message for the find command:

(debug) help find, v

To get help on the scope argument of the breakpoint command:

(debug) help breakpoint scope }

To get help on the CP if command from the debugger realm:

(debug) help c-p:if }

To get a list of all commands in the current realm:

(debug) help, com )

To get a list of all realms:

(debug) help, realm }

To get a list of all topics in the current realm:

(debug) help, topic }

To get a list of all Command Processor commands:

(debug) help, com, rea c-p }

To get help on the debugger realm:

(debug) help, realm debugger }

To get a help on the c-builtin-types topic:

(debug) help, topic c-builtin-types }

To get only complete arguments information about the find command:

(debug) help find, v { text none, arg long } })

093-000706 Licensed Material —- Property of Data General Corporation 4-27



Command Processor Commands

To get a list of all commands in the current realm with a one-line summary of

each:

(debug) help, com, ver { text short, arg no } }

To get help on all commands in the current realm that contain the string “event”

in their name:

(debug) help, command ”event” )

See Also Commands: c-p:assign, change-argument-value, define-macro, define-topic,

delete-topic, resume-prompting

Topics: documentation, realm, regular-expression, type

4-28 Licensed Material - Property of Data General Corporation 093-000706



Command Processor Commands

Command: if Realm: command-processor

Summary

Arguments

Examples

Description

Arguments

Examples

See Also

093-000706

Conditionally execute one or more commands

Required:

predicate One or more commands enclosed in braces

then-part One or more commands enclosed in braces

Optional:

else-part One or more commands enclosed in braces

c-p:assign abc xyz

c-p:if { abc } { c-p:assign x ‘abc }

if {first *x} {write x not empty} {write x empty!}

If evaluates the predicate. If it returns a nonnull phrase, then if evaluates the

then-part value; otherwise it evaluates the else-part value.

predicate These commands return an empty or nonempty phrase.

then-part If the phrase is nonempty, these commands are executed.

else-part If the phrase is empty, these commands are executed.

This example evaluates the variable abc and sets the CP variable x to the value of

abc if abc is nonnull:

(c-p) if { abc } { assign x ‘abc } }

To evaluate an empty variable:

(c-p) assign x ‘”” )

(c-p) if {fir ‘x} {wri x not empty} {wri x empty} }

xX empty

(c-p)

To evaluate a nonempty variable:

(c-p) assign x abc }

(c-p) if {fir ‘x} {wri x not empty} {wri x empty} }

x is not empty

(c-p)

Commands: not, equal, c-p:while, debug:if

Licensed Material — Property of Data General Corporation 4-29



Command Processor Commands

Command: include Realm: command-processor

Summary Read and execute the contents of a specified file

Arguments Required:

pathname The pathname of a file

Keyword:

continue yes or no

Examples include company

include crowd, cont

Description Include reads the contents of a specified file and executes the file as a series of

commands. This is useful for customizing your environment in a way other than

that defined by your initialization file.

Arguments pathname The file should contain one or more commands.

continue A yes value makes the include command keep going if any errors

are encountered. A value of no makes the include command

abort if errors occur.

Examples To include a file named “company”:

(c-p) include company ).

To include a file named “crowd” and keep going if errors are encountered:

(c-p) include crowd, continue }

See Also Command: c-p:assign, change-argument-value, define-macro, define-realm,
define-topic, error, print-command, redirect-output

Topic: initialization

4-30 Licensed Material - Property of Data General Corporation 093-000706



Command Processor Commands

Command: last Realm: command-processor

Summary Write the last word of a phrase

Arguments Required:

phrase One or more words

Keyword

character yes or no

Examples last abc

last foo( bar ) baz

Description Last writes the last word or character of a phrase. This is useful in macros.

Arguments phrase For more information about phrases, see the syntax help topic.

character Write the last character instead of the last word if the value is yes

Examples Following are valid examples:

(c-p) lastabc }
Cc

(c-p) last{ab}cd}
d

(c-p) last foo( bar ) baz }

baz

See Also Commands: c-p:evaluate, first, rest
Topic: syntax

093-000706 Licensed Material - Property of Data General Corporation 4-31



Command Processor Commands

Command: length Realm: command-processor

Summary Write the length of the given phrase

Arguments Required:

phrase One or more words

Keyword

character yes or no

Examples length *{some-phrase}

Description Length writes the length of the given phrase in words (or characters).

Arguments phrase For more information about phrases, see the syntax help topic.

character Write the length in characters instead of words if the value is yes

Examples Following is a valid example:

(c-p) assign some-phrase This is a phrase )

(c-p) length ‘{some-phrase} )
4

(c-p) length ‘{some-phrase}, character )
16

See Also Commands: c-p:evaluate, position, subphrase

4-32

Topic: syntax

Licensed Material -— Property of Data General Corporation 093-000706



Command Processor Commands

Command: less Realm: command-processor

Summary Determine if the left operand is less than the right operand

Arguments Required:

left Left string

right Right string

Keyword:

case-sensitive yes or no

Examples less *{some variable} *{some-other-variable}

Description Less writes a nonnull string when the left operand is less than the right operand
when both are considered as strings.

Arguments eft Left operand

right Right operand

case-sensitive Take the case of the operands into account for the comparison.

Examples The following is valid:

(c-p) less ‘{some-variable} ‘{some-other-variable} }

See Also Commands: equal, greater, greater-equal, less-equal, not-equal

093-000706 Licensed Material - Property of Data General Corporation 4-33



Command Processor Commands

Command: less-equal Realm: command-processor

Summary Determine if the left operand is less than or equal to the right operand

Arguments Required:

left Left string

right Right string

Keyword:

case-sensitive yes or no

Examples less-equal *{some variable} *{some-other-variable}

Description Less-equal writes a nonnull string when the left operand is less than or equal to
the right operand when both are considered as strings.

Arguments left Left operand

right Right operand

case-sensitive Take the case of the operands into account for the comparison.

Examples The following is valid:

(c-p) less-equal ‘{some-variable} ‘{some-other-variable} }

See Also Commands: equal, greater, greater-equal, less, not-equal

4-34 Licensed Material — Property of Data General Corporation 093~-000706



Command Processor Commands

Command: let Realm: command-processor

Summary Evaluate commands in a dynamic binding environment

Arguments Required:

bindings A value enclosed in braces

commands Commands enclosed in braces

Examples let {{b One line} {a Another line}} {a; b}

Description Let evaluates commands in a dynamic binding environment. In this environment,
the CP saves the current values, if any, of the bound variables before executing

the commands enclosed in braces. After the CP executes the commands, it re-

stores the values.

Arguments bindings A value enclosed in braces

commands If you specify more than one command, you must separate them

with semicolons or New Lines and enclose the entire series in

braces.

Examples Following is a valid example:

(c-p) assign a apple )

(c-p) ,, In this example, the CP saves the current value of variable a )
(c-p) let {{b One line} {a Another line}} {a; b} )
Another line

One line

(c-p) ,, The CP restores the value of variable a )

(c-p) a)
apple

(c-p)

See Also Commands: cp:assign, debugger:evaluate

086-000167 updates Licensed Material - Property of Data General Corporation 4-34.a
093-000706-00



Command Processor Commands

This page intentionally left blank.

4-34.b Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: log Realm: command-processor

Summary Send a record of input/output interaction to a file

Arguments Optional:

input Any syntactically valid file system pathname

output Any syntactically valid file system pathname

error Any syntactically valid file system pathname

Keyword:

input-delete yes or no

output-delete yes or no

error-delete = yes or no

Examples log logfile

log, input login, output logout, error logerr

log

Description Use the log command to create files containing records of command line input,
output, or errors during a debugging session. You can have one file that contains

all such records, or you can have separate files. Use the input, output, and error

arguments to specify multiple files.

To display the current log files, use the log command with no arguments.

Arguments input Specify a file to contain command line input; the pathname can
be absolute or relative. Filename metacharacters (“wildcard”

characters in Bourne shell terminology, “globbing” characters in C

shell terminology) are not expanded.

output Specify a file to contain command line output; the pathname can

be absolute or relative. Filename metacharacters (“wildcard”

characters in Bourne shell terminology, “globbing” characters in C

shell terminology) are not expanded.

error Specify a file to contain command line error messages; the

pathname can be absolute or relative. Filename metacharacters

(“wildcard” characters in Bourne shell terminology, “globbing”

characters in C shell terminology) are not expanded.

input-delete Delete any existing command line input file with the specified

pathname; the default is to append to the pathname.

086-000167 updates Licensed Material — Property of Data General Corporation 4-35
093-000706-00



Command Processor Commands

output-delete Delete any existing command line output file with the specified

pathname; the default is to append to the pathname.

error-delete Delete any existing command line error message file with the

specified pathname; the default is to append to the pathname.

Examples To start input, output, and error logging to the file logfile:

(debug) log logfile }

To create an input file named login, an output file named logout, and an error

log file named logerr:

(debug) log, input login, output logout, error logerr )

To start logging into file /usr/mark/debug/logfile:

(debug) log /usr/mark/debug/logfile }

To create an input file named login that overwrites any existing input logfile with

the same name:

(debug) log, input login, input-delete )

To display the current log files:

(debug) log )

input log files:

/usr/chris/login

output log files:

/usr/chris/logout

error log files:

/usr/chris/logerr

(debug)

See Also Command: redirect-output, unlog

4-35.a Licensed Materia! — Property of Data General Corporation 0Q86-000167 updates
093-000706-00



Command Processor Commands

This page intentionally left blank.

086-000167 updates Licensed Material - Property of Data General Corporation 4-35.b
093-000706-00



Command Processor Commands

Command: not Realm: command-processor

Summary Negate a value

Arguments Required:

value Any value

Examples not *""

not {not *“""}

c-p:if {no *{equal foo bar}} {write hello}

Description Not converts ‘”” (the null string) into ‘”’true” and everything else into the null
string. The value is written to the standard output.

Arguments value This is a phrase (see the syntax help topic).

Examples Following are examples:

(c -p) not 99°99 )

true

(c-p) not ‘{ not ‘*”” } }

(c-p) if {no ‘{equal foobar}} {write hello} }
hello

(c-p)

See Also Commands: equal, c-p:if

Topic: syntax

4-36 Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: not-equal Realm: command-processor

Summary Compare whether two arguments are not equal

Arguments Required:

left Any value

right Any value

Keyword:

case-sensitive yes or no

Examples not-equal *{some-variable} *{some-other-variable}

Description Not-equal writes a nonnull string if the left argument is not equal to the right
argument when both are considered as strings.

