
Using the Multi-Extensible Debugger

(Mxdb for DG/UX and

INTERACTIVE UNIX® Systems)

093-000710-03

For the latest enhancements, cautions, documentation changes, and other

information on this product, please see the Release Notice (085-series)

and {or Update Notice (078-—series) supplied with the software.

Copyright ©Data General Corporation, 1992

All Rights Reserved

Unpublished — all rights reserved under the copyright laws of the United States.

Printed in the United States of America

Rev. 03, April 1992

Licensed Material — Property of Data General Corporation

Ordering No. 093—000710

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC PERSONNEL,

LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF DGC; AND

THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER

THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document without prior

notice, and the reader should in all cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE

LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS

BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT

CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,

RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED

HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY

LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

| Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set

' forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [DFARS]

252.227—7013 (October 1988).

Data General Corporation

4400 Computer Drive

|
|

|

| Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,

ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT, PROXI,

SWAT, TRENDVIEW, and WALKABOUT are U.S. registered trademarks of Data General Corporation; and

AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, AV Object Office, AV Office, BaseLink, BusiGEN,

BusiPEN, BusiTEXT, CEO Connection, CEO Connection/LAN, CEO Drawing Board, CEO DXA, CEO Light,

CEO MAILI, CEO Object Office, CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART, COMPUCALC,

CSMAGIC, DASHER/One, DASHER/286, DASHER/286-12c, DASHER/286-12j, DASHER/386,

DASHER/386-16c, DASHER/386-25, DASHER/386-25k, DASHER/386SX, DASHER/386SX-16,

DASHER/386SX-20, DASHER/486-25, DASHER I1/486-33TE, DASHER/LN, DATA GENERAL/One,

DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS, DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO,

DG/L, DG/LIBRARY, DG/UX, DG/XAP, ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000,

ECLIPSE MV/2500, ECLIPSE MV/3500, ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/5600,

ECLIPSE MV/7800, ECLIPSE MV/9300, ECLIPSE MV/9500, ECLIPSE MV/9600, ECLIPSE MV/10000,

ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/30000, ECLIPSE MV/35000,

ECLIPSE MV/40000, ECLIPSE MV/60000, FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, Intellibook,

microECLIPSE, microMV, MV/UX, OpenMAC, PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL,

SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of

Data General Corporation.

UNIX is a U.S. registered trademark of Unix System Laboratories, Inc.

NFS is a U.S. registered trademark and ONC is a trademark of Sun Microsystems, Inc.

X Window System is a trademark of the Massachusetts Institute of Technology.

Using the Multi-Extensible Debugger (Mxdb for DG/UX"TM and

INTERACTIVE UNIX® Systems)

093—000710-03

Revision History: Effective with:

Original Release — December, 1989

First Revision -— June, 1990

Second Revision — July, 1991

Third Revision — April 1992

Addendum 086—-000203—00 — September, 1992 Mxdb, Rev. 2.11

A vertical bar in the margin of a replacement page indicates

substantive technical change from the previous revision.

Addendum to

Using the Multi-extensible Debugger

(Mxdb for DG/UX and INTERACTIVE

UNIX® Systems)

086—000203-—00

This addendum updates manual 093-000710-03

See Updating Instructions on the reverse.

Copyright ©Data General Corporation, 1992

All Rights Reserved

Unpublished — all rights reserved under the copyright laws of the United States.

Printed in the United States of America

Rev. 00, September 1992 |

Licensed Material — Property of Data General Corporation

Ordering No. 086—000203

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC PERSONNEL,

LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF DGC; AN D

THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE ORIN PART NOR USED OTHER

THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document without prior

notice, and the reader should in all cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE

LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS

BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT

CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,

RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED

HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY

LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

; Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in
| subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [DFARS] 252.227—7013 (October 1988).

| Data General Corporation

| 4400 Computer Drive

Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,

ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT, PROXI, SWAT, TRENDVIEW, and WALKABOUT are

U.S. registered trademarks of Data General Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus,

AV Object Office, AV Office, BaseLink, BusiGEN, BusiPEN, BusiTEXT, CEO Connection, CEO Connection/LAN,

CEO Drawing Board, CEO DXA, CEO Light, CEO MAILI, CEO Object Office, CEO PXA, CEO Wordview, CEOwrite,

COBOL/SMART, COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/286-12c, DASHER/286-12j,

DASHER/386, DASHER/386-16c, DASHER/386-25, DASHER/386-25k, DASHER/386SX, DASHER/386SX-16,

DASHER/386SX-20, DASHER/486-25, DASHER I1/486-33TE, DASHER/LN, DATA GENERAL/One, DESKTOP/UX, DG/500,

DG/AROSE, DGConnect, DG/DBUS, DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO, DG/L, DG/LIBRARY, DG/UX, DG/XAP,

ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/3500, ECLIPSE MV/5000,

ECLIPSE MV/5500, ECLIPSE MV/5600, ECLIPSE MV/7800, ECLIPSE MV/9300, ECLIPSE MV/9500, ECLIPSE MV/9600,

ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/30000,

ECLIPSE MV/35000, ECLIPSE MV/40000, ECLIPSE MV/60000, FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400,

Intellibook, microECLIPSE, microMV, MV/UX, OpenMAC, PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL,

SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of

Data General Corporation.

Addendum to Using the Multi-extensible Debugger

(Mxdb for DG/UXTM and INTERACTIVE UNIX® Systems)

086—000203—00

To update your copy of 093-000710-03, please remove manual pages and insert addendum as follows:

Remove Insert Remove Insert

Title/Notice Title/Notice 12—99/12-—106 12—99/12—106

1—1/1-6 1-1/1-6 13—13/13—-14 13~—13/13-—14

2—-7/2-11 2-7/2—11 14—3/14—28 14—3/14—28

3—1/3-14 3-1/3-14 14—43/14-61 14—43/14-61

3—23/3-30 3—23/3-—30 15—5/15—22 15—5/15-—22

10—19/10—20 10—19/10-—20 17—3/17-14 17-—3/17-14

11-—3/11—10 11—3/11-—10 17—23/17-—32 17—23/17-32

12—13/12—18 12—13/12—-18 18—1/18—10 18—1/18—-10b

12—31/12—50 12—31/12—50 B—1/B-24 B—1/B-31

12—71/12-—78 12—71/12-—78

Insert this sheet immediately behind the new Title/Notice page.

A vertical bar in the margin of a page indicates substantive technical change from the previous revision.

Chapter 1

Introduction to the Mxdb

Debugger

The Multi-extensible debugger (Mxdb) is a high-level debugger that runs on AViiON®

computers with the DG/UXTM operating system and on INTERACTIVE UNIX® systems

(Interactive COBOL only); you can debug executable files, core files, and running

processes. This debugger supports the C, C++, FORTRAN, Pascal, and Interactive

COBOL programming languages, and is well-suited for both technical and commercial

applications. Mxdb provides an on-line help system, easy-to-remember command names,

consistent command syntax, expression parsing and description in the syntax of the

supported languages, and macro and alias capabilities.

This chapter shows how to do the following tasks:

@ Invoke and exit from the debugger.

@ Use the help system.

@ Compile programs to be debugged.

@ Identify debugging situations.

@ Load for execution the program to be debugged.

@ Seta breakpoint.

@ Resume executing the program being debugged.

@ View source code.

@ Display a variable’s value.

@ Reset a variable’s value.

@ Use language expressions.

Invoking and Exiting from Mxdb

To invoke the debugger, issue the mxdb command from a DG/UX or INTERACTIVE

UNIX shell:

$mxdb }

Mxdb Version x.x (month day, year) for AViiON Systems

Type “help” for further information.

(debug)

If you are using an INTERACTIVE UNIX system, the message above will say

“INTERACTIVE UNIX.” The (debug) prompt means that you are in the debugger realm;

if you are using Interactive COBOL, you will see the (icobol) prompt instead. Mxdb

organizes commands into groups called realms; see Chapter 2 for more information.

086—000203 updates Licensed Material — Property of Data General Corporation 1 =-1
093—000710-03

Introduction to the Mxdb Debugger

To exit from Mxdb, type quit:

(debug) quit)

9

You can initialize each debugging session with a set of commands. Mxdb looks for a file

named .mxdb_init, first in the working directory, then in your home directory. Whichever

file the debugger finds first, it executes.

Getting Help

Mxdb offers three ways to use its help system: a help command, an xhelp command, and

command prompting.

The help Command

The help command displays information about a command, argument, realm, or topic. To

use this command, type help after invoking Mxdb. Then, if you want general information,

press the New Line key. If you want information about a specific command, argument,

realm, or topic, type that name after help and press the New Line key. For example, if you

type the following:

(debug) help event-status)

Mxdb displays the summary portion of the event-status command’s help message, which

defines the command and its arguments, and shows examples.

To get a more detailed message, add a ,verbosity argument. For example, type this

command:

(debug) help event-status, v)

Mxdb then displays the entire event-status help message, which also elaborates the

definitions and examples.

The xhelp Command

If you are using Mxdb on an X window display, you can use the xhelp command to browse

through this manual and the “Using the Command Processor” manual online in a separate

window, with hypertext capabilities.

Command Prompting

The command prompting facility helps you to enter commands interactively. Any Mxdb

command will prompt you for input if you type the command followed by a comma and no

argument. The directory-list command sets or displays your source directory search path; to

be prompted for the arguments to this command, type the following:

(debug) directory—list,)

1 -2 Licensed Material —- Property of Data General Corporation 086-000203 updates
093-000710-03

Introduction to the Mxdb Debugger

Mxdb responds with

Type ”",help” for help.

directories () =

If you want directory d to be on your search path, reply

dirs () -d)}
Execute? (Yes) =

Enter New Line to accept the default answer. To verify that directory d is now on your

search path, type

(debug) directory—list }

Mxdb will display the following:

d

(debug)

Compiling Programs to Be Debugged

The Mxdb debugger handles programs written in C, C++, FORTRAN, Interactive

COBOL, and Pascal.

interactive COBOL

When compiling Interactive COBOL programs, use the “—d” option.

DG/UX

Compile your programs from a UNIX® shell. The ease of producing Mxdb debugging

information varies according to the operating system revision that is being used.

LEGENDS Environment Variable

A LEGENDS environment variable can be used to modify the behavior of the debugging

information generation utility. It contains a list (separated by blanks) of options, among

which the most notable are “—external” and “—compress.”

It is recommended that the “—external” option be used because it significantly saves disk

space as well as increasing linker performance by avoiding duplication and unnecessary

copying of the debugging information.

086-—000203 updates Licensed Material — Property of Data General Corporation 1 -3
093-000710-03

Introduction to the Mxdb Debugger

The “—compress” option produces a very compact form of the debugging information. At

debug time, this causes the debugger to take more time when a particular module’s

information is being read in. (Mxdb never reads in information until it is necessary.) See

the legend(5) man page for complete details.

When you compile a program to be debugged, use one of the options described below,

which provide Mxdb debugging information.

a DG/UX 5.4x

Porting and Developing Applications on the DG/UX System discusses the multiple

development environment strategy employed in this version of the operating system. Refer

to it for complete details.

In the ELF environment (m88kdgux / m88kdguxelf), Mxdb debugging information is the

default. This means that the only option needed to compile for debugging is “—g”.

In the COFF environment (m88kdguxcoff), the LEGENDS environment must be defined

in order to have “—g” produce Mxdb debugging information.

The “+legend” and “+external—legend” switches must be supplied to the Cfront C+ +

compiler so the compiler can produce Mxdb debugging information. Also, for improved

C++ debugging, use the Cfront switch “+a1.” The Cfront switch “+d” improves Mxdb’s

descriptive behavior, but may degrade program performance.

The standard Mxdb debugging options documented in the next section will always work as

well. They avoid any dependencies on environment variables but do not offer all of the

functionality available via the LEGENDS environment variable. Also, these options do not

preclude the use (or usefulness) of a LEGENDS environment variable. One example of

this is that a LEGENDS variable can be used to specify a “compression” environmental

option even if command line options are used to cause the information to be generated.

Language/Command Provide Mxdb Debugging Information

Green Hills —g —Xlegend

GNU —g —mlegend

Interactive COBOL —d

cc —g —Wc,-—fix—bb

(Note that there is no space after the comma.)

as —We

@ Cfront —g +legend

4 -4 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Introduction to the Mxdb Debugger

On AViiON computers with the DG/UX operating system, Mxdb supports the debugging of

both ELF and COFF executable files. You can use Mxdb with any COFF-generating

compiler (Common Object File Format). For COFF-generating compilers not listed above,

you must use the ctl (COFF-to-Legend) translation utility provided with Mxdb. This can be

invoked as an assembler option to the compiler; see the appropriate assembler man page

and the ctl man page.

If you want to place the Mxdb debugging information in an external file, use one of the

following in addition to the options described above:

Language/Command Place Mxdb Debugging Information in an External

File

Green Hills — Xexternal—legend

GNU —mexternal—legend

cc —Wc,—external,—fix—bb (No space after comma)

as —Wc,-—external (No space after comma;

append “—fix—bb” as above if the assembler

was produced by cc or gcc)

Cfront _external—legend

An external legend file will save disk space and link time; instead of the debugging

information being duplicated in the object file, executable file, any incrementally-linked

objects, and libraries, all the information is stored in one file, which has a .lg suffix.

If you want to keep COFF debugging symbol table information (so you can also debug with

sdb or dbx), use one of the following in addition to the options for providing Mxdb

debugging information:

Language/Command Keep COFF Symbol Table Information

Green Hills — Xkeep —coff

GNU ~mkeep—coff

cc —Wc,—keep—coff,—fix—bb (No space after comma)

as —Wc,—keep—coff (No space after comma)

Option Mapping to LEGENDS setting:

Option: —mexternal—legends Environment: LEGENDS “-—external”

Option: —mkeep—coff Environment: LEGENDS “—keep—coff”

This chapter uses the following program to demonstrate some basic debugging techniques.

This C program, named lastarg.c, accepts arguments and displays the last argument.

086—000203 updates Licensed Material — Property of Data General Corporation 1 «5
093—-000710-03

Introduction to the Mxdb Debugger

/* Sample program: lastarg */

/* Display last argument on command line */

#include <stdio.h>

int il;

main(argc, argv)

int argc;

char *argv[];

{

(void) printf("The last argument is %s.\n”, argv[i]);

return 0;

To compile this program and name the output file lastarg, type this command:

S gcc —g —mlegend —o lastarg lastarg.c }

S

Identifying Debugging Situations

This section discusses how to identify two kinds of debugging situations: program core

dumps and erroneous program output.

Program Core Dumps

Debugging a core dump requires a strategy different from that of fixing erroneous program

output. You need to find out what caused the core dump; core dumps are discussed in

Chapter 8. Note that you cannot debug core dumps (since none are produced) if you are

using Interactive COBOL.

Erroneous Program Behavior

Once you successfully compile and link your program, it still may not work the way it

should; some bugs do not appear until execution time.

The sample program has such a bug. If you type these arguments:

S lastargabc)

the program displays the following instead of displaying the last argument, which is “c”:

The last argument is lastarg.

‘To systematically locate and fix a program’s bugs, you may want to look at the values of

certain variables and reset those values to see what happens, as in the sample debugging

session for the lastarg program in the following sections.

1 -6 Licensed Material —- Property of Data General Corporation 086—000203 updates
093-000710-03

Using Mxdb Commands

backquote Display a backquote: ‘

comma Display a comma: ,

double-quote Display a double quote: ”

form-feed Write a form feed (Ctrl-L)

left-curly-brace Display a left brace: {

left-parenthesis Display a left parenthesis: (

left-square-bracket Display a left bracket: [

new-line Write a new line (Ctrl-J)

right-curly-brace Display a right brace: }

right-parenthesis Display a right parenthesis:)

right-square-bracket Display a right bracket: |

semicolon Display a semicolon: ;

single-quote Display a single quote: ’

space Display a space character

tab Write a horizontal tab (Ctrl-I)

debugger-toolkit realm

The debugger-toolkit realm contains commands of interest to macro writers.

elf—debug—rtld Directs the debugger to do minimal

shared object initialization.

elf—stop—for—link -map—changes Directs the debugger to stop for link-map

resynchronized events.

event —list Displays event-names matching a regular

expression.

position — frame Writes the position’s frame number.

position —has— debug —info Writes if the position has debugging

information. —

position —line Writes the position’s line number.

position —-module Writes the position’s module (legend) name.

position —pc Writes position’s program counter.

position —return— address Writes the position’s return address.

position —routine Writes the position’s routine name.

position —scope—pathname Writes the position’s scope-pathname.

position —source —file Writes the position’s source filename.

process —corefile Displays or sets the corefile for a process.

process — identifier Displays the runtime identifier for a process.

process —shared— objects Writes the pathnames of shared —objects.

process — signal Displays or sets the current continuation

signal for a process.

process—stop—reasons Writes the reasons why the process stopped.

program —command —line Writes the current command line that was

used to create the process.

program—entry—point Writes the numeric address of the program

entry point.

program —name Writes the program’s pathname.

resolve — filename Resolves a filename via the debugger’s

directory-list.

086-000203 updates Licensed Maternal — Property of Data General Corporation 2-7
093-000710-03

Using Mxdb Commands

icobol realm

The icobol realm is the default realm for Interactive COBOL users. With the commands in

this realm, you can debug your Interactive COBOL programs, dynamically create debugger

variables, and modify commands.

Execution

continue

debug

next

step

terminate

Flow

if

while

Event

breakpoint

delete-events

disable-events

enable-events

event-status

process-status

watch-reference

watchpoint-print

Language

assign

convenience-variables

define-variable

delete-variable

describe

evaluate

names

variable

Source

directory-list

file

find

frame

list

position

routine

view

2-8 Licensed Material — Property of Data General Corporation

Start or resume execution.

Begin debugging a program.

Execute statements between valid break locations, not

following CALLs or PERFORMs.

Execute statements between valid break locations.

Terminate the Interactive COBOL Interpreter.

Execute commands if a condition is true.

Execute commands while a condition is true.

Set a breakpoint at a valid break location.

Delete one or more currently set events.

Disable one or more currently set events.

Enable one or more currently set events.

Display or modify information about events.

Print where and why the run unit stopped.

Monitor a data item.

Print a history of watchpoint values.

Assign a value to a destination.

Display convenience variable names or restart the list.

Create a dynamic debugger variable.

Delete a dynamic debugger variable.

Print a description of a program entity.

Display the result of an expression.

Display all visible names.

Obtain information about debugger variables.

Display or set the source directory search path list.

Display or set the current source file.

Search for a regular expression.

Display or set the current frame number.

Display a region of lines.

Display or set the current position.

Display or set the current program-name.

View text around the current or specified line.

086—000203 updates

093-000710-03

Using Mxdb Commands

Misc.

event-list Display event-names matching a regular expression.

perform-walkback Display the perform stack for CALL stack frames.

refresh-screen Refresh the Interactive COBOL screen display.

walkback Display the CALL stack.

version Display the debugger’s version number.

graphical-interface realm

The graphical-interface realm contains commands for graphical interface users.

button-status Set or display button information

button-pane-status Display button pane information

clear-messages Clear the Message Pane

define-button Create a button in a button pane

define-button-pane Define a button pane

delete-button Delete a button from a button pane

delete-button—pane Delete a button pane

graphics-available Write “true” if Mxdb’s graphical user interface

is active

selection Write the value of any selected text

synchronize-display Center the Source Pane around the debugger position

xhelp Execute the xhelp-view program

options realm

The options realm contains commands that control various display and operational options

for commands in other realms. These commands are not usually invoked directly by the

user. The c-p:option-status command invokes these commands in order to display current

option settings or to reset an option’s value.

bit-format Display or set bit display format.

character-format Display or set character display format.

command-history Display or set the number of commands saved

in the command line history mechanism.

convenience-variables Display or set whether a debugger variable is

created whenever an expression is evaluated

via the evaluate command.

convenience-variables-limit Display or set how many convenience variables

the debugger will remember.

elide-arrays Display or set whether same-valued array

elements are elided.

floating-point-format Display or set floating-point display format.

language Display or set the expression evaluation

language.

message-history Display or set the maximum number of lines of

text saved in the Message Pane.

mismatched —legends— allowed Display or set whether mismatched

external debugging information files are

allowed when debugging a process.

086-000203 updates Licensed Material — Property of Data General Corporation 2-9
093-000710-03

Using Mxdb Commands

pager-lines Display or set the number of lines used by the

CP paging facility (page and help).

pointer-dereference-level Display or set how many times a top-level

pointer will be automatically dereferenced and

displayed by the debugger.

signed-character-format Display or set signed-character display format.

signed-integer-format Display or set signed-integer display format.

source-lines Display or set the number of lines used by the

screen-related source commands (list and

view).

stop-commands Display or set commands to execute when the

target process stops for any reason.

string-display Display or set whether string-like objects are

automatically displayed in a string-like or an

array-like manner.

String-display-limit Display or set the number of characters that

will be displayed in a string-like manner before

elision occurs.

unknown-type-format Display or set unknown-type display format.

unsigned-character-format Display or set unsigned-character

display format.

unsigned-integer-format Display or set unsigned-integer display format.

windowed —terminal—emulator Creates a windowed terminal emulator

for a live debugged process, even

when the graphical user interface

is not active

Comparing Mxdb with sdb and dbx

The Mxdb debugger’s simple syntax and semantics contrast with those of sdb, dbx, and

many other debuggers. In an Mxdb command line, the command name is always the first

element on the command line.

The sdb debugger uses single-character commands that must be at the beginning, middle,

or end of the command line, depending on the command and upon what arguments you are

specifying. Table 2-2 compares sdb and Mxdb commands:

Table 2-2 Comparison of sdb and Mxdb Commands

sdb Mxdb Unabbreviated Mxdb Abbreviated

r prog! debug prog], again; continue deb prog], a;c

12c continue 12 c12

x!19 assign x 19 asx 19

14b breakpoint 14 b 14

The dbx debugger uses longer command names, each of which is a word, an abbreviation of

a word, a modification of a word, or two words. Table 2-3 compares dbx and Mxdb

commands:

2-1 0 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710~03

Using Mxdb Commands

Table 2-3 Comparison of dbx and Mxdb Commands

dbx Mxdb Unabbreviated Mxdb Abbreviated

run prog2 debug prog2, again; continue deb prog2, a; c

cont continue C

stepi step, instructions St, 1

stop at 14 breakpoint 14 b 14

Mxdb can debug more than one executable file in a single session, while sdb cannot. The

Mxdb debugger’s debug command can specify a new executable file, while the sdb

debugger’s r command cannot.

End of Chapter

086-000203 updates Licensed Material — Property of Data General Corporation 2-1 1
093-000710-03

Chapter 3

Using the Graphical Interface

(DG/UX Systems on AViiON

Computers)

Mxdb for AViiON computers with the DG/UX operating system has an option, —g, that

provides a graphical user interface. To use the graphical interface, you must have an X

Window SystemTM server running on the display machine; see the X man page for more

information. Use this option when you invoke Mxdb:

S mxdb —g)

The Mxdb graphical interface uses both the keyboard and the mouse as input devices. All

of the command line Mxdb functionality is still available using the keyboard.

When using the graphical user interface, you can use the following X Toolkit switches (see

the X man page for more information):

—name name

— display display

— geometry geometry

—bg color or —background color

—fg color or —foreground color

— iconic

— selectionTimeout

— synchronous

+synchronous

—title string

—xrm resourcestring

These switches are ignored by the graphical user interface: —bd color, —bordercolor color, i

~bw width, —borderwidth width, —fn font, —font font, —rv, +rv, and —reverse.

If you are debugging an X application and wish to use X Toolkit switches on the Mxdb

command line, place any X Toolkit options for Mxdb before the program name, and any X

Toolkit options for the program after the program name. The following command line

Starts Mxdb with a blue foreground and the application test_program with a gray

foreground:

¢ mxdb —g —fg blue test_program —fg gray)

Chapter 15 describes the graphical-interface realm commands.

086-—000203 updates Licensed Maternal — Property of Data General Corporation 3-1
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

The

Main Window

main window is made up of these areas:

@ Menu Bar

@ Source Pane

@ Message Pane

® Command Line Pane

@ Several Button Panes

Figure 3-1 shows the layout of the window.

MENU BAR

SOURCE PANE

BUTTON PANE

BUTTON PANE

MESSAGE PANE

COMMAND LINE PANE

Figure 3-1 The Main Window Layout

Licensed Material — Property of Data General Corporation 086-000203 updates

093-0007 10-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

The Menu Bar provides access to a row of pull-down menus. The Source Pane displays the

source file containing the current debugging position. The Message Pane and the

Command Line Pane work together to provide a method of entering commands to, and

receiving output from, the debugger. In effect, the Message and Command Line Panes

behave as the graphical equivalent of a conventional terminal screen.

The Button Panes provide an alternate method of command entry. These panes contain

sets of buttons that, when selected with the mouse, behave as short cuts to the keyboard

entry of commands. You can access several of the most commonly used commands by using

button panes.

The Source Pane and the Message Pane are resizable. The other panes are fixed in height.

You can resize the panes by dragging the square sash with your mouse to the desired new

location. The sash is present on the borderline between the panes.

Note that some buttons can be hidden by making the window too narrow.

A more detailed description of each pane is presented below.

Menu Bar

The Menu Bar is a horizontal strip of menu titles. When you select the menu title with the

mouse, the corresponding pull-down menu becomes visible. Currently, four menus are

available: File, Edit, View, and Help. The File menu contains options that are related to

processes. The Edit menu contains the options for manipulating text within the window.

The View menu is used to show or hide button panes and to show or raise viewers for

specialized data in the debugger. Currently, there are six options: Stack Frames, Modules,

Names, Symbols, Registers, and Button Panes. These will each be explained in detail later.

The Help menu contains various help options, including information about the help system

itself, “On Help.” For more information about the graphical interface help system, see

Appendix A.

086—000203 updates Licensed Material — Property of Data General Corporation 3-3
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

File Menu

This menu contains options that manipulate processes. The menu mnemonic is “E”

Exit

This option terminates the application. Selecting this option causes a dialog box to appear,

requesting confirmation. Within the dialog are two buttons: “OK” and “Cancel”; the

default button is “OK.” If you select the “OK” button, the application terminates;

otherwise, if you select the “Cancel” button, the application continues execution. The
6699,

option mnemonic is “x”; no accelerator is available.

Edit Menu

This menu contains options that modify text within the application window. This includes

copying, cutting, pasting, and deleting text from pane to pane, as well as from window to

window. The menu mnemonic is “E.”

Cut

This option removes any selected text in the Command Line Pane and places it in the

clipboard. If no text is selected in the Command Line Pane, this option is disabled. The

option mnemonic Is “t”;the accelerator is “Shift+ Del.”

Copy

This option copies any selected text from any X window that permits text selection into the

clipboard; this includes all the panes within the Mxdb window. If no text is selected

anywhere, this option is disabled. The option mnemonic is “C”; the accelerator is

“Ctrl+Ins.”

Paste

This option pastes the clipboard text, if available, into the current text location of the

destination cursor in the Command Line Pane. The destination cursor shows the last place

that text was inserted, edited, or selected; it is shown as a caret when separate from the

insertion cursor. If no text has been placed in the clipboard, this option is disabled. The

option mnemonic is “P”; the accelerator is “Shift+Ins.”

Delete

This option deletes any selected text in the Command Line Pane without first placing the

text in the clipboard. If no text is selected in the Command Line Pane, this option is

disabled. The option mnemonic is ”D”; no accelerator is available with this option.

3-4 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

View Menu

The View menu is used to show or raise viewers for specialized data in the debugger and to

show or hide button panes.

Viewer Menu Entries

The first five entries in the View menu are used to create different viewers. Each viewer is

in its own window, and can be moved, resized, and iconified just like the main Mxdb

window. ‘To remove a viewer window, use the window manager’s Close action.

The core of every viewer is its display area. The format and contents of the display depend

on the type of data displayed in that viewer. The right mouse button accesses a popup for

debugger operations on that data. Some viewers have a display format button pane with

radio buttons (diamond shaped toggle buttons, only one of which can be selected at a time)

to control the display format of the data. Some viewers have a regular button pane for

debugger command shortcuts related to the displayed data.

There is some performance penalty for using the viewers since they are kept consistent with

the debugger and debugged process. The amount of delay depends on the viewer, how

large a data set it needs to redisplay, and how often it needs to be updated.

Since the viewers depend on the debugger for information, if you ask for a new viewer or a

reformat while the debugger is busy, the redisplay will not occur until after the debugger

gets to the request.

Names

This option creates a Names viewer. It displays identifiers defined in the debugged

program at the current debugger position. See the debugger realm command names for

more information.

The popup performs its actions on the name whose line the menu is popped up from. So

selecting ‘evaluate’ from the popup menu (after bringing it up using button 3) anywhere on

the third line will evaluate the third name displayed. If an entry in the popup is insensitive,

then that means the data on that line is inappropriate for that operation.

The buttons at the bottom of the viewer select the type of names displayed: Routines,

Variables, Types, Enumeration Constants, or all of these together. The option mnemonic is
“N.”

Modules

This option creates a Modules viewer. It displays the module names of all the debuggable

compilation unit source files in the target process. See the modules command for more

information.

The column to the left of the module names is very similar to the first column of the source

pane. It contains an arrow pointing to the module containing the current debugger

position. Similarly, the process position is indicated by the bold module name. You can

position the debugger to any module by clicking with the left mouse button in the first

(debugger position arrow) column.

The popup performs its actions on the module whose line the menu is popped up from. So

selecting “break all” from the popup menu after bringing it up using button 3 anywhere on

the third line will set breakpoints at all the routines in the module named on that line. If an

entry in the popup is insensitive, that means the data on that line is inappropriate for that

operation. The option mnemonic is “M.”

086—000203 updates Licensed Material — Property of Data General Corporation 3-5
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Symbols

This option creates a Symbols viewer. It displays linker symbols from the debugged

program. See the debugger realm command symbols for more information.

The popup performs its actions on the symbol whose line the menu is popped up from. So

selecting ‘breakpoint’ from the popup menu after bringing it up using button 3 anywhere on

the third line will set a breakpoint at the address of the third symbol displayed. If an entry

in the popup is insensitive, that means the data on that line is inappropriate for that

operation.

The buttons at the bottom of the viewer select how to sort the symbols and whether to

display their addresses with them. The option mnemonic is “S.”

Stack Frames

This option creates a Stack Frames viewer. It displays the program stack of the debugged

process. It is updated whenever the process stops. See the walkback command for more

information.

The column to the left of the module names is very similar to the first column of the source

pane. It contains an arrow pointing to the frame containing the current debugger position.

Similarly, the process position is indication by the bold frame description (this is always

frame 0). You can position the debugger to any frame by clicking with the left mouse

button in the first (debugger position arrow) column.

The popup performs its actions on the frame whose line the menu is popped up from. So

selecting ‘arguments’ from the popup menu (after bringing it up using button 3) anywhere

on the third line will send an appropriate command to Mxdb to display frame 2 with its

arguments in the Message Pane. The option mnemonic is “FE.”

Registers

This option creates a Registers viewer. It displays the names and values of the entire

register set. See the debugger realm machine—state command for more information.

The popup actions operate on the selection. If an entry in the popup is insensitive, then

that means there is currently no selection.

The buttons at the bottom perform register-specific debugger operations, and allow you to

toggle serialization of the processor. (See the watchpoints— (88k) topic for more

information). The option mnemonic is “R.”

3-6 Licensed Material — Property of Data General Corporation 086-—000203 updates
093--000710-—03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Button Panes Cascade Menu

The Button Panes menu is used to show or hide panes in the Mxdb main window. User

defined button panes will appear on this menu in addition to the predefined entries below.

Process Buttons (P)

This option toggles the visibility of the Process Buttons button pane. The continue, next,

step, debug again, terminate, detach, and event status buttons are shortcuts to the

commands of those names. This button pane is displayed by default.

The interrupt button can be used to interrupt Mxdb or the target process. It is only

sensitive when Mxdb is busy processing a command or the target process is executing. If

the target process is running, the interrupt button will interrupt it; otherwise, the interrupt

button will only interrupt whatever command Mxdb is running. All pending commands that

have been typed (or button-pressed) ahead will be flushed by the interrupt. The option

mnemonic is “P.”

Machine Buttons (M)

This option toggles the visibility of the Machine Buttons button pane. The next i, step i,

disassemble, machine state, address—map, and symbols buttons are shortcuts to the

commands of those names. This button pane is not displayed by default. The option

mnemonic is “M.”

Stack Buttons (S)

This option teggles the visibility of the Stack Buttons button pane. The walkback, finish,

frame +1, frame —1, and top frame buttons are shortcuts to the commands of those names.

This button pane is displayed by default. The option mnemonic is “S.”

Help Menu

This menu contains various reference options that start the graphical interface help system

or reposition the help system if it is already started. For more information about the

graphical interface help system, see Appendix A. Selecting an option causes a non—modal

window (a window that does not need to be closed before further interaction can occur in

the Mxdb window) to appear with scrollable (if applicable) help text within it. You can

close the window by selecting the “Close” button at the bottom left corner of the help

window. The menu mnemonic is “H.”

086-000203 updates Licensed Material — Property of Data General Corporation 3-/
093-000710-—03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

On Help

This option positions the graphical interface help system to a description of the help

system. The option mnemonic 1s “H.”

On GUI

This option positions the graphical interface help system to a description of Mxdb’s

graphical user interface. The option mnemonic is “G.”

On Mxdb

This option positions the graphical interface help system to the information contained in

Using the Multi-extensible Debugger. The option mnemonic is “M.”

On CP

This option positions the graphical interface help system to the information contained in

Using the Command Processor. The option mnemonic is “C.”

