
@y Data General

Customer Documentation

Programming with TCP/IP on the

DG/UXTM System

A ViiO N®
PRODUCT LINE

Programming with TCP/IP on

the DG/UXTM System

093-701024-02

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

. Ordering No. 093-701024

Copyright © Data General Corporation, 1988, 1990, 1991

Unpublished —all rights reserved under the copyright laws of the United States

Printed in the United States of America

Revision 02, June 1991

Licensed material—Property of copyright holders

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S);

AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN

PART NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes in specifications and other information

contained in this document without prior notice, and the reader should in all cases determine whether any

such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS

AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND
CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST

SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT

INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED
HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE

RISE TO ANY LIABILITY OF DGC WHATSOEVER. :

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION
CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN

OF THE POSSIBILITY OF SUCH DAMAGES.

All software is made available solely pursuant to the terms and conditions of the applicable license

agreement which governs its use. |

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software

clause at [FAR] 5a2.227-7013 (May 1987).

DATA GENERAL CORPORATION
4400 Computer Drive

Westboro, MA 01580

AVHON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,
ECLIPSE MV/8000, PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General

Corporation. CEO Connection, CEO Connection/LAN, DASHER/One, DASHER/286, DASHER/386,
DASHER/LN, DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400,
ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/7800, ECLIPSE MV/10000,
ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/40000, microECLIPSE,
microMV, MV/UX, PC Liaison, RASS, SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4,
UNITE, and XODIAC are trademarks of Data General Corporation. |

UNIX and AT&T are U.S. registered trademarks of American Telephone & Telegraph Company.

NFS is a U.S. registered trademark of Sun Microsystems, Inc. ONC is a trademark of Syn Microsystems,

Inc. The Network Information Service (NIS) was formerly known as Sun Yellow Pages. The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered

trademark in the United Kingdom of British Telecommunications pic and may not be used without
permission. |

Portions of this material have been previously copyrighted by Regents of the University of California, 1980.

Programming With TCP/IP on the DG/UXTM System
093-701024-02 | |

Revision History: | Effective with:

Original Release November 1988 DG TCP/IP (DG/UXTM) Rel 4.0
First Revision May 1990 TCP/IP for AViiON® Systems 4.30

Second Revision June 1991 TCP/IP for AVHRON® Systems 5.4

A vertical bar (|) in the margin of a page indicates substantive technical change from the previous
revision. (The exception is Chapter 7, which contains entirely new material.)

Preface

This manual is intended to help you write networking applications that use

components of the TCP/IP package. Specifically, this manual describes how to use

system calls and library routines to access the Transmission Control Protocol (TCP), |
the User Datagram Protocol (UDP), and the Internet Protocol (IP). The set of calls

that you use to access these protocols is commonly called the socket family of system

calls. The library of routines that you use to access these protocols is called the |

Transport Layer Interface, or TLI for short.

Who Should Read This Manual?

This manual is for experienced applications programmers who want to develop

programs that use TCP/IP on the DG/UXTM operating system. This manual assumes

that you are thoroughly familiar with the C programming language, and that you

understand the programming environment provided by the UNIX® operating system.

How This Manual Is Organized

This manual contains eight chapters, two appendixes, a glossary, and a list of related

documents.

Chapter 1 Generally discusses how networking applications work. It

introduces the terms “interface” and “protocol” and the

notion of peer processes, and it also discusses

connection-oriented versus connectionless communication

and the client/server model of communication.

Chapter 2 Introduces the TCP/IP for AViiONTM Systems package

and generally describes how networking applications use

it. It also introduces sockets and the TLI.

Chapter 3 Tells how to. create and name sockets, communicate

through connection-oriented and connectionless sockets,

set socket options at the socket level, perform operations

on communication devices, multiplex input/output, and

close sockets.

Chapter 4 Discusses how to write programs that use TCP. It tells

how to set socket options at the transport level and

discusses the notion of urgent data. It also includes two

sample programs.

093-701024 Licensed material—property of copyright hoider(s) iil

How This Manual Is Organized

Chapter 5 Discusses how to write programs that use UDP. It also

includes two sample programs.

Chapter 6 Discusses how to write programs that use IP. It tells how

to set socket options at the IP level. It also includes a

sample program.

Chapter 7 Describes how to use the TLI to access TCP/IP. It

compares specific TLI routines to their system call

counterparts. It also includes some sample programs.

Chapter 8 Provides manual pages of interest to those who program

in the TCP/IP for AViiON Systems programming

environment.