Arguments eft Left string

right Right string

case-sensitive Take the case of the operands into account for the comparison.

Examples The following is valid:

(c-p) not-equal ‘{some-variable} ‘{some-other-variable} )

See Also Commands: equal, greater, greater-equal, less, less-equal

086-000167 updates Licensed Material - Property of Data General Corporation 4-37
093-000706-00



Command Processor Commands

Command: option-status Realm: c-p

Summary Display or set an option’s status

Arguments Optional:

option-settings Any value

Keyword:

prompt Yes or no

Examples option-status pager 66

op lang

Op

Description To display the current global options and their values, type option-status without
an option-settings argument.

Arguments option-settings This argument accepts one, two, or a list (enclosed in

curly-braces) of tokens. When you supply one token, it must

be the name of an options realm command; the command’s

value will be printed.

If you specify two tokens, the first name must be an options

realm command and the second token is the command’s

new value; if the value is not valid, you will receive an

error.

If you supply three or more tokens, they must be paired

name-value bindings enclosed in curly-braces.

prompt Specify this argument to invoke the prompting facility. This

facility will prompt for each option using the standard

prompting mechanism. See the prompting topic for more

information.

4-38 Licensed Material — Property of Data Genera! Corporation 086-000167 updates
093-000706-00



Examples

086-000167 updates
093~-000706-00

Command Processor Commands

To display all currently set option values:

(c-p) op )
option-status {

Pager Lines

Source_Lines

Stop _Commands

Language

Elide_ Arrays

String Display

String Display _Limit

Pointer Dereference_ Level

Convenience Variables

Convenience_Variables_Limit

Bit_Format

Character_Format

Signed_Character_Format

Unsigned_Character_Format

Floating Point Format

Signed_Integer_ Format

Unsigned_Integer_Format

Unpacked_Decimal_ Format

Packed_Fixed_Decimal Format

Packed Float_Decimal Format

Unknown_Type_Format

Command_History

Message _ History

}
(c—-p)

23,

10,

Cc,

yes,

yes,

100,

0,

no,

50,

binary,

ascii,

ascii,

ascii,

ieee-float,

decimal,

unsigned—decimal,

unpacked-decimal,

packed-decimal,

packed-decimal,

hexadecimal,

0,

0

To set the number of lines used by the pager to 66:

(c-p) option-status pager 66 }

To display the current option value for the expression evaluation language:

(c-p) op lang )

To set the number of source lines and set the signed integer format to hexadeci-

mal:

(c-p) op {source 15, unsigned_integer_format hex} )

Licensed Material - Property of Data General Corporation 4-38.a



Command Processor Commands

In this example, command prompting is invoked; since the prompting session is

aborted, none of the options are actually changed:

(c-p) opt {language fortran}, prompt )
Pager_Lines (23) = 20

Source Lines (15) = ,abort

(c-p) opt lang; opt pager )
Cc

23

(c-p)

The next example shows how to you can create a customized command in the

options realm:

(debug) c-p:assign options:my-—vacation-—location home ,, I’m broke

(debug) define-macro options:my-vacation {,optional location} {

(debug) { c-p:if {location} {,, remember the new location

(debug) { { c-p:assign my-vacation-location ‘location

(debug) {{ }, else {,, Report the current vacation location

(debug) { { my-vacation-—location

(debug) {{ }}

Now if you use the option-status command with no options, the global options

will be listed first, and then your user-customization command (my-vacation,

which contains exactly one optional argument, location) in the options realm will

be listed:

(debug) op

option-status {

Pager Lines 23,

Source_Lines 10,

Stop_Commands '

Language Cc,

Elide_ Arrays yes,

String Display yes,

String Display _Limit 100,

Pointer Dereference Level 0,

Convenience Variables no,

Convenience Variables Limit 50,

Bit _Format binary,

Character_Format ascii,

Signed_Character_Format ascii,

Unsigned _Character_Format ascil,

Floating Point Format ieee-float,

Signed_Integer_Format decimal,

Unsigned_Integer_ Format unsigned-decimal,

Unpacked_Decimal_ Format unpacked-—decimal,

Packed Fixed _Decimal_Format packed-—decimal,

Packed Float_Decimal_Format packed-decimal,

Unknown_Type_Format hexadecimal,

Command_History 0,

Message_ History 0,

my—vacation home

4-38.b Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

If a group of tired developers decided to go to Hawaii, they would give the op-

tional argument location a new value:

(debug) op my-va hawaii ,, I wish

(debug) op

option-status {

Pager Lines 23,

Source Lines 10,

Stop_Commands ,

Language Cc,

Elide_ Arrays yes,

String Display yes,

String _Display_Limit 100,

Pointer_Dereference_Level 0,

Convenience Variables no,

Convenience Variables Limit 50,

Bit Format binary,

Character _ Format ascii,

Signed Character Format ascii,

Unsigned_Character_Format ascii,

Floating Point Format ieee-float,

Signed_Integer_Format decimal,

Unsigned Integer Format unsigned—decimal,

Unpacked Decimal Format unpacked-decimal,

Packed_Fixed_Decimal_Format packed-decimal,

Packed _Float_Decimal_Format packed-decimal,

Unknown_Type_ Format hexadecimal,

Command_History 0,

Message History 0,

my—vacation Hawaii

}

See Also Topic: c-p:prompting

086-000167 updates Licensed Material - Property of Data General Corporation 4-38.c
093-000706-00



Command Processor Commands

4-38.d

This page intentionally left blank.

Licensed Material - Property of Data General Corporation 086--000167 updates
093-000706-00



Command Processor Commands

Command: or Realm: command-processor

Summary Write a phrase representing the logical OR of the arguments

Arguments Required:

left A string

right A string

Examples c-p:or *{some-variable} *{some-other-variable}

c-p:or *{sh cmp foo bar} *{sh cmp bar bletch}

Description Or writes the empty string when both arguments are the empty string. Otherwise,
it writes a nonnull string.

Arguments _teft A string

right A string

Examples This or command composes the AND operation:

(c-p) not {or {not ‘{al}} {not ‘{as}}} }

See Also Commands: and, not, if

093-000706 Licensed Material ~ Property of Data General Corporation 4-39



Command Processor Commands

Command: page Realm: command-processor

Summary Page through the command output

Arguments Required:

commands A command

Examples page {sh ls -1 *}

Description Page allows you to page through command output in a manner identical to that of
the help command. The page command is useful in conjunction with shell

commands.

Arguments command A command whose output will be paged.

Examples Here is an example of the page command:

(c-p) page {sh Is -1 *} }

4-40 Licensed Material - Property of Data General Corporation 093-000706



Command Processor Commands

Command: position Realm: command-processor

Summary

Arguments

Examples

Description

Arguments

Examples

See Also

093-000706

Write the numeric position of a regular expression in a phrase

Required:

reg-expression A regular expression

phrase A phrase

Keyword:

from-end yes or no

c-p:position foo somethingfoo somethingelse

Position writes the numeric position (starting with 0) of the first character of the

phrase which matches the regular expression; position also writes the number of

characters in the matched phrase. If it does not find the regular expression,

position writes a null string.

reg-expression A regular expression

phrase A phrase

from-end Permits regular expression matching from the end of the phrase

Here is an example of the position command:

(c-p) position foo somethingfoo somethingelse )

9 3

(c-—p) position foo foosomethingfoo, from-end )
12 3

Commands: and, not, if, length, subphrase

Topic: regular-expression

Licensed Material - Property of Data General Corporation 4-41



Command Processor Commands

Command: print-command Realm: command-processor

Summary Display a macro’s definition

Arguments Required:

name The name of a macro or variable

Examples pri frame

print-command say-hello

Description —Print-command displays a macro’s definition as a well-formed invocation of the

define-macro command or a CP variable’s definition as a well-formed invocation

of the cp:assign command. (Comments in the macro body are retained.) This lets

you save a macro or variable definition to a file (using the redirect-output

command). You can then include it in another session. Invoking print-command

on a built-in command writes a null string to the standard output.

Arguments name This is a word (see the syntax help topic).

Examples To set variable pi and its documentation string, and then display the variable and

its documentation:

(c-p) assign pi 3.14159, doc ”value of pi” )

(c-p) print-com pi )

command-processor:assign command-processor:pi 3.14159

,doc "value of pi"

To define and print the definition of a macro named say-hello:

(debug) define-macro say-hello {} { )

(debug) { write hello } )

(debug) print-command say-hello )
define-macro say-hello {} {

write hello }

See Also Commands: c-p:assign, define-macro, include, redirect-output

Topic: syntax

4-42 Licensed Material - Property of Data General Corporation 093-000706



Command Processor Commands

Command: prompt-string Realm: command-processor

Summary Display or set the prompt string

Arguments Optional:

new-prompt A word

Examples prom

prompt >

prompt-str (deb)

Description Prompt-string displays or sets the current realm’s prompt string. To set the
prompt string, specify a new-prompt argument. To display the prompt string, omit

the argument.

Arguments new-prompt This is a word (see the syntax help topic).

Examples To display the current prompt string:

(c-p) prom }
(c-p)

(c-p)

To set the prompt string to >:

(debug) prompt > )

>

To set the prompt string to (deb):

> prompt-str (deb) )
(deb)

See Also Commands: define-realm, realm, resume-prompting

093--000706

Topic: syntax

Licensed Material -— Property of Data General Corporation 4-43



Command Processor Commands

Command: protect Realm: command-processor

Summary

Arguments

Examples

Description

Arguments

Examples

See Also

4-44

Execute commands in a protected region

Required:

protected-region One or more commands enclosed in braces

Optional:

cleanup-actions One or more commands enclosed in braces

Keyword:

errors-only yes or no

pro { var x abc; eval x }, cleanup { var x, del }

protect {write lst; error Something wrong; write 2nd},

cleanup { write Caught an error }, errors-only

Protect executes the commands in the protected region, and then the commands

specified as cleanup actions. This is useful in a macro for creating a variable in a

protected region and deleting the variable as the cleanup action. It is also useful

for catching errors and taking alternative actions.

protected-region This is a series of commands that might cause an error.

cleanup-actions These commands are executed after the protected-region

commands.

errors-only Execute the cleanup-actions commands only if an error

occurs.