Tutorial

This option positions the graphical interface help system to graphical interface demos,

which show you how to use Mxdb’s major features. The option mnemonic is “T.”

Table of Contents

This option opens the graphical interface help system Table of Contents dialog. You can -

browse through the online manual contents and select a topic if you would like more

information about it. The option mnemonic is “b.”

Source Pane

The Source Pane provides a constant display of the source file you are debugging and

provides a visual means of setting or removing breakpoints. The pane is composed of a

filename label, which shows the name of the source file being displayed, and a horizontally

and vertically scrolled display area below the filename label. The display area shows

numbered lines of the source code in which the current debugger position is located. The

source file associated with the current debugger position is always visible in the display if

the source file is available.

3-8 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

An arrow icon (— >) to the left of the line number denotes the debugger position (the static

position). A single click in the first column of the Source Pane (where the arrow icon is

displayed) repositions the debugger to that line.

A bold source line indicates the program position (the point at which program execution is

pending). An enabled breakpoint is denoted by a solid stop sign icon, while a disabled

breakpoint is denoted by a hollow stop sign icon. Two or more breakpoints (all enabled) on

a line are shown with two solid stop signs, side by side. Two or more breakpoints (all

disabled) on a line are shown with two hollow stop signs, side by side. If you have two or

more breakpoints on a line, at least one of which is enabled and one of which is disabled,

you will see one solid stop sign and one hollow stop sign, side by side.

When breakpoints are added, deleted, disabled, or enabled with the event-status,

delete-events, enable-events, and disable-events commands, the icons change accordingly.

Position/Breakpoint Denoted By

Debugger position Arrow icon before the line number (— >)

Program position Bold line number and source line

One enabled breakpoint Stop sign icon before the line number

One disabled breakpoint Hollow stop sign icon before the line

number

Multiple enabled breakpoints ‘Two stop sign icons before the line

number

Multiple disabled breakpoints Two hollow stop signs before the line

number

Enabled and disabled One solid and one hollow stop sign before the

breakpoints on the same line line number

The Source Pane provides a short cut to setting and clearing breakpoints. You can

single-click the mouse on the line number of the line where you want to set or clear a

breakpoint. When you are on a line number, the cursor will be an arrow pointing to the

upper right of the screen. Single-clicking on a line without a breakpoint causes a breakpoint

to be set on that line; conversely, single-clicking on a line with a breakpoint causes the

breakpoints on the line to be cleared.

086—000203 updates Licensed Material — Property of Data General Corporation 3-9
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Any portion of the displayed source text may be selected with the mouse. The Source Pane

is read-only, however, so you cannot cut from or paste into the displayed source.

Source Pane Popup

The actions in the popup menu for the Source Pane operate on the current selection. The

‘source pane’ cascade contains search..., edit, sync pane, and dir list options. The search

option raises a dialog that performs regular expression searches on the contents of the

Source Pane. See the debugger:edit, g—i:synchronize—display, and debugger:directory—list

for more information on the other options.

Message Pane

The Message Pane serves as a display area for previous command line interactions. The

commands you have entered, as well as the debugger outputs and error messages, are

displayed in a scrolled sub-window with horizontal and vertical scroll bars. A specified

number of lines are stored by the Message Pane to serve as a partial session history. You

can specify this number of lines with the option-status command’s message-history option.

The graphical interface uses different fonts to differentiate input and output visually. By

default, prompts and user inputs are displayed in a bold font, non-error outputs are

displayed in a regular font, and error messages are displayed in an italic font. You can

change these default settings to suit your preferences (see the section “Resources” later in

this chapter).

Any portion of the displayed text may be selected with the mouse. The Message Pane is

read-only. The actions in the popup menu for the Message Pane operate on the current

selection.

Message Pane Popup

Message Pane Popup Cascade Menu

The message pane and all of the viewer display panes share a popup cascade of common

useful functions. It is accessed through the cascade button in the last position of their

popup menus.

The “message pane’ cascade contains search..., sync pane, and clear options. The search

option raises a dialog that performs regular expression searches on the contents of the

Message Pane. If there is an arrow column on the left of this message pane (or viewer), and

there is an arrow displayed somewhere, the sync pane option scrolls the window to make it

visible. The clear option just clears the contents of the message pane.

3-1 0 Licensed Material — Property of Data General Corporation 086—000203 updates
093-0007 10-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Search Dialog

The Search Dialog is available by selecting the “Search...” item from the ‘source pane’

cascade menu, or any ‘message pane’ cascade. It performs searches in the pane it was

popped up from. It takes a regular expression pattern to search for, and optionally can

search backward or wrap at the end of the pane contents. After it is popped up, the first

time it searches it will start at the beginning of the visible text. Subsequently, it searches

from the previously found text. Found text is selected, and the pane scrolls to make it

visible. If the search fails, the dialog will beep. See the command-processor’s regular

expression topic for more information.

Command Line Pane

The Command Line Pane is composed of an input prompt and a rectangular text input

area. Commands to the debugger are entered in this pane. If a command line becomes

longer than the input box, the text scrolls automatically to accommodate the user input.

Press the New Line key to complete your command.

The input prompt displays the realm prompt. It also displays the argument prompt during

command prompting, the option prompt during option prompting, and the query prompt

for the c-p:query command. When the debugger is busy, the prompt becomes insensitive. a

You can enter commands in the Comand Line Pane while the debugger is busy; they will be

put into a queue. Commands that you enter, but have not been executed, are not displayed

in the Message Pane until the debugger starts processing them. However, those commands

are available in the command history (see below) if you want to see what you’ve typed

ahead.

By default, the Command Line Pane provides key bindings that emulate the editread

functionality, described in the next chapter. With these key bindings, you can easily

perform operations such as moving backward and forward on the command line and

inserting or deleting text. An alternate set of key bindings, which emulate emacs key

bindings, is also available (see the section “Keys” later in this chapter).

This pane also features a command history feature. The pane maintains a history list by

recording the entered commands. The list behaves as a first-in-first-out (FIFO) queue;

when the list reaches its maximum size, the first command in the list is removed before the

newest command is appended to the end of the list. The list also behaves circularly when

the user moves forward beyond the last command or backward before the first command in

the list. By using this command history list, you may conveniently access previously entered

commands for perusal or re-entry. The number of entries saved in the command history can

be set with the option-status command’s command-history option.

Button Panes

A Button Pane contains one row of user-definable buttons. The buttons and their

associated command sequences provide short cuts to entering commands manually. You

can create a button by using the define-button command in the graphical-interface realm.

For convenience, a default set of buttons and button panes exists at startup; you can change

these buttons interactively with the define-button, define-button-pane, delete-button-pane ,

and delete-button commands.

086-—000203 updates Licensed Material — Property of Data General Corporation 3-1 1
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Default Button Definitions

By default, the Mxdb default button definitions share the following characteristics:

e@ Are not suppressed from echoing in the Message Pane (,suppress-echo no).

@ Do not append an optional or required selection (,append-selection no

sappend-required-selection no).

Here is a general command invocation, in its most verbose form, for a typical default

button:

define—button ’/abel” {commands} position, ‘

append — selection no, append —required—selection no, suppress—echo no, pane

where label, commands, pane, and position vary.

Here is the default set of buttons and their corresponding debugger commands:

Table 3-1 Default Buttons

Label Command Position Button Pane

Interrupt {interrupt} 1 ProcessButtons

continue {continue} 2 ProcessButtons

next {next} 3 ProcessButtons

step {step} 4 ProcessButtons

debug again { debug, again} 5 ProcessButtons

terminate {terminate} 6 ProcessButtons

detach {detach} 7 ProcessButtons

event status {event—status} 8 ProcessButtons

process status {process — status} 9 ProcessButtons

next 1 {next,i} 1 MachineButtons

step i {step,i} 2 MachineButtons

disassemble {disassemble} 3 MachineButtons

instruction view {instruction —view} 4 MachineButtons

machine state {machine —state} 5 MachineButtons

address map {address— map} 6 MachineButtons

symbols {symbols} 7 MachineButtons

walkback {walkback} 1 StackButtons

finish {finish} 2 StackButtons

frame +1 {frame +1} 3 StackButtons

frame —1 {frame —1} 4 StackButtons

top frame {frame 0} 5 StackButtons

3-1 2 Licensed Material — Property of Data General Corporation 086—000203 updates
093-0007 10-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Normally, you do not specify the actual position where the button is to be placed; new

buttons default to the end of the specified (or default) button pane. The examples give the

exact position so that the buttons are independent of one another.

This is how two buttons could be defined interactively through the define—button

command:

(g-i) define—button sync display” g—i:synchronize—display 1, append—selection

no, append —required — selection no, suppress-echo no)

(g-i) define—button ”’directory list” debugger:directory—list 2, append -—selection

no, append—required —selection no, suppress-echo no)

Usually, button definitions are very terse:

(g-i) define—button ”foo” write foo)

(g-i) define—button bar {write bar; mymacro})

You may wish to create a new button pane to organize new buttons:

(g-i) define—button—pane, name MyButtons, label ”My Buttons”)

This creates an empty button pane at the end of the button pane area in the middle of the

main window. It also adds a toggle button to the “Panes” menu in the menu bar. This

toggle button controls whether or not this new button pane is visible. By default, the toggle

is pushed in and the button pane is visible. To make it invisible, simply click on the toggle

button, which then pops out.

You may add buttons to this new button pane with the define—button command, specifying

the pane argument with the name specified:

(g-i) define—button my_button {write foo}, pane MyButtons)

Execution Window

A separate window is always provided for debugger process input/output when the

graphical user interface is active. Note that this option is also available in command-line

mode as well. See the windowed —terminal—emulator option for complete details.

086—000203 updates Licensed Material — Property of Data General Corporation 3-1 3
093-000710—03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Interrupts

If you’re in the graphical user interface, you can issue interrupts in the Command Line

Pane or in the execution window. Issuing a SIGINT or SIGQUIT to the Command Line

Pane interrupts Mxdb when the debugged process is not executing. When the debugged

process is executing, the SIGINT or SIGQUIT signal is sent to the debugged process

instead. This applies to attached processes as well. Note that any queued commands will be

discarded.

Issuing any interrupt to the execution window, which is the controlling tty of the process

being debugged, will interrupt the debugged process. If you have attached to a process,

interrupts must be issued on the tty from which the process started execution or issued via

the UNIX command kill.

For more information about signals, see “Signal Debugging” in Chapter 7.

Customization

You can change the default settings of various behavioral and visual aspects of the graphical

user interface. However, use caution; changing default settings can produce unexpected

behavior. Either use the .Xdefaults file in your home directory or use the standard

command line X Toolkit switches to override the default settings supplied in the Mxdb file

in /usr/lib/X11/app-defaults. The app-defaults/Mxdb file contains defaults for

monochromatic, gray-scale, and color systems that can be transferred to your .Xdefaults

file. Be aware that changing a machine’s app-defaults/Mxdb file will affect all Mxdb

graphical interfaces started on that machine. See X documentation for X Toolkit switches

and the section “Resources” in this chapter for more information on modifiable settings.

Fonts

You can specify different fonts for the various text components used by the graphical user

interface and its help system. They use the Motif XmFontList resource type, which

associates a specific font of some font family and point size to a character set name. View

the supplied Mxdb app-defaults file for an example of XmFontList usage; see the X and

XmFontList man pages for more information.

The graphical user interface recognizes three character set names: “normal,” “bold,” and
66S ; 93

italic.

The Source Pane Text widget uses the normal character set for the program source text

display, and the bold character set for the program position.

The Source Pane Numbers widget uses the normal character set to display the line

numbers, and the bold character set for the program position.

The Source Pane Tags and Source Current widgets use only the normal character set for

the debugger position arrow and breakpoint symbols.

3-1 4 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-—03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Mxdb (ApplicationShell)

+- MainForm (XmForm)

+—- MainVerticalPane (XmPanedWindow)

086—000203 updates

093—000710-03

+- DebuggerPositionPane (XmRowColumn)

+- DebuggerPositionDisplay (XmPushButton)

SourcePane (XmForm)

+—

|

|

|

|

|

|

|

|

|

|

|

|

|

ek

SourcePaneSW (XmScrolledWindow)

|

+- SourcePaneBB (XmBulletinBoard)

| +- SourcePaneCurrent (PdeTextWidget)

| +- SourcePaneCurrentSeparator (XmSeparator)

| +- SourcePaneTags (PdeTextWidget)

| +- SourcePaneNumbers (PdeTextWidget)

| +- SourcePaneNumbersSeparator (XmSeparator)

| +- SourcePaneText (PdeTextWidget)

|

+- SourcePaneHSB (XmScrollBar)

|

+- SourcePaneVSB (XmScrollBar)

SourcePopupMenu (XmRowColumn)

|

+- EvaluateSourcePopup (XmPushButton)

+— DescribeSourcePopup (XmPushButton)

+- AddressSourcePopup (XmPushButton)

+— BreakpointSourcePopup (XmPushButton)

+—- PositionSourcePopup (XmPushButton)

+- WatchReferenceSourcePopup (XmPushButton)

+- HelpSourcePopup (XmPushButton)

+-— SourcePopupCascadeCascade (XmCascadeButton)

*—- SourcePopupCascade (XmRowColumn)

+- SearchSourceCascade (XmPushButton)

+— SynchronizeSourceCascade (XmPushButton)

+— EditSourceCascade (XmPushButton)

+-— DirListSourceCascade (XmPushButton)

+- HelpSourceCascade (XmPushButton)

Licensed Material — Property of Data General Corporation 3-20

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

+~-~ ProcessButtons (XmRowColumn)

| +- Interrupt (XmPushButton)

| +- ProcessButtons-continue-Button (XmPushButton)

| +- ProcessButtons-next-Button (XmPushButton)

| +- ProcessButtons-step-Button (XmPushButton)

| +- ProcessButtons-debug again-Button (XmPushButton)

| +- ProcessButtons-terminate-Button (XmPushButton)

| +- ProcessButtons-detach-Button (XmPushButton)

| +- ProcessButtons-event status-Button (XmPushButton)

| +- ProcessButtons-process status-Button (XmPushButton)

|

+~ MachineButtons (XmRowColumn)

| +- MachineButtons-next i-Button (XmPushButton)

| +- MachineButtons-step i-Button (XmPushButton)

| +- MachineButtons-disassemble-Button (XmPushButton)

| +- MachineButtons-instruction view-Button (XmPushButton)

| +- MachineButtons-machine state-Button (XmPushButton)

| +- MachineButtons-address map-Button (XmPushButton)

| +- MachineButtons-symbols-—Button (XmPushButton)

|

+~ StackButtons (XmRowColumn)

| +- StackButtons-walkback-Button (XmPushButton)

| +- StackButtons-finish-Button (XmPushButton)

| +- StackButtons-frame +1-Button (XmPushButton)

| +- StackButtons-frame -1-Button (XmPushButton)

| +- StackButtons-top frame-Button (XmPushButton)

|

+~ MessagePane (XmForm)

|

+- MessagePaneSW (XmScrolledWindow)

| |

| +- MessagePaneBB (XmBulletinBoard)

| | +- MessagePaneText (PdeTextWidget)

| |

| +- MessagePaneHSB (XmScrollBar)

| |

| +- MessagePaneVSB (XmScrollBar)

|
*

|

|

|

|

|

|

|

|

|

|

| MessagePopupMenu (XmRowColumn)

| |

| +- EvaluateMessagePopup (XmPushButton)

|

| +- DescribeMessagePopup (XmPushButton)

|

| +- AddressMessagePopup (XmPushButton)

|

| +- BreakpointMessagePopup (XmPushButton)

|

|

|

|

|

|

+- PositionMessagePopup (XmPushButton)

+- WatchReferenceMessagePopup (XmPushButton)cme wee ee eee ee
+- HelpMessagePopup (XmPushButton)

3-24 Licensed Material — Property of Data General Corporation 086—-000203 updates
093-000710-—03

+—

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

|

+- MessagePopupCascadeCascade (XmCascadeButton)

*- MessagePopupCascade (XmRowColumn)

+~ SearchMessageCascade (XmPushButton)

+— SyncMessageCascade (XmPushButton)

+~ ClearMessageCascade (XmPushButton)

+~ HelpMessageCascade (XmPushButton)

CommandLine (XmForm)

+- CommandLinePrompt (XmLabel)

+—- CommandLineText (XmText)

MenuBar (XmRowColumn)

086-000203 updates

093-000710-—03

FileCascade (XmCascadeButton)

File (XmRowColumn)

+- Exit (XmPushButton)

EditCascade (XmCascadeButton)

Edit (XmRowColumn)

+- Cut (XmPushButton)

+- Copy (XmPushButton)

+- Paste (XmPushButton)

+- EditSeparator (XmSeparator)

+-~ Delete (XmPushButton)

ViewCascade (XmCascadeButton)

View (XmRowColumn)

+—- NamesViewerlItem (XmPushButton)

+- ModulesViewerItem (XmPushButton)

+- StackFramesViewerItem (XmPushButton)

+~ RegistersViewerItem (XmPushButton)

+- SymbolsViewerItem (XmPushButton)

+-— Button PanesCascade (XmCascadeButton)

*— Button Panes (XmRowColumn)

+- ProcessButtonsToggle (XmToggleButton)

+— MachineButtonsToggle (XmToggleButton)

+- StackButtonsToggle (XmToggleButton)

HelpCascade (XmCascadeButton)

Help (XmRowColumn)

+- On Help (XmPushButton)

+—- On GUI (XmPushButton)

+- On Mxdb (XmPushButton)

+—- On CP (XmPushButton)

+- Tutorial (XmPushButton)

+- Command Summary (XmPushButton)

+- Table of Contents (XmPushButton)

Licensed Material — Property of Data General Corporation 3-25

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Mxdb (ApplicationShell)

|

+- MainForm (XmForm)

| |

| +- MainVerticalPane (XmPanedWindow)

| |

| +— ModulesPane (XmForm)

| |

| +~ MessagePaneSW (XmScrolledwindow)

| |

| +- MessagePaneBB (XmBulletinBoard)

| | +- MessagePaneCurrent (PdeTextWidget)

| | +- MessagePaneCurrentSeparator (XmSeparator)

| | +- MessagePaneText (PdeTextWidget)

|

|

|

|

|

|
*

+- MessagePaneHSB (XmScrollBar)

+- MessagePaneVSB (XmScrollBar)

~ ModulesPopupMenu (XmRowColumn)

|

+-— BreakAllModulesPopup (XmPushButton)

+- UnbreakAllModulesPopup (XmPushButton)

+- HelpModulesPopup (XmPushButton)

+— ModulesPopupCascadeCascade (XmCascadeButton)

*— ModulesPopupCascade (XmRowColumn)

+- SearchModulesCascade (XmPushButton)

+- SyncModulesCascade (XmPushButton)

+- ClearModulesCascade (XmPushButton)

+— HelpModulesCascade (XmPushButton)

3-26 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-—03

Mxdb

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

(ApplicationShell)

MainForm (XmForm)

+- MainVerticalPane (XmPanedWindow)

|

+- StackFramesPane (XmForm)

|

+- MessagePaneSW (XmScrolledWindow)

|

+- MessagePaneBB (XmBulletinBoard)

| +- MessagePaneCurrent (PdeTextWidget)

| +- MessagePaneCurrentSeparator (XmSeparator)

| +- MessagePaneText (PdeTextWidget)

+- MessagePaneHSB (XmScrollBar)

+—- MessagePaneVSB (XmScrollBar)

~StackFramesPopupMenu (XmRowColumn)

|

+- ArgumentsStackFramesPopup (XmPushButton)

LocalsStackFramesPopup (XmPushButton)

FinishStackFramesPopup (XmPushButton)

HelpStackFramesPopup (XmPushButton)

StackFramesPopupCascadeCascade (XmCascadeButton)

StackFramesPopupCascade (XmRowColumn)

+—- SearchStackFramesCascade (XmPushButton)

+-— SyncStackFramesCascade (XmPushButton)

+- ClearStackFramesCascade (XmPushButton)

+- HelpStackFramesCascade (XmPushButton)

086—000203 updates Licensed Material — Property of Data General Corporation 3-27
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Mxdb (ApplicationShel1l)

|

+- MainForm (XmForm)

|

+— MainVerticalPane (XmPanedWindow)

|

+— NamesPane (XmForm)

| |

| +- MessagePaneSW (XmScrolledWindow)

| |

| +— MessagePaneBB (XmBulletinBoard)

| | +- MessagePaneText (PdeTextWidget)

| |

| +- MessagePaneHSB (XmScrollBar)

| |

| +~- MessagePaneVSB (XmScrollBar)

|

+- NamesButtons (XmRowColumn)

+- AllKindsNamesButton (XmToggleButton)

+—- RoutinesNamesButton (XmToggleButton)

+- VariablesNamesButton (XmToggleButton)

+- TypesNamesButton (XmToggleButton)

+- EnumsNamesButton (XmToggleButton)

- NamesPopupMenu (XmRowColumn)

|

+- EvaluateNamesPopup (XmPushButton)

+- DescribeNamesPopup (XmPushButton)

+- AddressNamesPopup (XmPushButton)

+- WatchReferenceNamesPopup (XmPushButton)

+- PositionNamesPopup (XmPushButton)

+- BreakpointNamesPopup (XmPushButton)

+—- HelpNamesPopup (XmPushButton)

+- NamesPopupCascadeCascade (XmCascadeButton)

*—- NamesPopupCascade (XmRowColumn)

+- SearchNamesCascade (XmPushButton)

+- SyncNamesCascade (XmPushButton)

+- ClearNamesCascade (XmPushButton)

+- HelpNamesCascade (XmPushButton)

3-28 Licensed Material —- Property of Data General Corporation 086~—000203 updates
093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Mxdb (ApplicationShell)

|

+- MainForm (XmForm)

|

+~- MainVerticalPane (XmPanedWindow)

|

+- RegistersPane (XmForm)

|

+- MessagePaneSwWw (XmScrolledWindow)

|

+—- MessagePaneHSB (XmScrollBar)

|

+- MessagePaneVSB (XmScrol1Bar)

+~- RegistersButtons (XmRowColumn)

+- PSRFlagsRegButton (XmPushButton)

+- FPSRFlagsRegButton (XmPushButton)

+- FPCRFlagsRegButton (XmPushButton)

—- RegistersPopupMenu (XmRowColumn)

|

+- SymbolicPCRegistersPopup (XmPushButton)

+- DisassembleRegistersPopup (XmPushButton)

+- PositionRegistersPopup (XmPushButton)

+- HelpRegistersPopup (XmPushButton)

+- RegistersPopupCascadeCascade (XmCascadeButton)

*—- RegistersPopupCascade (XmRowColumn)

+- SearchRegistersCascade (XmPushButton)

+- SyncRegistersCascade (XmPushButton)

+-— ClearRegistersCascade (XmPushButton)

+- HelpRegistersCascade (XmPushButton)

086—000203 updates Licensed Material — Property of Data General Corporation

093—000710-03

|

|

|

| +- MessagePaneBB (XmBulletinBoard)

| | +- MessagePaneText (PdeTextWidget)

|

|

|

|

|

+- SerializeRegButton (XmToggleButton)

3-29

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

Mxdb (ApplicationShell)

MainForm (XmForm)

+- MainVerticalPane (XmPanedWindow)

+- SymbolsPane (XmForm)

|

|

|

|

|

|

|

|

|

|

|

|

+—- MessagePaneSW (XmScrolledWindow)

+- MessagePaneBB (XmBulletinBoard)

| +- MessagePaneText (PdeTextWidget)

+-~ MessagePaneHSB (XmScroll1Bar)

+— MessagePaneVSB (XmScrollBar)

+- SymbolsButtons (XmRowColumn)

|

+- SortByAddressSymButton (XmToggleButton)

|

+- SortByNameSymButton (XmToggleButton)

|

+- NamesOnlySymButton (XmToggleButton)

— SymbolsPopupMenu (XmRowColumn)

3-29.a

PositionSymbolsPopup (XmPushButton)

BreakpointSymbolsPopup (XmPushButton)

AddressSymbolsPopup (XmPushButton)

WatchMemorySymbolsPopup (XmPushButton)

HelpSymbolsPopup (XmPushButton)

SymbolsPopupCascadeCascade (XmCascadeButton)

SymbolsPopupCascade (XmRowColumn)

+- SearchSymbolsCascade (XmPushButton)

+- SyncSymbolsCascade (XmPushButton)

+- ClearSymbolsCascade (XmPushButton)

+- HelpSymbolsCascade (XmPushButton)

Licensed Material — Property of Data General Corporation 086—-000203 updates

093-000710-03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

This page intentionally left blank.

086-000203 updates Licensed Material — Property of Data General Corporation 3-29.b
093-000710—03

Using the Graphical Interface (DG/UX Systems on AViiON Computers)

The “applicationShell” class is an X Toolkit widget. All the other widgets except for

“pdeText” are standard Motif widgets. “pdeText” is a customized widget whose parent class

is XmPrimitive. See the man page for XmPrimitive for resources that are inherited from

XmCore (the superclass of XmPrimitive) and XmPrimitive. A list of modifiable resources

for this widget class is provided below. There is no man page for pdeText.

Table 3-8 pdeText Resource Set

NAME DESCRIPTION DEFAULT

fontList Fonts used by the class STRING_DEFAULT_CHARSET

minLine Width Min. line width (pixels) 1

minLineHeight Min. line height (pixels) 1

tabWidth Spaces between tab stops 8

selectionArray See XmText man page {XmSELECT_ POSITION,

XmSELECT_WORD,

XmSELECT_LINE,

XmSELECT PARAGRAPH}

selectionArrayCount See XmText man page 4

Setting the following resources will allow Mxdb and the execution window to both fit on the

screen without overlap. For mterm:

mxdb_ws_term.geometry: 55x12+740+90

Mxdb* geometry: +20+70

For xterm:

mxdb_ws_term* geometry: 55x12+740+90

Mxdb* geometry: +20+70

As for Key translations, please study the X documentation carefully (as well as the section

“Keys” in this chapter) before attempting modification.

Keyboard traversal support is available on a limited basis using resources. By default,

traversal is available from the Command Line to the sashes for resizing the Source Pane

and Message Pane using the up and down arrow keys. To activate traversal from the

Command Line, press Control+TAB for forward motion and Shift+TAB for backward

motion. The TAB key alone inserts a tab into the Command Line.

In order to allow the Command Line to accept tab characters, the following resource is set

by default:

Mxdb*CommandLineText.editMode: MULTI LINE_EDIT

3-30 Licensed Material — Property of Data General Corporation 086-000203 updates
093-000710-03

High-level Language Debugging

Evaluating Function Calls

If you use function call syntax in a command that accepts a language expression (such as

evaluate, assign, breakpoint, define-variable, if, and while), the Mxdb debugger attempts to

invoke the function when it evaluates the expression. Note that Mxdb will not try to invoke

a function that is an argument to the describe command since expressions supplied to

describe are not evaluated.

If the function invocation is successful, the function is then called whenever the expression

involving the call is evaluated. Thus, a function appearing in a breakpoint command will be

called every time the condition is tested. Here are some commands that result in calling a

function:

(debug) evaluate some_function())

(debug) assign some_var some_function())

(debug) break somewhere, if (some_function() != 0))

(debug) define—variable debugger_var some_function }

(debug) if (some_function()) {write something})

All events are active when the invoked process is being executed. If the invoked routine

gets an event that is not the expected return address, the process-status is noted and a note

is issued saying that the process stopped in a debugger-invoked context before returning to

the top level.

You can debug as you wish in the invoked routine context. Your stack is terminated at this

point by a frame at this address: _debug_info+<N>. Here is an example:

(debug) bone param)

(debug) eval one_param(4))
Stopped at frame 0, line 10, scope \test4\one_param, pc 0x10idc

breakpoint "2"

Note: Process stopped in debugger-invoked routine context.

(debug) walk, a }
frame 0, line 10, scope \test4\one_param, pc0Ox101dc

1 = 4

frame 1, pc __debug_info+24

These invocation contexts will nest so that a user can invoke routines even in invoked

contexts and the state of the process will be reinstated appropriately as each invocation

returns (if it returns).

When you invoke a routine, any signal that stopped the target process is discarded.

086—000203 updates Licensed Material — Property of Data General Corporation 1 0-1 9
093-000710—03

High-level Language Debugging

Modifying the Expression Language

To change the current expression language, set the language option by using the

option-settings argument of the option-status command. The valid values are c, c++,

; pascal, fortran, and icobol. Note that any modification stays in effect until the debugger’s
position changes. The debugger position is changed when the position or view command is

supplied with arguments or the debugged process is continued (and it stops).

You can enable Mxdb to evaluate a C expression while you are debugging a FORTRAN

program by typing the following:

(debug) option-status la c)

(debug)

The following command restores FORTRAN as the expression language:

(debug) option lang fortran)

(debug)

End of Chapter

1 0-20 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

The following command displays the values for the next-to-top stack frame:

(debug) mach top+1)}

Machine—level Debugging

Spc Ox0001019c _ start+116

Sr0 0x00000000 Sri <invalid> S$r2 <invalid> Sr3 <invalid

>

Sr4 <invalid> Ssr5 <invalid> Sr6 <invalid> Sr7 <invalid

>

Sr8g <invalid> Ssr9 <invalid> S$r10 <invalid> Srll <invalid

>

Sr12 <invalid> $r13 <invalid> S$r14 0x00013e00 S$r15 0x00013e

00

Sr16 0Ox00000001 Sril7 Ox0041lab64 Sr18 O0x004lade0 $r19 0x0041bd

40

Sr20 Ox0041ab60 S$r21 0x0041c480 S$r22 0x00000001 S$r23 Ox0051lel

00

Sr24 0x0051d900 Sr25 Oxeffffe38 S$r26 0x00000000 Sr27 0x000000

00

Sr28 O0x004084f0 Sr29 O0x00000000 S$r30 Ox00000000 Sr31 Oxeffffd

£0

Sfpsr 0x00000000 Sfpcr 0x0000001la Spsr 0x000003£0

Scfa Oxeffffe38

(debug)

Note that registers $r1—$r13 are displayed with a value of “<invalid>”; their contents are

only defined in a top stack frame context. Also note that the instruction pointer registers

($sxip, $snip, and $sfip) are not displayed; their values are always invalid for frames other

than the top frame.

Creating a Disassembly Listing (disassemble,

instruction —view)

The display of an instruction listing is generally known as “disassembly” because it is the

inverse of the process generally performed by assemblers or programs taking machine

instructions specified in a source file and encoding them into actual machine code that can

be executed. In the debugger, the machine code in the process image is decoded back into

this source-like format.

To create an instruction listing, use either the disassemble or instruction—view commands.

Both commands provide instruction listing in the same format. The instruction—view

command generally provides more contextual information than disassemble by attempting

to output a window of instructions around the current or specified position.

Note that the disassembly listings will differ slightly between COFF and ELF programs. In

ELF programs all registers and reserved operands are prefixed by “#” as the version 03.00

and later assembler syntax mandates. Since this assembler syntax is only for ELF, these

pound signs are not included in the COFF display.

To display all the instructions associated (if debugging information exists) with the current

line, beginning at the program counter associated with the current debugger position, use

the disassemble command with the line argument, which has the value “current”:

086—000203 updates

093—000710-—03

Licensed Material — Property of Data General Corporation 11-3

Machine—level Debugging

(debug) disas, line

* 12 0x1l01e4

Ox101e8

Oxl0lec

Ox101£0

Ox101f4

Ox101£8

Ox1l01fc

Ox10200

0Ox10204

(debug)

current)

_main+24

_main+28

_main+32

_main+36

_main+40

_main+44

_main+48

_main+52

_main+56

or.u

ld

mak

ld

addu

or.u

or

1d

bsr

r13, r0O, 0x40

r12, r13, 0x6850

r12, r12, 0<2>

rii, r30, 0x14

r12, r12, rill

r2, rO, Oxl

r2, r2, Ox1lb0d

r3, rO, r12

_printf

Note that the current instruction is highlighted with an asterisk in the same manner as the

view command highlights the current source line. The highlighted instruction is the actual

Static (pc) position where a breakpoint is set if you invoke the breakpoint command with

no arguments. The asterisks displayed at both the source and “machine” levels exactly

identify your current debugger position at any time.

If you use the disassemble command with no arguments, you will see all instructions

associated (if debugging information exists) with the current line, beginning with the

current instruction.

‘To display a window of instructions associated (if debugging information exists) with the

current line, use the instruction—view command:

(debug) dis _,,display instructions associated with current position)

* 55 0x10520 _main+24 or.u r2, x0, Oxl

0x10524 _main+28 or r2, r2, Oxlb4

0Ox10528 _main+32 bsr _printf

(debug) op source 5 ,,provide a 5 instruction window).