Appendix A Lists the error messages that you could encounter when

you use socket system calls.

Appendix B Describes network library routines that aid in mapping

hostnames to network addresses, network names to

network numbers, protocol names to protocol numbers,

and service names to port numbers.

Glossary Provides a glossary of technical terms used in this
manual.

Related Documents _Lists the documents that provide information beyond the
scope of this manual.

How to Read this Manual

If you are an experienced programmer with no networking expertise, read the first

three chapters and then read additional chapters as you need. If you know something

about networking but are unfamiliar with TCP/IP, read Chapter 2. If you are

generally familiar with TCP/IP but are unfamiliar with sockets, read Chapter 3. If |

you know how to use sockets, but are unfamiliar with the TLI, read Chapter 7.

Otherwise, you can start reading at any point that is appropriate.

Readers, Please Note

Data General manuals use certain symbols and styles of type to indicate different

meanings. The Data General symbol and typeface conventions used in this manual

are defined in the following list. You should familiarize yourself with these

conventions before reading the manual. |

This manual also presumes the following meanings for the terms "command line,”

“format line,” and "syntax line." A command line is an example of a command string

that you should type verbatim; it is preceded by a system prompt and is followed by a

delimiter such as the curved arrow symbol for the New Line key. A format line

shows how to structure a command; it shows the variables that must be supplied and

‘ the available options. A syntax line is a fragment of program code that shows how to

use a particular routine; some syntax lines contain variables.

iV | Licensed material—property of copyright holder(s) 083-701024

Convention

Readers, Please Note

Meaning

boldface

constant

width/

monospace

italic

[optional]

$ and %

093-701024

In command lines and format lines: Indicates text (including

punctuation) that you type verbatim from your keyboard.

All DG/UX commands, pathnames, and names of files,
directories, and manual pages also use this typeface.

Represents a system response on your screen.

Syntax lines also use this font.

In format lines: Represents variables for which you supply

values; for example, the names of your directories and files,

your username and password, and possible arguments to

commands. In text: Indicates a term that is defined in the

manual’s glossary.

In format lines: These brackets surround an optional

argument. Don’t type the brackets; they only set off what is

optional. The brackets are in regular type and should not be

confused with the boldface brackets shown below.

In format lines: Indicates literal brackets that you should

type. These brackets are in boldface type and should not be

confused with the regular type brackets shown above.

In format lines and syntax lines: Means you can repeat the

preceding argument as many times as desired.

In command lines and other examples: Represent the system

command prompt symbols used for the Bourne and Korn

shells and the C shell, respectively. Note that your system

might use different symbols for the command prompts.

In command lines and other examples: Represents the New

Line key, which is the name of the key used to generate a new

line. (Note that on some keyboards this key might be called

Enter or Return instead of New Line.) Throughout this

manual, a space precedes the New Line symbol; this space is

used only to improve readability — you can ignore it.

In command lines and other examples: Angle brackets

distinguish a command sequence or a keystroke (such as

<Ctril-D>, <Esc>, and <3dw>) from surrounding text.

Note that these angle brackets are in regular type and that you

do not type them; there are, however, boldface versions of

Licensed material-—property of copyright hoider(s) V

Readers, Please Note

these symbols (described below) that you do type.

<,>,>> In text, command lines, and other examples: These boldface

symbols are redirection operators, used for redirecting input

and output. When they appear in boldface type, they are

literal characters that you should type.

Contacting Data General

Data General wants to assist you in any way it can to help you use its products.

Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form

(United States only) or contact your local Data General sales representative. A list of
related documents appears at the end of this manual with the TIPS order form.

For a complete list of AViiON® and DG/UXTM manuals, see the Guide to AViiON®
and DG/UXTM Documentation (069-701085). The on-line version of this manual found
in /usr/release/doc_guide contains the most current list.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system,

free telephone assistance is available with your hardware warranty and with most Data

General software service options. If you are within the United States or Canada,
contact the Data General Service Center by calling 1-800-DG-HELPS. Lines are

open from 8:00 a.m. to 5:00 p.m., your time, Monday through Friday. The center will

put you in touch with a member of Data General’s telephone assistance staff who can

answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General

sales representative for the appropriate telephone number.

Vi Licensed material—property of copyright holder(s) 093-701024

Joining Our Users Group

Please consider joining the largest independent organization of Data General users,

the North American Data General Users Group (NADGUG). In addition to making

valuable contacts, members receive FOCUS monthly magazine, a conference

discount, access to the Software Library and Electronic Bulletin Board, an annual

Member Directory, Regional and Special Interest Groups, and much more. For more

information about membership in the North American Data General Users Group,

call 1-800-877-4787 or 1-512-345-5316.