To create and delete variable x:

(debug) pro { var x ab; eva x }, cl { var x, del } }

Another example:

(debug) prot {wr Ist; err Something wrong; wr 2nd}, ‘ }

(debug) * clean { wri Caught an error }, errors-only }

Commands: error, write

Licensed Material ~ Property of Data General Corporation 093--000706



Command Processor Commands

Command: query Realm: command-processor

Summary

Arguments

Examples

Description

Arguments

Examples

See Also

093-000706

Write a prompt and read one line

Required:

prompt A text string for prompting

query How many?

c-p:assign x *{query Number of times: }

Query writes a prompt to the standard output and reads a one-line user response

from the standard input. This is useful for creating macros that the user can tailor

dynamically.

prompt This is a phrase (see the syntax help topic).

Following are valid examples:

(c-p) query How many? )

How many? 4 )

4

(c-p) assign x ‘{query Number of times:} )

Number of times: 3 }

(c-p) x }
3

(c-p)

Command: cp:assign, write

Topic: syntax

Licensed Material - Property of Data General Corporation 4-45



Command Processor Commands

Command: quit Realm: command-processor

Summary Exit from an interactive tool

Examples = quit

Description Quit exits from the current interactive tool (such as Mxdb).

Examples (debug) quit }

See Also Commands: bye, terminate

Note The quit and bye commands do exactly the same thing.

4-46 Licensed Materlal - Property of Data Genera! Corporation 093-000706



Command Processor Commands

Command: realm Realm: command-processor

Summary Display or set the current realm

Arguments Optional:

realm-name The name of a realm

Examples realm

realm c-p

Description With no argument, realm displays the current realm. With a realm-name
argument, it sets the current realm.

Arguments reaim-name — This word can be abbreviated.

Examples To display the current realm:

(c-p) realm }

command-processor

To change the current realm to debugger:

(c-p) realm deb }

(debug) realm }

debugger

See Also Commands: define-realm, prompt-string, realm-use-list
Topics: abbreviation, syntax

093-000706 Licensed Material - Property of Data General Corporation 4-47



Command Processor Commands

Command: realm-use-list Realm: command-processor

Summary Display or set realm use list

Arguments Optional:

used-realm A list of sets of realms (grouped by braces) that are used to

search for commands. You must include the target realm in

the list.

Keyword:

realm The name of a realm; the default is the current realm

Examples r-u

realm-use-list {{foo bar} {command-processor} }

Description Without arguments, realm-use-list displays the realms that are used by the target
realm indicated by the realm argument. With a used-realms argument,

realm-use-list replaces the use-list of the target realm.

Which realms are in the target realm use list affects how you can abbreviate

command names, because each abbreviated command name must be unique

among the commands in the realms on the current realm use list.

Arguments used-realm Set rather than display the realm use list.

realm Determine which realm to use. The initial default is the current

realm.

Examples To display the current realm use list:

(c-p) realm-use-list )
{{command-processor foo}}

To set the realm use list so that the CP first looks in realms foo and bar, and

then in c-p, to find commands, macros, and CP variables:

(c-p) realm-use-list {{ foo bar } { c-p }} )

(c-p)

See Also Commands: define-realm, realm

4-48

Topic: abbreviation

Licensed Material - Property of Data General Corporation 093-000706



Command Processor Commands

Command: redirect-output Realm: command-processor

Summary Send output to a file

Arguments Required:

body One or more commands enclosed in braces

Optional:

standard-output A pathname

error-output A pathname

Keyword:

standard-append _ yes or no

error-append yes or no

Examples red {help assign} help.messages

redirect-output {help evaluate} help.messages, standard-append

Description Redirect-output changes where the output from a series of commands goes. By
default, all output goes to the display unit. You can redirect standard output and

error output independently.

Arguments body Redirect the output from these commands.

standard-output This file is where the standard output goes.

error-output This file is where any error messages go.

standard-append Append to the standard output file if it already exists.

error-append Append to the standard error file if it already exists.

Examples To write a help message to help.messages, deleting that file if it already exists:

(debug) red {help assign} help.messages )

To append a help message to help.messages:

(debug) redir-o {help eval} help.messages, standard-append )

See Also Commands: include, write

093-000706 Licensed Material - Property of Data General Corporation 4-49



Command Processor Commands

Command: rest Realm: command-processor

Summary Write all but the first word or character of a phrase

Arguments Required:

phrase One or more words

Keyword:

character yes or no

Examples rest abc

rest {ab}cd

rest foo( bar ) baz, character

write "*{first *x} *‘{rest “x}"

Description Rest writes all but the first word or character of a phrase.

Arguments phrase For more information about phrases, see the syntax help topic.

character Write all but the first character (instead of the first word) if the

value is yes

Examples Following are valid examples:

(c-p) restabc }

be

(c-p) rest {ab}cd }

cd

(c-p) rest foo( bar ) baz, character )

oo( bar ) baz

(c-p) assign x now is the time }

(c-p) write ”‘{first ‘x} ‘{rest ‘x}...” }

"now is the time ..."

(debug) write ”‘{rest ‘x} ‘{first ‘x} 2..” })

"is the time now ?.."

See Also Commands: do-sequence, first, last
Topic: syntax

4-50 Licensed Material — Property of Data General Corporation 093-000706



This page intentionally left blank.

086-000167 updates Licensed Material - Property of Data General Corporation 4-51093-000706-00



Command Processor Commands

Command: return Realm: command-processor

Summary Return from a macro

Arguments Optional:

anything One or more words

Examples define-macro star {x} {return * *x *}

Description Return returns from a macro passing back a phrase. For information about
phrases, see the syntax help topic.

Arguments anything These words are displayed on the standard output (by default,

your screen).

Examples The following are valid:

(c-p) define-macro star {my_var} {return * ‘my_var *} )

(c-p) star foo }

* foo *

(c-p)

See Also Commands: do-sequence, define-macro, redirect-output

4-52 Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: shell Realm: command-processor

Summary Execute a subshell or a shell command sequence

Arguments Optional:

command-line A shell command line

Examples sh

sh date

shell ls -1

Description Shell executes a subshell or a shell command sequence. If the environment
variable SHELL is defined, it is used. Otherwise /bin/sh (the Bourne shell) is

used.

Arguments command-line If you specify a command line, that command line is executed in
a subshell. If you omit the command-line argument, a shell is

executed.

Examples To enter the shell:

086-—000167 updates
093-000706-00

(debug) sh )

To display the current date and time:

(debug) sh date }

To list the files that are in your working directory:

(debug) shell Is -I }

Licensed Material — Property of Data General Corporation 4-53



Command Processor Commands

Command: subphrase Realm: command-processor

Summary Write a subphrase

Arguments _ Required:

start cardinal

length cardinal

phrase One or more words

Keyword:

character yes or no

Examples — subphrase 3 1 This is a subphrase.

assign my_var {subphrase 0 5 supercalifragilistic, character}

Description Subphrase writes a specified part of a phrase.

Arguments start Specify from where to begin writing (starting at position 0).

length Specify the length of the subphrase.

phrase For more information about phrases, see the syntax help topic.

character Write characters (instead of words) if the value is yes

Examples This is an example using words:

(c-—p) subphrase 3 1 This is a subphrase. )
subphrase.

(c-p)

The following example uses the character keyword:

(c-p) assign my_var ‘{subphrase 0 5 supercalifragilistic, character} )

(c-p) my_var )

super

(c-p)

See Also Commands: length, position
Topic: syntax

4-54 Licensed Material ~ Property of Data General Corporation 086-000167 updates
093-000706~-00



Command Processor Commands

Command: trace-commands Realm: command-processor

Summar y Trace the execution of commands, variables, or macros

Arguments Optional:

names A whitespace-separated sequence of words

Keywords:

arguments yes or no

body yes or no

Examples trace-commands write, arg

trace-commands c-p:assign, body

Description Trace-commands traces the execution of one or more commands, variables, or

macros. In each case, the CP will display the invocation of the traced object;

optionally passed argument values, if any, can be displayed.

If you don’t supply a value for the names argument, the CP outputs a list of the

visible objects.

You can trace the commands that implement a macro with the body argument.

Unless these commands are being explicitly traced themselves, they will be traced

with the same options you specify for the macro.

If you assign a new value to a traced variable or redefine a traced macro, tracing

(with whatever options you last selected) continues for the new command. If a

command is explicitly deleted and then newly defined, the new command is not

traced.

Tracing information is output to the CP’s error stream.

Arguments names A valid command, variable, or macro name

arguments Trace command arguments

body Activate macro body tracing

086-000167 updates Licensed Material — Property of Data General Corporation 4-54.a
093-000706-00



Command Processor Commands

Examples

See Also

4-54.b

This example uses the trace-commands, trace-status, and untrace-commands

commands:

(c-p) trace-commands realm-use-list, arguments )

(c-p) realm-—use-list, realm characters )

0: command-processor:realm-use-list {{}, characters}

{ { characters command-processor } }

(c-p) define-macro callee {arg} {return done‘char:new-line} )

(c-p) define-macro caller {argl arg2} {callee ‘arg1} )

(c-p) trace-commands caller, arguments, body }

(c-p) caller hello there now )

O: command-processor:caller {hello, there now}

1: command-processor:callee {hello}

done

(c-p) trace-commands callee, arguments, body )

(c-p) caller hello there now )

O: command-processor:caller {hello, there now}

1: command-processor:callee {hello}

2: characters:new-line {}

2: command-processor:return {done

}
done

(c-p) trace-commands callee, arguments )

(c-p) caller hello there now )

O: command-processor:caller {hello, there now}

1: command-processor:callee {hello}

done

(c-—p) trace-status )

c-—p:trace-commands command-—processor:caller ,arguments ,body

c-p:trace-commands command-processor:callee ,arguments

c-p:trace-commands command—-processor:realm—use-list ,arguments

(c-—p) untrace realm-use-list )

(c-p) t-s }
c-p:trace-commands command-processor:caller ,arguments , body

c-p:trace-commands command-processor:callee ,arguments

(c-p) assign my_var red )

(c-—p) trace-commands my_var )

(c-p) my_var )

QO: command-—processor:my_var

red

(c-p) if {my_var} {assign my_var blue} )

O: command-processor:my_var

(c-p) my_var }
O: command—processor:my_var

blue

(c-p)

Commands: trace-status, untrace-commands

Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: trace-status Realm: command-processor

Summary Display the status of all traced objects

Arguments none

Examples trace-status

trace-s

Description Trace-status displays, as invocations of the trace-commands command, the status
of all traced commands, variables, and macros.