(debug) i-vi display more context about the current position)

26 0x10518 _main+16 st r2, xr30, Ox4e0

Ox1051c _main+20 st r3, r30, 0x4e4

* 55 0x10520 _main+24 or.u r2, r0O, Oxl

Ox10524 _main+28 or r2, x2, Oxlb4

0x10528 _main+32 bsr _printf

To display the instructions associated with two lines, beginning at the current debugger

position, specify the number of lines:

11-4 Licensed Material —- Property of Data General Corporation 086-000203 updates

093-0007 10-03

Machine—level Debugging

(debug) disas 2)

* 12 0x101e4 _main+24 or.u r13, r0O, 0x40

Ox101e8 _main+28 ld r12, r13, 0x6850

OxlO0lec _main+32 mak r1l2, r12, 0<2>

Ox101f0 _main+36 ld r11, r30, 0x14

Ox101f4 _main+40 addu ri2, r12, rill

Ox101f8 _main+44 or.u r2, xO, Oxi

Ox101fc _main+48 or r2, r2, Ox1b0

0Ox10200 _main+52 ld r3, r0O, ri12

0x10204 _main+56 bsr _printf

13 0x10208 _main+60 or r2, xO, xO

Ox1020c _main+64 br _main+68

(debug)

To display the instructions associated with line 13, use the line argument:

(debug) disassem, line 13)

13 0x10208 _main+60 or r2, xO, rO0O

Ox1020c _main+64 br _main+68

(debug)

To display the instructions associated with two lines of source code, beginning at program

counter 0x000101e4, use the pe argument:

(debug) disassemble 2, pc 0x000101e4)

* 12 0x101le4 _main+24 or.u r13, r0O, 0x40

Ox101e8 _main+28 ld r12, r13, 0x6850

Ox10lec _main+32 mak r12, r12, 0<2>

Ox101£0 _main+36 ld r11, r30, 0x14

Ox101f4 _main+40 addu ri2, r12, rill

Ox101f£8 _main+44 or.u r2, rO, Oxl

Ox101fc _main+48 or r2, r2, Oxl1b0

Ox10200 _main+52 ld r3, r0O, r12

0x10204 _main+56 bsr _printf

13 0x10208 _main+60 or r2, xO, rO

Ox1020c _main+64 br _main+68

(debug)

Use the instructions argument to display the current instruction:

(debug) disassemble, instructions }

* 12 0x101e4 _main+24 or.u r13, r0O, Ox40

(debug)

‘To display 6 instructions beginning at program label abc, use the instruction and label

arguments:

(debug) disassemble 6, in, label abc)

Table 11—1 shows a summary of instructions that could appear after you issue the

disassemble or instruction—view commands.

086—000203 updates Licensed Material — Property of Data General Corporation 1 1 «5
093-—000710—-03

Machine—level Debugging

Table 11-1 88100 Instruction Summary

Name Meaning

add Add

addu Add unsigned

and Logical AND

bb0O Branch on bit clear

bb1 Branch on bit set

bend Conditional branch

br Unconditional branch

bsr Branch to subroutine

clr Clear bit field

cmp Compare

div Divide

divu Divide unsigned

ext Extract signed bit field

extu Extract unsigned bit field

fadd Floating-point add

femp Floating-point compare

fdiv Floating-point divide

ff0 Find first bit clear

ffl Find first bit set

fldcr Load from floating-point control register

fit Convert integer to floating-point

fmul Floating-point multiply

fstcr Store to floating-point control register

fsub Floating-point subtract

fxcr Exchange floating-point control register

int Round floating-point to integer

jmp Unconditional jump

jsr Jump to subroutine

Id Load register from memory

Ida Load address

Ider Load from control register

mak Make bit field

mask Logical mask intermediate

mul Multiply

nint Round floating-point to nearest integer

or Logical OR

rot Rotate register

rte Return from exception

set Set bit field

(continued)

1 1 -6 Licensed Material — Property of Data General Corporation 086—000203 updates
093-0007 10-03

Machine —level Debugging

Table 11-1 88100 Instruction Summary

Name Meaning

st Store register to memory

stcr Store to control register

sub Subtract

subu Subtract unsigned

tb0 Trap on bit clear

tb1 Trap on bit set

tbnd Trap on bounds check

tcnd Conditional trap

trnc Truncate floating-point to integer

Xcr Exchange control register

xmem Exchange register with memory

xor Logical exclusive OR

(concluded)

Dumping the Contents of Memory

(dump-memory)

To display the contents of memory in a specified format, use the dump-memory command.

Following are the valid types:

Table 11-2 Valid Types for the dump-memory command

Meaning

A short word in decimal

A long word in decimal

A short word in octal

A long word in octal

A short word in hexadecimal

A long word in hexadecimal

Two bytes in octal

Two bytes as characters

A character string terminated by a null byte

A single precision real number

A double precision real numberTmyrap;r sé * Ooo vy a a
CS@

The type value is initially set to X. If you specify the type argument, subsequent invocations

of dump-memory default to the last used type value.

086—000203 updates Licensed Material — Property of Data General Corporation 1 1 -/
093—000710-03

Machine—level Debugging

This example displays in hexadecimal type the word whose address is 0x406850:

(debug) dump-memory 0x406850)
Ox406850: Ox00000005

(debug)

To display the value of the external integer i (which has the decimal value 5) in octal type,

use the type argument:

(debug) dump i, type O }
0x406850: 000000000005
(debug)

Note that the variable i is prefixed with an underscore; this is how COFF external symbols

are referenced in the AViiON computer system architecture. ELF symbols are not prefixed

this way.

To display the value of i in decimal type, use type D:

(debug) dump i, type D)

Ox406850: 5

(debug)

To display six 16-bit words beginning at i’s starting address, use the count argument

(dump-memory uses the last display mode):

(debug) dump _ i, co 6)
0x406850: 5 0 0 0

Ox406860: 0 0

(debug)

To display six octal bytes beginning at i’s starting address, use the type and count

arguments:

(debug) dump i, type b, co3)
0x406850: \000 \000 \000 \005 \000 \000

(debug)

11 -8 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Machine—level Debugging

Machine-level Debugging on AVIiON

Computer Systems

This section discusses AViiON computer system-specific information.

88100 Pointers

Pointers are 32 bits in length and denote a byte address in the process address space. If a

pointer is used in an instruction context (such as a routine return address stored on the

stack), the two lower order bits are reserved for exception and validity indicators; see

Figure 11-1.

31 1 0

Address Information vl E|

Figure 11-1 88100 Instruction Pointer Format

Registers

Table 11-3 shows the various registers. These special variables can be used in any

expression context, unless they are hidden by a declaration in the program being debugged.

Table 11-3 Meaning of Registers Displayed by the machine-state Command

Name Meaning

$10 Always equal to zero

$r1 Holds the subroutine return pointer

$r2—$r9 Temporary register set used for parameter passing

$r10—$r13 Temporary registers used for language-specific purposes

$r14—$1r25 Preserved registers

$126 and $127 Reserved for future use

$128 and $29 Reserved for the compilation system

$130 Preserved register

$131 Contains the stack pointer

$fpsr Floating-point user status register

$fpcr Floating-point user control register

$psr Processor status register

$sxip Shadow execute instruction pointer

$snip Shadow next instruction pointer

$sfip Shadow fetched instruction pointer

$cfa Canonical frame address pseudo-register

$pc Program counter pseudo-register

086-—000203 updates

093—-000710-—03

Licensed Material — Property of Data General Corporation 11-9

Machine—level Debugging

AViiON Computer Systems and Registers

Note that the $pc and $cfa registers are software phenomena and are not defined by

AViiON computer systems except by convention. The “$cfa” register performs the function

traditionally done by a frame pointer register on other architectures.

When you are positioned in the top stack frame, the “$pc” register denotes the stop

position of the debugger. For native processes, this pseudo-register displays either the $sxip

or $snip value, depending on the reason the target process last stopped. If it stopped for a

breakpoint, single-step, when initially loading a process, or when an imprecise exception

has occurred, the $pc register takes on the value of the $snip register. In all other cases, the

$pc register takes on the value of the $sxip register.

When you assign a value to the $pc pseudo-register, the $snip and $sfip registers are reset

so that all instructions for further execution will be reset correctly. The value placed in the

$snip register is the top 30 bits of the specified location, with an OR performed with the

constant 2 and the value (the OR operation turns the validity bit on and the exception bit

off for the instruction pointer). The $sfip register value is the standardized $snip register

value plus 4 (the size of an instruction on AViiON computer systems).

When the $pc register has the $sxip value, attempting to set the $pc’s value with an assign

statement such as “assign $pc $pc+4” will change the $snip and $sfip registers only. All

references to the “$pc” register will reference the $sxip value, which never changes. The

$sxip value has nothing to do with the continuation program counter location.

In frames other than the top frame, the “$pc” register value is the return address for its

parent frame.

On AViiON computer systems, you can use the alias $fp for the register $r30 and the alias

$sp for the register $31. These aliases are not displayed when you use the machine-state

command, but are available if you access register values by name, such as with the evaluate

command.

Register variables are used just like any other variables visible in your program, except that

register names are case sensitive. To print a register’s value, use the evaluate command with

the name displayed in the “Name” column of Table 11-3. To modify its value, use the assign

command:

(debug) evaluate $pc, format hex)

0x000101e4

(debug) assign $pc 0x000101e8, format hex)

(debug)

If the current expression evaluation language converts identifiers to uppercase, you must

explicitly change the language to one that is case sensitive (such as C) to manipulate the

registers.

End of Chapter

1 1 =| 0 Licensed Material —- Property of Data General Corporation 086-—000203 updates
093-000710-—03

Debugger Commands

attach Debugger Command

Debugs an already executing process.

Summary

Debugs an already executing process.

Syntax

attach pid ,executable

where:

pid A process identification number

executable The name of an executable file

Examples

at 432, ex foo

Description

The attach command directs Mxdb to debug an already executing process, possibly giving

the location of the associated executable file.

Arguments

pid Specify the pid of the process to be debugged

executable Specify the name of the executable file associated with the process

to be debugged; the default is a.out.

Examples

To debug an executing process with a PID of 432 and the associated filename foo, type this

command:

(debug) at 432, ex foo)

See Also

Command: detach

086~-000203 updates Licensed Material — Property of Data General Corporation 1 2-1 3
093-000710-—03

Debugger Commands

breakpoint

Sets a breakpoint at a specified location.

Debugger Command

Summary

Sets a breakpoint at a specified location.

Syntax

breakpoint /position] ,line ,label ,pc scope ,disable name ,count ,if ,action

where:

position A file, scope, line number, or some combination of the three

line Line number, or CURRENT or LAST with an optional offset

label A program label

pe An address for a program counter

scope The name of a module or routine

disable Create a breakpoint and then disable it; yes or no

name A name to be associated with a breakpoint

count How many times a location can be reached without a breakpoint

occurring

if . An expression that evaluates to true or false

action A sequence of commands; must be in braces if more than one

command 1s specified

Examples

br

break 50

b main

b \foo\bar

b \for:29

break, name rope, scope rou2

breakpoint, pc main+02

breakpoint 23, count 4, if (! 1)

br, lab labelO, act {wri Back to top-level}

event-status ,,list breakpoints and other events

delete-event 1 2 ,,delete breakpoints named ”"1” and "2"

br Array::~Array

1 2-1 4 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-0007 10-03

Debugger Commands

Description

The breakpoint command directs the debugger to halt execution of the target process when

the specified location is reached and any auxiliary properties are satisfied, and return

control to you.

A breakpoint can be set at a position, a line or programming-language label in any specified

scope, or just on a scope, or on any valid address (specified symbolically or numerically). A

breakpoint can be set on a scope, even if the scope has not been compiled for debugging, if

the scope is an external routine name. (This helps when you want to stop in library

routines.)

You will receive a warning if an address is not in the text area and an error message if the

address is not aligned properly.

You can set multiple breakpoints on a line. One or both of the following messages will be

printed to the error output:

Note: The following breakpoints have also been set on this

location: "<breakpoint-namel>” "<breakpoint-name2>"

Note: The following DISABLED breakpoints have also been set on

this location: "<breakpoint-namel>”

To see a list of currently set breakpoints, use the event-status command. To delete a

breakpoint, use the delete-events command.

Arguments

position If you specify a value, a breakpoint is set at that position. If you

omit the position argument and the debugger is at the beginning

of a line, the breakpoint is set at the beginning of the line. If you

omit the position argument and the debugger is not at the

beginning of a line, or if no debugging information is present, the

breakpoint is set at the current program counter.

You can use the position argument in conjunction with the scope

argument. However, only the line number information from the

position argument is applied toward the construction of the final

position.

line Create a breakpoint at the beginning of the specified line.

The line number symbolic tags “current” and “last,” or their

abbreviations, may cause ambiguity if a routine (scope) exists with

the same name or abbreviation. If an argument is an alphanumeric

character sequence, it will be looked up as a scope (routine or

module) first. If this lookup fails, the argument will be processed

as a line number. To prevent any ambiguity, supply a leading colon

(:) when you use a symbolic tag; the position-type will then process

the characters strictly as a line number.

label Create a breakpoint at the specified program label.

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-1 5
093—000710—-03

Debugger Commands

pe Create a breakpoint at the specified program counter address.

You can use a symbolic or numeric expression.

scope Set a breakpoint at the beginning of the specified scope, or at a

specified line or label in that scope.

disable First create a breakpoint to make sure that it is valid, then disable

it. This action retains the breakpoint in the debugger while

avoiding the overhead from creating the event in the debugged

process.

name Associate the specified name (character string) with the

breakpoint. If you omit the name argument, breakpoint creates a

name. This name is displayed when the breakpoint is taken or

when you issue an event-status command. The delete-events

command also uses the name.

count After the debugger reaches a specified location this many times, a

breakpoint will occur the next time the location is reached. The

initial default is null (0).

if The program language at the position where the breakpoint is set

defines the syntax of the expression. If the expression evaluates to

true, the debugger stops the process and performs the specified

action.

action Execute the specified command(s) when the breakpoint is

encountered, the count is 0, and the if predicate, if present, is

true. The sequence of commands must be in braces if you specify

more than one command. Also, if you specify more than one

command, the commands must be separated by semicolons or New

Line characters.

Examples

To set a breakpoint at the current debugger position:

(debug) br)

To stop at line 50 of the current module:

(debug) break 50)

To stop at the local or global routine named “main”:

(debug) b main)

To stop at routine “bar” in module “foo”:

(debug) b \foo\bar)

1 2-1 6 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710—03

Debugger Commands

To stop at line 29 in module “for”:

(debug) b \for:29)

To stop at line 23 of the module containing routine bar, use either of these commands:

(debug) breakpoint 23, s bar)

(debug) breakpoint bar:23)

‘To create a breakpoint named ‘rope’ that stops the process at the beginning of routine

rou2, use either of these commands:

(debug) breakpoint, name rope, scope rou2)

(debug) br rou2, name rope

To stop at routine rou2 in module mod:

(debug) breakpoint, scope \mod\rou2)

To stop at line 23 if an expression is true:

(debug) breakpoint 23, if (i==j<<2) }

‘To stop at line 23 after reaching a location four times if an expression is true:

(debug) breakpoint 23, count 4, if (! i))

To stop at label ‘label’ and print a message:

(debug) br, lab label0, act {wri Back to top-level})

‘To stop at the destructor member function of the C++ “Array” class:

(debug) br Array::~ Array }

See Also

Commands: continue, delete-events, disable-events, enable-events,

event-status, signal, watch-memory, watch-reference

Topics: events, scopes

Type: position

086000203 updates Licensed Material — Property of Data General! Corporation 1 2-1 7
093-000710-03

Debugger Commands

continue Debugger Command

Continues the current process being debugged.

Summary

Continues the current process being debugged.

Syntax

continue /line] ,label ,pc ,signal

where:

line Line number, or CURRENT or LAST with an optional offset

label A programming language label

pc An address for a program counter

signal The number or name of a signal (0 through 64, or null, hup, int,

quit, ill, trap, abrt, emt, fpe, kill, bus, segv, sys, pipe, alrm, term,

usr1, usr2, cld, pwr, winch, poll, stop, tstp, cont, ttin, ttou, urg, io,

xcpu, xfsz, vtalrm, prof, or lost)

Examples

Cc

co 23 ,,redirect execution to line 23

cont, Sig int

continue, signal sigint

continue, pc _main+240

Description

The continue command resumes execution of the current process, optionally supplying the

signal with which to continue the process. If no signal is supplied and the debugger has

intercepted a signal destined for the target process, then that signal is used to continue the

process.

The line and pc arguments redirect execution in the top frame; that is, the debugger resets

the program counter in the top frame. Nothing else in the stack changes.

In event-status command actions, the continue command takes effect at the end of the

action argument’s command-sequence. Multiple continue commands have the same effect

as one continue command, and the last redirection will take effect.

As with the other execution-continuation commands (including finish and step), the

option:stop-commands command sequence is executed when the continue command

completes.

1 2-1 8 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Debugger Commands

describe Debugger Command

Prints a declarative description of an expression.

Summary

Prints a declarative description of an expression.

Syntax

describe expression ,meaning-kind

where:

expression A name or an expression

meaning-kind A particular kind of program entity: constant, enumeration,

| external, field, variable, label, routine, scope, strange, or type

Examples

des 1

desc sa

descr &1

describe &sa

describe (sa[0]+1)&0377

describe c, meaning type

describe A

Description

The describe command shows the definition of any program entity that is visible from the

current debugger position. The declarative description is in the syntax of the current

expression language. The debugger sets the current expression language to the language in

which the code is written where possible (some languages may be mapped to other

language describers). You can reset the current language with the c-p:option-status

command.

The name-resolution topic discusses the order in which program- and debugger-defined

names are searched. See the individual language topics (c-language, c+ +-language,

fortran-language, and pascal-language) for details on particular language implementations.

Arguments

expression If you specify a name, the entity is displayed in the declarative

syntax of the current expression language. If you specify an

expression in C, the result is displayed as a type-cast if possible. If

you specify an expression in FORTRAN, the result is always

displayed as an anonymous declaration.

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-31
093-000710-03

Debugger Commands

meaning-kind Specify the kind of entity of the name to be described if multiple

uses of a name exist. This situation can occur in C where the same

name exists in different name spaces. With debugger and

convenience variables, built-in type names, and register names,

meaning-kind does not apply during name resolution. This

argument only works with a simple name, not a language-specific

expression.

Examples

To describe the local integer variable i:

(debug) desi }

auto int 1;

‘To describe the array sa, which is a static array of five short integers:

(debug) desc sa)

static short sa[5];

To describe the address of i:

(debug) descr &i)

(int *)

To describe the address of sa:

(debug) describe &sa)

(short (*) [5])

To describe an expression:

(debug) describe (sa[0]+1)&0377)

(int)

To describe a type c:

(debug) describe c, meaning type)

typedef unsigned int c;

To describe a routine (C descriptions follow ANSI-C format):

(debug) des main)

int main (

int arg,

char **argv,

char **envp);

1 2-32 Licensed Material — Property of Data General Corporation 086—000203 updates

093-000710-—03

To describe a C+ + class:

(debug) describe A)

class A {

public:

int foo;

A |

int arg);

A ();

operator int ();

int operator+ (

int arg);

~A ();

};

See Also

Commands: address, assign, evaluate, names, c-p:option-status

Topic: name-resolution

Type: expression

086—000203 updates Licensed Material — Property of Data General Corporation

093-—-000710-03

Debugger Commands

12-32.a

Debugger Commands

This page intentionally left blank.

1 2-32.b Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

detach Debugger Command

Stops debugging a process without terminating it.

Summary

Stops debugging a process without terminating it.

Syntax

detach

Examples

detach

Description

The detach command allows a live process that was being debugged to continue execution

without further debugging. If the process was started as a child of the debugger, the process

will be inherited by init as usual when the debugger terminates. If necessary, the attach

command can be used to start debugging of the process again.

Note that since a core file is not an active target process, Mxdb will produce an error

message if you try to detach from debugging a core image.

Arguments

None

Examples

Here is an example of the detach command:

(debug) detach }

See Also

Command: attach

086-000203 updates Licensed Material — Property of Data General Corporation 1 2-33
093-000710—03

Debugger Commands

directory-list Debugger Command

Sets or displays the directory source search path list.

Summary

Sets or displays the directory source search path list.

Syntax

directory-list [dirs]

where:

dirs A sequence of directories

Examples

dir

direct bec

directory-list a ‘directory d

Description

The directory-list command sets or displays the directory source search path list. Since the

current directory-list can be captured (by using a backquote), you can easily prefix and

append directories to the list (as shown in the third example below). More complicated

manipulations are possible (see the “See Also” section below).

If you have two or more files with the same name located in separate directories, the

debugger may find a source in a directory other than the one you intended. In this case,

check the source search path and change it with the directory-list command.

Both source files and external legends are located via this mechanism.

Arguments

dirs Set the source search path list to the specified sequence of

directories.

Examples

To display the current directory list:

(debug) dir)

foodir bardir

To set the directory list to directories b and c:

(debug) direct bc }

(debug) direct)

be

1 2-34 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

To add directories a and d to the list:

(debug) directory-list a ‘directory d)

(debug) directory-list)

abcd

see Also

Commands: c—p:first, c-p:last, c—p:rest

086-000203 updates Licensed Material — Property of Data General Corporation 1 2-35
093-000710-03

Debugger Commands

disable-events Debugger Command

Disable one or more currently set events.

Summary

Disable one or more currently set events.

Syntax

disable-events names ,all

where:

names The name of an event.

all Disable all currently set events; yes or no.

Examples

disable 1 2 3

Gisable, all

Description

The disable-events command disables one or more currently set events. Disabling an event

causes it to be remembered in the debugger, but it won’t affect the debugged process, which

can be important for time-critical applications.

For example, to avoid taking a breakpoint, you can place a large count number on it.

However, placing a count number on a breakpoint still causes the debugged process to stop

so that the debugger can decrement the count and then continue the process. Disabling the

same breakpoint avoids all of this overhead.

Disabling an already disabled event has no effect.

Arguments

name The name of an event.

all Disable all currently set events; yes or no. The words “yes” and

“no” can be abbreviated.

1 2-36 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

Examples

To disable currently set events named “1,” “2,” and “3”:

(debug) disable 123 }

To disable all currently set events:

(debug) disable, all)

See Also

Commands: enable-events, event-status

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-37
093-000710-03

Debugger Commands

disassemble Debugger Command

Displays machine instructions in symbolic form.

Summary

Displays machine instructions in symbolic form.

Syntax

disassemble /count] [position] ,line ,label ,scope ,pc ,instructions

where:

count Number of lines or instructions to be displayed

position A file, scope, line number, or some combination of the three

line A source text line number

label A program label

scope The name of a module or routine

pc An address for a program counter

instructions Use instructions instead of source lines as units; yes or no

Examples

disas

disas 2

disassem, line 19

Gisassemble 2, pc func

disassemble, instructions

disassemble 6, in, label abc

Description

The disassemble command displays machine instructions in symbolic form. If you do not

supply an explicit position, the current debugger position is used.

This command displays instructions in the same format as the instruction—view command.

Instruction —view uses the source-lines option and prints a window of instructions around

the current or specified position.

Arguments

count Display the specified number of lines or instructions (see the

instructions argument). The default is to display all the

instructions associated with the current line, beginning at the

program counter associated with the current debugger position.

position Examine the location indicated by the specified position and

display all the associated instructions.

1 2-38 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710—03

Debugger Commands

line Examine the location indicated by the specified line number and

display all the associated instructions.

label Examine the location indicated by the specified programming

language label.

scope Examine the location indicated by the specified module or routine

name.

pe Examine the location indicated by the specified program counter

(or address). The current pc is marked by an asterisk (*) at the

beginning of its associated instruction line.

instructions Use instructions instead of source lines as units for the count

argument. Initially, the unit is lines.

Examples

To display all the instructions associated with the current line, beginning at the pc

associated with the current debugger position:

(debug) disas)

To display all instructions associated with the current line even when the pc is not at the

beginning of the line:

(debug) disas, line c)

To display the instructions associated with two lines beginning at the current debugger

position:

(debug) disas 2)

To display the instructions associated with line 19:

(debug) disassem, line 19)

To display the instructions associated with two lines of source code, beginning at program

counter func:

(debug) disassemble 2, pc func)

To display the current instruction:

(debug) disassemble, instructions)

To display 6 instructions beginning at program label abc:

(debug) disassemble 6, in, label abc)

See Also

Commands: dump-memory, instruction —view, machine-state

Type: position

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-39
093-000710-03

Debugger Commands

dump-memory Debugger Command

Dumps memory in the specified type.

Summary

Dumps memory in the specified type.

Syntax

dump-memory /start-address] ,end-address ,count ,type

where:

start-address A byte address in memory (a symbolic or numeric specification)

end-address A byte address in memory

count The number of units of memory to dump

type d, D, o, O, x, X, b,c, s, f, or g

Examples

du 1, type O

dump i, type D

dump i, co 6

dump-memory i, type b, co 3

Description

The dump-memory command dumps memory to the standard output in the specified type.

Arguments

start-address Start the memory dump at the specified address. If you omit this

argument, the dump starts at the next address after the last

address of the previous dump. If the dump-memory command has

not yet been invoked and you omit all arguments, an error occurs.

end-address End the memory dump at the specified address. If you specify this

argument, you must omit the count argument.

count Dump the specified number of units. Units are determined by the

type. If you specify the count argument, you must omit the

end-address argument.

1 2-40 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-—03

Debugger Commands

type Display in one of the following types, using C standard format

(hexadecimal numbers are prefixed by “Ox,” octal numbers are

prefixed by “0,” and non-graphic characters are printed as a

backslash followed by three octal digits):

A short word in decimal

A long word in decimal

A short word in octal

A long word in octal

A short word in hexadecimal

A long word in hexadecimal

Two bytes in octal

Two bytes as characters

A character string terminated by a null byte

A single precision real number

A double precision real numberTamra aryK~*~ OTF Oa
The type value is initially set to X. If you specify the type argument,

subsequent invocations of dump-memory default to the last used type

value.

Examples

To display the value of variable i in octal type:

(debug) du _i, type O)

Ox406890: 000000000005

To display the value of 1 in decimal type:

(debug) dump i, type D }

0x406890: 5

To display six 16-bit words beginning at i’s starting address, use the count argument:

(debug) dump _i, co 6)

0x406890: 5 0 0 0

Ox4068a0: 0 0

To display six octal bytes beginning at 1’s starting address, use the type and count

arguments:

(debug) dump-memory i, type b, co 3)

0x406890: \000 \O00 \O000 \005 \000 \O000

See Also

Commands: disassemble, instruction—view, machine-state

086—-000203 updates Licensed Material - Property of Data General Corporation 1 2-41
093—000710—03

Debugger Commands

edit Debugger Command

Invokes an editor.

Summary

Invokes an editor at the current position or the supplied position.

Syntax

edit [position] ,editor — program

where:

position A file, scope, line number, or some combination of the three

editor — program Any syntactically valid system pathname

Examples

edit

edit main

edit foo.c

edit \bar\stat

edit foo.c, editor emacs

Description

The edit command invokes an editor at the current position or the supplied position.

If the graphical user interface is active, a terminal emulator window (Mxdb Edit) is created

to handle the edit session; the debugger session continues without pending for edit

completion. Otherwise, if the graphical user interface is not active, this command pends the

debugger until you exit from the editor.

Note that the windowed —terminal—emulator option value, if defined, is used when the

graphical user interface is active. If it is not set, /usr/bin/X11/xterm is used as the terminal

emulator program.

Arguments

position Select a position other than the current position. The standard

editor line positioning directive, +<Jline—number>, is used to

position the editor to a specific line. This is followed by an

absolute pathname to the source—file located via the debugger’s

currently set directory — list.

editor— program Specify the pathname of an editor program that you want to use.

If this keyword argument is not supplied, the value of the

EDITOR environment variable is used. When the EDITOR

environment variable is not set, the pathname /bin/vi is used.

1 2-42 Licensed Material — Property of Data General Corporation 086-—-000203 updates
093-000710-03

Examples

To invoke an editor at the current position:

(debug) edit)

To edit the main routine:

(debug) edit main)

To edit the file foo.c:

(debug) edit foo.c)

To edit the static routine stat in bar:

(debug) edit \bar\stat)

To edit the file foo.c with the emacs editor:

(debug) edit foo.c, editor emacs)

Debugger Commands

debugger — toolkit:position—line, debugger —toolkit:resolve— filename

See Also

Commands: debugger — toolkit:position —source-—file,

options:windowed —terminal—emulator

086—000203 updates Licensed Material — Property of Data General Corporation

093-000710—03
12-43

Debugger Commands

enable—events Debugger Command

Enable one or more currently set events.

Summary

Enable one or more currently set events.

Syntax

enable-events names ,all

where:

names The name of an event.

all Enable all currently set events; yes or no.

Examples

enable 1 2 3

enable, all

Description

The enable-events command enables one or more currently set events. Enabling a disabled

event causes it to affect the execution of the debugged process again.

Enabling an already enabled event has no effect.

Arguments

name The name of an event.

all Enable all currently set events; yes or no. The words “yes” and

“no” can be abbreviated.

Examples

To enable currently set events named “1,” “2,” and “3”:

(debug) enable 123)

To enable all currently set events:

(debug) enable, all)

See Also

Commands: disable-events, event-status

1 2-44 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-—03

Debugger Commands

evaluate Debugger Command

Evaluates a language expression.

Summary

Evaluates a language expression.

Syntax

evaluate expression ,format ,length ,array

where:

expression A language expression

format A format: ascii, binary, decimal, hexadecimal, ieee-double,

leee-float, ieee-single, octal, string, symbolic, system-error, or

unsigned-decimal

length The number of bits to be displayed

array The length of an artificial array

Examples

ec

eval c, format string

evaluate c[0]+1, length 10

eval class_obj.length()

Description

The evaluate command evaluates an expression using the current programming language

syntax. By default this is the language in which the source text is written.

You can enhance the display of evaluation results by using the elide-arrays,

pointer-dereference-level, and string-display options. See the documentation in the options

realm.

The name-resolution topic discusses the order in which program- and debugger-defined

names are searched. See the individual language topics (c-language, c+ +-language,

fortran-language, and pascal-language) for details on particular language implementations.

086-000203 updates Licensed Material ~ Property of Data General Corporation 1 2-45
093—000710-03

Debugger Commands

Arguments

expression

format

length

array

Examples

The expression must be valid in the current language.

Specify a nondefault display format.

Modify the number of bits that are interpreted for display. This

value may be ignored if it exceeds the length of the expression’s

value. If the expression is a register name and the length is greater

than the register size, you will receive an error.

Specifies the length of an artificial array. An artificial array

displays data at an expression’s address as if it were an array of

the expression’s type. Note that not all languages support this

keyword.

This value is only valid when the result of evaluating the

expression argument is a reference. Also, the format and length

arguments are invalid when the array argument is used.

For objects that do not reside in your address space, such as

debugger and convenience variables, the resulting artificial array

cannot extend beyond the length of the object.

Evaluate the character array c, which has two members:

(debug) evaluate c ,, string—display is “no”

{

[0]

[1]

Evaluate c as a string:

'a’

“\000'

(debug) evaluate c, format string)
a“ a “

To display the first 10 bits of c in binary format:

(debug) evaluate c, format binary, length 10)

060110000100

To display the integer result of an expression:

(debug) evaluate c(0]+1)

98

12-46 Licensed Material — Property of Data General Corporation 086—000203 updates

093-000710-03

Debugger Commands

Here is a structure, 12:

struct {

int 1;

int J;

int k;

} 12;

With the array argument, you can display the first three elements of artificial arrays i2 and

12.1:

(debug) eval i2,ar3)

{

[0] = {

1 = 99

5 - 100

k = 101

}

[1] = {

1 = 0

J = 0

k = 0

}

[2] = {

1 = 66064

5 0

k - 0

}

}

(debug) eval i2.i, ar3)

[0] 99

[1] 100

[2] 200

In the first example above, the value of i in artificial array element i2[2] is 66064. This

illustrates that you can look at arbitrary memory locations as an array.

The next examples show the elide-arrays, string-display, and string-display-limit options.

The C character array c_array contains six elements (“hello” and a NUL byte).

(debug) opt string—display)

yes

(debug) opt elide—arrays)

yes

(debug) eval c_array)

“hello”

(debug) opt string—display no)

(debug) eval c_array ,, shows elision)

{
[0 | _ / h f

[1] = 'e'

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-47
093-000710-03

Debugger Commands

[2..3] = ']’

[4] = ‘0!

[5] = '\000'

}

(debug) opt elide—arrays no)

(debug) eval c_array)

{

[0] = th’

[1] = ‘e!’

[2] = ']'

[3] = ‘1’

[4] = 'o!’

[5] = '\000'

}

(debug) opt string—display y)

(debug) opt string—display—limit 3)

(debug) eval c_array }

"hel”...

(debug)

This example shows how the pointer-dereference-level option affects the evaluate

command:

(debug) desc a_struct_type)

struct a_struct_type

{

int* intp;

int** intpp;

i

(debug) desca_ptr)

extern struct a_struct_type *a_ptr;

(debug) opt p-d0)}

(debug) evala_ptr)

0Ox004071£0

(debug) opt p—d1)

(debug) evala ptr }

(struct a_struct_type *) 0x004071f0 ->

{

0x00404498

Ox004044f4

intp

intpp

}

(debug) opt p—d2)

(debug) evala_ptr)

(struct a_struct_type *) 0x004071f0 ->

{

intp = (int *) 0x00404498 -> 123

intpp = (int **) 0x004044f4

0x004071£0

}

1 2-48 Licensed Material — Property of Data General Corporation 086~—000203 updates
093-000710-03

Debugger Commands

(debug) opt point 3)

(debug) evala_ptr)

(struct a_struct_type *) 0x004071f0 ->

{

intp (int *) 0x00404498 -> 123

intpp (int **) 0x004044f4

(int *) O0x004071f£0 -> <Previously Displayed >

In the last example, the value of **a_ptr—>intpp is not printed because this field points to

the a_ptr—>intp, which has already been printed.

If the value of the convenience-variables option is “yes,” a debugger variable is created

whenever you evaluate an expression (in this case, an integer with a value of 123) with the

evaluate command:

(debug) opt conv—var yes)

(debug) eval an_int)

S1 = 123

(debug) eval $1)}

S2 = 123

To evaluate a member function of a C++ class object “class_obj”:

(debug) eval class_obj.length())

24

See Also

Commands: address, assign, convenience-variables, describe,

c-p:option-status, machine-state, names, variable,

c-p:evaluate, options:convenience-variables,

options:elide-arrays, options:pointer-dereference-level,

options:string-display, options:string-display-limit

Topics: c-language, c+ +-language, fortran-language,

name-resolution, pascal-language

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-49
093-000710-03

Debugger Commands

event-status Debugger Command

Sets or displays event information.