End of Preface

093-701024 Licensed material—property of copyright hoider(s) Vil

Contents

Chapter 1 — Introduction to Networking Applications

The Structure of a Networkcscscscssccssccccsssccscscsccscsccsccscsscsccscscescaseccsces 1-1

What Are Peer Processes?c.ceccccccccceccccccscscscsccccscscsscescesaccscesessscscoses 1-3

Understanding Connection-oriented versus Connectionless Communication 1-4

Understanding the Client/Server Modelsccscssscssccsccscscesscoscssscsscesceses 1-5

Chapter 2 — Introduction to TCP/IP, Sockets, and the TLI

What is TCP/IP for AViiON Systems?-ccceccsceccscscccsccsccccsccescescesoeoes 2-1

Introduction to the Network Interfacecccccscssccscsccsceccscscccsscscsseses 2-2

Introduction to the Kernel-level Protocolscscccssccecescccccsscesssccccseces 2-3

Introduction to the User-level Protocolssccecsssscssscscscscsccscecscsccscscscees 2-3

Introduction to the DG/UX System Socket Interfacessssssssscssscsssscees 2-4

Introduction to Socket Typesccsccscccccscccccccnsccscccccscscccccssscsccescsceces 2-5

How Sockets Provide Peer-to-peer Communicationsccsccescsccscsccscoves 2-6

Introduction to the Transport Layer Interfacecsscscsscscsscscsscsccccecsssscses 2-8

Chapter 3 — Programming with Sockets

Opening Socketscsssccccsscscccccccccecccsccssccscscsscncscesccsscssccscescescescosoes 3-1

Specifying a Socket’s Domain, Type, and Protocolcccccscscscsscesceseees 3-1

Binding Socketsssscsssessccscccccccccessccscscsccsccseccscscsscnscsccncsscescscssescssccces 3-3

Naming Sockets in the Intermet Domaincscssccccccssccccscsccssceccscssssescs 3-4

Using Wildcards in Socket Names: Implicit Bindingcccsscssssesssscecess 3-5

Using Network Library Routinescccecccssscsecccscsccscscsscscccsscscccnscscsoscces 3-6

Communicating Through Socketscsscsscccssscscscscssccsscsssccscsescesccescnscsees 3-7

How Clients and Servers Communicate Through Stream Socketsceseee 3-8

How Clients and Servers Communicate Through Datagram Sockets 3-10

Tramsferring Datascscscssscssscscsccscccecccscssccscscscccscsceccssosscscecescssssccocees 3-12

Using the write and read System Callscc-ccscsscssscscccccccscsccsscesscsoees 3-12

Using the writev and readv System Calllscsscscssssccccecccescscsceccescees 3-12

Using the send and recv System Callsc.cssccccsssscccccscsccccscccecssscsceses 3-14

Using the sendto and recvfrom System Callssccscsssscsssccsscssscccssecess 3-16

Using the sendmsg and recvmsg System Callssssccsssscsccssccccccesescses 3-17

Setting and Reading Socket Optionsccccsscsssecsccscssccscsscsccsccscsccessccesces 3-20

Using the ioctl System Callccsscccscccccccccecscsccccecsscssccssesccscesescsoecs 3-24

Input/Output Multiplexing with the select System Callssccsscsscsscsscsees 3-33

Closing Socketscscsccsccccssccccccscecsececccccccescccscceccsscescoscnscesccscesssscoecs 3-35

Chapter 4 — Programming With the Transmission Control

Protocol

Establishing a Connection Through Stream Socketssssssssssssssssssssseseseeees 4-1
What Server Processes DOccscccccccccccccccccccccsccccccccccccccccccccccccsocccocccscs 4-2

093-701024 Licensed material—property of copyright holder(s) x

Contents

Using the listen and accept System Callscccsscrcsrceccsssansuscosscsccesees 4-3

What Client Processes Doscsccceseccccsscnsccesscsceceses sccecsscccccscccecesesecs 4-4

Binding a Stream Socket to an Unspecified Portcssssccecsssescecececcscsoees 4-5

Using the connect System Callcsccsccsccscccesecesersscnssscescnscesonscnsconses 45

Setting and Reading Socket Options at the Transport Levelcseecssssseseees 48
Introduction to Urgent Data cae ecccccccccscccecesececgeccecceneeneepeseceencesaenuessoenacnees 4-9