Examples This example uses the trace-commands, trace-status, and untrace-commands
commands:

(C-p) trace-commands write, arg )

(c-p) trace-c c-p:assign, body }

(cC-p) trace-status )

c-p:trace-commands command—processor:assign

c~p:trace-commands command-processor:write ,arguments

(C-p) untrace write c-p:assign }

(c-p) trace-s }

(c-p)

See Also Commands: trace-commands, untrace-commands

086-000167 updates Licensed Material - Property of Data General Corporation 4-54.c093--000706-00



Command Processor Commands

Command: unlog Realm: command-processor

Summary Turn logging off

Arguments Optional:

files A whitespace-separated sequence of words

Examples — unlog

unlog logerr

Description Use the unlog command to turn logging off and write the names of any log files
to the standard output. If you do not specify the files argument, unlog turns all

logging off.

Arguments files The pathnames (absolute or relative) of log files.

Examples To stop all logging:

(debug) unlog }

To turn off logging to a specified file:

(debug) unlog logerr )

See Also Command: log

4-54.d Licensed Material ~ Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: untrace-commands Realm: c-p

Summary Stop tracing the execution of commands, variables, or macros

Arguments Optional:

names A whitespace-separated sequence of words

Examples = untrace-commands write

untrace-commands c-p:assign

Description Untrace-commands stops tracing the execution of one or more commands,
variables, or macros.

Ar guments names A valid command, variable, or macro name

Examples This example uses the trace-commands, trace-status, and untrace-commands
commands:

(c-p) trace-commands write, arg )

(c-p) trace-c c-p:assign, body )

(c-p) trace-status )

c-—p:trace-commands command-processor:assign

c-p:trace-commands command-processor:write ,arguments

(c-p) untrace write c-p:assign )

(c-p) trace-s )

(c—p)

See Also Commands: trace-commands, trace-status

086-000167 updates
093-000706-~-00

Licensed Material - Property of Data General Corporation 4-54.e



Command Processor Commands

This page intentionally left blank.

4-54.f Licensed Material —- Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Commands

Command: while Realm: command-processor

Summary Execute commands conditionally while predicate is nonnull

Arguments Required:

predicate One or more commands enclosed in braces

body One or more commands enclosed in braces

Examples’ c-p:assign x abc

c-p:whi {x} {write X is "x"; assign x ~{rest ~x}}

Description While evaluates the predicate. If it returns a nonnull phrase, then it evaluates the
body and repeats. While returns the value returned by the last command to be

evaluated.

Arguments predicate These commands return either an empty or nonnull phrase.

body While the phrase is nonnull, these commands are executed.

Examples Following are valid examples:

(c-p) assignx abc }

(c-p) whi {x} {write X is ”‘x”; assign x ‘{rest ‘x}} }

X is "a bc"

X is "bc"

xX is Watt

(c-p)

See Also Commands: equal, c-p:if, not

093-000706 Licensed Material - Property of Data General Corporation 4-55



Command Processor Commands

Command: write Realm: command-processor

Summary

Arguments

Examples

Display arguments

Required:

text One or more words

Keyword:

message yes or no

no-newline yes or no

wri Hello everybody

write Hello*"," Joe.

write Hello*‘char:comma Joe.

evaluate {wr hello, no-new; wr hello}

Description

Arguments

Examples

4-56

Write writes the specified arguments to the standard output.

text To specify characters that are special to the CP (for example,

braces, a comma, or a semicolon), use either backquote

substitution or characters from the characters realm.

message Write the arguments to the error output instead of standard

output.

no-newline Omit the New Line character at the end of the arguments being

written.

To write “Hello everybody.” to your screen:

(c-p) wri Hello everybody. )
Hello everybody.

To write “Hello, Joe.” to your screen:

(c-p) write Hello‘char:comma Joe. )

Hello, Joe.

To do the same thing with less effort:

(c-p) write Hello‘”,” Joe. }
Hello, Joe.

Licensed Material — Property of Data General Corporation 093-000706



Command Processor Commands

To write so that the next write will be on the same line with no intervening space:

(c-p) evaluate {wr hello, no-new; wr hello} )

hellohello

See Also Commands: query, redirect-output
Realm: characters

End of Chapter

093-000706 Licensed Material — Property of Data Genera! Corporation 4-57





Chapter 5

Command Processor Types

This chapter contains the help messages for types in the command-processor (c-p) realm. A type is a

category of argument values accepted by the Command Processor (CP). Each command argument has

a type. The CP validates the argument value according to the type. If the argument value is of the

appropriate type, the CP accepts it and passes it to the command. If the argument value is not of the

appropriate type, the CP rejects it and displays an error message.

The help messages for these types are listed in alphabetical order, as follows:

anything

braces

cardinal

command-name

command-sequence

documentation

integer

list

ordinal

pathname

string

yes-no

This chapter uses the following notation conventions:

This typeface Indicates a literal value that you must type exactly as shown. (In some cases, you may

be able to abbreviate or to interchange uppercase and lowercase letters.)

This typeface Describes a user-supplied value that you must insert. The value is usually described

immediately after the syntax line.

A|B Indicates that you may choose either A or B.

[A ] Indicates that A is optional.

A... Indicates that you can repeat A as many times as necessary.

093-000706 Licensed Material - Property of Data General Corporation 5-1



Command Processor Types

Type: anything Realm: command-processor

Summary

Syntax

Examples

Description

See Also

5-2

Accept any values and pass them on uninterpreted

token

token A string of characters delimited by spaces or tabs

foobar7

3.14159

1.414 * 23

The anything type accepts any value and passes it on uninterpreted.

Topic: syntax

Licensed Material - Property of Data General Corporation 093-000706



na,

Command Processor Types

Type: braces Realm: command-processor

Summary

Syntax

Description

086-000167 updates
093-000706-00

Accept a value enclosed in braces

{}

The braces type accepts a value enclosed in braces.

Licensed Material - Property of Data General Corporation 5-3



Command Processor Types

Type: cardinal Realm: command-processor

i Summary Any integer expression greater than or equal to 0

Syntax non-neg-int

non-neg-int A nonnegative integer expression

Examples (1 + (3 * 2))

O07

1989

See Also Types: integer, ordinal

5-4 Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-—00



Command Processor Types

Type: command-name Realm: command-processor

Summary A command, macro, or variable name

Syntax prefix

prefix A name or abbreviation that uniquely specifies a command,

macro, or CP variable.

Examples breakpoint

br

process-status

pro

p-s

See Also Type: command-sequence

Q93-000706 Licensed Material — Property of Data General Corporation 5-5



Command Processor Types

Type: command-sequence Realm: command-processor

Summary

Syntax

Examples

Description

Syntax

See Also

5-6

One or more commands possibly surrounded by braces

{ { ] command [ ; command ] ... [ } ]

command A command followed by zero or more arguments

log

{ assign a 2 }

{ assign b i; write ‘b }

The command-sequence type accepts one or more commands and removes any

outer brace characters.

command Braces are required if you specify command arguments or more

than one command. If you use a brace, you must also use the

matching brace to form a pair.

Commands: if, while

Types: anything, command-name

Topic: syntax

Licensed Material - Property of Data General Corporation 093-000706



Command Processor Types

Type: documentation Realm: command-processor

Summary A phrase in standard documentation format

Syntax phrase

phrase One or more words

Description The documentation type accepts a phrase in standard documentation format. This
type of phrase has an arbitrary number of quoted text strings enclosed in braces,

followed by three character strings, at most. The brace-enclosed strings are either

short descriptions of command arguments or a short description of a type to be

included in the command text if a command specifies no descriptive string.

086-000167 updates Licensed Material - Property of Data General Corporation 5-7
093-000706-00



Command Processor Types

Type: integer Realm: command-processor

i Summary An integer expression

Syntax int

BE int An integer expression (positive, negative, or zero)

Examples o

a (1 + (3 * 7))

+12

-6

See Also Types: cardinal, ordinal

5-8 Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Types

Type: list Realm: command-processor

Summary

Syntax

Description

086-000167 updates
093-000706-00

Accept a phrase

Phrase

phrase A whitespace-separated sequence of words

The list type accepts a phrase.

Licensed Material - Property of Data General Corporation 5-9



Command Processor Types

Type: ordinal Realm: command-processor

i Summary Any integer expression greater than or equal to 1

Syntax pos-int

pos-int A positive integer expression

Examples (1+ (3 * 2))

O7

1989

See Also Type: cardinal, integer

5-1 0 Licensed Material ~ Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Types

Type: pathname Realm: command-processor

Summary

Syntax

Examples

See Also

093-000706

Any syntactically valid file system pathname

pathname

pathname The pathname of a file; filename metacharacters (called

“wildcard” characters in the Bourne shell and “globbing”

characters in the C shell) are not expanded

abc7

foo.c

/usr/include/stdio.h

../test/file

Type: string

Licensed Material — Property of Data General Corporation 5-1 1



Command Processor Types

Type: string Realm: command-processor

Summary

Syntax

Examples

Description

Syntax

Examples

See Also

5-12

Any valid string

{ quote| anything [ quote |

quote A quote character (” or ’)

anything Any nonquote characters or two consecutive quote characters

" abc "

“abc”

Na’ b "

abc

"Wa wt Nb Ww

The string type accepts any valid string; a valid string has optional quotation

marks that enclose any nonquote characters or pairs of quote characters. If

enclosing quotes are found, the string is transformed by removing the outer quotes

and making any internal doubled quotes single.

quote If one quote is present, the matching quote must also be present.

anything If enclosing quotes are present, this value cannot contain an

unpaired quote of the same kind.

The following are legal strings and their transformations:

String Becomes

” abc” abc

"abc’ abc

”a’b” a’b

abc abc

7a” b” a”b

The following are invalid strings:

" A matching double quote is not present.

° A matching single quote is not present.

"abc A matching double quote is not present.

-a’b’ The single quotation mark within the string is not paired.

"a"b A matching, enclosing double quote is not present.

Type: string-quote

Licensed Material - Property of Data Genera! Corporation 093-000706



Command Processor Types

Type: yes-no Realm: command-processor

Summary Yes or no

Syntax yes | no

Examples yes

no

¥

Description The yes-no type accepts a value of yes or no. The words “yes” and “no” can be
abbreviated.