Summary

Sets or displays event information.

Syntax

event-status /name/] ,count ,if ,action ,disable ,delete-if

where:

name The name of a breakpoint, signal, or watchpoint event

count A repetition factor

if An expression that evaluates to true or false

action A sequence of commands; must be in braces if more than one

command is specified

disable Disable an event; yes or no

delete-if Make an event unconditional; yes or no

Examples

e-s

event-s jig, if (n> 9), action process-status

event-status 1, count 2

e-s 1, disable

Description

The event-status command displays or modifies information about breakpoints, signals, or

watchpoints (defined with the watch-memory and watch-reference commands) that are set

in the current process. The information is printed in a form that is syntactically valid for

setting the same events at a later time. Therefore, this command can be redirected to a file

and included at a later time in order to reset the events.

Any specified predicate is evaluated as an expression in the language associated with the

position where the debugged process stops. For multi-language applications, use the correct

syntax for the expected position of the event. For asynchronous events (such as signals),

exercise Care when you choose what variables are referenced and what language syntax is

used.

If a predicate evaluation fails for any reason, the predicate value is assumed to be true, so

the event will be taken.

Disabling an event allows it to be saved in the debugger while avoiding the overhead from

creating the event in the debugged process.

1 2-50 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

option-status Command Processor Command

Displays or sets an option’s value.

Summary

Displays or sets an option’s value.

Syntax

option-status /option-settings] ,prompt

where:

option-settings Any value

prompt Invoke the prompting facility; yes or no

Examples

option-status pager 66

op lang

Op

Description

The option-status command lets you manage the values of options that control the

behavior of certain CP-, application-, and user-defined commands. These options are

treated as options realm commands that accept exactly one optional argument.

To display the current global options and their values, type option-status without an

option-settings argument.

To set an option’s status, use the option-settings argument.

If you want to add an option to the options that the option-status command manages,

create a macro in the options realm that accepts exactly one optional argument (of any

type). If you issue the macro’s name without supplying the optional value, the macro should

print its current value to the standard output. Otherwise it should silently update its current

value to the specified value. Once the user-defined command (macro) is added to the

options realm, the option-status command dynamically and seamlessly manages the new

command along with its builtin counterparts. See the Examples section for a sample macro.

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-71
093-—000710-03

Debugger Commands

Arguments

option-settings

prompt

Examples

This argument accepts one, two, or a list (enclosed in curly-braces)

of tokens. When you supply one token, it must be the name of an

options realm command; the command’s value will be printed.

If you specify two tokens, the first name must be an options realm

command and the second token is the command’s new value; if the

value is not valid, you will receive an error.

If you supply three or more tokens, they must be paired

name—value bindings enclosed in curly-braces.

Specify this argument to invoke the prompting facility. This facility

will prompt for each option using the standard prompting

mechanism. See the prompting topic for more information.

To display all currently set option values:

(c-p) op 2
option-status {

12-72

Pager_Lines

Source_Lines

Stop_Commands

Language

Elide_Arrays

String_Display

String_Display_Limit

Pointer_Dereference_Level

Convenience_Variables

Convenience_Variables_ Limit

Mismatched_Legends_Allowed

Bit_Format

Character_Format

Signed_Character_Format

Unsigned_Character_Format

Floating_Point_Format

Signed_Integer_Format

Unsigned_Integer_Format

Unknown_Type_Format

Command_History

Message_History

Windowed_Terminal_ Emulator

}

(C-p)

Licensed Material — Property of Data General Corporation

23,

10,

'

C,

yes,

yes,

100,

0,

no,

50,

no,

binary,

ascil,

ascii,

ascil,

1eee-float,

decimal,

unsigned-decimal,

hexadecimal,

0,

0,

086—000203 updates

093-000710-03

Debugger Commands

To set the number of lines used by the pager to 66:

(c-p) option-status pager 66)

To display the current option value for the expression evaluation language:

(c-p) op lang)

To create a windowed terminal emulator when a live process is debugged, even when the

graphical user interface is not being used:

(c-p) op win xterm)

To set the number of source lines and set the signed integer format to hexadecimal:

(c-p) op {source 15, unsigned_integer_format hex})

In this example, command prompting is invoked; since the prompting session is aborted,

none of the options are actually changed:

(c-p) opt {language fortran}, prompt)

Pager_Lines (23) = 20

Source_Lines (15) = ,abort

(c-p) opt lang; opt pager)

Cc

23

(C-p)

The next example shows how to you can create a customized command in the options

realm:

(debug

(debug

) ¢—p:assign options:my—vacation—location home ,, I’m broke)

) define—macro options:my—vacation {,optional location} { }

(debug) { e—p:if {location} {,, remember the new location)

(debug) { { c—p:assign my—vacation—location ‘location)

(debug) { { }, else {,, Report the current vacation location)

)

)

(debug) {{ my—vacation—location)

(debug) {{ }}

Now if you use the option-status command with no options, the global options will be listed

first, and then your user-customization command (my—vacation, which contains exactly

one optional argument, location) in the options realm will be listed:

(debug) op}
option-status {

Pager_Lines 23,

Source_Lines 15,

Stop_Commands ,

Command_History 0,

Message_History 0,

Windowed_Terminal_ Emulator ,

my_vacation home

}

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-13
093-000710—03

Debugger Commands

If a group of tired developers decided to go to Hawaii, they would give the optional

argument location a new value:

(debug) op my—va hawaii ,, I wish)

(debug) op}
option-status {

Pager_Lines 23,

Source_Lines 15,

Stop_Commands ,

Language Cc,

Elide_Arrays yes,

String_Display yes,

String _Display_Limit 100,

Pointer_Dereference_Level QO,

Convenience_Variables no,

Convenience_Variables_Limit 50,

Mismatched_Legends_Allowed no,

Bit_Format binary,

Character _Format ascil,

Signed_Character_Format ascil,

Unsigned_Character_Format ascil,

Floating_Point_Format 1eee-float,

Signed_Integer_Format decimal,

Unsigned_Integer_Format hexadecimal,

Unknown_Type_Format hexadecimal,

Command_History 0,

Message_History 0,

Windowed_Terminal_Emulator ,

my_vacation hawall

See Also

Topic: C-p:prompting

1 2-74 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

position Debugger Command

Displays or sets the current debugger position.

Summary

Displays or sets the current debugger position.

Syntax

position /position] ,line ,label ,pc ,scope ,frame

where:

position A file, scope, line number, or a combination of the three

line Line number, or CURRENT or LAST with an optional offset

label A program label

pe An address for a program counter (pc)

scope The name of a module or routine

frame A stack frame specification (an integer, or BOTTOM or TOP with

an optional offset)

Examples

Dp

p main

p \for\maxnum

p \for:29

pos 21

posi, label here

position, pc fo00+24

position, fra top+l

position, scope \doer

pos Array::~Array

Description

The position command displays or sets the current debugger position. If you omit all

arguments, the current debugger position is displayed. When debugging information is

present for the associated address (pc), the display has the form:

frame f, line L, scope \module\routine, pc address

The address is numeric (hexadecimal).

086~-000203 updates Licensed Material — Property of Data General Corporation 1 2-15
093-000710—-03

Debugger Commands

When no debugging information is available, the display has this form:

frame f, pc symbolic-address

The frame phrase is not displayed if a stack frame position is not associated with your

current debugger position. Having a stack frame position that is not associated with the

current debugger position can happen when the debugger initially changes your debugger

position to the ‘main’ routine of your process, or when you change your current debugger

position to one that is outside of a routine’s scope that is associated with some stack frame.

The symbolic-address defaults to hexadecimal numeric if there are absolutely no linker

symbols available.

Since many other commands act according to the current debugger position by default, the

position command is very important.

Mxdb does not have true filename lookup. Mxdb uses the concept of a module as the

top-level grouping scope for a compilation unit. Any suffix supplied by a user is discarded

and the base name is looked up as a module name.

Arguments

position Position to a file, scope, routine, line number, or any combination

thereof. You can use this argument in conjunction with the scope

and frame arguments, but only the line number information from

the position argument is applied toward the construction of the

final position.

line Position to a line of source text.

The line number symbolic tags “current” and “last,” or their

abbreviations, may cause ambiguity if a routine or module (scope)

exists with the same name or abbreviation. If an argument is an

alphanumeric character sequence, it will be looked up as a scope

(routine or module) first. If this lookup fails, the argument will be

processed as a line number. To prevent any ambiguity, supply a

leading colon (:) when you use a symbolic tag; the position-type

will then process the characters strictly as a line number.

label Position to a program label.

pe Position to a text address.

scope Position to a routine or module.

frame Position to a stack frame. This is useful for examining the local

variables in that particular frame.

Examples

To display the current debugger position:

(debug) p }

1 2-/6 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

To change the debugger position to the local or global routine named “main”:

(debug) p main)

To change the debugger position to the routine “maxnum” in module “for”:

(debug) p \for\maxnum)}

To change the debugger position to line 29 in module “for”:

(debug) p \for:29 }

To change the debugger position to line 21 in the current module:

(debug) pos 21)

To change the debugger position to program label ‘here’:

(debug) posi, label here)

To change the debugger position to a text address:

(debug) position, pe_foo+24 }

To change the debugger position to the next-to-top stack frame:

(debug) position, fra top+1 ,, or frame top+1)

To change the debugger position to module doer:

(debug) position, scope \doer ,, or p \doer or file doer.f or file doer)

‘To change the debugger position to the static (locally-visible only) routine donter in doer:

(debug) po, s \doer\donter ,, or po \doer\donter or routine \doer\donter)

To change the debugger position to the external routine HANS_N_FRANZ:

(debug) po HANS_N_FRANZ,, or po,s HANS _N FRANZ }

(debug) ,, or routine HANS N_ FRANZ)

To change the debugger position to a nested routine within module snl called

PUMP_YOU_UP:

(debug) po, s \snl\HANS_N_FRANZ\PUMP_YOU_UP)

(debug) ,, or po \snl\HANS_N_FRANZ\PUMP_YOU_UP }

To change the debugger position to the destructor member function of the C+ + “Array”

class:

(debug) pos Array:: ~ Array)

See Also

Commands: file, find, frame, routine, view

Types: frame, line-number, scope, pc, position

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-//
093-000710-03

Debugger Commands

process-status Debugger Command

Prints where and why the process last stopped.

Summary

Prints where and why the process last stopped.

Syntax

process-status

Examples

p-st

process-status

Description

The process-status command displays information about the process being debugged:

where it stopped and what event(s) stopped it. Events that can stop a process include

breakpoints, signals, stepping, initial loading, attaching, or exiting.

The process-status command is useful in combination with other commands as a value to

an action argument on a breakpoint, signal, step, watch-memory, or watch-reference

command. If you specify another command instead of process-status, the command with

the action argument will not display the program position (the position where the program

stopped). If you omit the action argument, the program position will be displayed.

The format of the output display is similar to that of the position and walkback commands:

Stopped at frame f line n, scope \mod\rou, pc addr

why

f A stack frame number

n A source code line number

mod The name of a program module

rou The name of a program routine or routines

addr A program counter’s address, which is numeric if debugging

information ts available

why What caused the program to stop; any of the following:

breakpoint “event-name”

watch-memory “event-name”

watch-reference “event-name”

caught signal n, SIGtag, signal-description [arch-info]

1 2-/8 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

arguments Print the arguments for every stack frame as each frame is

encountered. If the value of this argument is “yes,” the parameters

of each routine will be evaluated and displayed by the correct

language. The same holds true for local (or automatic) variables.

locals Display the active local variables for each stack frame.

Examples

To display all frames if you are positioned in the top frame:

(debug) wal)

To display four frames, including the current one:

(debug) walk 4)

To display all frames and their arguments:

(debug) walkback, arg)

To display all frames and their active local variables:

(debug) walkback, locals)

To display the two oldest stack frames and their arguments:

(debug) walk, fb—1,a)

To display the arguments and local variables for the current frame only:

(debug) walk 1, a, 1)

See Also

Commands: finish, machine-state, position, step

086-—000203 updates Licensed Material — Property of Data General Corporation 1 2-99
093-000710-—03

Debugger Commands

watch-memory Debugger Command

Monitors changes to a specified memory region.

Summary

Monitors changes to a specified memory region.

Syntax

watch-memory /ow ,length ,high ,values ,disable ,name ,count ,if ,action

where:

low A symbolic or numeric bit address

length A number of bits (greater than or equal to 1)

high An addressable expression whose address is greater than low

values The size of the values history queue

disable Disable a watchpoint; yes or no

name A name for the watchpoint

count How many times the region may be changed without a watchpoint

occurring

if An expression that evaluates to true or false

action A sequence of commands; must be in braces if more than one

command is specified

Examples

watch-memory _eint

watch-memory _eshort, length 16

watch-memory 0Oxefffcc00

watch-memory _eint:31, length 1

watch-memory 0x400688:2, length 3

watch-memory _arr 8000, values 4

watch-memory _eint, values 1000

Description

The watch-memory command lets you specify any monitored memory-range addresses

directly. This is useful when the address range that is being corrupted is known and there is

no programming language variable defined for this range, such as a memory region

allocated by a dynamic memory heap allocaiion software library like malloc(3). When a

programming language variable or reference expression (like “A,” “A.B” or “A[4]”) is

needed, then use the watch-reference command since the debugger implicitly supplies the

correct address and size of the referenced object.

1 2-1 00 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

You can specify the monitored memory range with the low and length arguments (where

length is a keyword; the default is 32 bits), or with the low and high arguments. The length

and high arguments are mutually exclusive.

The values to the /ow address and high address arguments are recorded exactly as the user

specified on the command line to preserve symbolic references so that these watchpoints

can be reset reliably across multiple sessions. For example, if the events are written out toa

file via redirect —output and then included in a subsequent session where the executable

may have been relinked, the watchpoints should be able to be reset on those same symbolic

locations even though they may have different addresses.

Since the debugger monitors bit-granular instances, same value stores will not trigger the

event in Mxdb.

Using the length or high argument has an impact on the size of the values queue. If you

specify a length that’s too long or an address that’s too high, it is possible that Mxdb will

attempt to create a values queue too large for the memory available to Mxdb. If this occurs,

Mxdb displays an error message saying that there is not enough memory to execute the

command. ‘To correct this, specify a smaller value for the length argument or a lower

address for the high argument.

Arguments

low If you specify this argument without a length or high argument, 32

is used as the length.

length This argument specifies the length, in bits, of the memory range.

high The address of this addressable expression must be higher than

the low address. It defines an exclusive boundary for the memory

region. The exclusivity of this address differs from the

watch-reference command’s high argument because for

watch—reference the high argument is an object that has a known

size.

values This argument sets the size of the values history queue. In other

words, it sets the number of unique values for a particular

watchpoint that will be retained for later display via the

watchpoint-print command. At most, the last values number of

values for the monitored region will be available for display at any

time. (Obviously the values queue can contain less than values

number of historical instances if the region has not been modified

that many times.) The initial default value for this argument is 2.

This allows for retention of the previous as well as latest values of

a monitored region. When a watchpoint is created, the values

queue is immediately initialized to contain the current value.

When a process is restarted with the command debug, again, the

values queue is again initialized to contain the current value after

the process is reinitialized; sometimes there is no current value,

such as a heap or stack address that is not valid when the process

is restarted.

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-1 01
093-—-000710—03

Debugger Commands

disable

name

count

if

action

Examples

Disable a watchpoint if the value is “yes.” The watchpoint is first

created to make sure that it 1s valid and then it is disabled. While

a watchpoint is disabled, no values are added to the history queue.

A name associated with this watchpoint.

Reset the count value. This denotes the number of times that the

region will change before a watchpoint occurs. Note that all of the

unique values will be added to the history queue, even if any

conditions evaluate to false (if) or if the process is continued (with

the action argument).

If the expression evaluates to a language-specific true value, the

debugger stops the process and performs the specified action.

Execute the command sequence whenever the event occurs.

debug) watch—memory eint _ ,, implicit length (32) used)

debug) watch—memory Oxefffcc00 ,, monitor a 32-bit stack location)

(

(debug) watch—memory eshort, length 16 ,, monitor 16 bits)

(

(debug) ,, Watch the lowest bit of a 32-bit integer)

(debug) watch—memory _eint:31, length 1)

(debug) ,, Watch a 3-bit sequence starting at 2-bits offset into)

(debug) watch—memory 0x400688:2, length 3)

(debug) ,, Watch 1000 bytes (8000 bits) at ”_arr” and retain the)

(debug) ,, last four values)

(debug) watch—memory _arr 8000, values 4)

(debug) ,, Keep the last 1000 values of ”_eint”)

(debug) watch—memory eint, values 1000)

)

)

)

)

)

)

(debug) ,, a Static data address)

)

)

)

)

)

)

When a watchpoint event occurs, it is not printed by default. To print events, use the

watchpoint-print command or a command similar to this one:

(debug) watch—memory _eint, name EINT, action {p—s; w—p EINT} })

See Also

Commands: breakpoint, disable-events, enable-events, signal,

watch-reference, watchpoint-print

Topic: watchpoints— (88k)

1 2-1 02 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Commands

watch-reference Debugger Command

Monitors storage in a memory region specified by addressable

expressions.

Summary

Monitors storage in a memory region specified by addressable expressions.

Syntax

watch-reference /ow ,length ,high ,values ,scope ,line ,disable name ,count ,if ,action

where:

low

length

high

values

scope

line

disable

name

count

if

action

Examples

Any addressable expression

A number of bits (greater than or equal to 1)

An addressable expression whose address is greater than low

The size of the values history queue

The name of a module or a routine

Line number, or CURRENT or LAST with an optional offset

Disable a watchpoint; yes or no

A name for the watchpoint

How many times the region may be changed without a watchpoint

occurring

An expression that evaluates to true or false

A sequence of commands; must be in braces if more than one

command Is specified

watch-reference a_struct

watch-reference a_struct, len 2

watch-reference ar[2], hi ar[4]

086—000203 updates

093-—000710-03

Licensed Material — Property of Data General Corporation 1 ye | 03

Debugger Commands

Description

The watch-reference command lets you monitor the values in memory regions referred to

by expressions.

The length and high arguments are mutually exclusive. If the scope and line arguments are

both supplied, then the position is set to that location before evaluating the expressions so

that the variables will be evaluated in the correct context.

The values to the Jow expression and high expression arguments are recorded exactly as the

user specified on the command line in order to preserve symbolic references so that these

watchpoints can be reset reliably across multiple sessions. For example, if the events are

written out to a file via redirect —output and then included in a subsequent session where

the executable may have been relinked, the watchpoints should be able to be reset on those

same symbolic locations even though they may have different underlying addresses.

When you create a watchpoint, the high-level language used for printing at that time is

recorded. That language is always used to print values for that watchpoint.

Arguments

low If you specify this argument without a length or high argument,

the length of the reference is used as the length. The output will

then look like the result of an evaluate command. This

evaluate-type of display will also occur if a high value is supplied,

the two types of the expressions are the same, and the addresses

of the two objects are such that an “artificial array” display makes

sense.

length This specifies the length (in bits) that will be monitored of the

expression. When the length argument is specified, the high-level

display is turned off and the watchpoint will be displayed in a

primitive display format.

high The address of this object must be greater than the address of the

low object. When both the low and high arguments are specified, a

high-level “artificial array” display is used if the resultant types of

evaluating both expressions are the same and the distance

between these objects would contain exactly enough space for an

integral number of objects of the same type. Otherwise, a low-level

display format is used to display the values.

1 2-1 04 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

values

scope

line

disable

hame

count

if

action

Examples

Debugger Commands

This argument sets the size of the values history queue. In other

words, it sets the number of unique values for a particular

watchpoint that will be retained for later display via the

watchpoint-print command. At most, the last values number of

values for the monitored region will be available for display at any

time. (Obviously the values queue can contain less than values

number of historical instances if the region has not been modified

that many times.) The initial default value for this argument is 2.

This allows for retention of the previous as well as latest values of

a monitored region. When a watchpoint is created, the values

queue is immediately initialized to contain the current value.

When a process is restarted with the command debug, again, the

values queue is again initialized to contain the current value after

the process is reinitialized; sometimes there is no current value,

such as a heap or stack address that is not valid when the process

is restarted.

Move the debugger position to the specified scope before a

watchpoint Is set.

Move the debugger position to the specified line before a

watchpoint is set.

Disable a watchpoint if the value is “yes.” The watchpoint is first

created to make sure that it is valid and then it is disabled. While

a watchpoint is disabled, no values are added to the history queue.

A name associated with this watchpoint.

Reset the count value. This denotes the number of times that the

region will change before a watchpoint occurs. Note that all of the

unique values will be added to the history queue, even if any

conditions evaluate to false (if) or if the process is continued (with

the action argument).

If the expression evaluates to a language-specific true value, the

debugger stops the process and performs the specified action.

Execute the command sequence whenever the event occurs.

(debug) watch—reference a struct ,, monitor a structure)

(debug) eval a_struct)

{

a

b

}

(debug) watchpoint—print 2)
{

a

b

086—000203 updates

093-000710-03

12.01

Licensed Material — Property of Data General Corporation 1 2-1 05

Debugger Commands

(debug) watch—reference a_struct, len 2 ,, monitor first 2 bits)

(debug) w-p3 }

0x0

(debug) ,, Monitor an array slice (high-level printing format))

(debug) watch—reference ar[2], hi ar[4]

(debug) eval ar[2], ar 3)

{

[0] = 11.2

[1] = 22.3

[2] = 33.4

}

(debug) w-p4 }

{

[0] = 11.2

[1] = 22.3

[2] = 33.4

}

(debug)

See Also

Commands: breakpoint, disable-events, enable-events, signal,

watch-memory, watchpoint-print

Topics: scopes, watchpoints — (88k)

1 2-1 05.a Licensed Material — Property of Data General Corporation 086-000203 updates
093-000710-03

Debugger Commands

This page intentionally left blank.

086—000203 updates Licensed Material — Property of Data General Corporation 1 2-1 05.b
093--000710-03

Debugger Commands

watchpoint-print Debugger Command

Prints values for a monitored region defined by watch-memory or

watch-reference.

Summary

Prints values for a monitored region defined by watch-memory or watch-reference.

Syntax

watchpoint-print /name] [value-number] ,length ,format ,all

where:

name

value-number

length

format

all

Examples

The name of a watchpoint event

An integer greater than or equal to 0

A number of bits (greater than or equal to 1)

A format: ascii, binary, decimal, hexadecimal, ieee—double,

ieee — float, ieee —single, octal, string, symbolic, system —error, or

unsigned — decimal

Print all recorded instances of watchpoints; yes or no

watchpoint-print EINT

watchpoint-print EINT, all

W-p

w-p, all ,,print all recorded instances of all watchpoints

w-p EINT, all,

Description

format dec

The watchpoint-print command displays recorded instances of watchpoints from the values

queue associated with each watchpoint. This queue records changes made to a watchpoint

over time.

Arguments

name

12-106

This argument specifies the name of a watchpoint-event (an event

set with the watch-memory or watch-reference command). If the

name argument is not supplied, this command invocation is

applied to all watchpoints. By default, this will print the latest

value for each watchpoint.

If this argument is not supplied, each event’s name, low, and high

(if supplied) argument values are printed in the same manner as

displayed by the event-status command to distinguish between

events. This identification is followed by a colon and then the

appropriate value.

Licensed Material — Property of Data General Corporation 086—000203 updates

093-000710-03

Debugger Types

language Debugger Type

Accepts the name of a language supported by Mxdb.

Summary

Accepts the name of a language supported by Mxdb.

Syntax

c | c++ | fortran | icobol | pascal

Description

The language type accepts the name of any language whose expressions Mxdb can evaluate.

The names are case-insensitive and can be abbreviated.

Examples

Cc

FOR

See Also

Command: c-p:option-status

Topics: abbreviation, c-language, c+ +-language, fortran-language

pascal-language

Realm: icobol

086-—000203 updates Licensed Material ~ Property of Data General Corporation 1 3-1 3
093-000710-03

Debugger Types

line-number Debugger Type

Specifies a numeric or symbolic line number.

&

4.

Summary

Specifies a numeric or symbolic line number.

Syntax

number | current[+offset] | current[—offset] | last[—offset]

where:

number An integer greater than or equal to 1. This can be a hexadecimal

(beginning with 0x), octal (beginning with 01 through 07), or

decimal (beginning with 1 through 9) number.

offset Plus or minus a decimal (beginning with 1 through 9), octal

(beginning with 01 through 07), or hexadecimal (beginning with

Ox) number. If you specify an offset, you must not put any space

between the name and the offset.

Description

The line-number type specifies a line number numerically or symbolically. The names

“current” and “last” can be abbreviated.

Examples

256

Oxa

012

last

Cc

curr4+19

L-7

See Also

Commands: list, view

Types: cardinal, ordinal, position

1 3-1 4 Licensed Material — Property of Data General Corporation 086—000203 updates
093-—-000710-03

Debugger Topics

typedef uchar * ucharp, ** ucharpp;

typedef ushort * ushortp, **_ushortpp;

typedef uint * _uintp, ** _uintpp;

typedef ulong * ulongp, ** ulongpp; /* unsigned int */

typedef unsigned * unsignedp, ** unsignedpp;

typedef float * floatp, ** floatpp;
typedef double * doublep, ** doublepp;

See Also

Topic: c-language, c+ +-language

086--000203 updates Licensed Material — Property of Data General Corporation 1 4-3
093--000710-03

Debugger Topics

c-language | Debugger Topic

Using C and Mxdb.

Summary

C is one of the languages supported by the Mxdb debugger. Mxdb supports the complete C

syntax except explicit structure assignment using braces and the evaluation of macro

expansions. Thus, most expressions appearing in source code can be evaluated in the

debugger also.

Mxdb also emulates the semantics and descriptive format of the ANSI C language. To do

this, Mxdb implements various conversion operations. However, it does not let you

construct fully-general dynamic types such as “(bar_type[2]).” Since dynamic construction

of most types is not supported, some generally useful type declarations are provided by the

debugger (see the c-builtin-types topic). Mxdb also supports type-casts of structures, but no

bit conversions are performed.

You can specify casts to dynamic pointer types with one level of indirection, provided that

the denotation type is not dynamic. For example, you could have “(struct foo *)expression”

or “(foo *)expression,” but not “(foo **)expression.”

You can have array assignment if the two arrays are of the same type (same shape and

element type). The assignment operands must be arrays; no pointer conversions are

performed.

You may explicitly typecast structure objects to any arbitrary type if the desired type’s size

is less than or equal to the structure type’s size.

When the debugger evaluates an unsigned expression, it prints an integer literal suffixed

with “u” or “U.” The evaluation result can then be used as input to another command and

the value’s sign is preserved. Normally, integer literals with no type suffixes are stored as

“unsigned int” only if they are too large to fit into “int.”

Description

Description of standard and user—defined scalar types is supported, as well as objects of

such types:

(debug) describe unsigned int)

unsigned int;

(debug) desc natural)

typedef int natural;

1 4.4 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-~03

Debugger Topics

Objects (identifiers) are described using declarative syntax, including storage classes:

(debug) desc usintl }

static unsigned short usintl1;

(debug) desc dfll)

extern double dfl1ll;

(debug) desc intl)
auto int intl;

Expressions are described using typecast syntax:

(debug) desc intl++)

(int)

ANSI literal type specifiers may be used to specify literal “signedness.” These specifiers are

not currently used to determine short vs. int or float vs. double.

(debug) describe 123 }
(int)

(debug) describe 123U }

(unsigned int)

(debug) describe 1.51)

(double)

This describes an integer array type:

(debug) desc array_type)
typedef int array_type[3];

The description of complex types such as structures, unions, and enumerations is also in

declarative syntax:

(debug) desc fruits)

enum fruits {

apple = 2,

cherry = -l,

pear = 0,

kumguat = 1

};

(debug) desc a_small_union_type)

typedef union small_u {

short (*a) (void);

int b;

struct small_struct c;

} a _small_union_type;

086-000203 updates Licensed Material — Property of Data General Corporation 1 4-5
093-000710—03

Debugger Topics

Enumeration constants are described using declarative syntax, while enumeration

expressions are described as typecasts. Enumeration constants are not described using

standard C syntax.

(debug) desc snack)

extern enum fruits snack;

(debug) des kumquat)

enum fruits {

kumquat = 1

};

Named bit fields can be described, while unnamed bit fields are appropriately inaccessible:

(debug) desctl_tag _,, unnamed field doesn’t show up)
Struct tl_tag {

unsigned ants_ : 16;

unsigned cats : 8;

struct tl tag *next;

unsigned dogs_and_cats : 1;

};

(debug) desc foo.ants_)

unsigned : 16;

Functions are described using ANSI C function prototype format:

(debug) dese func3 }

extern unsigned short func3 (

char *str,

int one,

int two,

int three);

Function calls are described in terms of the function return type (no invocation is done):

(debug) desc func3(0,1,2,3))

(unsigned short)

Arbitrarily complex types and expressions may be described. This example describes an

array of pointers to functions taking no arguments and returning an unsigned integer:

(debug) desc funcp_arr)

extern unsigned int (*funcp_arr[10]) (void) ;

You can describe a pointer to an array of integer pointers:

(debug) desc p_to_a of p)
extern int *(*p_to_a_of_p) [3];

1 4-6 Licensed Material — Property of Data General Corporation 086—000203 updates
093-0007 10-03

Debugger Topics

s constructs for which no debugging information is available, such as
Mxdb also annotate

ndor-supplied libraries:
external variables and routines in ve

(debug) desc printf)
extern int printf (..-

(debug) desc errno)
extern int errno;

); /* SNo_Debug_info * /

/* SNo_Debug_Info * /

14-6.a
Licensed Material — Property of Data General Corporation

086—000203 updates

093-000710—03

Debugger Topics

This page intentionally left blank.

1 4-6.b Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Topics

Global Variable Lookup

When attempting to locate a symbol in the user’s program, Mxdb first examines the

debugging information for the program module the debugger is positioned to.

If this lookup fails, Mxdb attempts to find the name as a global external symbol in the

debugged program. If Mxdb finds the name this way and there is debugging information for

it in the defining module, that definition is used.

If Mxdb finds the name where there is no debugging information, it is treated as an “int”

variable if it seems to be data; if the name seems to represent code, it is typed as “int (*)

(...)” (a function taking any number of arguments of any type and returning an int). For

more information on name resolution, refer to the name-resolution topic.

String Literal Operations

Mxdb treats string literals in accordance with ANSI C: they are arrays of characters. To

allow operations that are legal on an array to be legal on a string literal also, Mxdb

attempts to allocate space for string literals in the user program and copies a string literal

into this space. If Mxdb cannot locate an allocation routine definition in the user program,

any string literal operation requiring this implicit allocation generates an error.

Allocation can often be avoided. For instance, since every string literal copied into the

target process by Mxdb has a unique address, it is never possible for the following

expression to have the value “true”:

(debug) evaluate char_ptr == ”string literal”)

Therefore, Mxdb does not try to allocate space for the literal, and the expression is

transformed into one which will correctly evaluate to 0, while still insuring non-literal

operand expressions are evaluated (in case there are side-effects):

char _ ptr && 0

A further extension allows assignment of string literals to character arrays:

(debug) assign char_array ”a string”)

In this case, Mxdb attempts no allocation for the string literal. Characters are copied into

the targeted array either to the end of the array or through the terminating null byte of the

literal, whichever comes first. Note that if the assignment stops before the end of the literal

because the array’s end is reached, the “string” in the array will not be null-terminated;

Mxdb issues a note to point this out. To copy characters into an array beyond the array

bounds, use assign’s format keyword with the value “string.”

Ambiguity Resolution

There are several possible sources of name ambiguity in a C program. Some ambiguities

inherent in C, while others are introduced because Mxdb does not place type tags in a

separate namespace from other type names in the same scope.

086—000203 updates Licensed Material — Property of Data General Corporation 1 4.7
093—000710-03

Debugger Topics

1. Type tag vs. typedef names.

If a program contains a typedef and a type tag of the same name in the same scope, it is

not clear whether the typedef or the tag is desired when the name is used in an

expression. Mxdb always resolves this ambiguity in favor of the typedef name; if the

tagged type is desired, the tag name should be preceded by “struct,” “union,” or

“enum,” as appropriate. For instance:

struct ambigl { int 1; };

typedef int ambigl;

(debug) describe ambig1)

typedef int ambigl

(debug) describe struct ambigl)

struct ambig6 {

int 1;

};

2. Type tags vs. local identifier/constant/function names.

If a program contains both a type tag and an object, constant, or function of the same

name in the same scope, Mxdb always resolves this ambiguity in favor of the object,

constant, or function; Mxdb informs you of this choice:

enum trouble {ambig = 1};

struct ambig { int i; };

(debug) desc ambig)
Note:’ambig’ 1s both a type and an object/constant/function

name.

Using non-type definition.

enum trouble {

ambig = 1

};

You can use the “struct,” “union,” or “enum” specifier to make it clear the type you

want Mxdb to use:

(debug) evaluate (struct ambig*) 0)

(struct ambig *) 0x00000000

In addition, on some commands, you can use the meaning-kind keyword to choose your

desired definition:

(debug) describe ambig, meaning—kind type)

struct ambig {

int 1;

}

(debug) desc ambig, meaning—kind enumeration)

enumeration constant, value is 1;

1 4.8 | Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710—-03

Debugger Topics

3. Label name vs. type/object/constant/function name.

Ifa label has the same name as a type (tag or typedef) or an object, constant, or

function declared in the same scope, Mxdb resolves the ambiguity in favor of the name

that is not the label name. Mxdb selects an object, constant, or function name over a

type name, but chooses a type name over a label name. You can only access a label with

the meaning-kind keyword:

(debug) list)

5 main()

6 {

8 int ambig;

* 11 ambig:

12 ambig = 6;

(debug) desc ambig }
Note:’ambig’ is both a label and an

object/constant/function name.