Transmitting and Receiving Urgent Datacsccsesecsconeonees coscevcccccoceceoeces 4-9

Receiving Out-of-line and In-line Datasscsseseesescsensessscecescnsesooscsenes 4-10

Understanding the Subtleties of Urgent-Data Receptionssesesercsceesees 4-12

Using the SIGURG Signal and Process Groupsccescsssesseenesees asegsceesaces 4-13

Some Sample Programssssccsssccsesersccecesseereseeseasseeecees sesneeeses acassceesiens 4-13
The client.c Programccccccssscscccecsecseceseccceccsesssess a eccecccccccscccscceseosees 4-14

The serv.c Programccccccsscccsenecsccccceccnconsscnssescnscsscosscesconcescescacoees 4-15

Chapter 5 — Programming with the User Datagram Protocol

Communicating Through Datagram Socketsccccsscssrscssesecscccrsscrscsoeeoess 5-1

Using the connect System Call with Datagram Socketssccccccccsssscessrsceees 5-4

Broadcasting and Datagram Socketssccccssossessseseess seeccccsccccascscceccccceoes 3-4

Some Sample Programsscssscscccsssesccscccccsssccccscccsscesoverceesccesoeecsssesscosees 5-6

The are_you_there.c Programcccscsssccsssesesenaees ssceccccccccesccenccsenscccsccreseees SO

The i_am_here.c Programsccccccccccscsccevevecsceeees cerecccccsceresceneceneccvccccese 5-8

Chapter 6 — Programming with the Internet Protocoi and Internet
Control Message Protocol

Creating Raw Sockets for the Internet Protocolc.cscccssssscsorcsssececserecscees 6-1

Communicating Through IPccccccccscsescssccssccccercesesccens scvescoee essececees 6-2

Setting and Reading Socket Options at the IP Level sseecssvess eeecccscccscees 6-4

Introduction to IP Message Formatsccsccccccccsccescccccccncsccsesccsccscscessecoecs 6-6

Specifying an IP Headercssssscsscsssssccssssscccccccsccscsccccoscsscccsessecccasesesens 6-6

Specifying an IP Header When Using ICMP nccceccccccescscsscsceasccssonscccescsccsococces 6-8
Introduction to ICMP Message Formatscccccccssesccccccnccscveccsecccnscssocsoees 6-9

Specifying an ICMP Message Headercceccoorcccesscccesees secsseccesccecceoeses 6-10
A Sample Program: pong.cccccccccccssccccccscccecccscoccees seecccccccescscsccccccccoess 6-12

Chapter 7 — Using the Transport Layer Interface to Access

TCP/IP

Opening a Communication Endpointccccescsersccccccscceccccoees secccees seecees 7-2

Allocating Data Structuressccccccccscsccccccecccccccccscscesecenccscceneces ecccccccsceces 7-5

Binding an Address to an Endpointcccccccccccecceccrscsceccersosesecsascesssosess 7-10

Listening for and Accepting a Connection Requestcccsccccsssresecscscecsessccors 7-13

Requesting 2 Commectioncccsccsscscsccsccscscscccscsccacesoseceses psecccccsescccesacs 7-17

Sending and Receiving Data over a Transport ComMectioncccccccccccoreecece 7-19
Sending Data with Connection-Oriented Service eecccsncecerscscecscccsscsess 7-19

Receiving Data with Connection-Oriented Servicecseccovses secessscsasceaces 7-20

Sending Data with Connectionless Servicecccsccccsscsecscereversceesccessess 7-22
Receiving Data with Connectionless Servicecccsccccssccscrcccssscscssscssccsees 7-23

Releasing a Transport Connectionccsccesconsscceressvensceescsesssssescscccccosees 7-24

Handling Errorsssscccscscsccscevcccescccsncecsccscccccccsceseesescnsnsesasensssesccseass 7-26
Opening, Using, and Closing a Commectioncccccsssessscsscenssencceccccssoscs ssesee 7-28

x Licensed material—property of copyright hoider(s) a 083-701024

Contents

Comparison of Sockets to TLI Routinessscesscsssseceessecesssenesecesssseceees 7-33

Compiling a Program to Use the TLI Library-.sesssecceseeseeosecesceceeesens 7-35

A TLI-Based Server Programsscccscsssccccscccecceccesccscssccecesceccesceeccens 7-35

A TLI-Based Client Programcscccccscccccccsccscccssceccescscssccccccrecsescsens 7-40

A Socket-Based Client Programcccccccccccccscsscssstcsceccsececcscecescsesceees 7-46