See Also Topics: abbreviation, syntax

End of Chapter

093-000706 Licensed Material - Property of Data Genera! Corporation 5-4 3





Chapter 6

Command Processor Topics

This chapter contains the help messages for topics in the command-processor (c-p) realm. The mes-

sages are in alphabetical order.

The help topics in the c-p realm are as follows:

abbreviation

command-prompting

documentation

paging
prompting

realms

regular-expression

semantics

substitution

syntax

types

In this chapter, entries that show the syntax for performing a specific task use angle brackets (<>) to

indicate a value that you supply.

086-000167 updates Licensed Material ~ Property of Data General Corporation 6-1
093-000706-00



Command Processor Topics

Topic: abbreviation Realm: command-processor

Summary

Description

6-2

How to abbreviate names

You can abbreviate the name of a command, argument, macro, variable, realm,

type, or topic. The minimum abbreviation depends on the list of visible names in

the realms on your realm use list.

A name has one or more syllables separated by hyphens or underscores. Names

are resolved as follows:

1. An exact match

2. A name with the same number of syllables, each beginning with the char-

acters you specify

3. A name with more syllables, beginning with the characters you specify

The Command Processor lets you abbreviate the name of a command, argument,

macro, variable, realm, type, or topic. You can also abbreviate an argument value

if it is a literal rather than a user-supplied value. The minimum abbreviation for

such a value depends on what values the command accepts for that argument.

When abbreviating a word, you can abbreviate the entire word or individual sylla-

bles within a word. The abbreviation is valid if it uniquely identifies the word.

Each syllable is composed of the following characters: letters (A-Z and a-z), digits

(0-9), and #$%&*+./<=>?@|. Syllables are joined by a hyphen (—) or an under-

score (_). The CP is case insensitive, and it treats an underscore as a hyphen.

Note that the CP resolves names enclosed in matching single or double quotation

marks as regular expressions.

Licensed Material — Property of Data General Corporation 086-000167 updates

093-000706-00



see,

Examples

See Also

086-000167 updates
093-000706-00

Command Processor Topics

The following words represent event-status, evaluate, machine-state, and realm-

use-list according to the criteria listed above:

1. evaluate event-status machine-state realm-use-list

2.e e- m- r-u-l

3. eve m rea-

The following are equivalent:

event-status

event_status

EVENT - STATUS

EVENT _STATUS

Event -Status

Following are argument value abbreviations:

asSign abc 100 ,mode oct

describe xyz ,meaning-kind ext

The CP resolves the following names enclosed in quotation marks as regular ex-

pressions:

(c-p) ,, This example lists commands that contain at least 2 }

(c-p) ,, occurrences of the letter ”s” )

(c-p) help, c ’s\{2\}’ }

assign expression less less-equal

(c-p) ,, This command lists commands that begin with the )

(c-p) ,, letter ”a,” "b,” or "c” )

(c-p) help, ¢ ”*[a-e]” )
and assign bye change-argument-—value copy—command

Command: realm-use-list

Topic: regular-expression, syntax

Licensed Material - Property of Data General Corporation 6-3



Command Processor Topics

Topic:command-prompting Realm:command-processor

Summary

See Also

6-3.a

Command prompting (interactive argument help)

To enter the command prompting facility, type a command followed by a comma

but no argument. The CP then prompts you for input one argument at a time.

The prompt appears in either of two forms (the first means a value is already as-

signed to the argument):

<argument-name> (<current-value>) =

<argument-name> =

Following are possible responses by category:

Category Command Task

Information , Describe the current argument

shelp Display a help message

srefresh Refresh the screen

Argument <value> Specify a value

<New Line> Select the value in parentheses

default Select the default value

implied Select the implied value

Navigation <New Line> Skip to the next argument

,»previous Move back one argument

Termination abort Abort back to the top level

,execute Execute the command

Note that if you use the include command (from the Mxdb command line) to

read and execute the contents of a file that contains a prompting request, the re-

quest will be ignored. Also, if you redirect Mxdb’s input (from a shell prompt) to

a file that contains a prompting request, the request will be ignored.

Command: help

Topic: prompting

Licensed Material - Property of Data General Corporation 086-—000167 updates
093-000706-00



Command Processor Topics

This page intentionally left blank.

086-000167 updates Licensed Material - Property of Data General Corporation 6-3.b
093-000706-00



Command Processor Topics

Topic: documentation Realm: command-processor

Summary

Description

See Also

User-defined documentation strings

When you define a macro, realm, or variable, you can associate with it up to

three documentation strings. These documentation strings are displayed by the

help command and normally contain the following information:

1. A one-line summary

2. Brief examples

3. A more verbose description

Each string must be enclosed in a pair of matching quotation marks (” or ’). If

you want to put one of the enclosed quote characters into the string, you must

double the character.

When each documentation string (described above) is displayed depends on the

level of text verbosity to which the help command is set:

String Displayed when Verbosity Is

1 short, medium, or long

2 medium or long

3 long

Commands: c-p:assign, define-macro, define-realm, help

Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Topics

Topic: paging Realm: command-processor

Summary

See Also

086-000167 updates
093-—000706-00

Help message paging

When you get a help message that is more than one screenful long, the first

screenful of the message is displayed. You can display more text by pressing the

following Keys:

New Line One line forward

d Half a screenful forward

h or ? Display a short help message on the page

Zz Or space One screenful forward

b One screenful backward

Tab To the beginning of the message

q, Q, or <intr> Quit (exit from the help message)

<intr> indicates the interrupt key. This defaults to the Delete key but on DG/UX

systems is often reset to Ctrl-C via the stty-command.

Command: help

Licensed Material — Property of Data General Corporation 6-5



Command Processor Topics

Topic: prompting Realm: command-processor

Summary Prompting

The CP prompts you for input one argument at a time. The prompt appears in

either of two forms (the first means a value is already assigned to the argument):

<argument-name> (<current-value>) =

<argument-name> =

Following are possible responses by category:

Category Command Task

Information ' Describe the current argument

shelp Display a help message

refresh Refresh the screen

Argument <value> Specify a value

<New Line> Select the value in parentheses

Navigation <New Line> Skip to the next argument

,»previous Move back one argument

Termination ,abort Abort back to the top level

,execute Execute the command

Note that if you use the include command (from the Mxdb command line) to

read and execute the contents of a file that contains a prompting request, the re-

quest will be ignored. Also, if you redirect Mxdb’s input (from a shell prompt) to

a file that contains a prompting request, the request will be ignored.

See Also Command: help

Topic: command-prompting

6-6 Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Topics

Topic: realms Realm: command-processor

Summar y Introduction to realms

All commands are organized into groups called realms. Realms organize com-

mands in much the same way directories organize files, except that a realm cannot

contain another realm. As every file in a file system is in a directory, every com-

mand is in a realm.

For example, when Mxdb begins running, you are working in the debugger (de-

bug) realm. You can move to other realms, such as the command-processor (c-p)

or characters (char) realm.

To access commands in another realm, you must precede a command with the

desired realm name and a colon.

Description Several realms exist, including the following:

debug This realm contains commands for Mxdb debugging programs.

c-p This realm contains Command Processor commands. The CP manages the

syntax of commands and the set of visible commands. It also lets you

define macros, get help, and control I/O and execution flow.

char This realm lets you put into your command line characters that would

normally be special to the Command Processor.

icobol This realm contains commands for debugging Interactive COBOL

programs.

g-i This realm contains commands for graphical interface users.

Each realm has a realm use list. The realm use list controls which realms’ com-

mands are visible from a particular realm. You can perform the following tasks

with the following commands (<name> is the name of a realm; <list> is a realm

use list):

Create a realm. define-realm <name>

Delete a realm. delete-realm <name>

Display the current realm. realm

Set the current realm. realm <name>

Display the realm use list. realm-use-list

Set the realm use list. realm-use-list { <list> }

086-000167 updates Licensed Material — Property of Data General Corporation 6-7
093-000706-00



Command Processor Topics

When you create a new realm, it is empty. You can put commands, macros, top-

ics, and CP variables into a realm as follows (each <name> is a word optionally

preceded by a realm name and a colon):

Command copy-definition <old-prefix> <name>

Macro define-macro <name> {<arguments>} {<body>}

Topic define-topic <name> “<text>”

Variable c-p:assign <name> <value>

See Also Commands: define-realm, delete-realm, realm, realm-use-list

6-8 Licensed Material —- Property of Data General Corporation 086-000167 updates
093-000706-00



Command Processor Topics

Topic: regular-expression Realm: command-processor

Summary

Description

086-000167 updates
093-000706-00

Using regular expressions

A regular expression defines a set of one or more strings of characters; certain

characters are interpreted to match patterns. These pattern-matching characters

are called metacharacters because they represent something other than themselves.

Regular expressions are used to quickly match strings. Here are the recognized

metacharacters:

Force the match to the beginning of a line

$ Force the match to the end of a line

Match any single character

Match zero or more occurrences of a match of the preceding

character

[abc] Define a character class that matches a, b, or c

{“abc] Define a character class that matches any character except a, b, or c

{a-z] Define a character class that matches any character a through z

inclusive

\ Denote a special character (*,$,.,*,-,[, or ])

\(abc)\ Match what abc matches; a bracketed regular expression

\n Represent the nth bracketed regular expression matched

\{n\} Match at least nm occurrences of a match of the preceding character

\{n,\} Match exactly mn occurrences of a match of the preceding character

\{n,m\} Match from n to m occurrences of a match of the preceding character

Some characters are metacharacters only in a particular context. In the following

contexts the characters listed above are not metacharacters:

Not at the beginning of a regular expression

$ Not at the end of a regular expression

- Outside a pair of brackets or is the first or last character between a

pair of brackets

Between a pair of brackets

* Within brackets or as the first character in a regular expression not

counting an initial *

[ Between a pair of brackets

] First character between a pair of brackets

Outside of a pair of brackets, you can make the period, asterisk, left bracket, or

right bracket represent itself by preceding it with a backslash(\). The backslash is

also an escape character for itself; you must use two backslashes to represent a

literal backslash in a regular expression.

Note: If a user encloses a name on the command line in single or double quota-

tion marks, the CP uses regular expression resolution instead of the default

unique-prefix name resolution.