Using non-label definition.

auto int ambig;

(debug) desc ambig, m label)

ambig: /* label at line "test.c”:11 */;

4. Type tags vs. global identifier/function names.

Mxdb selects a local object, function constant, or typedef name over a global (external)

object or function of the same name. Typedef names are not hidden by global names.

However, if Mxdb detects an ambiguity between a type tag and a global variable or

function, Mxdb chooses the global definition; this applies only to type tags. To force

Mxdb to select the type tag in such cases, use the “struct,” “union,” or “enum” specifier

or the meaning-kind keyword.

To access a global name that is hidden by a local typedef, move your debugger position

outside the scope of the typedef.

Evaluation

Literals in expressions may be entered in any legal C format, including decimal,

hexadecimal, octal, scientific notation, and binary (similar to hexadecimal, but begins with

“Qb” or “OB” instead of “Ox” or “OX”):

(debug) eval 123 }

123

(debug) eval 0x7b)
123

(debug) eval 0173 }
123

(debug) eval 1.5)
1.5

(debug) eval 0.15e1)
1.5

(debug) eval0b10)
2

086—000203 updates Licensed Material — Property of Data General Corporation 1 4.9
093--000710—03

Debugger Topics

Unsigned values are output with an attached unsigned specifier for clarity:

(debug) eval intl)

123

(debug) eval uintl }

123u

Values may be displayed in a variety of formats by using the evaluate command's format

argument (see the evaluate command for more information):

(debug) eval 123, f hex)

0x0000007b

(debug) eval 123, f octal)

000000000173

(debug) eval (short) 123, f binary)

0b0000000001111011

Note that the hexadecimal format outputs a “Ox” prefix, and the binary format outputs a

“Qb” prefix to the value.

Array values are printed in a format similar to that used for array initialization:

(debug) desc int_arrl }
static int int_arri[3];

(debug) eval int_arrl)

{

1

2

3

[0]

[1]

[2]

I

The following examples evaluate string literals:

(debug) eval ”abc”[1] ,,with malloc() linked in)
i b i

(debug) eval ”abc”[1] ,,without malloc() linked in)
Error: The process does not contain a “malloc” memory

allocation routine.

(debug) eval char_ptr == ”some literal” }

0

(debug)

Array slices may be displayed by using the evaluate command’s array argument. The array

keyword causes data at the given address to be displayed as an array of the specified length.

See the evaluate command for more information.

(debug) evalint_arrl[1], array 2)

{

2

3

I[0]

[1] MI

1 4-1 0 Licensed Material — Property of Data General Corporation 086--000203 updates
093-000710-03

Debugger Topics

Pointer values are printed in hexadecimal format. All standard C operations on pointers

are available. The example below demonstrates pointer dereferencing and pointer

arithmetic.

(debug) desc intp)

extern int *intp;

(debug) assign intp int_arrl)

(debug) eval intp)

0x00404498

(debug) eval *intp }

1

(debug) eval *(intp + 2))

3

Once again, the array keyword may be used to display data in array format when the

default behavior uses another format:

(debug) assign intp int_arrl)

(debug) eval *(intp+1) }

2

(debug) eval *(intp+1), array 2)

{

[0] = 2

[1] = 3

}

In addition to the standard arithmetic operations, post- and pre-increment and post- and

pre-decrement are supported:

debug) eval *++intp ,, see example above)(

2

(debug) evalint_arrl{1]++ }

2

(debug) eval int_arrl1 ,, demonstrates elide—arrays option)

{

[0] = 1

[1..2] = 3

}

(debug) eval ——intl)
122

(debug) evalinti-— }

122

(debug) eval intl)

121

086-—000203 updates Licensed Material — Property of Data General Corporation 1 4.1 1
093—-000710-—03

Debugger Topics

Assignment may be done using either the assign command or the standard C assignment

operators:

(debug) assign intl 12)

(debug) eval intl += int2)

135

(debug) eval intl }
135

(debug) evalintl /= —5)
—~27

This is an example of a string literal being assigned to an array of characters:

(debug) assign array ’abracadabra”)

Structure and union values are printed out in a quasi—declarative format (refer to a

previous example to see a declaration of smail_u):

(debug) desc sut_objl }
extern union small_u sut_objl;

(debug) eval sut_objl)

{

a = OxeffFfFb90

b = 23

Cc = {

1 = -4

| = 0

= "a"

}

}

(debug) desc small_struct)

struct small_struct {

int 1;

int j;

char p[2];

};

(debug) dese sst_objl }

extern struct small struct sst_obj1;

(debug) eval sst_objl)

{

343567

= 2

= "bo"OU. | I

Extended functionality allows structure values to be cast to any type where

sizeof(struct—type) >= sizeof(target —type):

(debug) eval (int) sst_objl)

343567

1 4-1 2 Licensed Material — Property of Data General Corporation 086-—000203 updates

093-000710-03

Debugger Topics

Enumeration values are printed as comma list expressions so that it is possible to show both

the enumeration constant name and the associated integer value. Since the result is a valid

C expression with the correct value and type, it is suitable for cut—and—paste operations.

It can also be used as input to another command.

(debug) eval snack)
(pear, (fruits) 0)

(debug) desc ‘{eval snack} }

(enum fruits)

Evaluated expressions may be arbitrarily complex:

(debug) assign sut_ptr &sut_objl }

(debug) assign sut_ptr_ptr &sut_ptr)

(debug) eval (*sut_ptr_ptr) —> b +=2)

125

(debug) eval (*sut_ptr_ptr) —> cp)
nan

If you use function call syntax in a command that accepts a language expression (such as

evaluate, assign, breakpoint, define-variable, if, and while), the Mxdb debugger makes an

attempt to invoke the function when it evaluates the expression; ANSI C specifications for

parameter matching and conversions are applied. Note that Mxdb will not try to invoke a

function that is an argument to the describe command since expressions supplied to

describe are not evaluated.

The debugger allows a routine to be invoked with fewer or more arguments than the

debugging information records. When this situation occurs, warnings are issued by the

debugger, but the invocation is permitted. The default argument value promotions are

made for the argument values passed for which no information is available.

This differs from the case where the routine interface information is “(...),” indicating that

any number and type of arguments are acceptable. Default argument value promotions are

made but no warning is issued.

If the function invocation is successful, the function is then called whenever the expression

involving the call is evaluated. Thus, a function appearing in a breakpoint command will be

called every time the condition is tested. The result of evaluating a function call is printed

out in the same manner as any other expression:

float a_function(int base, float incr);

void another_function(void); /* has no return value */

(debug) eval a_function(1, 0.25))

1.25

(debug) eval another function() }

(void)

(debug) ,, in the next example, printf has no debugging info so it)

(debug) ,, is implicitly given the ”(...)” interface by the debugger)

(debug) eval printf(’hi = %d, level = %u\n”, hi, $$level);)

hi = 10, level = 200

21

086-000203 updates Licensed Material — Property of Data General Corporation (14-13
093-—-000710—03

Debugger Topics

All events are active when the invoked process is being executed. If the invoked routine

gets an event that is not the expected return address, the process-status is noted and a note

is issued saying that the process stopped in a debugger-invoked context before returning to

the top level.

You can debug as you wish in the invoked routine context. Your stack is terminated at this

point by a frame at this address: _ debug info+<N>. Here is an example:

(debug) bone _param)

(debug) eval one_param(4) }

Stopped at frame 0, line 10, scope \test4\one_param, pc 0x101dc

breakpoint "2"

Note: Process stopped in debugger-invoked routine context.

(debug) walk,a)

frame 0, line 10, scope \test4\one_param, pc0x101dc

1 = 4

frame 1, pce __debug_info+24

These invocation contexts will nest so that a user can invoke routines even in invoked

contexts and the state of the process will be reinstated appropriately as each invocation

returns (if it returns).

When you invoke a routine, any signal that stopped the target process is discarded.

Assignment of integer to pointer and expressions comparing pointers and integers are

allowed. A note is generated because this type of interoperability is non—standard.

(debug) assigna_ptr1)

Note: Assignment of integer to pointer without a cast allowed,

but not standard.

(debug) evala ptr ==1)

Note: ‘==’ comparison between pointer and integer allowed,

but not standard.

1

(debug) evala ptr <1)

Note: ‘’<’ comparison between pointer and integer or literal 0

allowed, but not standard.

0

(debug) desc a_ptr param }

extern void a_ptr_param (

char *c);

(debug) evala_ptr_param(1) }

Note: Assignment of integer to pointer without a cast allowed,

but not standard.

(void)

1 4.1 4 Licensed Material - Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Topics

Options

Several language-specific options are supported that modify the way expression values are

displayed: elide-arrays, string-display, and pointer-dereference-level.

The elide-arrays option, which is turned on by default, causes same —valued array elements

to be elided. For example,

(debug) opt elide—array no }

(debug) evalint_arrl }

{

| [0] = 1

[1] = 3

[2] = 3

}

(debug) opte-ay)

(debug) evalint_arrl }

{

[0] = 1

[1..2] = 3

}

(debug) eval a_large_array)

{

[0] = -5

[1] = 45

[2..150] = 0

[151] = 8

}

086--000203 updates Licensed Material — Property of Data General Corporation 1 4-1 4.a
093-000710-—03

Debugger Topics

This page intentionally left blank.

1 4.1 4.b Licensed Material — Property of Data General Corporation 086-000203 updates
093--000710-03

Debugger Topics

The string-display option, also turned on by default, applies to the display of character

array and character pointer data. Character arrays are displayed as strings, instead of as

arrays. This option overrides the elide-arrays option in that character arrays are always

displayed as strings rather than arrays (elided or otherwise) if string-display is turned on.

(debug) desc c_arr3 }

Static char c_arr3[6];

(debug) opts—dn)

(debug) evalc_arr3)

{

[0] = ‘hh’

[1] = 'e’

[2..3] = /l'’

[4] = ‘oO!

[5] = '\000'

}

(debug) opts—dy)

(debug) evalc_arr3)

“hello”

The string is terminated when a NUL byte is encountered or the end of the array is

reached. If the end of the array is reached before an NUL byte is encountered, a warning is

printed:

(debug) desc c_arrl)

extern char c_arrl1[10];

(debug) eval c_arrl)

"0123456789"

Warning: Array not terminated by null byte.

String length can also be controlled by setting the value of the string-display-limit option:

(debug) opts—d—-15 }

(debug) evalc_arrl }

"01234"...

Normally, character pointer values are printed in hexadecimal format and not

dereferenced. If string-display is turned on, character pointers are dereferenced and their

contents are displayed as strings. The strings displayed are terminated either by a NUL

byte or by reaching the limit set by string-display-limit.

(debug) assign cp c_arr3)

(debug) opts—dn)

(debug) eval cp }

0x004044ec

(debug) opts-—dy)

(debug) eval cp)

Ox004044ec -> “hello”

(debug) desc c_arr2)

extern char *c_arr2[3];

(debug) evalc_arr2 }

{

[0] = 0x000101b0 -> “goodbye”

086-000203 updates Licensed Material — Property of Data General Corporation 1 4.1 5
093—000710—-03

Debugger Topics

[1] 0x000101b8 -> "so long”

[2] = 0x000101c0 -> “farewell”

The pointer-dereference-level option allows the user to specify the number of levels of

pointers to automatically dereference. This option is initially set zero, meaning pointers are

not automatically dereferenced. Repeated pointer values are not fully displayed

again;instead, a message is printed indicating the dereferenced value has already been

printed.

(debug) desc a_struct_type)

struct a_struct_type

{

int* intp;

int** intpp;

};

(debug) desca_ptr)

extern struct a_struct_type *a_ptr;

(debug) opt p—d0)

(debug) evala_ptr }

0x004071£f0

(debug) optp—di1)

(debug) eval a_ptr)

(struct a_struct_type *) 0x004071f0 ->

{

0x00404498

Ox004044£f4

intp

intpp

(debug) opt p—d2)}

(debug) evala _ptr)
(struct a_struct_type *) 0x004071f0 ->

{

intp = (int *) 0x00404498 -> 123

intpp = (int **) 0x004044f4 ->

0x004071£f£0

}

(debug) opt point 3)

(debug) evala_ptr }

(struct a_struct_type *) 0x004071f0 ->

{

intp (int *) 0x00404498 -> 123

intpp = (int **) 0Ox004044f4 ->

(int *) 0x004071f0 -> <Previously Displayed >

}

In the last example, the value of **a_ptr—>intpp is not printed because this field points to

the a_ptr—>intp, which has already been printed.

1 4.1 6 Licensed Material — Property of Data General Corporation 086-000203 updates
093-—000710-03

Debugger Topics

When dereferencing pointers, scalars are printed on the same line as the pointer;

non—scalar objects such as structs and pointers are displayed starting on a new line. When

automatic pointer dereferencing fails on a NULL pointer, no warning is produced.

For additional information on any of these options, refer to the options realm.

See Also

Commands: assign, describe, evaluate, c-p:option-status,

options:elide-arrays, options:pointer-dereference-level,

options:string-display, options:string-display-limit

Topics: c-builtin-types, c+ +-language, fortran-language,

pascal-language

086-—000203 updates Licensed Material — Property of Data General Corporation 1 4.1 7
093-—-000710-03

Debugger Topics

c++-language Debugger Topic

Using C++ and Mxdb.

Summary

C++ is one of the languages supported by the Mxdb debugger. C+ + is a relatively new

language; the first widely available C+ + compiler appeared in 1985. An ANSI —sanctioned

language standardization effort commenced in 1989 and is scheduled to deliver a standard

in 1995. Draft revisions of the standard are based on the “Annotated C+ + Reference

Manual” (ARM) by Ellis and Stroustrup (1990). Currently no compiler fully supports this

language definition.

Description

Mxdb supports the C+ + language as defined by Release 2.1 of the AT&T C++ Language

System (better known as Cfront 2.1) to the extent that the implementation allows it. Cfront

2.1 implements all of the major language features defined in the ARM except templates

and exceptions. However, its design does not lend itself to the generation of high quality

debugging information. This means that the debugger cannot take full advantage of the

expressive power of C+ +.

Mxdb relaxes certain C+ + semantics to promote unfettered debugging:

@ Non-const and non-volatile objects are allowed to invoke const and volatile member

functions, respectively.

@ Non-const and non-volatile expressions may be assigned to const and volatile lvalues,

respectively.

@ Pointers to const and volatile objects are implicitly converted to non—const and

non-volatile pointer types, respectively, and to type void*.

@ Implicit conversions from integral types to enumeration types are performed on

assignments.

@ For objects of classes not defining an operator=() member function, memberwise

assignment is performed wherever possible and bitwise assignment is performed

everywhere else.

For practical purposes, C+ + can be considered a superset of ANSI C. Mxdb users can

debug C or C++ modules with the C+ + language interface. Users cannot debug C+ +

modules with the C language interface. The restrictions and extensions noted for C

debugging apply to C+ + debugging as well, with one notable exception: the C+ + LP more

fully supports dynamic type casts. For more information, refer to the release notice or the

on—line c—language help topic.

C++ differs mainly from C in its introduction of the concept of a class. Mxdb allows users

to describe class types and to describe, evaluate, and assign objects of those types.

1 4-1 8 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Debugger Topics

For class type description, Mxdb uses declarative syntax to describe salient features such as
as inheritance relationships, member access specifiers and special member functions:

(debug) describe D)
class D: public B, virtual publ

ic © {

public:

int ad;

D ();

~D ();

operator int ()3

}G

Static and const/volatile members are also described:

(debug) describe E)
class E {

public:

E (

int arg);

snt value () const;

static int static_value;

Sy

For a class type having virtual functions, some compilers (such as Cfront 2.1) will generate a

virtual function table as a member. The structure of this table is implementation —specitic.
Mxdb indicates this fact by giving the member a stylized and annotated name:

(debug) describe Base)
class Base {

public:

signed char X;

Base ();

double bar (

unsigned int 1);

Svtbl // Compiler-generated

‘3

In general, Mxdb will annotate compiler—generated (“artificial”) constructs. Another
example is the implicit “this” pointer for non—static member functions:

(debug) position)
frame 0, line 150, scope \const\Three\Thre

e, PC 0x101274

(debug) describe this)
class Four *this; // Compiler-generated

Mxdb also annotates constructs for which no debugging information is available, such as
external variables and routines in vendor-supplied libraries:

(debug) describe printf)
extern int printf (...)3 // SNo_Debug_Info

(debug) describe errno)
extern int errno; // $No_Debug_Info

086—000203 updates Licensed Material — Property of Data General Corporation 1 4-1 9
093-000710-—-03

Debugger Topics

When evaluating a class object, Mxdb displays the names and values of immediate data

members first, then displays the names and values of base class data members with

annotations to help identify them as such:

(debug) describe Three)

class Three public Two {

public:

double Zz;

int x;

int y;

Three ();

int hi (

Signed char *str);

i

(debug) describe m)

auto class Four Mm;

(debug) describe Four)

class Four public Three {

public:

~Four ();

Signed char *x;

int *h;

const int w;

class One one;

class Two two;

Four ();

hi

(debug) evaluate m)

x - 0x00101be0 ->

h = Oxeffffa70

W = 18

one = {

y = 0

yy = -3

}

two = {

x = 106

// Base class One

y = 0

YY = -3

}

// Base class Three

Z = 0

x = 99

VY = 876

// Base class Two

x = 106

// Base class One

VY = 0

yy = —-3

}

1 4-20 Licensed Material — Prope

"initial value”

rty of Data General Corporation 086-000203 updates

093-000710-03

Debugger Topics

Member functions are not displayed during class object evaluation since they have no

meaningful “values” in this context. Additionally, due to limitations in Cfront—derived

debugging information, there is no guarantee that evaluated (or described) class members

will appear in source code order, or that they will appear at all if not used.

The contents of virtual function table members are not displayed during evaluation:

(debug) evaluate n)

{
xX _ 5 ,

Svtbl // Virtual function table contents not displayed.

If a virtual base subobject appears more than once in an evaluated object, only the first

subobject is elaborated. This output format reflects the fact that virtual base subobjects are

unique and are shared among objects:

(debug) describe L)

class L {

public:

double 1;

3

(debug) describe A)

class A: virtual public L {

public:

int a;

};

(debug) describe B)

class B : virtual public L {

public:

Signed char *b;

};

(debug) describe C)

class C : public A, public B {

public:

unsigned int c;

};

(debug) describe cl)

auto class C cl;

(debug) evaluate cl)

{

Cc = 335555u

// Base class A

a = 335555

// Virtual base class L

1 = -56.46

// Base class B

b = 0x00113eb0 -> "base class B value”

}

086-—000203 updates Licensed Material — Property of Data General Corporation 4 4-91
093-000710-03

Debugger Topics

Mxdb provides for the description, evaluation and assignment of individual class members

in a manner consistent with their usage in C++. Any necessary implicit conversions and/or

qualifications are performed to permit resolution of the name with respect to the indicated

scope. Here are some examples manipulating data members at file scope:

(debug) position }

frame 0, line 184, scope \const\main, pc 0x101560

(debug) describe One)
class One {

public:

int yes (

const double arg) const;

int y;

double yy;

const signed char *bye () const;

~One ();

One ();

One (

int 1);

void hi ();

sj

(debug) describe one)

auto class One one;

(debug) describe one.y }

(int)

(debug) evaluate one.y)

—8

(debug) describe one.yy)

(double)

(debug) assign one.yy 34.3 }

(debug) evaluate one.yy)

34.3

The next examples manipulate data members at member function scope. Note that explicit

qualification of member names with the “this” object pointer is not required. Observe also

that Mxdb understands the use of scope qualifier syntax to distinguish between conflicting

member names:

(debug) position)

frame 0, line 150, scope \const\Three\Three, pc 0x101274

(debug) describe this }

class Four *this; // Compiler-generated

1 4-22 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Topics

(debug) evaluate *this)

{

Zz = 22.3

x = 4

VY = 11

// Base class Two

x = 9999

// Base class One

Y = -36

}

(debug) describe this— >z)

double Three: :2;

(debug) evaluate this-— >z)

22.3

(debug) evaluate y)

11

(debug) evaluate One::y }

~36

(debug) evaluate this— >Two::x)

9999

(debug) evaluate x)

4

(debug) evaluate *(class One *) this)

{

VY = -36

Anonymous unions are unnamed objects that may contain only publicly accessible data

members. Anonymous union members share the same address, but otherwise are used like

ordinary (nonmember) variables. Mxdb will describe these members with respect to the

associated union:

(debug) describe a)

union {

int a;

char *p;

};

(debug) evaluate a)

36

(debug) address a)

OxeffF£FI10:0

(debug) address p)

OxeffFf910:0

Mxdb users can describe member functions and invoke them on objects. C++ has no

implicit conversion from member functions to pointers to those functions; you must use the

declarative pointer—to—member function syntax instead. This means that you can evaluate

a non—member function name but not a member function name, unless it is static:

086-—000203 updates Licensed Material ~ Property of Data General Corporation 1 4-23
093-—000710—-03

Debugger Topics

(debug) position)
frame 0, line 169, scope \const\Four\Four, pce 0x101430

(debug) describe this— >echo)
int Three::echo (

Signed char *str);

(debug) evaluate echo(’there\n”))
there

6

(debug) describe echo(’now”))
(int)

(debug) evaluate echo)
Frror: No conversion to pointer allowed for member functions.

(debug) describe One::hi)
static void One::hi (

signed char *str);

(debug) evaluate One::hi(”yes”))

yes

(void)

(debug) evaluate One::hi)
0x00101060

C++ allows function names and most operators to be overloaded. With ordinary language

expression evaluation, Mxdb can apply function argument matching rules to disambiguate

overloaded names. However, extra—language debugger activities such as setting

breakpoints may require the user to interactively assist in the resolution of ambiguous

names. In those cases, Mxdb will present the user with a menu of possible name matches,

and will proceed with the user’s original request after a satisfactory selection is supplied.

For example,

(debug) describe One)
class One {

public:

int yes (

const double arg) const;

int y;

const signed char *bye () const;

~One ();

One ();

One (

int i);

Static void hi (

Signed char *str);

};

(debug) breakpoint One::One)
‘One’ is an ambiguous reference:

(1) One::One ()

(2) One::One (int 1)

Please enter the number of the

correct resolution. (Default is 1.)

1)
(debug) continue }
Stopped at frame 0, line 92, scope \const\One\One, pc Ox100fa4

breakpoint "0”

1 4-24 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Topics

Remember that the overloaded name must be unambiguously found (with respect to

multiple base classes) for overload resolution to be performed. Otherwise Mxdb will print

an error stating that the name is ambiguous:

(debug) describe A)
class A {

public:

short £ ();

Signed char a;

int £ (

int arg);

hi

(debug) describe B)

class B {

public:

int f ();

float a;

};

(debug) describe C)

class C : public A, public B {

};

(debug) evaluate cl.f())

Error: Member name ‘f’ is ambiguous; it occurs in multiple base

classes:

C derived from B

C derived from A

Mxdb supports operator functions:

(debug) describe MyClass::operator+)
int MyClass::operator+ (

int arg);

(debug) describe obj)

auto class MyClass obj;

(debug) evaluate obj)

{

foo = 1

}

(debug) evaluate obj + 4)

5

(debug) evaluate 4 + obj)
5

The careful reader may deduce from the last example that Mxdb also supports

user —defined conversions. User—defined conversions, which may be specified by

conversion constructors and conversion functions, are used implicitly in addition to

standard conversions. Like standard conversions, they may be applied to function

arguments, function return values, expression operands and explicit type conversions.

086—-000203 updates Licensed Material — Property of Data General Corporation 1 4-25
093-000710—03

Debugger Topics

(debug) describe B)

class B {

public:

double bar;

B (

Gouble arg);

operator int ();

operator A ();

};

(debug) describe b)

auto class B b;

(debug) assign b 34.5)

(debug) evaluate b)

{

bar = 34.5

}

(debug) evaluate b — 4 _,, B::operator int() invoked implicitly)
30

(debug) evaluate (int) b_,, B::operator int() invoked implicitly)
34

(debug) evaluate char(b) ,, B::operator int() invoked implicitly)
f \ wee

Mxdb detects ambiguities that arise from multiple choices of user—defined conversions and

from multiple choices between user—defined and built—in conversions. It also detects

ambiguities resulting from multiple choices between conversion constructors and

conversion functions. Consider this continuation of the previous example:

(debug) describe A::A)
‘A’ is an ambiguous reference.

(1) A::A (int arg)

(2) A::A (const class B *rhs)

Please enter the number of the

correct resolution. (Default is 1.)

1)
A::A (

int arg);

(debug) evaluate a = b)

Error: User-defined conversion cannot be applied unambiguously

to

expression:

A::A (const class B *rhs)

B::operator A ()

(debug) breakpoint One::One)

Mxdb complains since it does not know whether to invoke A(b) or b.operator A() in this

case. In the following example, the ambiguity is between multiple choices of conversion

functions:

1 4-26 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Topics

(debug) des C }
class C : public B {

public:

Cc |

double arg);

operator double ();

operator void* ();

};

(debug) describe c)

auto class C ¢c;

(debug) evaluate (char) c)

Error: User-defined conversion cannot be applied unambiguously

to

expression:

B::operator int ()

C::operator double ()

The ambiguity is between B::operator int() and C::operator double().

Mxdb adheres to the semantics of C+ + concerning initialization and assignment of objects

via special member functions. If a class defines the operator=() member function, Mxdb

will invoke that function to perform assignments to objects of the class type. Similarly, if a

class defines a copy constructor, Mxdb will invoke it to perform initialization of arguments

of the class type that occur in an invoked function.

The result of the combined use of operator functions, user—defined conversions, and

assignment and initialization member functions in an evaluated expression is multiple

implicit function calls. The user should be aware that debugger events such as breakpoints

and watchpoints that are set on these functions will be activated in the process. Continuing

with the previous example we observe:

(debug) event—status)

breakpoint, name 1, line 31, scope \conv\B\int

(debug) evaluatec — 1)

Stopped at frame 0, line 31, scope \conv\B\int, pc 0x1010£4

breakpoint "1"

Note: Process stopped in debugger-invoked routine context.

Here the user has activated the breakpoint set on the conversion function B::operator int(),

which is invoked to convert “b” into an integer prior to the specified subtraction operation.

In this case, the user can recover from the routine context by finishing the routine. After

that he/she can delete the interloping event and re-evaluate the original expression:

(debug) finish)

Run until exit from frame 0, line 31, scope \conv\B\int, pc

0Ox1010f4 |

Stopped at frame 0, line 98, scope \conv\main, pc 0x101590

debugger-invoked routine returned

(debug) delete—event 1)

(debug) evaluatec — 1)

44

See Also

Commands: assign, describe, evaluate, c-p:option-status,

Topics: c-builtin-types, c-language, fortran-language,

pascal-language

086-000203 updates Licensed Material ~ Property of Data General Corporation 1 4-27
093-000710-03

Debugger Topics

debugger-variables Debugger Topic

Using debugger variables.

Summary

A debugger variable is a dynamic object created by the user to hold an expression’s value in

the current expression evaluation language. These variables can be used in expressions like

identifiers are used in programs.

Description

You can create debugger variables with the define-variable command. Debugger variables

may take on the value of any expression acceptable to the evaluate command.

Since variable names may be used in expressions, the names must conform to the identifier

syntax of the current language. If the current language changes, it might not be possible to

reference variables if their names are not syntactically valid under the new language.

Debugger variable values are bound at the time the variable is created. The values are

initially stored in the debugger’s address space, but are moved into the target process by

some commands. See the migration topic for more information.

Use the variable command to obtain information about a particular variable, or about all

debugger variables.

Debugger variables persist until you explicitly remove them with the delete-variable

command.

Convenience variables are variables that are automatically created by the debugger when

the evaluate command is used. See the options:convenience-variables command for more

information.

see Also

Commands: define-variable, delete-variable, variable, c-p:option-status,

options:convenience-variables

Topic: migration

breakpoint "1"

(debug) address il)

0x4051a0:0

(debug) address chi)

0x4051a0:0

(debug) assign chi ”hello”)

(debug) evaluate chi)

‘hello’

(debug) evaluate il)

1751477356

(debug) evaluate il ,format ascii)

hell

1 4-28 Licensed Material — Property of Data General Corporation 086--000203 updates
093-0007 10-03

Debugger Topics

5. Statement Labels: Statement labels are used to identify and reference individual

statements in a program. Statement labels in FORTRAN 77 are lexically

indistinguishable from integer constants, so the user must instruct the debugger to

resolve such tokens as labels:

(debug) list 113)

1 PROGRAM LABELS

2 INTEGER*4 I1

3 INTEGER*2 12

4

* 5 DO 10,11=1,10

6 T2 = 1

7 GO TO 200

8 10 CONTINUE

9 200 I2 = 3

10 ASSIGN 10 TO I1

11 GO TO I1

12 END

13

(debug) breakpoint 9; continue)

Note: There 1s no code at line 9. Line 10 will be used

instead.

Stopped at frame 0, line 10, scope \topic9\main, pc 0x101d8

breakpoint "1"

(debug) describe 10)

INTEGER#* 4

(debug) describe 10 ,meaning—kind label)

10 ! LABEL

(debug) address 10)

Error: The address of the expression can not be taken.

(debug) address 10 ,meaning—kind label)

0x101c4:0

(debug) describe 200 ,meaning—kind label)

200 ! LABEL

(debug) address 200 meaning—kind label)

0x101d8:0

086—000203 updates Licensed Material — Property of Data General Corporation 1 4-43
093-000710-03

Debugger Topics

In debugging a program it might be useful to modify flow control by assigning a label to an

integer variable and then transferring control to the associated statement. To do this the

user must assign the address of the label to the variable:

(debug) list)

* 10 ASSIGN 10 TO Ti

11 GO TO I1

12 END

13

(debug) assign il Z’101c4’)

(debug) continue)
Stopped at frame 0, line 10, scope \topic9\main, pc 0x101d8

breakpoint "1"

(debug) view)
4

5 DO 10,11=1,10

6 I2 = 1

7 GO TO 200

8 10 CONTINUE

9 200 I2 = 3

* 10 ASSIGN 10 TO Ii

11 GO TO Il

12 END

Mxdb also annotates constructs for which no debugging information is available, such as

external variables and routines in vendor-supplied libraries:

(debug) desc printf)

INTEGER*4 FUNCTION printf() ! SNo_Debug_Info

(debug) desc errno)

INTEGER*4 errno ! SNo_Debug_Info

See Also

Commands: assign, describe, evaluate, c-p:option-status,

options:elide-arrays

Topics: c-language, c+ +-language, pascal-language

1 4.44 Licensed Material — Property of Data General Corporation 086--000203 updates
093-000710-03

Debugger Topics

initialization Debugger Topic

Initializing Mxdb.

Summary

The Mxdb debugger lets you initialize each debugging session with a set of commands.

Mxdb looks for a file named .mxdb_init, first in the working directory, then in your home

directory. Whichever file the debugger finds first, it includes as a c-p command file.

See Also

Command: c-p:include

086—000203 updates Licensed Material — Property of Data General Corporation 1 4-45
093—-000710—-03

Debugger Topics

machine-registers Debugger Topic

Accessing machine registers.

Summary

Registers are accessed by using the names displayed by the machine-state command. These

names cannot be abbreviated.

Description

The machine registers are as follows:

Register Function
$r0 Zero

$r1 Subroutine return pointer

$r2—$r9 Called procedure parameter registers

$r10—$r13 Called procedure temporary registers

$r14—$r25 Calling procedure reserved registers

$126 Linker

$127 Linker

$128 Linker

$129 Linker

$130 Calling procedure reserved register

$r31 Stack pointer

$fpsr Floating-point status register

$fpcr Floating-point control register

$psr Processor status register

$sxip Shadow execute instruction pointer

$snip Shadow next instruction pointer

$sfip Shadow fetched instruction pointer

$cfa Canonical frame address pseudo-register

$pc Program counter pseudo-register

To print any register’s value, use the evaluate command. To modify its value, use the assign

command. (These variables are used just like any other variables visible in your program.)

Each register’s type is “unsigned integer” when used in language expression evaluation.

Note that on AViiON computer systems, the registers $r1—$r13 are valid only in the top

frame; $r1—$r13 are invalid in other frames since they are temporary registers, which are

assumed to be destroyed across every call boundary.

See Also

Commands: assign, continue, evaluate, c-p:option-status, machine-state

1 4-46 Licensed Material — Property of Data General Corporation 086—-000203 updates
093-000710-03

Debugger Topics

migration Debugger Topic

How and why debugger-—resident objects move to the target

process.

Summary

Mxdb automatically moves debugger—variables, convenience —variables and sometimes

literals (such as strings) from the debugger’s address space to the target process.

Description

Normally, debugger—variables and convenience —variables are stored in the debugger’s

address space. However, Mxdb will move them into the target process whenever their

address is required. There are two cases when this happens:

1) when the address command is used:

(debug) def—varj 22 }

(debug) evalj }
22

(debug) address j)

0x111d10:0

and 2) when the address of an object is computed within an expression:

(debug) def—var f 23.4)

(debug) eval &f)
0x00111d30

When a variable is migrated, malloc is called in the user’s program to create space for the

object. If malloc is not linked into the user’s program, an error will result:

(debug) def—var x 2332)

(debug) address x)

Error: The process does not contain a “malloc” memory

allocation routine.