Chapter 8 — TCP/IP for AViiON Systems Manual Pages

IMtLO(6)esceccccesccccccscccccssccccecssceecseeeceseescnesceessseaeessssenesscenenssssssseseeeees 8-2

INEt(GF)ccsessecccesseccccscceccssscescssscccsccececseeccesscensssseeessssenesseseessnssesessasenes 8-5

IP(OP)sscssccccccssscovercccccscccsnccerececsceeecccceseeessanessesenesssssssessasssesserseeseoesees 8-6

]OOP(6)--...secsscerccscccccsscseccnsccceenssccenescessseeseeesesssscsseesssceessscoesessecesecseoes 8-7

TCP(GP)c-sccccccscsceccccscccccscncscccccnssscceessssasseassssseesssssesesesssceeasassesseseecesoes 8-8

UAP(GP)-ssscecceccssssccceccccccscssscccecssccceeesssosessscnsssscessecsesssessesesaressesesees 8-10

Appendix A — Error Messages

Appendix B — Using the Network Library Routines

Mapping Hostnames to Network Addresses00+ ccccccssssccccccecsccssscceesceess B-2
Mapping Network Names to Network Numbers.s.ssssssssscescsscsscoscscees woes B-4

Mapping Protocol Names to Protocol NumbE?Sssssesessssscssscrsscccssereceeees B-5

Mapping Service Names to Port Numbers scccccsccccccecscscsscsscscsccsccesess B-6

Using Additional Routinesccccccccsscssccccsccsccencscsesccnsccesccsccsessssenenss B-7

Glossary

index

Related Documents

Data General Software Manualscccccccccccccscescsssscsesccscccccscscessscccoss RD-1

Data General Hardware Manualsccccccccccccsccccccscsccccccccssccccccsseses RD-1

Request for Commentsccccccccccccccccccccccnscscsscsscescccsccscssssssascseces RD-2

093-701024 Licensed material—property of copyright hoider(s) xi

Tabie

3-1

3-2

3-3

35

37

3.9

6-1

6-2

6-3

6-5

7-1

7-2

8-1

A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

A-12

A-13

A-14

A-15

B-1

Tables

Constants for the Socket Type in the socket System Calls0cs00 3-2

Constants for the Protocol Type in the socket System Callcceees 3-2

Client/Server Communication Through Stream Socketsssscseees 3-8

Client/Server Communication Through Datagram Sockets sseeees 3-10

ioct! Commands Used with Terminals, Sockets, and Filesccsseees 3-25

ioct! Commands that Apply Only to Internet Sockets.cseseeees 3-26

ioctl Commands that Apply Only to Socketsccsccescsesesescccsseees 3-29

Fields of the ifreg Structureccccccccsccsccececcerescscscesecscerenesceecs 3-30

Fields of the ifconf Structureccccccccscssees a tcensesccssccesccesessacceesees 3-31