Licensed Material - Property of Data General Corporation 6-9



Cammand Processor Topics

Examples

See Also

To get help on the commands in the command-processor realm whose names con-

tain the word “realm”:

(debug) help ,rea c-p ,com “realm” )

To search a source text file for the string “*char”:

(debug) find *char )

To find an x followed by a a right bracket or a hyphen:

(debug) find x[]-] }

To list commands that contain at least two occurrences of the letter “s”:

(c—p) help, c ’s\{2\}’ )

assign expression less less-equal

Commands: find, help

Licensed Material - Property of Data General Corporation 086-000167 updates
093-000706-00



et

Command Processor Topics

Topic: semantics Realm: command-processor

Summary

Examples

Description

093-000706

Command Processor semantics

A command takes a series of arguments and performs a task. Each argument is

required, optional, or keyword and can receive its value by position, by name, by

default, or implicitly. Most commands display output on your screen.

The first phrase of a command starts with the command name as the first word;

succeeding words are values for required or optional arguments of the command.

The rest of the phrases each start with a keyword (the name of an argument to

the command) and give a value to that argument.

You can abbreviate a command or argument name using standard CP abbreviation

rules (see the abbreviation help topic).

realm c-p

write Here are some symbols: #$&*<>?\|-

include script_file ,continue

In the Command Processor (CP), a command takes a series of arguments and

produces textual output. The output text is normally displayed on your screen, but

you can capture it (using a backquote) in a command line or or redirect it (using

the redirect-output command) to a file.

You can specify arguments positionally (as in the first two examples above) or by

name (as in the third example). The three kinds of arguments are as follows:

required A positional argument that must be specified

optional A positional argument that may be specified

keyword An argument that cannot get values by position

When you give more values in the first phrase than there are positional arguments,

the additional words are used as part of the value of the last positional argument.

When you give more than one word as a value in a keyword phrase, the extra

words are part of the keyword phrase.

Every command argument is given a value when the command is executed.

Arguments that are not given values by name or by position are given values by

default. Arguments that are mentioned by name but are given no explicit value on

the command line are given values implicitly.

The following table shows the possible permutations of command c with required

argument al, optional argument a2, and keyword argument a3. Values assigned

explicitly are indicated as v1, v2, and v3. Values assigned implicitly are indicated

as il, i2, and i3. Values assigned by default are indicated as dl, d2, and d3.

Licensed Material — Property of Data General Corporation 6-1 1



Command Processor Topics

tone Argument Type +

Value |required(al) optional(a2) keyword(a3) |

By je vl c vl v2 |

position vl d2 d3 v1 v2 d3 |

c vl, a2 v2 c v1, a3 v3

|

By name |[c, al vl

| a Ft Lt
+

eee He ee te Ct
|

v1 d2 d3 vl v2 d3 vl d2 v3 |

Default | c vl c vl |

| v1 d2 d3 v1 d2 d3_ si

Implied |c, al c vl, a2 | c vl, a3 |

| i1 d2 d3 v1 i2 d3 | vl d2 i3 |

A help message for command c with arguments displayed at the “short” verbosity

level would show the following:

c ai [a2] ,a3

The actual value assigned to an argument implicitly or by default is defined by the

command. If the command does not assign an implicit or default value, then the

relevant entries in the above table become illegal, in addition to the two dashed

entries that are never legal.

A common use of implied and default values is with an argument whose only

possible value is yes or no. For the debugger’s built-in commands, the initial

implied and default values are yes and no, respectively.

Another potential use for these rules is to skip over arguments and specify a

trailing optional argument by keyword. Let’s assume we have a command to set

the time of day, with optional positional arguments set up so that they default

appropriately if not given, but can be overridden. Let’s say something like

set-time [ minutes hours day month year }

Normally, one might just say “set-time 23” to set the minute or “set-time 23 08”

to set the minute and hour. But let’s assume somebody set the time correctly

except for the year. To correct this, one might say “set-time, year 1989,”

specifying the year by keyword to skip over all the already-correct components.

In general, debug and c-p commands use positional arguments for values that

often need to be specified and keyword arguments for values or options that

seldom need to be specified. Implied values are often set up for these

less-often-used keywords, so that just mentioning the keyword does some useful or

obvious thing.

6-1 2 Licensed Materiai - Property of Data General Corporation 093~-000706



Examples

See Also

093-000706

Command Processor Topics

Following are one-phrase commands with required and optional arguments:

write Here are some symbols: #$&*<>?\| -

realm c-p

Following is a two-phrase command having a required argument with an explicit

value and a keyword argument with an implied value:

include script_file, continue

The following are equivalent:

addr i

address i

address ,ref i

address ,reference i

Topics: abbreviation, syntax

Licensed Material - Property of Data Genera! Corporation 6-1 3



Command Processor Topics

Topic: substitution Realm: command-processor

Summar y Command and parameter substitution

The Command Processor lets you insert into a command line the output of a

command, the value of a variable, or the value of a quoted string. To do this,

precede the command, variable name, or string with a backquote character (‘).

To delimit a command with arguments, enclose the command and its arguments in

braces. To substitute within braces, use two backquotes unless the backquotes are

enquoted.

You can abbreviate the names of backquoted commands and variables. Following

are some examples:

write The current realm is ‘realm

realm ‘NAME

prompt-string (*NAME)

prompt-string {*~*NAME}

assign x ~{realm-use-list ,realm c-p}

write A single quote: ‘*"""

Descr iption Following is an expansion of the examples listed above:

(c-p) write The current realm is ‘{realm}. )

The current realm is command-processor.

(c-p) define-realm macros }

(c-p) assign NAME macros }

(c-p) assign PROMPT mac )

(c-p) realm ‘NAME }

(macros) prompt-string {‘‘PROMPT} )

{mac} prompt-string (‘PROMPT) )

(mac) assign x ‘{realm-use-list ,realm c-p} }

(mac) x )

{ { command-processor } { characters } }

(mac) write A single quote: ‘”’” }

A Single quote: °”

(mac )

See Also Topic: abbreviation, syntax

6-14 Licensed Material ~- Property of Data General Corporation 093-000706



inte,

Command Processor Topics

Topic: syntax Realm: command-processor

Summary

Examples

Description

093-000706

Command syntax

A command is composed of one or more comma-separated phrases terminated by

a new line or semicolon. A typical command has one phrase.

A phrase consists of one or more words separated by blanks (spaces or tabs). A

word contains one or more characters other than a blank, New Line, or

semicolon.

For information about command semantics, see the semantics help topic.

Following are one-phrase commands:

write Here are some symbols: #$&*<>?\| -

assign x 23

include script_file

A command is composed of one or more comma-separated phrases terminated by

a New Line character or semicolon. A typical command has one phrase, with no

comma.

A phrase consists of one or more words separated by blanks. A word contains

one or more characters other than a blank, New Line, or semicolon, except that

you can incorporate any characters into a word by enclosing them in matching

pairs of double quotes (””), single quotes (’’), parentheses (()), brackets ([]), or

braces ({}).

The ordinary word characters are as follows: letters (A-Z and a-z), digits (0-9),

and !#$%&*+-./<=>?@_|-.

The comma has three uses:

@ To separate phrases.

@ To begin a comment. A pair of commas not enclosed in quotes,

parentheses, brackets, or braces begins a comment terminated by a New

Line or semicolon.

@ To invoke a help subsystem. If a command ends in a null phrase (a

comma followed by a New Line or semicolon), the CP enters a help

subsystem and prompts you for argument values. The null phrase may

include blanks or a comment.

Licensed Material - Property of Data General Corporation 6-1 5



Command Processor Topics

Examples

6-16

The backquote has two uses:

@ To insert generated text into a command line. See the substitution help

topic.

® To continue a command. To do this, put the backquote at the end of the

command, optionally followed by blanks or a comment.

The only other character that has a special meaning is the colon. A colon between

a realm name and the name of a command, CP variable, or topic indicates that

the command, CP variable, or topic is located in the specified realm. This is

useful when two commands have the same name and you want to indicate one in

a specific realm.

Following are three two-word phrases and two three-word phrases:

foo bar

word "remove bletch"

"a, b, a" "d, e, fi"

a+b

name valuel value2

Following are some multiple-phrase commands:

write The cursor will stay right here:, no-newline

asSign x 23, doc "x contains # lines per screen."

include script_file, continue

Following is a comment after a command:

write This stuff gets written ,, but this does not

A null phrase invokes a help subsystem:

(c-p) write , )
Type ",help" for help.

text =

Licensed Material ~- Property of Data Genera! Corporation 093-000706



Command Processor Topics

The following examples insert text:

Example lue Inser

‘{first x y z} x

‘realm Name of current realm

‘arg1 Value of arg1 argument in macro

‘abc Value of variable abc

“abc” abc

xyz’ XyZ

Here is an example of line continuation:

(c-p) write This text is printed ‘ )

(c-p)~ along with this stuff. )

This text is printed along with this stuff.

See Also Topics: abbreviation, semantics, substitution

093-000706 Licensed Material — Property of Data General Corporation 6-1 7



Command Processor Topics

Topic: types Realm: command-processor

Summary

See Also

6-18

Introduction to types

A type is a category of argument values accepted by the Command Processor

(CP). Each command argument has a type associated with it that validates the

value for that argument. The type has a checker function that validates a

command argument.

The type checks for a particular kind of value, such as an address, a language

expression, or an integer. If the argument value is of the specified kind, the CP

accepts it and passes it to the command. If the argument value is not of the

specified kind, the type checker rejects it and displays an error message.

Command: help

End of Chapter

Licensed Material — Property of Data General Corporation 093-000706



Chapter 7

Character Commands

This chapter contains the help messages for the characters realm and for the commands in that realm.

The realm help message is first, followed by the command help messages in alphabetical order.

The characters realm contains commands that let you insert into a command line characters that have

special meaning to the Command Processor (CP).

Help messages in this chapter use the following conventions:

Message format

Command syntax

Arguments

Argument keywords

Argument values

<name>

093-000706

Each message has a Summary section. Some messages also have Description,

Arguments (if the command takes arguments), Examples, and See Also

sections.

Each command follows the regular syntax described under “Creating a

Command Line” in Chapter 4.

Each argument is classified as required, optional, or keyword in the

Arguments subsection of the Summary Section.

Each argument, regardless of its classification, has a keyword identifying it.

The kind of value the argument accepts is listed to the right of the keyword.

The “To get” and “To do” subsections of the characters realm help message

use angle brackets to indicate a value that you supply.