(debug)

086-000203 updates Licensed Material — Property of Data General Corporation 1 4.47
093-000710—-03

Debugger Topics

Migration has two main purposes. It allows pointers to what are usually debugger—resident

objects to be assigned to variables in the target process:

(debug) def—var s ’hello”)

(debug) eval argv(0])
OxefffFf768 -> "/pdd/pde/dtl/test/war”

(debug) assign argv[0]} s)

(debug) eval argv[0])
0x00111d10 -> “hello”

and it allows pointers to debugger—resident objects to be passed as arguments to functions

in the user’s program:

(debug) desc print_square)
extern void print_square (

int *x);

(debug) def—vary8 }

(debug) eval print_square(&y))
64

Note that once an object is migrated to the target process it is never deallocated by the

debugger. This is because the debugger does not know if the object is actively being used by

that process.

See Also

Commands: address, convenience —variables, options:convenience—variables

Topics: debugger—variables, c-language, c+ +-language, fortran-language,

pascal-language

1 4-48 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710—03

Debugger Topics

name-resolution Debugger Topic

Resolving names in expressions.

Summary

When attempting to resolve a name used in an expression, the debugger tries to match the

name, in order, to one of the following:

1. Program-defined names

a. Avvisible name in the current module of the program being debugged.

b. A global external name in the program being debugged.

2. Debugger-defined names

a. A built-in type name.

b. A debugger variable.

c. Aconvenience variable.

d. A register name.

The debugger uses the first match it encounters. For example, a program variable “foo”

hides a debugger variable of the same name, and a debugger variable “$r2” hides register 2.

For details about how a particular language resolves a name used in an expression, see the

appropriate language topic.

See Also

Commands: assign, define-variable, describe, evaluate,

options:convenience-variables

Topic: c-builtin-types, c-language, c+ +-language, fortran-language,

pascal-language

Types: variable-name, expression

086—000203 updates Licensed Material — Property of Data General Corporation 1 4-49
093-000710-03

Debugger Topics

pascal-language Debugger Topic

Using Pascal with Mxdb.

Summary

Pascal is one of the languages supported by the Mxdb debugger. Most expressions

appearing in source code can be evaluated in the debugger. However, there are several

deficiencies in the COFF debugging information available from the Green Hills Pascal

compiler. See the release notice for details on known compiler and language processor

restrictions.

Description

Identifiers are described using declarative syntax. Description of variables, literals,

procedures, functions, and both standard and user-defined types is supported:

(debug) describe integer)

type integer;

(debug) desc a_var)

type a_var = integer;

(debug) desc double_ptr)
type double_ptr = “double;

(debug) desc bool)
bool : boolean; external;

(debug) desc intl }

intl : integer; external;

(debug) desc color)

type color =

(

red {0},

orange {1},

yellow {2},

green {3},

blue {4},

indigo {5},

violet {6}

1 4-50 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger Topics

Description of structured types such as arrays and records is also in declarative syntax:

(debug) desc array_type)

type array_type = array[0..2] of integer;

(debug) desc medical_rec)

type medical_rec = record

id : integer;

name : array [0..20] of char;

age : integer;

height : double;

weight : real;

vaccinations : array [0..5] of boolean;

end;

Enumeration constants, however, are described using non—standard syntax:

(debug) desc paint)

paint : (

red {0},

orange {1},

yellow {2},

green {3},

blue {4},

indigo {5},

violet {6}

); external;

(debug) desc indigo)

indigo, enumeration constant, value {5};

(debug) desc true)

true, boolean, value {1};

Functions and procedures are described using standard Pascal syntax. The use of both value

and variable parameters is supported:

(debug) desc fi }

function fl (

var aaaaa : integer;

b : float) : integer; external;

(debug) desc procl)

procedure procl (

var a_var_param : integer;

a: integer); external;

086—000203 updates Licensed Material ~- Property of Data General Corporation 1 4-51
093-000710-—03

Debugger Topics

Expressions are described with the expression’s type:

(debug) desc intl+5)
integer

(debug) desc ’abcde’)

“char

Describing an expression containing a function or a procedure call will describe its return

value. Since Pascal procedures have no return value, no return type should be printed when

a procedure call is described (presently, “void” is returned):

(debug) desc fl(buf,2) }

integer

(debug) desc procl (buf,1))

void

Green Hills Pascal extensions for types float and double and for the visibility directives,

static and external, are supported.

Mxdb also annotates constructs for which no debugging information is available, such as

external variables and routines in vendor-supplied libraries:

(debug) desc printf)

function printf () : integer; external; (* S$No_Debug_Info *)

(debug) desc errno)

errno : integer; external; (* SNo_Debug_Info *)

Evaluation

Expressions containing variables, literals and function/procedure calls can be evaluated. For

expressions of simple types, a single value is printed:

(debug) eval buf)
‘start’

(debug) evala_ float)

1.5

Pointer evaluation prints the address contained in the pointer in hexadecimal format. A

pointer may be dereferenced according to standard Pascal syntax:

(debug) desca }

a: “integer; external;

(debug) evala)

0Ox0050f£000

(debug) evala~)
1

1 4-52 Licensed Material — Property of Data General Corporation 086—000203 updates
093--000710-03

Debugger Topics

Array values are printed showing each array element index and the value found at that

index. Note that array elision is used in the following example. See the options:elide-arrays

command for details.

(debug) desc int_arr)

int _arr : array [0..99,0..199] of integer; external;

(debug) eval int_arr)

{

[0..98] = {

[0..199] = 0

}

[99] = {

[0] = 5

[1..199] = 0

}

}

When a record is evaluated, the name of each of the record’s fields is printed out, followed

by its value:

(debug) desc a_rec)
a_rec : packed record

intl : packed array [0..2] of integer;

recl : packed record

int2 : integer;

reall : double;

end;

arrl : packed array [0..9] of char;

end; external;

(debug) eval a_rec)

{

intl > {

[0] = 1

[1] = 2

[2] = 3

}

recl > {

int2 > 5

reall > 5.5

}

arrl > ‘abc’

}

086-000203 updates Licensed Material — Property of Data General Corporation 1 4-53
093-—000710-—03

Debugger Topics

The standard arithmetic operations (+,—,/,*) and integer division operations (div,mod) are

available for use in both expression evaluation and description. The relational

(<,>,<=,>=,<>) and logical (not,and,or) operators can be used as well. Pascal’s

operator precedence rules and arithmetic conversion rules are adhered to for complex

expressions:

(debug) eval an_int)
4

(debug) eval an_int+2*5)
14

(debug) eval (an_int+1) mod 2)
1

(debug) eval not true or (true and false))
false

(debug) eval ’abe’ > ’abcd’)

false

(debug) desc red <> blue)
boolean

(debug) desc1.5 —1)

double

Assignment

Assignment may be done using either the assign command or Pascal’s assignment operator:

(debug) assign intl 12)

(debug) eval intl)

12

(debug) eval intl := int2)
135

(debug) eval intl)

135

(debug) assign a_rec.recl.int2 5 })

(debug) assign bool not bool)

)

)

(debug) assign p_arr p_arr2)

(debug) eval p_arr = p_arr2 }
true

String literals may be assigned to character arrays using the assign command. If a string

literal is longer than the targeted array, a warning will result:

(debug) desc p_arr)
parr : array [0..4] of char; external;

(debug) assign p_arr ’string literal’)
Warning: String literal is longer than targetted character

array.

Only 5 characters assigned.

(debug) eval p_arr)
'strin’

1 4-54 Licensed Material — Property of Data General Corporation 086-000203 updates
093-000710-—03

Debugger Topics

Options

All of the debugger’s language—specific options for controlling expression evaluation are

supported under Pascal. For additional information on any of these options, refer to the

c-p:option-status command.

See Aliso

Commands: address, assign, describe, evaluate, c-p:option-status,

options:elide-arrays, options:pointer-dereference-level,

options:string-display, options:string-display-limit,

options:language

Topics: fortran-language, c+ +-language, c-language

086—000203 updates Licensed Material — Property of Data General Corporation 1 4-55
093-000710-—03

Debugger Topics

scopes Debugger Topic

Affecting programming language name visibility.

Summary

A scope is a location where some programming language names are visible and others are

not. A named scope can be a module, program block, or routine. In the C language, if you

declare names within a pair of braces, the range of the pair of braces is a scope (unnamed);

the names declared within the braces are not visible outside that scope.

Description

Scopes influence how programming language names are resolved. In the programming

languages that Mxdb currently supports, scopes are lexical in nature; i.e., local names will

be found before more widely visible names.

One-level source files are really just scopes because each source file defines a certain set of

names that will be visible in that file. This level is usually described as the module level.

Within modules, routines are visible. Routines define other name visibility scopes within

themselves (including other routines in languages such as Pascal).

To specify a file where the debugger is looking for a scope, use the simple filename without

the .c, .f, or ._p extension, preceded by a backslash (to indicate that this is a module name).

To specify a routine you usually just use the name of the routine. In some languages, there

are cases where routine names are not visible outside of their associated file or module.

One example of this is “static” functions in the C language. To access these local functions

from another module, you must specify both the module name and the routine name.

Examples

To indicate file foo.c, specify module foo:

\foo

If file foo.c contains a function named func that is static, you can access that function from

another module:

\foo\func

To indicate the external routine (system call) sleep:

sleep

See Also

Commands: file, position, routine

1 4-56 Licensed Material — Property of Data General Corporation 086-000203 updates
093-000710-03

Debugger Topics

source-files Debugger Topic

Viewing source files.

Summary

Mxdb has three commands for viewing your program’s source code: view, list, and find.

With these you can do the following tasks:

Look at the current source text line,

plus surrounding lines: view

Look at the next screen: list

Reposition and look at the next screen: view, down

Reposition 3 screens back and view source: view, up 3

See only the current line: list current

Find a line containing a pattern: find <pattern>

Find several occurrences of a pattern: fi <pattern>, count <n>

Search backward for a pattern: find <pattern>, back

Search backward and wrap if not found: fi <pat>, back, wrap

Reposition and see the new current line,

plus lines before and after: view <number>

See a range of source lines without changing

the current source position: list <n] > <n2>

Description

The view command displays a window of source text centered on your current source

position. Generally, when your process stops, you will want to type view immediately

(unless you are using the graphical interface, where that is done automatically). The up and

down keywords move your source text window either up toward the beginning of the file or

down toward the end of the file.

The list command is used when you want to print either a single line or some other region

of code without changing your current source position.

The find command searches for regular expressions in your source code. It is usually

invoked as “find <pattern>.”

To view the code in another source file, you must reset your position. To do this, use the file

macro and specify the source file’s filename or the filename without the usual language

extension. For example, to view the source code for file foo.c, type either of these

commands:

(debug) file foo }

(debug) file foo.c }

086—000203 updates Licensed Material — Property of Data General Corporation 1 4-57
093-000710—03

Debugger Topics

When your source code or external legends file (debugging information files) resides in

more than one directory in the file system, you must tell the debugger where to search for

your files. Every debug command invocation that does not reload the current executable

resets the directory list to look in the current directory “.” and in the directory prefix part

of the executable file that you specified. The directory-list command displays or resets the

search path used to find source files.

See Also

Commands: debug, directory-list, file, find, list, view

Topic: scopes

1 4-58 Licensed Material — Property of Data General Corporation 086-000203 updates
093-000710-—03

Debugger Topics

stack-frames Debugger Topic

Accessing stack frames.

Summary

To access a frame in your program’s call stack, use the following commands:

To view the call stack: walkback

To view each routine’s parameters

on the call stack: walk, arg

To view each routine’s local variables

on the call stack: walk, local

To view five frames, including

the current one walk 5

To view the topmost five frames: walk 5, f top

To view the bottommost five frames: walk, f b—4

To view the current frame’s

parameters and local variables: walk 1, arg, local

To position to another frame: frame <number>

To position to the top frame: frame top

To position to oldest frame: frame bottom

Description

Mxdb lets you access any frame that is linked into the program’s call stack. The walkback

command can be used to view the stack. Each frame on the stack is displayed on a separate

line with a number identifying the frame (0 is the most recent; higher numbers indicate

older frames). The number indicates the number of frames away from the top frame that

the current frame resides. A short description of the source position and/or instructional

position associated with that frame is also displayed.

When your process stops, you are positioned to the top frame of the stack. To move to

some other frame, look at the stack frames displayed by the walkback command and type

“frame <f>” where <f> is the number of the stack frame that you are interested in

viewing. To quickly get to the newest or oldest stack frame substitute the tag “top” to get to

the newest or “bottom” to get to the oldest. Now you can access variables that are local to

the procedure and/or view the source code associated with your new position.

The walkback command has options for displaying additional information. To view the

arguments for each stack frame, use the arguments argument. To see the active local

variables for each stack frame, use the locals argument.

When the graphical user interface is active, you may view and traverse the stack with the

Stack Frames viewer. Use the Stack Frames option in the View menu to create one.

see Also

Commands: frame, position, walkback

086-000203 updates Licensed Material — Property of Data General Corporation 1 4-59
093-000710—03

Debugger Topics

watchpoints — (88k) Debugger Topic

Watching memory locations.

Summary

Because the MC 88000 is a pipelined architecture, several instructions may be in various

stages of execution at any particular time. In another mode of operation, processor

serialization, each instruction completes execution before the next instruction begins

execution.

Processor serialization is an atypical mode of operation for the MC 88000. Mxdb

automatically sets this mode of execution when a watchpoint is defined so the machine will

Stop at exactly the instruction that is modifying a watched memory region. This behavior

benefits most users.

The rest of this topic discusses the pipeline architecture and how serialization can be

enabled and disabled. This is only of interest to users who have time-critical applications

that cannot execute correctly in serial execution mode.

The data unit pipeline of the MC 88100 has three stages, so up to three memory—related

instructions can be in progress at once.

When Mxdb is watching a memory location and the MC 88100 is not serialized, the

instruction that caused the memory modification can be *any* of the three possible

instructions in the data pipeline. The instruction that caused the modification may or may

not be one of the instructions denoted by the instruction pointers where the process finally

halted and notified the debugger of the modification.

These data instructions are also interleaved with other instructions that do not “touch” the

data unit so the process can even be in a different routine when it halts if one of the

intervening instructions was a BSR/JSR.

If you have trouble locating the instruction that caused the watchpoint to be modified, you

may explicitly serialize the processor using the procedure discussed below. This will cause

the “sxip” to denote the instruction that caused the memory modification.

A macro, serialize — processor, is provided in the Mxdb macros directory (in the file 88k.cp)

that will serialize the processor for you. To do this, type:

(debug) include /usr/opt/mxdb/macros/88k.cp)

(debug) serialize—processor ,, ser” should be a unique prefix)

When you wish to resume pipelined execution mode then type:

(debug) ser, deactivate)

14-60 Licensed Material — Property of Data General Corporation 086-000203 updates
093-000710-03

Debugger Topics

Note that this macro only serializes the machine when your process is executing; it should

not directly impact the execution of other users’ processes.

When the graphical user interface is active, you may access the macro serialize— processor

with the Serialize Processor toggle button, located in the Registers viewer.

See Also

Commands: watch—memory, watch—reference, watchpoint — print

Topic: events

End of Chapter

086—000203 updates Licensed Material — Property of Data General Corporation 1 4-61
093—000710—03

Graphical-Interface Commands

Arguments

label Label of the button to be displayed or modified.

command A new command sequence that will be interpreted by

the debugger when the button is pushed.

position Position of the button to be displayed or modified.

pane This keyword specifies which pane will be searched

for button information.

all If this argument is specified, information for all

buttons in all button panes is displayed.

append-selection If you specify this keyword, the current text selection,

if any exists, is appended to the end of the command.

The default behavior is not to append the current text

selection.

append-required-selection If you specify this keyword, the current text selection

is appended to the end of the command. Since a

selection is required, an error occurs if no text is

currently selected when the button is pressed.

suppress-echo This keyword controls whether the command is

echoed to the Message Pane when the button is

pressed. If you modify a button so that this keyword’s

value is “no” (the default value), the command

associated with that button press will be echoed after

the prompt in the Message Pane.

If you modify a button so that this keyword’s value is

“yes” (the implied value), the command associated

with that button press (and the prompt) will not be

echoed in the Message Pane. However, any output

will still be output to the Message Pane. Note that the

associated actions will still be recorded in a log file if

the c-p:log command has been used.

Examples

The following command displays information for all buttons:

(g-i) button-status, all)

This command displays information for a button labeled “walkback” in the default button

pane:

(g-i) button-status ’walkback”)

The following command displays information for the fourth button from the left of the

default button pane:

(g-i) button-status, position 4)}

This command changes the command associated with the button “foo” in the button pane

named “MyButtons”:

086-000203 updates Licensed Material - Property of Data General Corporation 15-5
093-000710-03

Graphical-Interface Commands

(g-i) button-status foo, pane MyButtons, command {write Foo!})

This command writes the information displayed for all buttons to a file named

my—button—definitions. You could use this file as an include file at a later date.

(g-i) redirect—output {button-status, all} my—button—definitions

See Also

Command: button-pane-status, define-button

1 5-6 Licensed Material — Property of Data General Corporation 086-000203 updates

093-000710-03

Graphical-Interface Commands

button-pane-status Graphical-Interface Command

Displays button pane information.

Summary

Displays button pane information.

Syntax

button-pane-status [name] [position]

where:

name Name of button pane to be displayed

position Position of the button pane to be displayed

Description

The button-pane-status command displays information about button panes. The

information is printed in a form that is syntactically valid for defining the same set of

button panes at a later time. Therefore, this command can be redirected to a file and

included at a later time in order to recreate the same button panes.

You can specify the button pane that you want to display with either the name or position

arguments. The name and position arguments cannot be specified concurrently.

By default, there are three button panes. They are named “ProcessButtons,”

“MachineButtons,” and “StackButtons.” The “StackButtons” pane is the default button

pane for button-related operations, such as define-button, button-status, and delete-button.

The “MachineButtons” pane is hidden from view initially, but may be made visible by

toggling the “Machine Buttons” entry in the “Button Panes” submenu of the “View” menu.

The other button panes may be hidden/shown through their respective entries in the

“Button Panes” submenu of the “View” menu. The button-pane-status command currently

does not include the visibility status of panes.

Arguments

name Name of the button pane to be displayed.

position Position of the button pane to be displayed. The

position is relative to the other button panes in the

main window of the GUI. The first is position 1.

086—000203 updates Licensed Material — Property of Data General Corporation 1 5.7
093—-000710-—-03

Graphical-Interface Commands

Examples

The following command displays information for all button panes:

(g-i) button-pane-status)}

This command displays information for a button pane named “StackButtons”:

(g-i) button-pane-status ’StackButtons” }

The following command displays information for the second button pane:

(g-i) button-pane-status, position 2)

See Also

Command: button-status, define-button, define—button—pane

1 5.8 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Graphical-Interface Commands

clear-messages Graphical-Interface Command

Clears the Message Pane.

Summary

Erases all the saved lines in the Message Pane and clears the pane.

Syntax

clear-messages

Description

The clear-messages command erases all the lines stored by the Message Pane. This

command also clears the display in the Message Pane.

Arguments

None

Examples

These equivalent commands clear all messages:

(g-1) clear-messages)

(g-i) cm }

See Also

Command: option-status (message-history option)

086—000203 updates Licensed Material — Property of Data General Corporation 1 5.9
093—000710-03

Graphical-Interface Commands

define-button Graphical-Interface Command

Creates and sets the attributes of a button.

Summary

Creates and sets the attributes of a button in a button pane.

Syntax

define-button /abel command [position] ,pane ,append-selection ,append-required-selection

ssuppress-echo

where:

label Label to be displayed on the button

command Command sequence to be interpreted by the

debugger when the button is pushed

position Button position (0 <= position <= last button

position+ 1)

pane The name of a button pane; default is “StackButtons”

append-selection Yes or no

append-required-selection Yes or no

suppress-echo Yes or no

Description

The define-button command creates a button in the specified button pane (the default

button pane is StackButtons). The buttons and their associated command sequences serve

as short cuts to entering commands manually. Since clicking a button is functionally

equivalent to typing a command sequence into the Command Line Pane at the keyboard,

by creating a button and associating it with a frequently used command, the user can save

time and effort by simply pushing the button instead of re-entering the same command.

Thus, buttons can be viewed as a limited graphical macro facility.

The names of buttons for the purposes of X resource specification are of the form

<pane > — <button—label>—Button. For example, the continue button in the

ProcessButtons button pane is referred to as ProcessButtons—continue— Button. So if you

wish to change its background color to green, the resource may be specified like this:

Mxdb*ProcessButtons—continue — Button.background: green

The only exception to this rule is the Interrupt button. It is still referred to simply as

Interrupt.

Arguments

1 5.1 0 Licensed Material — Property of Data General Corporation 086-000203 updates
093-000710-03

Graphical-Interface Commands

label Label to be displayed on the button.

command Command sequence to be interpreted by the

debugger when the button is pushed.

position The position of the button to be placed in the

specified button pane.

pane Unless this argument is specified, the default button

pane, “StackButtons,” is used.

append-selection If you specify this keyword, the current text selection,

if any exists, is appended to the end of the command.

The default behavior is not to append the current text

selection.

append-required-selection If you specify this keyword, the current text selection

is appended to the end of the command. Since a

selection is required, an error occurs if no text is

currently selected when the button is pressed.

suppress-echo This keyword controls whether the command is

echoed to the Message Pane when the button is

pressed. When a button is created, if this keyword has

the value “no” (the default), the command associated

with that button press will be echoed after the prompt

in the Message Pane.

If this keyword has the value “yes” (the implied

value) when a button is defined, the command

associated with that button press (and the prompt)

will not be echoed in the Message Pane. However,

any output will still be output to the Message Pane.

Note that the associated actions will still be recorded

in a log file if the c-p:log command has been used.

Examples

This example defines a button named “exit” at position 1 in the default button pane:

(g-i) define-button exit {write So long!; quit} 1

The following command creates a button labeled “debug again” that, when pushed, invokes

the “debug, again” command at position 3. Note that this command will be entered

automatically, but will not be added to the command history list. Generally, any

button-entered command should not be added to the command history list, since it can be

readily duplicated.

(g-i) define-button ’debug again” {debug, again} 3)

086—000203 updates Licensed Material — Property of Data General Corporation 1 5-1 1
093-000710-03

Graphical-Interface Commands

The next example shows the simplest way to create a button. The command creates a

button labeled “selection” at the bottom-most position in the panel.

(g-i) def-b selection {‘selection})

The example below creates a button labeled “next” that is placed at the left-most position.

(g-i) def-button next {step, here} 1)

See Also

Command: delete-button, button-status, define—button— pane

option-status (command-history option)

1 5.1 2 Licensed Material - Property of Data General Corporation 086-000203 updates
093-000710-03

Graphical-Interface Commands

define-button-pane Graphical-Interface Command

Defines a button pane.

Summary

Defines a button pane.

Syntax

define-button-pane name label [position]

where:

name Name of the button pane to be defined

label Label to be displayed as a toggle button in the “Button Panes”

submenu of the “View” menu

position Position of the button pane to be defined

Description

The define-button-pane command defines a button pane. The button pane must have a

name which is used in other button and button pane related commands that require a pane

specification. The button pane also requires a label, which is placed in a toggle button in

the “Button Panes” submenu of the “View” menu. The toggle button turns the associated

button pane off and on.

If no position is specified, the position defaults to be the last position.

Three button panes are initially defined: “ProcessButtons”, “MachineButtons” and

“StackButtons”. The second is hidden by default and can be made visible with its

associated toggle button in the “Button Panes” submenu of the “View” menu.

Arguments

name Name of the button pane to be defined. References to panes in

button and button pane related commands expect this name as an

identifier.

label Label to be displayed as a toggle button in the “Button Panes”

submenu of the “View” menu.

position Position of the button pane to be defined. The position is relative

to the other button panes in the main window of the GUI. The

first is position 1. The last may be specified as position 0.

086-000203 updates Licensed Material — Property of Data General Corporation 1 5.1 3
093-—-000710-03

Graphical-Interface Commands

Examples

This example defines a button pane named “MyButtons” as the second button pane:

(g-i) define-button-pane ”’MyButtons” ”MyButtons”, position 2)

This next example defines a button pane named “YourButtons” as the last button pane:

(g-i) def-but-pane ’YourButtons” ”YourButtons”, position 0)

See Also

Command: button-pane-status, button-status, define-button

1 5.1 4 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Graphical-Interface Commands

delete-button Graphical-Interface Command

Deletes a button in the specified button pane.

Summary

Deletes a button in the specified button pane.

Syntax

delete-button //abel] ,pane ,position ,all

where:

label Label displayed on the button

pane The name of a button pane

position Position of button to be deleted (0 <= position <= last button

position)

all Yes or no

Description

The delete-button command deletes a button from the specified button pane. The button to

be deleted may be specified either (or both) in terms of its position or its label. If both are

specified, the value of the label and the position for the specified button must match. If

neither is specified, the last button is deleted by default.

Due to the new implementation of the GUI, the “Interrupt” button in the

“ProcessButtons” button pane cannot be deleted. It is a required status indicator that,

when pressed, interrupts a debugger operation or the target process (if it is executing).

Arguments

label The label of the button or button separator to be deleted.

pane The name of a button pane. If this value is not specified, the

default button pane, “StackButtons,” is used.

position The position of the button to be deleted from the specified button

pane. If this value is not specified, then the default value of 0 is

used to imply the position of the bottom-most button in the

column.

all Delete all buttons in the specified button pane.

086-—000203 updates Licensed Material — Property of Data General Corporation 1 5-1 5
093-000710-03

Graphical-Interface Commands

Examples

The following example deletes a button by position:

(g-i) delete-button, position 3)

This example deletes a button by label:

(g-i) delete-button next)

This example deletes all buttons in the default button pane:

(g-i) del-button, all)

This example deletes a button at the last position:

(g-i) del—but)

See Also

Command: define-button

1 5-1 6 Licensed Material — Property of Data General Corporation 086-—-000203 updates

093-000710-—03

Graphical-interface Commands

delete-button-pane Graphical-Interface Command

Deletes a button pane.

Summary

Deletes a button pane.

Syntax

delete-button-pane /name/] [position]

where:

name The name of the button pane to be deleted

position Position of the button pane to be deleted

Description

The delete-button-pane command deletes a button pane. The button pane to be deleted

may be specified by its name or its position. The name and position arguments cannot be

set concurrently.

The buttons contained in the button pane are deleted.

The toggle button entry associated with the specified button pane in the “Button Panes”

submenu of the “View” menu is also deleted.

Due to the new implementation of the GUI, the “ProcessButtons” button pane and its

“Interrupt” button cannot be deleted. If you wish to hide the “ProcessButtons” pane,

simply use the “Process Buttons” toggle button entry of the “Button Panes” submenu of the

“View” menu to turn it off and on. Every other button within “ProcessButtons” may be

deleted.

Arguments

name The name of the button pane to be deleted.

position The position of the button pane to be deleted. The position is

relative to the other button panes in the main window of the GUI.

The first is position 1. Even if a button pane is hidden, it still

occupies a position. To check the positon, use the

button-pane-status.

086-000203 updates Licensed Material — Property of Data General Corporation 1 5-1] 7
093-000710—03

Graphical-Interface Commands

Examples

The following example deletes a button pane by position:

(g-i) delete-button—pane, position3)

This example deletes a button pane by name:

(g-i) delete-button—pane ”MachineButtons”)

See Also

Command: button-pane-status, delete-button

1 5.1 8 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-—03

Graphical-interlace Commands

graphics-available Graphical-Interface Command

Writes “true” if Mxdb’s graphical user interface is active.

Summary

Writes the value “true” if Mxdb’s graphical user interface is active.

Syntax

graphics-available

Description

The graphics-available command writes the value “true” with a New Line appended to the

standard output if the graphical user interface of Mxdb is active. If the graphical user

interface is not active, nothing is output.

This command is useful for writing macros that behave differently when the graphical user

interface is enabled.

Arguments

None

Examples

This example assumes that Mxdb was invoked with the —g option.

(debug) graphics-available)

true

086—000203 updates Licensed Material — Property of Data General Corporation 1 5.1 9
093—000710—03

Graphical-Interface Commands

selection Graphical-Interface Command

Writes the value of selected text,

Summary

Writes the value of any selected text from any window on the screen.

Syntax

selection ,required

where:

required The value “yes” or “no”

Description

The selection command writes the value of any selected text from any window on the

screen. This command Is generally used in a backquoted context to supply arguments to

other debugger commands.

Arguments

required A selection must exist or an error message is issued.

Examples

If the currently selected text is the expression “1 + 2 * 3,” the following application is

possible:

(g-1i) selection)

1 +2 * 3

(g-i) evaluate ‘{selection, required} }

7

1 5-20 Licensed Material — Property of Data General Corporation 086—000203 updates
093-0007 10-03

Graphical-Interface Commands

synchronize-display Graphical-Interface Command

Centers the Source Pane around the current debugger position.

Summary

Centers the Source Pane around the current debugger position.

Syntax

synchronize-display

Description

The synchronize-display command redisplays the Source Pane, with the current debugger

position located at the middle of the pane. Use this command to return quickly to the

debugger position after you scroll through the Source Pane.

This command is available in the Source Pane popup cascade menu.

Arguments

None

Examples

These equivalent commands move the Source Pane to the debugger position:

(g-i) synchronize-display }

(g-i) sd }

086-000203 updates Licensed Material — Property of Data General Corporation 1 5-21
093-000710—03

Graphical-Interface Commands

xhelp Graphical-Interface Command

Execute the xhelp-view program.

Summary

Executes the xhelp-view program.

Syntax

xhelp ,display

where:

display The display on which the help system will appear

Examples

xhelp, display bigbootie:0.0

xhelp

Description

The xhelp command executes the xhelp-view program, which is a driver for the graphical

user interface help system. If you are a command-line Mxdb user, this command allows you

to use the graphical user interface help system if you have access to an X Window System

server running on a display machine. This command is also accessible from the graphical

user interface Command Line Pane.

Arguments

display Specify the display on which the help system window will appear.

The implied value is “unix:0.0,” the machine from which you

invoke the command.

Examples

This example specifies that the help system window should be created on screen 0 of a

machine named Bigbootie:

(g-i) xhelp, display bigbootie:0.0)

End of Chapter

1 5.22 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Description

Options Commands

Following is a list of Mxdb options commands; capital letters indicate the shortest unique

abbreviation:

Command Name

Bit-format

CHaracter-format

Command-History

Convenience-Variables

Convenience-Variables-Limit

ELide-arrays

Floating-point-format

Language

Message-History

Mismatched — Legends — allowed

Pager-Lines

POinter-dereference-level

Action

Display or set bit display format.

Display or set character display format.

Display or set the number of

commands saved in the command line

history mechanism.

Display or set whether a debugger

variable is created whenever an

expression is evaluated via the evaluate

command.

Display or set how many convenience

variables the debugger will remember.

Display or set whether same-valued

array elements are elided.

Display or set floating-point display

format.

Display or set the expression evaluation

language.

Display or set the maximum number of

lines of text saved in the Message

Pane.

Display or set whether mismatched

external debugging information files are

allowed when debugging a process.

Display or set the number of lines used

by the CP paging facility (page and

help).

Display or set how many times a

top-level pointer will be automatically

dereferenced and displayed by the

debugger.

086—-000203 updates Licensed Material — Property of Data General Corporation 1 7-3
093-—-000710—03

Options Commands

Command Name

SIgned-Character-format

Signed-Integer-format

SOurce-lines

Stop-Commands

String-Display

String-Display-Limit

UNKnown-type-format

Unsigned-Character-format

Unsigned-Integer-format

Windowed —terminal—emulator

Action

Display or set signed-character display

format.

Display or set signed-integer display

format.

Display or set the number of lines used

by the screen-related source commands

(list and view).

Display or set commands to execute

when the target process stops for any

reason.

Display or set whether string-like

objects are automatically displayed in a

string-like or an array-like manner.

Display or set the number of characters

that will be displayed in a string-like

manner before elision occurs.

Display or set unknown-type display

format.

Display or set unsigned-character

display format.

Display or set unsigned-integer display

format.

Creates a windowed terminal emulator

for a live debugged process, even

when the graphical user interface

is not active.

The initial values for these commands are as follows:

Command Name Initial Value

bit-format Binary

character-format ASCII

command-history 100 (0 if GUI is disabled)

convenience-variables no

convenience-variables-limit 50

elide-arrays yes

17-4 Licensed Material - Property of Data General Corporation 086-000203 updates
093--000710-03

Command Name

floating-point-format

language

message-history

mismatched —legends— allowed

pager-lines

pointer-dereference-level

signed-character-format

signed-integer-format

source-lines

stop-commands

string-display

string-display-limit

unknown-type-format

unsigned-character-format

unsigned-integer-format

Options Commands

Initial Value

IEEE -float

Varies per debugging position

1000 (0 if the graphical user interface

is disabled)

no

Value of the LINES environment

variable (23 if LINES is not set)

0

ASCII

Decimal

Half the value of the LINES

environment variable (10 if LINES

is not set)

No command

yes

0

Hexadecimal

ASCII

Unsigned decimal

See Also

Commands: c-p:option-status, debug:assign, debug:evaluate, debug:list,

debug:view

Types: debug:format, debug:language

086-—000203 updates Licensed Material — Property of Data General Corporation 1 7-5
093-000710—03

Options Commands

bit-format

Displays or sets the bit display format.

Options Command

Summary

Displays or sets the bit display format.

Syntax

bit-format /format]

where:

format One of the following:

ascil binary

decimal hexadecimal

ieee-double ieee-float

leee-single octal

string symbolic

system-error unsigned-decimal

Description

Displays or sets the bit display format.