How Communication Begins with IP and ICMPcccsccccsccscreeecees 6-3

Elements in an Internet Datagram Headerccscccscccssececcsceccncees 6-7

Elements in the ICMP Message Headerccccscccsscsscccecccsceesees 6-10

Description of ICMP Messagesccccssssccecsssccsccescssscesonscsceseeees 6-11

Description of ICMP Repliesccccccccccsscssccccccccccccncseccscscsenees 6-12

Valid level-name Pairs for the opthdr Structureccscscceccscosecees 79

Comparison of Sockets and TLI Routinesccsssscsessecseccesseees 7-34

List of TCP/IP Manual Pages-seccccsssrcesescessssscssccreeersenseseosones 8-1

Error Messages from the socket System Callc.ccccssssevceseccscseees A-1

Error Messages from the setsockopt and getsockopt System Calls A-2

Error Messages from the bind System Callccccessscsssecsessoeee A-3

Error Messages from the shutdown System Callccsccccsessseceoes A-3

Error Messages from the connect System Callscscccscscecsecceees A-4

Error Messages from the listen System Callcccccsscsecosscoeeces A-5

Error Messages from the accept System Callccccccscecccscsccees . A-S

Error Messages from the send System Callsescesseccsees geecesenes A-6

Error Messages from the recv System Callsssscsssccscscsccsscsesess A-7

Error Messages from the sendto System Callccsesscscsccscsccececes A-8

Error Messages from the recvfrom System Callcs000 eveccsceceses A-8

Error Messages from the sendmsg System Callcccceccscescecees AS

Error Messages from the recvmsg System Callcccccccsccscesees AY

Error Messages from the readv System Callccceccsccsscsccceses A-10

Error Messages from the writev System Callsccscssccsscseeeees A-10

Routines for Byte-Swapping Network Addressescsse0 seccscesccecoees B-8

Licensed material—property of copyright holder(s) 093-701024

Figure

1-1

2-1

2-2

2-3

2-4

2-5

31

3-2

3.3

3-4

3.5

3.6

3-7

3-8

3.9

3-10

311

3-12

3-13

3-14

3-15

3-16

4-1

4-2

4-3

4-4

5-1

5-2

53

6-1

6-2

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-11

093-701024

Figures

OSI Seven-Layer Network Architecturecccsccsscsescssceccesccareees 1-2

TCP/IP for AViiON Systems Network Architecturecssssscseseees 2-2

TCP/IP Socket Interfaceccscsssoscscsscsvccscsccccccccccscscscccsccsccoscees 2-5

TCP/IP Process Diagramccsscssccsscescccsccsccscsccssecccscsscsccsscoscees 2-7

Implementation of the TLIccsccscsssscsccccccscecsccececccsccecscceceees 2-9

Communication Through the Transport Provider Interface 2-10

Syntax of the socket System Callscccsccsscccsceccscccscscesceseeeees 3-1

Syntax of the bind System Call in the Internet Domain000 3-3

Syntax of the write and read System Callscccccsscccerscsececeees 3-12

Syntax of the writev System Callcssscsscscsccccscccscecsscesceseres 3-13

Syntax of the readv System Callcssscsescccsccsccscecetereccecsceces 3-14

Syntax of the send System Callcsssccscccccccccscnscccccssscceesevees 3-14

Syntax of the recv System Callcsscccsccscscccccccccececesesceeeseees 3-15

Syntax of the sendto System Callscsscscsccescccscceccrecceccecees 3-16

Syntax of the recvfrom System Callcscccscsecccsccscccecsscceceecoees 3-16

Syntax of the sendmsg System Call:cececccccscecececccsccsccsscece 3-18

Syntax of the recvmsg System Callccccccscccecsccccecscceccsceeees 3-19

Syntax of the setsockopt and getsockopt System Callssee00 3-20

Syntax of the ioctl System Callcsssssccsccccccesecececscceceeecseees 3-24

Syntax of the select System Callscsscsccecscsccccsccccccsecceeccoees 3-33

Syntax of the close System Call-cescccscececccccccccecccececcceceoes 3-35

Syntax of the shutdown System Callcccccscsccsccccccccccccsccscocese 3-35

Syntax of the listen System Callcsccssscsccccccccccccecsccccccecceseees 43

Syntax of the accept System Callcccscscsccccccccccccececececececeees 4-3

Syntax of the connect System Callcccccecccccccccecccccecccecscsscees 4-6

Receiving In-Line Urgent Dataccccccececscsccecocoes ‘eeesscscccscscees 4-11

Syntax of the sendto System Callcccssscsssscccesccccccsccsvcsscsceeees 5-2

Syntax of the recvfrom System Call]ccccesccocccccccccccscccccececce 5-3

Sending a Broadcast Messagesceccsccccccccccccccscscccccccccccecsccecce 5-5

A Sample Internet Datagram Headerccccccccccccccccccccccececscece 6-6

A Sample ICMP Message.csccsscssssesccvscccsccccccccccccscccccccesececes 6-9

Syntax of the tLopen Routinecscsccccscscccccsccccsccccccccccccncesees 7-2

Syntax of the t_alloc Routimeccccscscsscscencccececcccccccececececocees 7-5

Syntax of the t_free Routimeccsccsscsscssccscscccccccescscccccsscocees 7-7

Sending an Internet Address Through netbuf-ccccccecscsccsceccees 7-8

Passing Protocol-Specific Options Through netbufsccesccsseees 7-9

Receiving Data Through netbufsccccsssccccccsccccsccscsccccccsseses PLO

Syntax of the t_bind Routinecscssccssscecscccsccccccscecccsccecoees 7-11