Licensed Material - Property of Data General Corporation 7-1



Character Commands

Realm: characters

Summary Introduction to Mxdb character commands

Here is how to perform some common tasks:

To get A list of characters help topics: help ,topic

A list of character commands: help ,command ,r char

Help on a specific topic: help <topic-name>

Help on a specific command: help <command-name>

More information about character

commands, with a complete list: help ,v ,r char

To do Go back to the debugger realm realm debugger

Examples c:ch 123

c:code x

write Hello*char:comma all!

c-p:assi abc a*‘{c:left-sq-bracket}i

Description The characters realm contains commands that let you insert into a command line

characters that have special meaning to the Command Processor (CP). When you

use a character from the characters realm, the CP does not interpret it specially;

for example, the comma and the backquote do not have special syntactic

meaning, and parentheses, brackets, braces, and quotation marks do not need to

be paired.

You can abbreviate character names using standard CP abbreviation rules.

Here are some more tasks you can perform:

To get A list of all help topics: help ,topic ,realm

A list of all commands: help ,command ,realm

A list of all realms: help ,realm

Help on a specific realm: help <realm-name>

To do Display a backquote: char:backquote

Display an apostrophe: char:single-quote

Write a line feed: char:new-line

Display character’s ASCII code: char:code <character>

Display any ASCII character: char:character <ascii-value>

Following is a list of Mxdb character commands:

7-2 Licensed Material —- Property of Data General Corporation 093-000706



Command Name

backquote

carriage-return

character-from-code

code-from-character

comma

double-quote

form-feed

left-curly-brace

left-parenthesis

left-square-bracket

new-line

null

right-curly-brace

right-square-bracket

right-parenthesis

semicolon

single-quote

space

tab

Character Commands

Actio

Display a backquote:

Write a carriage return (Ctrl-M)

Write an ASCII character

Display character’s ASCII code

Display a comma: ,

Display a double quote: ”

Write a form feed (Ctrl-L)

Display a left brace: {

Display a left parenthesis: (

Display a left bracket: [

Write a new line (Ctrl-J)

Write a null character (Ctrl-@)

Display a right brace: }

Display a right bracket: ]

Display a right parenthesis: )

Display a semicolon: ;

Display a single quote:

Display a space character

Write a horizontal tab (Ctrl-I)

Examples

See Also

093-000706

The following command displays the character whose ASCII value is decimal 123:

(debug) c:ch 123 }

{

The code-from-character command displays the ASCII decimal value of the letter

x:

(debug) c:code x }

120

The following command writes “Hello, all!” to your screen:

(debug) write Hello‘char:comma all! }

Hello, all!

The following command assigns “a[i” to the CP variable abc:

(debug) c-p:assi abc a‘{c:left-sq-bracket}i

Commands: write, cp:assign

Topics: abbreviation, realms

Licensed Material — Property of Data General Corporation



Character Commands

Command: backquote Realm: characters

Summary Display a backquote: ‘

See Also Topics: substitution, syntax

Command: carriage-return Realm: characters

Summar y Write a carriage return (Ctrl-M)

See Also Topic: syntax

Command: character-from-code Realm: characters

Summary Write an ASCII character

Arguments Required:

code A decimal integer

Examples = c:ch 80

char:char 114

characters:character-from-code 111

See Also Command: char:code-from-character

7-4 Licensed Material - Property of Data General Corporation 093-000706



Character Commands

Command: code-from-character Realm: characters

Summary Display character’s ASCII code

Arguments Required:

character An ASCII character

Examples’ _c:co P

char:code r

characters:code-from-character o

See Also Command: char:character-from-code

Command: comma Realm: characters

Summary Display a comma: ,

See Also Topic: syntax

Command: double-quote Realm: characters

Summary Write a double-quote: ”

See Also Topic: syntax

093-000706 Licensed Material — Property of Data General Corporation 7-5



Character Commands

Command: form-feed Realm: characters

Summary Write a form feed (Ctrl-L)

See Also Topic: syntax

Command: left-curly-brace Realm: characters

Summary Display a left brace: {

See Also Topic: syntax

Command: left-parenthesis Realm: characters

Summary Display a left parenthesis: (

See Also Topic: syntax

7-6 Licensed Material — Property of Data Genera! Corporation 093-000706



Character Commands

Command: left-square-bracket Realm: characters

Summary Display a left bracket: [|

See Also Topic: syntax

Command: new-line Realm: characters

Summary Write a new line (Ctrl-J)

See Also Topic: syntax

Command: null Realm: characters

Summary Write a null character (Ctrl-@)

See Also Topic: syntax

093--000706 Licensed Material — Property of Data General Corporation 7-7



Character Commands

Command: right-curly-brace Realm: characters

Summary Display a right brace: }

See Also Topic: syntax

Command: right-parenthesis Realm: characters

Summary Display a right parenthesis: )

See Also Topic: syntax

Command: right-square-bracket Realm: characters

Summary Display a right bracket: ]

See Also Topic: syntax

7-8 Licensed Material - Property of Data General Corporation 093-000706



Character Commands

Command: semicolon Realm: characters

Summary Display a semicolon: ;

See Also Topic: syntax

Command: single-quote Realm: characters

Summary Display a single-quote: ’

See Also Topic: syntax

Command: space Realm: characters

Summary Write a space character

See Also Topic: syntax

093-000706 Licensed Material — Property of Data General Corporation 7-9



Character Commands

Command: tab Realm: characters

Summary Write a horizontal tab (Ctrl-I)

See Also Topic: syntax

End of Chapter

7-1 0 Licensed Material - Property of Data General Corporation 093-000706



A

Abbreviating names, 1-2, 6-2

abbreviation topic, 6-2

Aliases, creating command, 3-10

and command, 2-9, 4-4

AND test, 2-9, 4-4

anything type, 5-2

Arguments

command, 1-5

default values, 1-5

resetting, 1-6, 3-9

displaying, 4-56

implied values, 1-5

resetting, 1-6, 3-9

keyword, 1-4

optional, 1-4

required, 1-4

types, 1-7

values, 1~7

by name, 1-5

by position, 1-5

writing, 4-56

ASCII character

displaying an, 7-4

displaying ASCII code for an, 7-5

Assign a value to a variable, 4-5

assign command, 3-8, 4-5

B

Backquote, 1-2, 1-10, 6-14, 6-16

displaying a, 7-4

using to capture output, 1-8

using to continue a line, 1-8

using within braces, 1-13

backquote command, 7-4

Braces, 1-2, 1-10, 5-6

left, 7-6

right, 7-8

braces type, 5-3

Brackets, 1-2, 1-10

left, 7-7

right, 7-8

Built-in commands, 3-1

bye command, 4-7

Index

Cc

c-p realm, 4-2

commands, 4-1

Capturing command output, 1-8

cardinal type, 5-4

Carriage return, 1-10

displaying a, 7-4

carriage-return command, 7-4

change-argument-value command, 3-9, 4-8

Character pairs, balancing, 1-12

character-from-code command, 7-4

Characters, 1-1

grouping, 1-2

with syntactic meaning, 1-2

characters realm, 7-2

commands, 7-1

code-from-character command, 7-5

Colon, 1-2

Comma, 1-2, 1-10, 6-15

displaying a, 7-5

using to insert comments, 1-8

comma command, 7-5

Command, 1-2, 3-1

abbreviation, 1-2

aliases, 3-10

arguments, 1-5

resetting, 4-8

summary, 1-6

copying a, 4-9

creating a, 4-10

deleting a, 4-15

entry, 1-3

evaluating a, 4-21

executing

conditionally, 2-5, 2-6, 4-29, 4-55

in a protected region, 2-6, 4-44

repeatedly, 2-11, 4-18

line

continuing a, 1-8

creating, 1-3

inserting special characters in a, 1-9

name, resolution, 1-3

output, capturing, 1-8, 1-14

093-000706 Licensed Material - Property of Data General Corporation Index-1



Index

Command (continued)

prompting, 2-2, 6-6

invoking, 2-2

issuing commands from a session, 2-3

pushing from a session, 2-3

resuming a session, 2-4, 4-51

termination, 1-2

Command Processor, 1-1

topics, 6-1

types, 5-1

utilities, 2-1

variable. See CP variable

command-name type, 5-5

command-processor realm, 4-2

command-sequence type, 5-6

Comments, inserting, 1-8

Comparing

arguments

equal, 4-19

greater than, 4-23

greater than or equal to, 4-24

less than, 4-33

less than or equal to, 4-34

not equal, 4-37

variables, 2-8

Contacting Data General, v

Continuing a command line, 1-8

Control characters, the debugger and, 1-9

Control flow, CP vs. Mxdb, 2~5

copy-command command, 3-8, 3-10, 4-9

Copying commands, 3~10, 4-9

CP variable, 3~2

assigning a value to a, 4-5

displaying the definition of a, 3-4, 4-42

Creating

command aliases, 3~10

command lines, 1-3

commands, 4-10

log files, 2-4

macros, 3-3

realms, 3-7, 3-8, 4-12

topics, 4-14

Customizations, saving, 3-11

Customizing the environment, 3-1

D

Default values, 1-5, 3-2

resetting, 1-6, 3-9, 4-8

define-macro command, 3-3, 3-8, 4-10

documentation and, 3-3

define-realm command, 3-8, 4-12

define-topic command, 4-14

Definitions, displaying, 4-42

delete-command command, 3-5, 4-15

delete-realm command, 3-9, 4-16

delete-topic command, 4-17

Deleting

commands, 3-5, 4-15

macros, 3-5, 4-15

realms, 3-9, 4-16

topics, 4-17

Displaying

arguments, 4~56

ASCII characters, 7-4

ASCII codes for characters, 7-5

backquotes, 7-4

carriage returns, 7-4

commas, 7-5

CP variable definitions, 4-42

current realm, 3-7, 4-47

double quotation marks, 7-5

error messages, 4-20

form feeds, 7-6

global options, 4-38

left braces, 7-6

left brackets, 7-7

left parentheses, 7-6

macro definitions, 4-42

messages, 3-6

New Lines, 7-7

null characters, 7-7

phrase

all but the first word, 2-12, 4-50

first word, 2-11, 4-22

last word, 2-12, 4-31

length, 2-14, 4-32

partially, 2-13, 4-54

position of a regular expression, 2-13,

4-41

prompt string, 3-9, 4-43

realm use list, 3-8, 4-48

right braces, 7-8

right brackets, 7-8

index-2 Licensed Materia! — Property of Data General Corporation 093-000706



Displaying (continued)