Examples

(options) bit,,write display format for the bit type)

binary

(options) bit hex ,,set display format for the bit type)

(options)

See Also

Type: debug:format

1 7-6 Licensed Material — Property of Data General Corporation 086—000203 updates

093-000710—-03

Options Commands

character-format Options Command

Displays or sets the character display format.

Summary

Displays or sets the character display format.

Syntax

character-format [format]

where:

format One of the following:

ascil binary

decimal hexadecimal

ieee-double ieee-float

leee-single octal

string symbolic

system-error unsigned-decimal

Description

Displays or sets the character display format.

Examples

(options) character ,,write display format for the character type)

aScll

(options) character string ,,set display format for the character type)

(options)

See Also

Type: debug:format

086-—000203 updates Licensed Material — Property of Data General Corporation 1 7-7
093-000710—03

Options Commands

commancd-history Options Command

Displays or sets the maximum number of commands saved in the

history mechanism.

Summary

Displays or sets the maximum number of commands saved in the command line history

mechanism (used in graphical user interface).

Syntax

command-history [limit]

where:

limit An integer greater than or equal to 0

Description

When the graphical user interface is not active, this option’s value is undefined and is

displayed as zero. Any attempts to set the option in this situation will raise an error.

Examples

(options) command-history ,,write maximum number of commands)

100

(options) command-history 150 ,,set maximum number of commands)

(options)

See Also

Command: message-history

1 7-8 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-0007 10-03

Options Commands

convenience-variables Options Command

Displays or sets whether to create a debugger variable when an

expression is evaluated.

Summary

Displays or sets whether a debugger variable will be created whenever an expression is

evaluated with the evaluate command.

Syntax

convenience-variables /on/

where:

on The value “yes” or “no”

Description

When convenience variable generation is turned on (the optional argument is set to “yes”),

a debugger variable is created whenever the user evaluates an expression with the evaluate

command. These variables will be named according to the following convention:

$ <variable-number>

where <variable-number> is 1 at the beginning of the debugging session and increases by 1

for each convenience variable created. Creation of debugger variables via the

define-variable command has no effect on the convenience variable count; convenience

variables do not affect the variable command and cannot be removed by using the

delete-variable command. However, any restrictions applying to debugger variables apply to

convenience variables as well.

The most recently created convenience variable has the symbolic notation “$$.”

Only the last n convenience variable values are remembered by the debugger, where n is a

user-settable value; see the options:convenience-variables-limit command.

You can use convenience variable names in expressions. However, convenience variable

names may be hidden by objects with the same name in a program, by regular debugger

variables, or by built-in type names.

086-—000203 updates Licensed Maternal — Property of Data General Corporation 1 7-9
093—000710-03

Options Commands

Examples

(debug) opt conv—var yes ,,turn convenience variable generation on)

(debug) evaluate foo ptr)

Si = 0x12345678

(debug) ,, reference value of $1 via $$ notation)

(debug) evaluate *$$)

$2 = {

i - 1

fp = 0x01234567

}

(debug) ,, Convenience variable names are still available when)

(debug) ,, generation is off)

(debug) opt conv—var no)

(debug) evaluate *$2—>fp)

{

i = 2

Ep = 0x00000000

}

See Also

Command: convenience-variables-limit, debugger:convenience-variables

Topic: debugger-variables, migration

1 | 0 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-—03

Options Commands

convenience-variables-limit Options Command

Displays or sets how many convenience variables to remember.

Summary

Displays or sets how many convenience variables the debugger will remember.

Syntax

convenience-variables-limit /limit/

where:

limit An integer greater than or equal to 1

Description

The convenience-variables-limit command determines the number of convenience variables

remembered by the debugger. If fewer than the limit argument’s number of convenience

variables have been created, all convenience variables are active. Once the number of

active variables reaches the value of the limit argument, the oldest convenience variable in

the list is deleted each time a new convenience variable is created.

Initially, the limit is set to 50. If the user sets the limit to a value less than the current

number of active variables, the oldest variables are deleted until the new limit is reached. If

the user sets the limit to a value larger than the current limit, no existing convenience

variables are deleted. :

Examples

(debug) evaluate expr)

$25 = 2

(debug) opt conv—var—lim)}

10

(debug) ,, limit is 10, so active variables are $16 through $25))

(debug) opte-v-I5 }

(debug) ,, active variables are now $21 through $25)

)

)

(debug) opt conv—var—li 6)

(debug) ,,no values lost, active variables are still $21 through $25 }

See Also

Command: convenience-variables

086-000203 updates Licensed Material — Property of Data General Corporation 1 7-1 1
093-000710—03

Options Commands

elide-arrays Options Command

Displays or sets whether same-valued array elements are elided.

Summary

Displays or sets whether same-valued array elements are elided.

Syntax

elide-arrays /on/]

where:

on The value “yes” or “no”

Description

When the optional argument is set to “yes,” consecutive array elements that have the same

value are displayed in a compressed manner. Compression is attained through subscript

elision for the same-valued array element range. Ellipsis, a sequence of consecutive

periods, is used to denote that value printing compression has been done. The initial value

of this option is “yes.”

If the string-display option’s value is “yes,” character arrays are printed as strings and no

elision is performed.

This option is not supported for all languages; a language that does not support this feature

will ignore the option setting. For information about support in a particular language, see

the topic for that language.

This option may affect the output from the evaluate, walkback,

watchpoint-print, and variable debugger commands.

Examples

For example, the array arr has the following description:

int arr[4] = { 1, 0, 0, 0 };

(debug) opt elide—arrays)

yes

(debug) evalarr)

{

[0] = 1

[1..3] = 0

}

(debug)

See Also

Commands: string-display, string-display-limit

Topics: c-language, c+ +-language, fortran-language, pascal-language

1 7-1 2 Licensed Matenal — Property of Data General Corporation 086-000203 updates
093-000710-03

Options Commands

floating-point-format

Displays or sets the floating-point display format.

Options Command

Summary

Displays or sets the floating-point display format.

Syntax

floating-point-format /format]

where:

format One of the following:

ascii binary

decimal hexadecimal

ieee-double ieee-float

ieee-single octal

string symbolic

system-error unsigned-decimal

Description

Displays or sets the floating-point display format.

Examples

(options) float ,,write display format)

1eee-float

(options) float ieee—double ,,set display format)

(options)

See Also

Type: debug:format

086-—-000203 updates Licensed Material — Property of Data General Corporation

093-—000710—03

17-13

Options Commands

language Options Command

Displays or sets the expression evaluation language.

Summary

Displays or sets the expression evaluation language.

Syntax

language /language]

where:

language One of these languages: c, c+ +, fortran, pascal, or icobol

Description

Note that any modification stays in effect until the debugger’s position changes. The

debugger position is changed when the position or view command is supplied with

arguments or the debugged process is continued (and it stops).

Examples

(options) language ,,display the current expression evaluation language }

Cc

(options) language fort ,,set the current expression evaluation language)

(options)

See Also

Type: debug:language

1 7-1 4 Licensed Material -- Property of Data General Corporation 086—000203 updates
093-000710-03

Options Commands

stop-commands Options Command

Displays or sets commands to execute when the target process

stops.

Summary

Displays or sets commands to execute when the target process stops for any reason.

Syntax

stop-commands /new-commands]

where:

new-commands A valid command sequence

Description

The stop-commands command lets you conveniently specify a sequence of commands that

will be executed every time that the target process stops. Supplying a new-commands

argument replaces any previous commands.

To unset any stop commands, supply the value “{}”:

opt stop {}

Examples

(options) opt stop-commands {wri hi} }

(options) opt stop-commands)

wri hi

(options) ,, Append to the current commands; Notice that two)

(options) ,, backquotes must be used to invoke the command)

)

)

(options) ,, inside the command—sequence argument braces)

) opt stop—commands {“{opt stop—commands}; write bye})

(options) opt stop—commands)

wri hi; write bye

(options) ,, Append to the current commands)

(options) ,, via the primitive command)

(options) opt stop—commands {“opt:stop—commands; write again})

(options) opt stop—commands)

wri hi; write bye; write again

(options

(options)

See Also

Type: debug:command-sequence

086-000203 updates Licensed Material — Property of Data General Corporation 1 7-23
093-—-000710-—03

Options Commands

string-display Options Command

Displays or sets whether string-like objects are automatically

displayed in a string-like or an array-like manner.

Summary

Displays or sets whether string-like objects are automatically displayed in a string-like or an

array-like manner.

Syntax

string-display /on/

where:

on The value “yes” or “no”

Description

When the on argument has a value of “yes,” string-like objects such as character arrays are

displayed in a string-like or an array-like manner. The current expression evaluation

language determines the exact format. The initial value of this option is “yes.”

By setting the string-display-limit option, you can control the number of characters in the

string.

When the value of on is “no,” character arrays will be displayed in an array-like manner

that will be affected by the elide-arrays option.

This option is not supported for all languages; a language that does not support this feature

will ignore the option setting. For information about support in a particular language, see

the topic for that language.

This option may affect the output from the evaluate, walkback, watchpoint-print, and

variable debugger commands.

1 7-24 Licensed Material —- Property of Data General Corporation 086—000203 updates
093-000710-03

Options Commands

Examples

The following examples evaluate the character pointer strp and the C character array str,

described here:

char str[2000] = ”abcdef”

char *strp = ”abcdef”

(debug) opt string—display)

yes

(debug) eval str)

"abcdef”

(debug) eval strp }

0Ox000101b0 -> "“abcdef”

(debug) opt string—display no)

(debug) eval str }

{
[O | _ i a /

[1] _ , b f

[2 | _ / Cc s

[3] - ‘qi

[4] = ‘e!’

[5] = ‘'f’

[6..1999] = ‘\000"

}

(debug) eval strp }

0Ox000101b0

(debug)

See Also

Commands: elide-arrays, string-display-limit x

Topics: c-language, c+ +-language, fortran-language, pascal-language

086-—-000203 updates Licensed Material — Property of Data General Corporation 1 7-25
093--000710-03

Options Commands

string-display-limit Options Command

Displays or sets the number of characters displayed in a

string-like manner.

Summary

Displays or sets the number of characters that will be displayed in a string-like manner.

Syntax

string-display-limit /limit]

where:

limit An integer greater than or equal to 0

Description

This option defines an upper limit for the number of characters that will be displayed in a

string-like manner. If the limit argument is 0, there is no upper limit and the string display

terminates in a language-specific manner (such as when a null byte is encountered in a C

string).

When a string is longer than the set limit, trailing periods outside of the string delimiters

are appended. The display of a C character pointer (if the pointer is valid) shows both the

pointer value and the associated string.

This option is not supported for all languages; a language that does not support this feature

will ignore the option settting. For information about support in a particular language, see

the topic for that language.

This option may affect the output from the evaluate, walkback, watchpoint-print, and

variable debugger commands.

1 7-26 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Options Commands

Examples

The following examples evaluate the character pointer strp and the character

array str, described here: |

char str[2000] = ’abcdefghijklmnopgqrstuvwxyz”

char *strp = ”abcdef”

(debug) opt string-display-limit)
0

(debug) eval str)

"“abcdefghijklmnopaqrstuvwxyz”

(debug) eval strp)

0x000101b0 -> "abcdef”

(debug) opt string—display—limit 5)

(debug) eval str)

“abcde”...

(debug) eval strp)

Ox000101b0 -> “abcde”...

(debug)

See Also

Commands: elide-arrays, string-display

Topics: c-language, c+ +-language, fortran-language, pascal-language

086—000203 updates Licensed Material — Property of Data General Corporation 1 7-27
093-000710—03

Options Commands

unknown-type-format Options Command

Displays or sets the unknown-type display format.

Summary

Displays or sets the unknown-type display format.

Syntax

unknown-type-format /format]

where:

format One of the following:

ascil binary

decimal hexadecimal

ieee-double ieee-float

ieee-single octal

string symbolic

system-error unsigned-decimal

Description

Displays or sets the unknown-type display format.

Examples

(options) unknown ,,write display format)

hexadecimal

(options) unknown binary ,,set display format)

(options)

See Also

Type: debug:format

1 7-28 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Options Commands

unsigned-character-format Options Command

Displays or sets the unsigned-character display format.

Summary

Displays or sets the unsigned-character display format.

Syntax

unsigned-character-format [format]

where:

format One of the following:

ascii binary

decimal hexadecimal

ieee-double ieee-float

ieee-single octal

string symbolic

system-error unsigned-decimal

Description

Displays or sets the unsigned-character display format.

Examples

(options) un—char ,,write display format }

asclil

(options) un—char string ,,set display format)

(options)

See Also

Type: debug:format

086—000203 updates Licensed Material — Property of Data General Corporation 1 7-29
093-000710-03

Options Commands

unsigned-integer-format Options Command

Displays or sets the unsigned-integer display format.

Summary

Displays or sets the unsigned-integer display format.

Syntax

unsigned-integer-format /format]

where:

format One of the following:

ascil binary

decimal hexadecimal

ieee-double ieee-float

leee-single octal

string symbolic

system-error unsigned-decimal

Description

Displays or sets the unsigned-integer display format.

Examples

(options) un-int,,write display format)

ascii

(options) un-—int binary ,,set display format)

(options)

See Also

Type: debug:format

1 7-30 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-—03

Options Commands

windowed-terminal-emulator Options Command

Creates a windowed terminal emulator for a live debugged

process even when the graphical user interface is not active.

Summary

Creates a windowed terminal emulator for a live debugged process, even when the

graphical user interface is not active.

Syntax

windowed-terminal-emulator /new-terminal-emulator]

where:

new-terminal-emulator Pathname for windowed terminal emulator

Description

A windowed terminal emulator is a program that is expected to create a window to which

the input, output and error streams for a debugged process are bound by mxdb. This

avoids the problems associated with intermingling the input and output of the debugger

and debugged process. (This also makes debugging curses—based applications much

easier.)

The terminal emulator also creates a new controlling tty for the debugged process. Thus

interrupts issued in this execution window are only sent to the debugged process. (Note

that interrupting the debugged process will usually “wake up” the debugger unless it has

been told to ignore these signals.)

The windowed terminal emulator option accepts the pathname of the terminal emulator

program. (Typically xterm or mterm are used.) If this user—specified pathname fails to

execute properly when starting a target process then the default terminal emulator

pathname, /usr/bin/X11/mterm, is tried as well automatically.

When the graphical user interface is active, it resets this option value if the

Mxdb.execution Window X resource has been set. Otherwise the user—specified option is

used. Since a windowed terminal emulator is requiredfor the graphical user interface, the

default terminal emulator is used if both of the previous methods are not used to set the

terminal emulator pathname.

When this option is set and no terminal emulator process currently exists, the debug

command will print a message trying to create the terminal emulator process during the

creation of a live debugged process:

Note: Attempting to start a windowed terminal emulator on display ’unix:0.0’.

Whenever you restart the execution of a process with the command debug, again or create

a new process, a sequence of dashes is output to the execution window. These dashes serve

to separate the output from various debugged processes that have used the window.

086—000203 updates Licensed Material — Property of Data General Corporation 1 7-31
093—000710-03

Options Commands

When this option’s value is reset it will not take effect until the next time that the debugger

must create a windowed terminal emulator, ie. if one currently exists then it must be

terminated and the debugged process must be restarted for the option value to be used.

The value *none”* is reserved to indicate that no windowed terminal emulator program

should be used. When it is supplied the option value becomes the empty string. This does

not destroy any extant terminal emulator. It will just cause the debugger to not create any

subsequent ones.

Note that any terminal emulator created by the debugger is destroyed when the debugger

exits.

Also note that all X options specified on the mxdb command line are supplied to the

terminal emulator program as well.

Examples

(options) op win xterm ,, use xterm)

(Options) op win *none* ,, do not use a windowed terminal emulator)

See Also

Command: command — processor:option — status

End of Chapter

1 7-32 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Chapter 18

Debugger-toolkit Commands

This chapter contains the on-line help messages for the debugger-toolkit realm and for the
commands in that realm. The realm help message is first, followed by the help messages for
the individual commands, listed in alphabetical order. The debugger-toolkit realm contains
special debugging commands.

086—000203 updates Licensed Material — Property of Data General Corporation 1 8-1
093—000710-03

Debugger-toolkit Commands

debugger-toolkit Realm

Contains special debugging commands.

Summary

The debugger-toolkit realm contains special debugging commands.

Here is how to perform some common tasks:

To get A list of debugger-toolkit commands:

A list of all commands:

Help on a specific command:

A list of help topics:

A list of all help topics:

Help on a specific topic:

Debugger-toolkit commands summarized:

A list of all realms:

Help on a specific realm:

To go back to the debugger realm

Description

help, command, r d-t

help ,command ,realm

help <command-name>

help, topic

help ,topic ,realm

help <‘opic-name>

help, r d-t, v

help ,realm

help <realm-name>

realm debugger

Following is a list of debugger-toolkit commands; you can abbreviate character names using

standard CP abbreviation rules.

Command Name

elf—debug—rtld

elf—stop—for—link—map—changes

event —list

position—frame

position —has—debug—info

position —line

position —module

position —pc

position—return—address

position —routine

position —scope — pathname

position —source — file

process —corefile

process — identifier

process—shared —objects

1 8-2 Licensed Matenal — Property of Data General Corporation

Action

Directs the debugger to do

minimal shared object

initialization.

Directs the debugger to stop for

link-map resynchronized events.

Displays event-names matching a

regular expression.

Writes the position’s frame number.

Writes if the position has debugging

information.

Writes the position’s line number.

Writes the position’s module

(legend) name.

Writes position’s program counter.

Writes the position’s return address.

Writes the position’s routine name.

Writes the position’s scope-pathname.

Writes the position’s source filename.

Displays or sets the corefile for a

process.

Displays the runtime identifier for

a process.

Writes the pathnames of

shared —objects.

086-000203 updates

093-000710-03

process— signal

process — stop—reasons

program—command-—line

program —entry—point

program—name

resolve —filename

086-000203 updates

093-000710—-03

Debugger-toolkit Commands

Displays or sets the current

continuation signal for a process.

Writes the reasons why the process

stopped.

Writes the current command line

that was used to create the process.

Writes the numeric address of the

program entry point.

Writes the program’s pathname.

Resolves a filename via the debugger’s

directory-list.

Licensed Material — Property of Data General Corporation 1 8-3

Debugger-toolkit Commands

elf—debug-—rtid Debugger-toolkit Command

Directs the debugger to do minimal shared object initialization.

Summary

Directs the debugger to do minimal shared object initialization.

Syntax

elf—debug—rtld /yes|no]

where:

yes |no A value of yes or no

Examples

elf-d yes

elf-d

Description

The elf—debug—rtld command directs the debugger to load the debugging information for

the ELF a.out file and the program interpreter, and to leave the process at the initial load

position for shared ELF processes, rt_boot. This is not the default action.

This option is only useful debugging the runtime linker and thus is not the default mode of

operation of the debugger. “Yes” is printed when rtld debugging mode is in effect; “no” is

printed otherwise.

Arguments

yes |no Accepts a value of yes or no. The initial value of this argument is
“no.”

Examples

To list the current value of this command:

(debug) elf—d)
no

To direct the debugger to do minimal shared object initialization:

(debug) elf—d yes }

1 8-4 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710—-03

Debugger-toolkit Commands

elf—stop—for—link—map—changes _Debugger-toolkit Command

Directs the debugger to stop for link-map resynchronized events.

Summary

Directs the debugger to stop for link-map resynchronized events.

Syntax

elf—stop—for—link—map—changes /yes |no/

where:

yes |no A value of yes or no

Examples

elf-stop

elf-stop no

Description

The elf—stop—for—link—map—changes command controls whether the debugger will stop

for shared-object link-map resynchronized event occurrences. The default action is to stop

when this event occurs.

This command prints “yes” or “no” when invoked with no arguments. “Yes” is printed

when the debugger will stop for link-map resynchronized events; “no” is printed otherwise.

Arguments

yes |no Accepts a value of yes or no. The initial value of this argument is
“yes.”

Examples

To list the current status of this debugger directive:

(debug) elf—stop }

yes

To prohibit stopping at link-map resynchronized event occurrences:

(debug) elf—stop no)

086—000203 updates Licensed Material — Property of Data General Corporation 1 8-5
093-000710—03

Debugger-toolkit Commands

event-list Debugger-toolkit Command

Displays event-names matching a regular expression.

Summary

Displays event-names matching a regular expression.

Syntax

event-list /regex/

where:

regex A regular expression

Examples

e-]

e-l o

Description

The event-list command displays all event names that contain the supplied regular

expression. If you do not supply a regular expression, all event names are printed.

Arguments

regex A regular expression.

Examples

To list all event names:

(debug) e-1)

To list event names containing the letter “o”:

(debug) e-lo)

1 8-6 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710—03

Debugger-toolkit Commands

position-frame | Debugger-toolkit Command

Writes the position’s frame number.

Summary

Writes the position’s frame number.

Syntax

position-frame [position] ,frame

where:

position A file, scope, line number, or a combination of the three

frame A stack frame specification

Examples

position-frame, frame 5

position-frame

Description

The position-frame command writes the frame number for the specified position or frame.

When no debugging information is present for the location, an error results.

You can specify either the position or frame argument if you wish, but you cannot supply

both. If you do not supply any argument, the current debugger position is used.

Arguments

position Position to a file, scope, routine, line number, or any combination

thereof.

frame Position to a stack frame.

Examples

To write the current frame number:

(debug) position-frame)

To write the frame number of a specified frame:

(debug) position-frame, frame 5)

See Also

Commands: position —has— debug — info, position—line, position— module,

position—pc, position—return— address, position—routine,

position — scope — pathname, position—source —file

086—000203 updates Licensed Material — Property of Data General Corporation 1 8-7
093-000710—-03

Debugger-toolkit Commands

position-has— debug — info Debugger-toolkit Command

Writes if the position has debugging information.

Summary

Writes “yes” if the position has debugging information.

Syntax

position-has —debug— info /position] ,frame

where:

position A file, scope, line number, or a combination of the three

frame A stack frame specification

Examples

position-has, frame 0

pos-has

Description

The position-has—debug—info command writes “yes” if the position has debugging

information. When no debugging information is present for the location, nothing is printed.

You can specify either the position or frame argument if you wish, but you cannot supply

both. If you do not supply any argument, the current debugger position is used.

Arguments

position Position to a file, scope, routine, line number, or any combination

thereof.

frame Position to a stack frame.

Examples

To write if the current debugger position contains debugging information:

(debug) position-has)

yes

To write if a specified frame contains debugging information:

(debug) position-has, frame 0)

yes

See Also

Commands: position —frame, position—line, position—module,

position—pc, position —return—address, position—routine,

position—scope— pathname, position —source —file

1 8-8 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

position-line Debugger-toolkit Command

Writes the position’s line number.

Summary

Writes the position’s line number.

Syntax

position-line [position] ,frame

where:

position A file, scope, line number, or a combination of the three

frame A stack frame specification

Examples

position-line

position-line main

Description

The position-line command writes the line number for the specified position or frame.

When no debugging information is present for the location, an error results.

You can specify either the position or frame argument if you wish, but you cannot supply

both. If you do not supply any argument, the current debugger position is used.

Arguments

position Position to a file, scope, routine, line number, or any combination

thereof.

frame Position to a stack frame.

Examples

To write the current line number:

(debug) position-line)

To write the line number of a specified position:

(debug) position-line main }

See Also

Commands: position —frame, position —has— debug — info, position—module,

position—pc, position—return—address, position—routine,

position —scope— pathname, position —source — file

086—000203 updates Licensed Material — Property of Data General Corporation 1 8-9
093-000710-03

Debugger-toolkit Commands

position-module Debugger-toolkit Command

Writes the position’s module (legend) name.

Summary

Writes the position’s module (legend) name.

Syntax

position-module [position] ,frame

where:

position A file, scope, line number, or a combination of the three

frame A stack frame specification

Examples

position-module

position-module, frame 1

Description

The position-module command writes the module name for the specified position or frame.

If the position does not have debugging information associated with it, an error results.

You can specify either the position or frame argument if you wish, but you cannot supply

both. If you do not supply any argument, the current debugger position is used.

Arguments

position Position to a file, scope, routine, line number, or any combination

thereof.

frame Position to a stack frame.

Examples

To write the current module name:

(debug) position-module)

To write the module name of a specified frame:

(debug) position-module, frame 1)

See Also

Commands: position—frame, position—has— debug —info, position —line,

position—pc, position—return—address, position—routine,

position —scope — pathname, position —source — file

1 8-9.a Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Debugger-toolkit Commands

This page intentionally left blank.

086—-000203 updates Licensed Material — Property of Data General Corporation 1 8-9.b
093-000710—03

position-pc Debugger-toolkit Command

Writes the position’s program counter.

Summary

Writes the position’s program counter.

Syntax

position-pe [position] frame

where:

position A file, scope, line number, or a combination of the three

frame A stack frame specification

Examples

position-pec printf

position-pc, frame 3

Description

The position-pe command writes the program counter (instruction address) for the

specified position or frame in a non-symbolic form.

You can specify either the position or frame argument if you wish, but you cannot supply

both. If you do not supply any argument, the current debugger position is used.

Arguments

position Position to a file, scope, routine, line number, or any combination

thereof.

frame Position to a stack frame.

Examples

To write the program counter for a specified position:

(debug) position-pc printf)

To write the program counter for a specified frame:

(debug) position-pc, frame 3)

see Also

Commands: position—frame, position—has—debug— info, position-—line,

position—module, position—return—address, position—routine,

position—scope— pathname, position—source — file |

1 8-1 0 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Debugger-toolkit Commands

position-return—address Debugger-toolkit Command

Writes the position’s return address.

Summary

Writes the position’s return address.

Syntax

position-return—address [position] ,frame

where:

position A file, scope, line number, or a combination of the three

frame A stack frame specification

Examples

position-return-address

pos-ret, frame 3

Description

The position-return—address command writes the return address for the specified

position’s frame in a non—symbolic form. The return address is the program counter

(instruction address) for the parent frame (where execution will resume after return from

the specified position’s frame).

This command is useful when stack walkback problems occur for helping to diagnose if the

return address for a particular frame has been corrupted.

You can specify either the position or frame argument if you wish, but you cannot supply

both. If you do not supply any argument, the current debugger position is used.

Arguments

position Position to a file, scope, routine, line number, or any combination

thereof.

frame Position to a stack frame.

Examples

To write the return address for the current position:

(debug) position-return—address)

To write the return address for a specified frame:

(debug) pos-ret, frame 3)

086—000203 updates Licensed Material — Property of Data General Corporation 1 8-1 0.a
093-000710-03

Debugger-toolkit Commands

See Also

Commands: position—frame, position—has—debug-— info, position—line,

position—module, position—pc, position —routine,

position —scope — pathname, position —source —file

1 8-1 0.b Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Graphical interface Demos

Appendix B

Mxdb Graphical Interface Demos

Notation used in these demonstrations is as follows:

<popup> refers to pressing and holding mouse button 3 until the appropriate choice from

the popup menu is highlighted

<click> refers to pressing down and releasing the left mouse button

<double—click> refers to pressing down and releasing the left mouse button two times in

quick succession.

<CR> refers to pressing and releasing the Enter or Carriage Return key

X—select refers to holding down the left mouse button while dragging the cursor over a

selected area and then releasing the left mouse button.

Enter refers to typing in the succeeding command line at the keyboard.

Note that it is possible to abbreviate Mxdb commands and arguments names if the

abbreviations are unique. Each Mxdb command will be given in its entirety with its

shortest abbreviation in square brackets directly below it for comparison. If the command is

already as terse as possible, [“ ”] will be used.

To run the demos in this section, you must have loaded the second optional package on the

Mxdb release media.

Load in the Mxdb macros. Enter

include /usr/opt/mxdb/macros/all.cp <CR>

[in /usr/opt/mxdb/macros/all.cp <CR>]

The programs used in these demonstrations exist in the /demos subdirectory of the Mxdb

release area (/usr/opt/mxdb). cd into this directory. Enter

cd /usr/opt/mxdb.demos <CR>
[” ”|

These demos are independent of each other and may be run in any sequence. Each may be

run from any live debugger session.

086—000203 updates Licensed Material — Property of Data General Corporation B-1
093-000710-—03

Graphical Interface Demos

C/X—window Demo

This demo uses a tictactoe program to demonstrate:

* attaching to / detaching from an already extant process

* machine— and source—level debugging integration

* debugging a Motif application written in C

* C data types support

* the command line prompting facility

* the string display option

* the display format option

Before starting this demo, you must merge some app—defaults into your resource manager.

To do this, at the Mxdb command line enter

shell /usr/bin/X11/xrdb —merge app—defaults/Tictactoe <CR>

[sh /usr/bin/X11/xrdb —merge app—defaults/Tictactoe <CR>]

To start this demo, enter

shell cdemo/tictactoe& <CR>

[sh cdemo/tictactoe& <CR>]

to bring up the tictactoe program from the shell as a background job.

Make note of the pid number. This will be the number found after the [<job number>]

prompt; you will need it later. Note! The [<job number>] prompt is specific to certain

shells. The shells sh and bash do not print the pid number in Mxdb’s usage, while csh does

print the pid number. You can always find the pid number by using following command:

Shell ps —fu <your user name> | grep tictactoe <CR>

[sh ps —fu <your user name> | grep tictactoe <CR>]

A line of the form:

<your user name> <pid> <ppid> cdemo/tictactoe

will be displayed. Get the pid number from there.

The tictactoe program is now active, but its execution was not started from within Mxdb.

You can attach to it and place it under the control of Mxdb. At the (debug) prompt from

Mxdb, attach to the tictactoe program:

attach, <CR>

[at, <CR>]

Whenever you end a command with a comma, Mxdb prompts for argument values, so you

don’t have to memorize the order in which any command’s arguments are defined. Now,

Mxdb will prompt you for

B-2 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710—03

Graphical Interface Demos

“pid () =”

Enter the tictactoe pid you noted earlier and hit <CR>. Mxdb will then prompt you for

“executable () =”

Enter

cdemo/tictactoe <CR>

and respond to the

“Execute? (Yes) = ”

prompt with a <CR>. Now Mxdb will load linker symbols and modules from the

executable file specified earlier.

The source pane will contain no information because you will be stopped inside the X

Toolkit, which was not compiled for debugging. You still can see that Mxdb has oriented

itself:

<click> walkback (for a frame walkback)

<click> machine state (to get pc and register values)

Enter

disassemble 10 <CR>

[dis 10 <CR>]

to show the disassembled code. The first argument to the disassemble command refers to

the number of lines to disassemble or instructions to display. Note that since there is no

debugging information at the current position, ten instructions are displayed instead of

displaying the instructions associated with the succeeding ten lines of source code.

Now set a breakpoint on code which was compiled for debugging. You can specify a

breakpoint in a particular module or function. In this case, you want to stop in the

procedure position_changed. To do this, enter

breakpoint position_changed <CR>

[b position_changed <CR>]

and continue execution with:

<click> continue

Note that the graphical user interface’s prompt is insensitive, which indicates that the

debugger is busy.

You must click on the “Play” button in the tictactoe window to start the tictactoe game.

086000203 updates Licensed Material — Property of Data General Corporation B-3
093-000710-03

Graphical Interface Demos

Now select a square from the tictactoe game with a mouse click. Mxdb will show the source

in the source pane and highlight the line reading

“Arg args[1]”

This highlighting indicates the current position in the source code of the executing

program. The static position of the debugger is represented graphically by an arrow and is

used to indicate the source code corresponding to the current debugging information. Use

the vertical scroll bar in the source pane to scroll until line 101 is visible. Move the cursor

over the line number of line 101 and

<click> (on the line number for line 101)

This sets a breakpoint on line 101. A stop sign icon will appear to the left of the line

number as a visual reminder of this breakpoint. Then

<click> continue

Evaluate args[0] by X—selecting the text “args[0]” on line 100 (be careful not to miss) and

then

<popup> evaluate SEL

Note that the name field of args[0] is a string. In addition to displaying the starting address

of this string, the pointer has been dereferenced to actually display the string,

“JabelPixmap”. The displaying of strings is under the control of the boolean global option,

“String_Display”. The option—status command displays the current settable global options

and their present values. Enter

option—status <CR>

to see this. The option “String_Display” defaults to “yes,” its more useful mode. Try

setting this option to “no” to see how this changes what is displayed when strings are

evaluated. Enter

option —status string—display no <CR>

[op s—dn <CR>]

and then evaluate the selection again using the popup:

<popup> evaluate SEL

There are several things to note here. First note that you can refer to “String Display” as

string — display on the Mxdb command line. The Mxdb command -—processor is case

insensitive; this includes hyphen/underscore case insensitivity as well. Also, with

string —display set to “no,” only the starting address of the field “name” is displayed. Note

also that you did not have to X—select “args[0]” once again in order to do this evaluation

(unless you had selected something else in the meantime).