Syntax of the t_listen Routineccsccsscscsescncecccccsccncecccsecees 7-13

Syntax of the t_accept Routimecscccscsscoscsccccececscsccscccsccceees 7-14

Syntax of the t_connect Routinecccesecccscscecccscsccscececcccees 7-17

Syntax of the t_snd Routineccccecscecce cece ecsccccecccccccceccccccees 7-19

Licensed material—property of copyright holder(s) Xi

7-12

7-13

7-14

7-15

7-16

7-17

7-18

7-19

7-20

7-21

7-22

7-23

7-24

7-25

7-26

Xiv

Syntax of the trcv Routinecccccscceseccesccescecensceseees a eccscceeees 7-20

Syntax of the t_sndudata Routineccccsecececcsscesceereeccesseeceeees 7-23

Syntax of the t_rcvudata Routimecccecescescseserseccsenscscccnsssescseees 7-23

Syntax of the t.snddis Routinecccccccccccscscceccncseccnceessesssesecones 7-24

Syntax of the t_rcvdis Routinecccsccsccccseseccesesccssecenees osvcecceses 7-25

Syntax of the t_sndre] Routinecccsccsccsscceccescserecsscescsceeeseees 7-25

Syntax of the t_close Routinecesceseeees aecsacesccecescnccecesccescoscees 7-26

Syntax of the terror Routinecccccceccsescesscneccnserenssonsssceesensces 7-27

Syntax of the t_rcvuderr Routine nsencscncccessccececcscssssccescesees 7-27

Establishing a Passive Endpointcccccccsccecseccscscrscccccccconscsoresonss 7-28

Establishing an Active Endpointccccccssseseres esccecccscecescceessoseseses 7-29

Listening for a Conmectionsccccscsscsseccscesccnscseccnsccescsceesen sees 7-30

Opening a New Connectionccccccscscccssccsscesccccsssensscssccscscooees 7-31

Accepting the New Connectioncccccccccccsccceccnscnsscscereccceessoeees 7-32

Sending and Receiving Data Through the New Connection00 7-33

Licensed material—property of copyright hoider(s) 093-701024

Chapter 1

Introduction to Networking

Applications

This chapter generally describes how networking applications work. It introduces the

terms interface and protocol, and it discusses the notion of peer processes. It then

contrasts connection-oriented communication with connectionless communication.

Finally, the chapter describes the client/server model of communication.

Successful programming with TCP/IP on the DG/UX system requires a firm grasp of
the topics covered in this chapter. If you are already familiar with these topics, you

can proceed to Chapter 2, which introduces the TCP/IP package and sockets.

The Structure of a Network

A network consists of a group of hosts using special hardware and software to

communicate with one another. Networks can be complex. To help simplify them,

designers organize networks into layers. Usually, layers are set up hierarchically.

The number of layers and each layer’s function can vary from network to network. In

all networks, though, each layer provides services to the higher layers, and the higher

layers do not bother with the details of how the service is provided.

An interface consists of the types and forms of messages that each layer uses to

communicate with the layers above or below it. It defines the services that a layer

provides and the format of the data that a layer exchanges with its neighbors. A

protocol specifies how programs on different computers but at the same layer

communicate. As you will see as you progress through this chapter, the term

protocol has slightly different meanings depending on the context in which it is used.

The set of layers, interfaces, and protocols that govern communication is called a

network architecture.

When a designer decides how many layers to put in a network and what each layer

should do, she or he designs each layer so that it performs well defined and well

understood functions. For example, one layer could be designed to regulate the flow

of messages to the next higher layer. Another may be created to compress data for

the next highest layer.

Usually the highest layer of an architecture contains user interface programs, which

allow access to the lower layers of network software. This highest layer could consist

of a simple set of command lines or a complex system of menus; the same set of

services would be provided with either implementation.

093-701024 Licensed material—property of copyright hoider(s) 1-1

The Structure of a Network

The lowest layer is always the physical layer, where two systems actually connect.

This layer could consist of wires or of microwaves; again, the same set of services

would be provided with either implementation.

Standards organizations, in an effort to standardize communications protocols, have

proposed a variety of specific network architectures. One of the most comprehensive

proposals put forward is a seven-layer network architecture created by the

International Standards Organization (ISO) called Open Systems Interconnection

(OSI). Figure 1-1 shows two hosts communicating through a network that conforms

to the OSI model.