right parentheses, 7-8

semicolons, 7-9

single quotation marks, 7-9

space characters, 7-9

tabs, 7-10

do-sequence command, 2-11, 4-18

documentation topic, 6—4

documentation type, 5-7

Documenting commands, 3-3

Double quotation marks, 1-2, 1-10

displaying, 7-5

double-quote command, 1-12, 7-5

E

Entering a command, 1-3

Environment, customizing, 3-1

equal command, 2-8, 4-19

error command, 3-7, 4-20

Error output, 3-2

evaluate command, 1-14, 4-21

Evaluating a series of commands, 4-21

Executing

a shell command sequence, 4-53

commands

conditionally, 4-29, 4-55

in a protected region, 4-44

repeatedly, 4~18

Exit, 4-7, 4-46

Expressions, regular, 6~9

F

File

include, 3-2, 3-11, 4-30

redirecting output to a, 3-11, 4-49

first command, 2-11, 4-22

Form feed, 1-10

displaying a, 7-6

form-feed command, 7-6

G

greater command, 4-23

greater-equal command, 4-24

Grouping characters, 1-12

Index

H

Help, 2-1, 4-25

command prompting, 2-2

help command, 1-5, 2-1, 4-25

Hyphen, 1-3

if command, 2-5, 4-29

Implied values, 1-5, 3-2

resetting, 1-6, 3-9, 4-8

include command, 3-2, 3-11, 4-30

Include file, 3-2, 3-11, 4-30

Input, prompting user for, 3-5, 4-45

Inserting comments, 1-8

integer type, 5-8

Interactive command prompting, 2-2

K

Keyword arguments, 1-4

L

last command, 2-12, 4-31

left-curly-brace command, 1-12, 7-6

left-parenthesis command, 1-12, 7-6

left-square-bracket command, 1-12, 7-7

length command, 2-14, 4-32

less command, 4-33

less-equal command, 4-34

list type, 5-9

log command, 4-35

Logging a session, 2-4, 4-35

turning off, 2-4, 4-35

M

Macros, 3-1

copying, 4-9

creating, 3-3, 4-10

deleting, 3-5, 4-15

displaying definitions of, 3-4, 4-42

returning from, 3-4, 4-52

viewing, 3-4

writing, 3-3

Managing realms, 3-7

Messages

error, 3-7

writing, 3-6

093-000706 Licensed Material - Property of Data General Corporation index-3



Index

N

Name, value by, 1-5

Negating a value, 2-9, 4-36

New Line, 1-2, 1-10

displaying a, 7-7

new-line command, 7-7

not command, 2-9, 4-36

not-equal command, 4-37

Notational conventions, ili

Null character, 1-10

displaying a, 7-7

null command, 7-7

0

Optional arguments, 1-4

Options

displaying, 4-38

setting, 4-38

options command, 4-38

or command, 2-10, 4-39

OR test, 2~10, 4-39

exclusive, 2~10

ordinal type, 5-10

Organization, manual, iii

Output

capturing command, 1~8, 1-14

paging through, 4-40

redirecting to a file, 4-—49

Pp

page command, 4~—40

Paging through command output, 4-40

paging topic, 6-5

Parentheses, 1-2, 1-10

left, 7-6

right, 7-8

pathname type, 5-11

Phrase, 1-2

all but the first word, 2-12, 4-50

first word, 2-11, 4-22

last word, 2-12, 4-31

length, 2-14, 4-32

part of a, 2-13, 4-54

regular expression’s position in a, 2-13,

4-41

Phrases, manipulating, 2~10

Position, value by, 1-5

position command, 2-13, 4-41

print-command command, 3-4, 4-42

Prompt string

displaying, 3~9, 4-43

setting, 3-9, 4-43

prompt-string command, 3-9, 4-43

prompting topic, 6-6

Prompting user for input, 3-5, 4-45

protect command, 2-6, 4-44

cleanup actions, 2-6

Q

query command, 3-5, 4-45

quit command, 4-46

Quotation marks

double, 1-2, 1-10

displaying, 7-5

single, 1-2, 1-10

displaying, 7-9

R

realm command, 3-7, 4-47

Realm use list

displaying, 3-8, 4-48

setting, 3—8, 4-48

realm-use-list command, 3-8, 4-48

Realms, 3-2, 3-7, 6-7

creating, 3-8, 4-12

deleting, 3-9, 4-16

displaying, 3-7, 4-47

setting, 3-7, 4-47

realms topic, 6-7

redirect-output command, 3-5, 3-11, 4-49

Regular expressions, 6-9

regular-expression topic, 6-9

Related documents, v

Removing commands, variables, or macros,

4-15

Required arguments, 1-4

Resetting argument values, 4-8

rest command, 2-12, 4-50

resume-prompting command, 4-51

return command, 3-4, 4-52

Returning

from a macro, 3-4, 4-52

to a command prompting session, 4-51

right-curly-brace command, 1-12, 7-8

right-parenthesis command, 1-12, 7-8

right-square-bracket command, 1-12, 7-8

Index-—4 Licensed Material - Property of Data General Corporation 093--000706



S
Saving customizations, 3-11

semantics topic, 6-11

Semicolon, 1-2, 1-10

displaying a, 7-9

using to terminate a command, 1-8

semicolon command, 7-9

Setting

current realm, 3-7, 4-47

global options, 4-38

prompt string, 3-9, 4-43

realm use list, 3-8, 4-48

shell command, 4-53

Shell command sequence, executing, 4-53

Single quotation marks, 1-2, 1-10

displaying, 7-9

single-quote command, 1-12, 7-9

Space character, 1-2, 1-10

displaying a, 7-9

space command, 7-9

Standard input, 3-2

Standard output, 3-2

string type, 5-12

subphrase command, 2-13, 4-54

substitution topic, 6-14

syntax topic, 6-15

T

Tab, 1-2, 1-10

displaying a, 7-10

tab command, 7-10

Topics, 6-1

creating, 4-14

removing, 4-17

Types, 5-1

Types of arguments, 1-7

types topic, 6-18

U

UNIX command sequences, executing, 4-53

Underscore, 1-3

Utilities, using Command Processor, 2-1

Index

V

Values

default, 3-2

resetting, 3-9, 4-8

implied, 3-2

resetting, 3-9, 4-8

negating, 4-36

Variables

assigning values to, 4-5

comparing, 2-8

copying, 4-9

deleting, 4-15

displaying values of, 1-9

Viewing a macro, 3-4

W

while command, 2-6, 4-55

Word, 1-2

write command, 3-6, 4-56

Writing

arguments, 4-56

error messages, 3-7

macros, 3-3

output to a file, 3-11

Writing messages, 3-6

Y

yes-no type, 5-13

093-000706 Licensed Material ~ Property of Data General Corporation Index-5





1. An order can be placed with the TIPS group in two ways:

a) MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. As a customer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order - Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:

Total Quantity

1-4 Units

5-10 Units

11-40 Units

41-200 Units

Over 200 Units

Shipping & Handling Charge

$5.00

$8.00

$10.00

$30.00

$100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

Separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4, The TIPS discount schedule is based upon the total value of the order.

Order Amount

$1-$149.99

$150-$499.99

Over $500

TERMS AND CONDITIONS

Discount

0%

10%

20%

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary

or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the

appropriate DG Subsidiary or Representative for processing.





TIPS ORDER FORM

Mail To:

MA 01581 - 9973

COMPANY NAME

ATTN:

ADDRESS

CITY

STATE ZIP

COMPANY NAME

ATTN:

ADDRESS (NO PO BOXES)

CITY

STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title

(Agrees to terms & conditions on reverse side)

Date Phone (Area Code) Ext.

LEN BL VOLUME DISCOUNTS ORDER TOTAL

G UPS ADD Order Amount Save Less Discount _
1-4 Items $ 5.00 $0 - $149.99 0% See B

5-10 Items $ 8.00 $150 - $499.99 10% Tax Exempt # SUB TOTAL
11-40 Items $ 10.00 Over $500.00 20%
41-200 | 30.00 (if applicable) Your local* +

~ tems $ ’ sales tax
200+ items $100.00 Shipping and +

Check for faster delivery

Additional charge to be determined at time of
shipment and added to your bill.

C) UPS Blue Label (2 day shipping)

handling - See A

TOTAL - See C

0 Red Label (overnight shipping)

THANK YOU FOR YOUR ORDER

. (Include hardcopy P.O.)

0 Visa O MasterCard ($20 minimum on credit

Account Number

LETTE ETT Ty yy yyy

Expiration Date

LITT}

PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
PLEASE ALLOW 2 WEEKS FOR DELIVERY.

cards) NO REFUNDS NO RETURNS.

* Data General is required by law to collect applicable sales or
use tax on all purchases shipped to states where DG maintains
a place of business, which covers all 50 states. Please include
our local taxes when determining the total value of your order.

f you are uncertain about the correct tax amount, please cail
508-870-1600.

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed. )



Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance
with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order

Form. These terms and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer

accepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software

which is the subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under

this Agreement, exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall

abide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all

designs, engineering details and other data pertaining to the products described in such publication. Licensed software

materials are provided pursuant to the terms and conditions of the Program License Agreement (PLA) between the Customer

and DGC and such PLA Is made a part of and incorporated into this Agreement by reference. A copyright notice on any data

by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a

period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided

it is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and

DGC’s sole obligation and liability for defective media. This limited media warranty does not apply if the media has been

damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO

LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT

EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.

THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY

DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE

FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT

NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR

DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION

ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational

Services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of

law rules. Such contract is not assignable. These terms and conditions constitute the entire agreement between the parties

with respect to the subject matter hereof and supersedes all prior oral or written communications, agreements and

understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional terms and

conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting, or

additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that Information and material presented in the AOS/VS Internals Series documents may be specific to

a particular revision of the product. Consequently user programs or systems based on this information and material may be

revision-locked and may not function properly with prior or future revisions of the product. Therefore, Data General makes no

representations as to the utility of this information and material beyond the current revision level which is the subject of the

manual. Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from any such

use and | and my company (Customer) hold Data General completely harmless therefrom.





oe

Cut here and insert in binder spine pocket

(»DataGeneral _ MAA
chusetts 01580 493-000746-H4