B-4 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Graphical Interface Demos

Get the description and address of “args[0]”:

<popup> describe SEL

<popup> address SEL

Now X-—select the text “position” on line 101 (you can double-click on the text to select an

entire word) and evaluate this variable:

<popup> evaluate SEL

“position” is an int and therefore the format in which it is displayed is governed by the

“Signed_Integer_Format” option. The default value of this option is decimal. Change the

value of this option to binary by entering

option—status signed —integer—format binary <CR>

[op s—ib <CR>]

Evaluate “position” once again:

<popup> evaluate SEL

Note the change in display format. Try changing the display format to hexadecimal:

option—status signed —integer—format hexadecimal <CR>

[op s—ih <CR>]

Evaluate “position” once again:

<popup> evaluate SEL

Set the display format back to decimal:

option—status signed—integer—format decimal <CR>

[op s—id <CR>]

Query some other data types found in this program. Enter

evaluate moves <CR>

[e moves <CR>]

describe moves <CR>

[des moves <CR>]

in order to evaluate and describe “moves.” Note that “moves” is described as an array of

“auto struct move.” Describe the type “move.” Enter

describe move <CR>

[des move <CR>]

086000203 updates Licensed Material — Property of Data General Corporation B-5
093--000710—03

Graphical Interface Demos

Enter

describe sessions <CR>

[des sessions <CR>]

Note that “sessions” is described as an array of “auto struct ttt_board.” You can also try to

describe “ttt_board.” Enter

describe ttt_board <CR>

[des ttt_board <CR>]

Enter

address sessions[0].map <CR>

[ad sessions[0].map <CR>]

in order to get the starting address of the map field of sessions[0]. Enter

address sessions|0].x_pix <CR>

[ad sessions[0].x_pix <CR>

in order to get the starting address of the x_pix field of sessions[0]. Note that these two

addresses differ by eight, which is expected since the field ”map” is a union and therefore

allocates enough space for its largest member, a double. Enter

describe sessions[0].map <CR>

[des sessions[0].map <CR>]

in order to see a description of the individual members of “map.”

To release execution of the tictactoe program from under the control of Mxdb, detach from

the tictactoe process. Enter

detach <CR>

[det <CR>]

and you may then continue playing.

Note that all buttons, except “debug again,” are insensitive. This is because there is no

target process to debug. If you wish to reattach to the same tictactoe process, click on

“debug again.”

To exit from the tictactoe game, click on the “Quit” button from the tictactoe window.

B-6 Licensed Material ~ Property of Data General Corporation 086—000203 updates
093-000710-03

Graphical Interface Demos

FORTRAN—77 Demo

This demo highlights several interesting FORTRAN —77 features supported by Mxdb for

use with the Edinburgh Portable Compilers FORTRAN compiler. Features demonstrated

include:

* records (evaluating, describing, assigning to)

* array elision (using both single— and multi—dimensional arrays)

* COMMON blocks (plus overloaded COMMON blocks)

* C—interoperability with FORTRAN -—77 syntax

* EQUIVALENCE statements

* star—extents

To begin, enter

debug epcf77demo/records <CR>

[deb epcf77demo/records <CR>]

This program demonstrates the handling of records and the use of array elision. Scroll

down to line 62 in the source pane and

<click> on the line number of line 62

in order to set a breakpoint.

<click> continue

to begin execution. At the breakpoint, describe the variable “grad.” Enter

describe grad <CR>

[des grad <CR>]

It will be a record of structure “student_file.” Now evaluate this record to see the values of

its specific fields. Enter

evaluate grad <CR>

[eval grad <CR>]

Note that you can also describe and/or evaluate a field of a record as well. Enter

describe grad.address.city <CR>

[des grad.address.city <CR>]

to describe the sub—field “city” of the field “address” and enter

evaluate grad.address.city <CR>

[eval grad.address.city <CR>]

to display the value of this field.

086—000203 updates Licensed Material — Property of Data General Corporation B-7
093—000710-03

Graphical Interface Demos

‘Try changing the value of a field in the record. Enter

assign grad.address.street_addr ’1 Main Street? <CR>

[as grad.address.street_addr ’1 Main Street? <CR>]

to assign the new value and enter

evaluate grad <CR>

[eval grad <CR>]

to display the new contents of the record. Also try assigning a value to the variable

“dossier.” “dossier” is a large, empty array of structure “student_file.” Enter

evaluate dossier <CR>

[eval dossier <CR>]

to see this. Note that array elision is in effect here. The notation

(1..1000) =

is used to indicate that the first 1,000 adjacent records in “dossier” are the same and

therefore elided when displayed. Enter

assign dossier(500) grad <CR>

[as dossier(500) grad <CR>]

to assign “grad” to the 500th record of “dossier” and enter

evaluate dossier <CR>

[e dossier <CR>]

to see how “dossier” is now displayed, with (0..499) and (501..999) being elided.

Array elision can occur with multi— dimensional arrays as well. Enter

evaluate young_alumni <CR>

fe young alumni <CR>]

to see this. The notation

(1..10,1..250) =

is used to specify that all 1,000 records of this two—dimensional array are the same. Note

that evaluating such a large, complex array may take a few moments.

B-8 Licensed Material ~ Property of Data General Corporation 086—000203 updates
093-000710-03

Graphical Interface Demos

Now try assigning a value to an entry in this array. Enter

assign young alumni(5,125) grad <CR>

[as young_alumni(5,125) grad <CR>]

and then

evaluate young alumni <CR>

[eval young_alumni <CR>]

Entry (5,125) is uniquely different from the other entries in “young alumni” and therefore

causes the elision to occur in the following order:

(1..10,1..125)

(1..5,125)

(5,125)

(6..10,125)

(1..10,126..250)

To complete execution of the program,

<click> continue

Start debugging the next program. Enter

debug epcf77demo/c_inter <CR>

[deb epcf77demo/c_inter <CR>]

This program demonstrates the handling of common blocks and interoperability with GNU

C. Set a breakpoint at line 52 by entering

breakpoint 52 <CR>

[b 52 <CR>]

and

<click> continue

to start execution. Try to describe and evaluate the common blocks used in this program.

Enter

describe num_area <CR>

[des num_area <CR>]

Note that Mxdb realizes that “num_area” is acommon block and lists all the variables

found within that common block. Enter

evaluate num_area <CR>

[eval num_area <CR>]|

086-000203 updates Licensed Material — Property of Data General Corporation B-9
093-000710-—03

Graphical Interface Demos

Each variable found within the common block “num_area” is evaluated. Now describe

“com_area” by entering

describe com_area <CR>

[des com_area <CR>]

Note that besides a common block called “com_area,” there is variable called “com_area,”

which was described with the preceding command. Since the intent was to describe the

common block and not the variable, the

$$COMMON(common block)

construct must be used. This construct must be used explicitly to distinguish a common

block from a variable when overloading of their names occurs. It is not needed, but can be

used when overloading does not occur as well. Enter

describe $};COMMON(com_area) <CR>

[des $$;COMMON(com_area) <CR>]

to describe “com_area.”

Now describe a variable of a common block. When a variable found in a common block is

described, its common block is displayed as well. Enter

describe reall <CR>

[des reall <CR>]

to see this. Assignment to variables found in common blocks is possible also. Enter

assign reall —5.5 <CR>

[as reall —5.5 <CR>]

to assign a value to “reall” and

evaluate reall <CR>

[eval reall <CR>]

to display its new value.

B-1 0 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Graphical Interface Demos

Now

<click> step

in order to step into a C module. Enter

breakpoint 245 <CR>

[b 245 <CR>]

to set a breakpoint on line 245 and

<click> continue

to proceed. To show that the language is indeed C, enter

option—status <CR>

[op <CR>]

The fourth option line displays

Language C,

If necessary, use the vertical scroll bar of the message pane to scroll back up to where this

line 1s visible.

Describe variables and data types in this C module using FORTRAN syntax instead of C

syntax with the command processor. This feature is useful for FORTRAN programmers

who may call a routine written in C but would feel more comfortable in seeing commands

processed using FORTRAN rather than C syntax. Enter

option—status language fortran <CR>

[op 1f <CR>]

to change the language to FORTRAN. Note that this change remains in effect only up

until the next change of the debugger position. Note also that some C constructs cannot be

described or evaluated using FORTRAN syntax because parallel constructs do not exist in

FORTRAN-—77.

Enter

describe c_inter <CR>

[des c_inter <CR>]

to describe the procedure “c_inter” using FORTRAN syntax. Note that the parameters of

“c_inter” are described using FORTRAN syntax as well.

086-000203 updates Licensed Material —- Property of Data General Corporation B-1 1
093—-000710-03

Graphical Interface Demos

Enter

describe at <CR>

[des at <CR>]

to describe the variable “at.” It is described as a RECORD of “my_struct.”

Enter

describe my_struct <CR>

[des my_struct <CR>]

to describe this structure. To evaluate “at,” enter

evaluate at <CR>

[eval at <CR>]

Enter

describe anut <CR>

(des anut <CR>]

to describe the variable “anut.” It is described asa RECORD of “another_u.” Enter

describe another_u <CR>

[des another_u <CR>]

to describe this structure. To evaluate “anut,” enter

evaluate anut <CR>

[eval anut <CR>]

Enter

describe nums <CR>

[des nums <CR>]

evaluate nums <CR>

[eval nums <CR>]

to describe and evaluate the variable “nums.”

B-1 2 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Enter

describe a_float <CR>

[des a_ float <CR>]

evaluate a_ float <CR>

[eval a_float <CR>]

to describe and evaluate the variable “a_float.”

Enter

describe c int <CR>

[des c_int <CR>]

evaluate c_ int <CR>

[eval c_int <CR>]

to describe and evaluate “c_int.”

Enter

describe string <CR>

[des string <CR>]

evaluate string <CR>

[eval string <CR>]

to describe and evaluate the variable “string.”

To complete the execution of this program,

<click> continue

Start debugging the next program. Enter

debug epcf77demo/starext_eqv <CR>

[deb epcf77demo/starext_eqv <CR>]

Graphical Interface Demos

This program demonstrates the handling of equivalence statements and star—extents. Set

breakpoints at lines 19 and 20:

<click> on the line number for line 19

<click> on the line number for line 20

and

<click> continue

to reach the first breakpoint. Variables “i3” and “ca5x3” are equivalenced.

086—000203 updates Licensed Material — Property of Data General Corporation

093-000710—-03
B-13

Graphical Interface Demos

To display the address of “13,” first X—select the text “i3” on line 16 and

<popup> address SEL

Display the address of “ca5x3” as well. X—select the text “ca5x3” on line 16 and

<popup> address SEL

The addresses should be the same. Try assigning a value to “i3” and then evaluating “i3.”

Enter

assign 13(2) 5 <CR>

[as 13(2) 5 <CR>]

and

evaluate 13 <CR>

[eval 13 <CR>]

Assign a value to its equivalent. Enter

assign ca5x3(1) ’astring’ <CR>

[as ca5x3(1) ’astring’ <CR>]

Now evaluate “i3” once again. Enter

evaluate 13 <CR>

[eval 13 <CR>]

The value of “13” will have changed because both “i3” and “ca5x3” share the same address

space.

Now step into the subroutine “foo”:

<click> step

<click> next

Describe some of the parameters to the subroutine “foo” to see how star—extents used in

parameter declarations are handled. Enter

describe c <CR>

[desc <CR>]

66.99

The argument passed to “foo” as “c” was a character*3 c(5). Note that it was determined

that “c,” declared as a character*(*) c(*), was actually a character*3 c(*).

B-1 4 Licensed Material — Property of Data General Corporation 086—000203 updates
093-000710-03

Graphical Interface Demos

Change the value of this variable using the assignment command. Enter

assign c(1) ’Smxdb’ <CR>

[as c(1) ’Smxdb’ <CR>]

to assign a string to “c” and

evaluate c(1) (2:3) <CR>

[eval c(1) (2:3) <CR>]

to display a substring of “c.”

Now

<click> continue

Control returns to the main program. Step into the next call to subroutine “foo”:

<click> step

<click> next

Describe “c” again:

describe c <CR>

[des c <CR>]

This time, “c” is described as “character*7 c(*).”

To finish,

<click> continue

086—000203 updates Licensed Material — Property of Data General Corporation B-1 5
093-000710-03

Graphical Interface Demos

GreenHills C and FORTRAN-77 Demo

This demo has two parts. The first part uses a factorial calculation program to demonstrate

Green Hills language support (Green Hills C and Green Hills FORTRAN -—77) and user

extensibility (macro and button definitions for the dbx realm).

The second part uses a shortest path heuristic to demonstrate the following:

* setting/viewing events: breakpoints, watchpoints

* disabling/enabling/deleting events

* defining new buttons

* the stop—commands option

* the array elision option

Mxdb has both its regular command set and macros to make it mimic dbx. It is preferable

to have both up at the same time, in separate windows, so that one can see that Mxdb

implements a dbx superset. Since the dbx commands and buttons are implemented in Mxdb

macros, this demo also demonstrates the power of the Mxdb macro facility.

To start up another Mxdb with the dbx command set, invoke it from the directory

/usr/opt/mxdb.demos:

shell mxdb —g & <CR>

[sh mxdb —g & <CR>]

Let’s go through the first part of the demo for Green Hills comparing the mxdb and dbx

command sets:

db dbx

Start the first part of the demo for Green Hills:

debug ghdemo/factorial <CR> c—p:include /usr/opt/mxdb/ui/dbx/dbx.cp <CR>

[deb ghdemo/factorial <CR>] 29 99

debug ghdemo/factorial <CR>

[deb ghdemo/factorial <CR>]

B-1 6 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Graphical Interface Demos

Set a breakpoint and start execution:

<click> <click>

(on line number for line 10) (on line number for line 10)

<click> continue <click> run

Enter a number between 1 and 10 in each Mxdb execution window.

Determine what the stack frame looks like:

<click> walkback <click> where

Step into a C routine:

<click> step <click> step

<click> <click>

(on line number for line 9) (on line number for line 9)

<click> continue <click> cont

X—select the text “*number * *return_val” and then

<popup> evaluate SEL <click> print

<popup> describe SEL <click> whatis

To end the demo:

<click> terminate quit <CR>

[qui <CR>]

(this will also get rid of windows

associated with the dbx demo)

To start the second part of this demo, enter

debug ghdemo/spath <CR>

[deb ghdemo/spath <CR>]

Now, set breakpoints in the source code using two different methods. The first method is to

enter the break command with arguments. In the command pane, enter

breakpoint 83, name dist—mat <CR>

[b 83, n dist—mat <CR>]

The “name” argument keyword of the breakpoint command is used here in order to tag

this event explicitly instead of having it tagged by default with an integer.

086-—000203 updates Licensed Material — Property of Data General Corporation B-1 7
093-000710-03

Graphical Interface Demos

The second method is clicking on the line number of the associated source line. Scroll

down to line 98 and set a breakpoint:

<click> (on the line number for line 98)

Scroll down to line 103 and set another breakpoint:

<click> (on the line number for line 103)

To verify that both of these methods are successful in setting breakpoints,

<click> event status

In the message pane, you will see that three events have been set. They are all breakpoints.

The first is named “dist—mat,” the second is named “2,” and the third is named “3.”

Now to start execution of the program,

<click> continue

Switch to the Mxdb execution window. At the prompt “Input the # of nodes,” enter

5 <CR>

At the prompt for each pair of nodes, enter a number between 1 and 50 representing the

length between the pair and hit <CR>.

The breakpoint at line 83 will now have been reached. This breakpoint, “dist— mat,” was

placed in the middle of the printing of the distance matrix.

<click> continue

B-1 8 Licensed Material ~ Property of Data General Corporation 086—000203 updates
093-000710-03

Graphical interface Demos

If you look in the Mxdb execution window, you will see that this breakpoint allows one to

see the distance matrix being printed out row by row. Disable this event to finish the

printing of the distance matrix in full:

disable —events dist—mat <CR>

[di—e dist—mat <CR>]

and then

event—status <CR>

[e—-s <CR>]

to show that this breakpoint has only been disabled. The breakpoint at line 83 now has the

added phrase “disabled yes.” Note also that the breakpoint icon is still in place on line 83

because the breakpoint has been disabled only and not deleted. Enter

evaluate DIST <CR>

[eval DIST <CR>]

to evaluate DIST, the distance matrix. Note the unique display of the entries of this two

dimensional array. Adjacent entries which have the same values are elided when displayed.

For example the entries from DIST[6][0] to DIST[49][49] are all zero and therefore are

displayed as

This lends towards a much more concise and easily readable display. The displaying of

arrays is under the control of the boolean global option, “Elide_Arrays.” It defaults to

“yes.” Setting this option to “no” will print out each entry of the array, regardless if its

adjacent entry is the same or not. If you wish, try setting this option to “no.” However,

DIST is a 50 by 50 matrix, mostly filled with zeros. It will take about a minute to display this

array without elisions. Enter

option—status elide— arrays no <CR>

[op e—an <CR>]

and

evaluate DIST <CR>

[eval DIST <CR>]

to see the effect of having no elision of arrays.

To finish the printing of the distance matrix

<click> continue

086—000203 updates Licensed Material — Property of Data General Corporation B-1 9
093—000710—03

Graphical Interface Demos

At the prompt “Input start and destination nodes” in the Mxdb execution window, enter

45 <CR>

We can now re-enable the breakpoint if we wish by entering

enable—events dist—mat <CR>

[en dist—mat <CR>]

Entering

event—status <CR>

[e-s <CR>]

will show that this breakpoint has been re—enabled. Execution will have stopped at the

next breakpoint, on line 98.

‘Try using the global option “stop—commands” to print out the value of a variable whenever

this breakpoint is reached. Enter

option—status stop—commands {write LABEL|destination]=; eval

LABEL|destination]} <CR>

[op sto {wr LABEL|[destination]=; e LABEL|destination]} <CR>]

This will cause the series of commands between the {} to be executed each time an event

which stops execution is reached.

<click> continue

to see this. Set the stop_commands option back to null and try to create a button which will

perform a similar operation: selected after a stop in execution, it will print out an

X—selected expression, its value, and will then continue execution. Enter

option—status stop—commands {} <CR>

[op sto {} <CR>]

to reset the stop_commands option to its initial value. To create a new control panel

button, enter

define—button, <CR>

[def—b, <CR>]

At the “label ()= ” prompt, enter

*cont/print SEL’ <CR>

B-20 Licensed Material — Property of Data General Corporation 086-000203 updates
093-000710-03

Graphical Interface Demos

At the “commands () =” prompt, enter

{continue; write ‘{selection,required} =; evaluate ‘{selection,required} } <CR>

[{co; wri ‘{sel,re}=; ev ‘{sel,re}} <CR>]

At the “position (0) = ” prompt, enter

execute <CR>

[,e <CR>]

in order to execute this command, taking the defaults for all of the succeeding arguments.

A button labeled “cont/print SEV’ will be created in the StackButtons pane.

Now X-—select the text >LABEL[destination]” on line 96 and

<click> cont/print SEL

The value of LABEL[destination] will be printed and execution will continue until the next

breakpoint is reached at line 98.

<click> continue

<click> continue

Notice that the static position icon will also jump from line 98 to line 103 and remain there

because the breakpoint was placed inside of a for—loop. Delete the breakpoint at line 103.

The easiest way to delete this breakpoint is to <click> on the line number associated with

line 103, but try deleting the breakpoint using the delete—events command instead. First

execute an event—status command to get the name of the breakpoint set at line 103. Enter

event—status <CR>

[e—s <CR>]

The breakpoint should be event number 3. Enter

delete—event 3 <CR>

[de—e 3 <CR>]

in order to delete the breakpoint.

086-000203 updates Licensed Material — Property of Data General Corporation B-21
093-000710-03

Graphical Interface Demos

Enter

event—status <CR>

[e—s <CR>]

once again to verify that the breakpoint has been deleted.

<click> continue

Notice that the static position arrow no longer stops at line 103 and the breakpoint icon

disappears because the breakpoint has been deleted.

Try performing a stack trace to determine the values of the local variables at this point.

Enter

walkback, locals <CR>

[wal, 1 <CR>]

Notice that several of the variables are pointers or have fields that are pointers. Only the

starting addresses are displayed for these variables. This is because the

“Pointer_Dereference_Level” option defaults to 0. Change the value of this option to 1.

Enter

option —status pointer—dereference—level 1 <CR>

[op po 1 <CR>]

to do this. Now evaluate one of the local variables. Enter

evaluate LABEL <CR>

[eval LABEL <CR>]

Notice now that the pointer fields have now been dereferenced and their contents

displayed.

Click on the continue button until the minimum tour is shown in the Mxdb execution

window.

Try to debug this program again and this time use some watchpoints.

<click> debug again

in order to restart execution of the previous executable.

B-22 Licensed Material — Property of Data General Corporation 086—000203 updates
093~000710-03

Graphical Interface Demos

First delete all of the previous events which had been set,

- delete—events, all <CR>

[de—e,a <CR>]

set a breakpoint at line 96,

breakpoint 96 <CR>

[b 96 <CR>]

Start execution

<click> continue

and proceed to input data as before until the breakpoint at line 96 is reached.

Two interesting variables to have watchpoints on when running the shortest path heuristic

are MILEAGE and nextnode. A watchpoint can be placed using either the

watch—reference or watch—memory command. Try both of these methods.

Place a watchpoint on nextnode:

watch—reference nextnode <CR>

[w—r nextnode <CR>]

Place a watchpoint on the memory location associated with MILEAGE. Enter

watch—memory ‘{address MILEAGE} <CR>

[w—m ‘{address MILEAGE} <CR>]

The argument, ‘{address MILEAGF}, makes use of the command processor’s command

substitution facility. With this syntax, the result of the command, address MILEAGE, will

be substituted as the argument to the watch—memory command. This is equivalent to

“watch-reference MILEAGE.”

A break in execution will occur whenever these variables change. At these breaks, the

watch—print command can be used to print out the value of the watchpoints which have

been set.

<click> continue

Execution will stop at the first watchpoint on MILEAGE.

<click> watch— print

in order to see the value of all watchpoints, including the one for MILEAGE, at this point.

086-000203 updates Licensed Material — Property of Data General Corporation B-23
093—000710—03

Graphical Interface Demos

Click on the continue and watch — print buttons several more times until the minimum tour

is Shown in the Mxdb execution window. To terminate the program before then,

<click> terminate.

C++ Demo

This demo highlights Mxdb’s support of C+ + programs compiled with version 2.1 of the

AT&T Cfront compiler. Key features demonstrated include:

* single inheritance of classes

* static members

* multiple inheritance, virtual base classes

* overloaded functions and operators

* user-defined conversions

* anonymous unions

Before beginning, be reminded that a complete discussion of Mxdb’s C++ support is

available on-line. At any time during the demo session, you can reference the

“c+ + —language” help topic for additional information.

To begin, enter

deb cxxdemo/student_classes <CR>

This program demonstrates classes, objects and inheritance relationships. Set a breakpoint

at the last line in routine “main.”

b last <CR>

<click> continue

to begin execution. At the breakpoint, describe the object “mary.” Enter

des mary <CR>

It will be a local object of class type “Student.” Describe this type by entering

des Student <CR>

You will notice that type “Student” contains a member named “$vtbl.” This is a

compiler-generated member that contains information required to implement virtual

functions in C+ +. The Cfront compiler does not support the debug-time identification of

individual virtual functions in a class.

Now evaluate object “mary.” Enter

eval mary <CR>

B-24 Licensed Matenal — Property of Data General Corporation 086—000203 updates
093-000710-03

Graphical Interface Demos

Observe that the contents of the “$vtbl” member are not displayed. This does not prevent

you from directly evaluating it just like any other member. Enter

eval mary.$vtbl <CR>

Also note that the member functions are not displayed during object evaluation since they

do not have meaningful “values” in this context.

You can also describe and assign to data members. Enter

des mary.my_name <CR>

as mary.my_name “Janet” <CR>

eval mary.my_name <CR>

Mxdb relaxes the semantics of const type specifiers. This permits the successful assignment

to const data member Student::my_name in the above example.

Now let’s demonstrate Mxdb’s support of the C+ + feature of inheritance. Describe object

“egghead” by entering

des egghead <CR>

Note that “egghead” is a const local object of class type “GradStudent,” which can be

described by entering

des GradStudent <CR>

“GradStudent” is a derived class of class “Student.” The members defined in the base class

“Student” are also defined in class “GradStudent.” This can be demonstrated by evaluating

“egghead.” Enter

eval egghead <CR>

“GradStudent” is an unambiguous base class of class “GradStudent,” so member names in

“GradStudent” can be referenced without explicit scope name qualification. Thus the

following commands have the same effect:

eval egghead.my_name <CR>

eval egghead.Student::my_name <CR>

In C+ + it is illegal for a const object to invoke a non-const member function. Non-const

member functions may directly or indirectly modify the values of data members, which

would violate the const property specified for the object. Mxdb however, relaxes this

constraint as can be seen by entering:

eval egghead.thesis_advisor(“Dr. Brilliant”) <CR>

eval egghead.my_thesis_advisor <CR>

You may have noticed that function “thesis_advisor” is overloaded. Mxdb applies C+ +

matching rules to the arguments (if any) to an overloaded function to select the correct

function to invoke.

086-000203 updates Licensed Material — Property of Data General Corporation B-25
093-000710—03

Graphical Interface Demos

Mxdb supports assignment to class objects. If the object is of a class type defining a suitable

assignment operator function (operator=), that member function will be invoked to

perform the assignment. Otherwise, objects of the same class, or of unambiguous base

classes, may be assigned to the object. You can demonstrate the latter rule by entering

as mary egghead <CR>

eval mary <CR>

C++ permits a class type to define multiple base classes; this is referred to as multiple

inheritance. To see an example of multiple inheritance, first describe object “tricky.” Enter

des tricky <CR>

Observe that “tricky” is a local object of class type “NightGradStudent.” Describe class

“NightGradStudent:”

des NightGradStudent <CR>

Class type “NightGradStudent” inherits members from classes “GradStudent” and

“NightSchoolAttributes.” Object “tricky” contains a sub-object for each of the two base

classes, as can be seen by entering

eval tricky <CR>

It is possible to convert a derived class object to any unambiguous base class type. Enter

eval (Student) tricky <CR>

Mxdb allows the user to set breakpoints on member functions. As an example, set a

breakpoint on NightGradStudent::gpa by entering

b NightGradStudent::gpa <CR>

Now evaluate member function “gpa” for object “tricky”:

eval tricky.gpa() <CR>

When Mxdb hits the breakpoint, it will inform you that the process has stopped in an

invoked routine context. Mxdb is now positioned to member function “gpa”, which is

defined in class type “GradStudent.” At this scope you can evaluate unambiguous members

without qualification. Enter

eval my_thesis_advisor <CR>

Within member function scopes, the same result can be obtained by qualifying the member

name with the “this” object pointer. Enter

eval this— >my_thesis_advisor <CR>

B-26 Licensed Maternal - Property of Data General Corporation 086--000203 updates
093-000710—03

Graphical Interface Demos

“this” pointer qualification provides a way for you to evaluate the “GradStudent”

sub-object of object “tricky” even though the name “tricky” is not in scope. Enter

eval *this <CR>

It is legal in C+ + to convert a base class object, reference, or pointer to a derived class

object, reference, or pointer provided that the base class is unambiguous and the

conversion is explicit. This means that you can completely evaluate “tricky” as a

“NightGradStudent” object even though Mxdb is positioned to base class member function

“gpa.” Enter

eval *(NightGradStudent *) this <CR>

To complete invocation of member function “gpa” and return to the calling context,

<click> finish

Delete the breakpoint set on “NightGradStudent::gpa” by entering

del—ev 1 <CR>

You may have noticed that class “NightGradStudent” defines two static members. Static

members are shared by all objects of a class type. Static members can be referenced in

language expressions without respect to any particular class object, i.e. using only scope

qualifier syntax. The following commands have the same effect:

eval tricky.our_parking lot_number = 44 <CR>

eval NightGradStudent::our_parking lot_number = 44 <CR>

Now if you define a variable of class type “NightGradStudent” and assign to its

“our_parking lot_number” data member, the assignment will occur in object “tricky” as

well. Enter

def—var mystudent tricky <CR>

as mystudent.our_parking lot_number 55 <CR>

eval tricky.our_parking lot_number <CR>

A C++ class type can be defined that inherits the same base class type via more than one

inheritance path. An object of such a type will contain a separate base class subobject for

each occurrence of the multiply-inherited base class. However, C+ + provides a feature

(called virtual base classes) that permits a single occurrence of a base subobject to be

Shared along inheritance paths. To demonstrate this feature, begin by describing “pele”:

des pele <CR>

“pele” is a local class object of class “ForeignTransferStudent,” which can be described by

entering

des ForeignTransferStudent <CR>

086—000203 updates Licensed Material - Property of Data General Corporation B-27
093-000710—03

Graphical Interface Demos

As can be seen, “ForeignTransferStudent” has two base classes, “ForeignStudent” and

“TransferStudent.” Describe these two classes:

des ForeignStudent <CR>

des TransferStudent <CR>

Both of the base classes of class “ForeignTransferStudent” define class “Student” as a

virtual base class. This has the effect that the “Student” subobject in “pele” is shared along

the associated inheritance paths. Verify this by entering

eval pele <CR>

A class may inherit a base virtually along some inheritance paths and non-virtually along

others.

Ambiguities can occur in referencing a member name defined in more than one base class.

For example:

eval pele.gpa() <CR>

Mxdb cannot determine whether you intended to invoke “TransferStudent::gpa” or

“ForeignStudent::gpa.” In this case you must specify scope qualifier syntax to disambiguate

the reference. As an example, enter

eval pele. TransferStudent::gpa()

To demonstrate some other notable C+ + features supported by Mxdb, debug the following

program:

deb cxxdemo/SmallInt <CR>

This program highlights the use of user-defined conversions, overloading and anonymous

unions. Set a breakpoint at the last line in routine “main.”

b last <CR>

<click> continue

to begin execution. At the breakpoint, describe the object “sm_int1.” Enter

des sm_int!l <CR>

“sm_int1” is a local object of class type “SmallInt”, which can be described by entering

des SmallInt <CR>

Notice that class “SmallInt” defines two member functions called “operator=.” As

discussed previously, classes can define “operator=” to specify the semantics of assigning

expressions to objects of the class. In class “SmallInt”, an assignment operator controls the

assignment of integers to “SmallInt” objects. To see this, enter

as sm_intl 5 <CR>

eval sm_intl <CR>

B-28 Licensed Material — Property of Data General Corporation 086--000203 updates
093-0007 10-03

Graphical Interface Demos

An assignment operator also controls the assignment of “SmallInt” objects to “SmallInt”

objects. Try

des sm_int2 <CR>

eval sm_int2 <CR>

as sm_intl sm_int2 <CR>

eval sm_intl <CR>

Unlike the assignment operation for integers, the one for “SmallInt” objects would be legal

in C+ + even if no associated “operator=” member function had been defined. How can

you tell that Mxdb did the right thing and invoked the assigment operator on object

“sm_int2” in the above example? One way would be to set a breakpoint on the operator

and verify that the breakpoint is hit when you perform the assignment. Enter

b Smallint::operator= <CR>

“operator=” is an overloaded function in class “SmallInt”, so Mxdb displays the member

function interfaces for all of the possible matches and prompts you to select the desired

member function. Enter

2<CR>

to indicate you want to select the second choice. Now try another object-to-object

assignment:

des const_sm_int3 <CR>

eval const_sm_int3 <CR>

eval sm_int1 = const_sm_int3 <CR>

Mxdb stops in the context of the invoked member function. Now that you’re satisfied that

the function has been appropriately invoked, finish it and then verify the effect of the

assignment:

<click> finish

eval sm_intl <CR>

Delete the breakpoint set on “SmallInt::operator=” by entering

del—ev 1 <CR>

Mxdb supports global operator functions as well as class operator functions. To see this,

describe the global “operator==” function by entering

des ::operator== <CR>

You can logically compare two “SmallInt” objects with this operator function.As an

example, enter

eval sm_intl == sm_intl <CR>

086-—000203 updates Licensed Material — Property of Data General Corporation B-29
093—000710-03

Graphical Interface Demos

Operator functions are indeed functions, so nothing prohibits you from invoking them just

like non-operator functions. For instance, you can try:

eval ::operator==(sm_int2,const_sm_int3) <CR>

In addition to their utility in defining the semantics of unary and binary operators for class

operands, operator functions can be used to define the semantics of type conversion

between objects and values of other types. Along with conversion constructors, these

conversion functions make it possible to implicitly (or explicitly) convert objects to and

from other types. Class “SmallInt” defines an operator conversion function, which can be

described by entering

des SmallInt::operator int <CR>

This member function converts a “SmallInt” object to its associated integer value. Try these

varying explicit and implicit uses of this operator function:

eval (int) sm_intl <CR>

eval (char) sm_int] <CR>

eval int(const_sm_int3) <CR>

des a <CR>

eval a = sm _int2 <CR>

eval sm_intl + sm_intl <CR>

Ambiguities can occur between two or more user-defined conversions, or between

user-defined conversions and builtin conversions. In these cases Mxdb reports the problem

and identifies conflicting user-defined conversions. Here’s an example of an ambiguity

between the global “operator==” function and the builtin “==” operator:

eval sm_intl == 4 <CR>

It is possible to recast the syntax in the above example to force one or the other of the

possible interpretations. These next evaluations take decidedly different routes to effect

the comparison:

eval ((int) sm_intl) == 4<CR>

eval ::operator==(sm_int1,4) <CR>

The second example makes use of the implicit conversion of integers to “SmallInt” objects

via a conversion constructor defined by class “SmallInt.”

The last Mxdb-supported C++ feature to be demonstrated is anonymous unions, which

are unnamed objects containing only data members. Anonymous union members share the

same address, but otherwise are used like ordinary (nonmember) variables. The “SmallInt”

program defines an anonymous union containing members “a” and “b.” Enter

des a <CR>

eval &a <CR>

evala <CR>

des b <CR>

address b <CR>

eval b <CR>

B-30 Licensed Material — Property of Data General Corporation 086-—000203 updates
093-000710-03

Graphical interface Demos

To verify that members “a” and “b” share the same data, enter

asa9 <CR>

eval b <CR>

Congratulations, you have successfully completed the Mxdb C+ + demo!

End of Appendix

086-000203 updates Licensed Material — Property of Data General Corporation B-31
093-000710—03