Host A Host B

Layer 7 Protocol

Application t<« = Application

Layer 7/6 Layer 7/6

Interface interface
Layer 6 Protocol

Presentation je zi Presentation

Layer 6/5 Layer 6/5

interface interface
Layer 5 Protocol

Session [te >| Session

Layer 5/4 Layer 5/4

interface Interface
Layer 4 Protocol

Transport te ——=» Transport

Layer 4/3 Layer 4/3

Interface Interface
Layer 3 Protocol

Network -—~ Network

Layer 3/2 Layer 3/2

Interface Interface
Layer 2 Protocol

Data Link te zi Data Link

Layer 2/1 Layer 2/1

interface interface
Layer 1 Protocol

Physical |< =| Physical

Physical Connection

Figure 1-1 OS/ Seven-Layer Network Architecture

1-2 Licensed material—property of copyright holder(s) 083-701024

The Structure of a Network

When you write applications that use TCP/IP, you are most often concerned with

what happens at the data link, network, and transport layers. The data link layer

takes the wires or microwaves at the physical layer and transforms them into a

channel that appears free of transmission errors. The network layer manages host-to-

host communication. It is also concerned with the characteristics of the interface

between the data link and the host and with how packets are routed through the

network. The transport layer is responsible for data transmission between programs.

Data exchange between programs is described in more detail in the next section.

Regardless of the layer at which it exists, a network application uses interface and

protocol software to do work over a communication channel. To understand how this

happens requires understanding how peer processes work.

What Are Peer Processes?

A process is a program in execution. Network software operates on a simple

principle: a process at one layer on one host carries on a conversation with a process

at the same layer on another host. In this context, a protocol specifies the set of

rules that processes at comparable layers on local and remote systems use to

communicate. Processes communicating at corresponding layers on different hosts

are called peer processes.

The conversation that peer processes carry on is not a direct one. What really

happens is that data and control information are sent from the layer at which one

peer process exists down to the next layer, down to the lowest layer, across a physical

medium, to the lowest layer on the other host, up to the next layer, and then up to

the layer at which the other peer process exists. With cleanly defined interfaces and

well-defined protocols, these details need never concern a user. With a well-defined

programming interface, these details need never concern the network programmer

either, but the programmer benefits from generally understanding the process.

093-701024 Licensed material—property of copyright hoider(s) 1 “3

Understanding Connection-oriented versus Connectioniess Communication

Understanding Connection-oriented versus

Connectionless Communication

At this point, you should understand that network applications carry on what appear

to be direct conversations with peers but what are actually exchanges that involve

lower layers of the network architecture. This virtual conversation between peers

obeys the appropriate protocol for the layer. At the application interface, there are

two general types of services offered: connection-oriented and connectionless.

Using connection-oriented services is similar to using the telephone. For example, if

Greg wants to send Mike several messages, he could call Mike using the telephone

service. Assuming that Greg dials the correct telephone number and the telephone

lines are operable, a connection is established when Mike answers the phone. Greg’s

messages are delivered to Mike in the order that he sends them. This is considered a

"stream-oriented" service (not to be confused with STREAMS, a facility invented at

AT&T). Every now and then during the communication, Mike may indicate to Greg

that he has received the messages sent (for example, say “uh-huh"). This is

considered a "reliable" service.

Using connectionless services, on the other hand, is similar to using a postal service.
In the previous example, if Greg sends the messages through a series of letters, Greg

would first place Mike’s complete address on envelopes. He would place the

messages in the envelopes and release the letters to a postal service. This 1s

considered a “datagram-oriented" service. The postal service chosen delivers the

letters to Mike’s address, but does not guarantee that the letters will arrive in order,

nor that the letters will arrive at all. Though the chosen postal service is not as

reliable as the phone system, it does provide reasonable service. Unlike when a

connection is established, Greg has no way of knowing if and when the letters arrive.

This is considered an “unreliable” service.

In summary, connection-oriented services are reliable and stream-oriented.
Connectionless services are packet-oriented but “unreliable” because messages are

neither guaranteed to arrive in order nor guaranteed to arrive at all.

1 4 Licensed material--property of copyright holder(s) 093-701024

Understanding the Client/Server Model

Understanding the Client/Server Model

Communication cannot take place without some kind of underlying model to structure

events. That is, there has to be a mutually agreed upon assignment of roles (who goes

first?) and sequence of events (what do we say after hello?) for communication to

occur between two parties. The client/server model provides a way for two

communicating programs to relate to one another. The model describes how

connections are initiated and how communicating parties interact.

An idea central to the client/server model is that services are desired and available on
the network. Server programs provide these services and client programs use them.

A client program typically initiates the client/server relationship. A client has two

interfaces: one to the end user and one to the server. You would start a client

program when you want to use a service. Once started, the client program uses its

protocol software to seek out the server program and request the service.

A server program offers services to the network community. There is typically a

single server program on each host that provides a service to all clients that request it.

Like any service provider in the real world, server programs make themselves easy for

clients to find. Servers do the equivalent of listing their phone numbers in a public

directory by registering their service “numbers” in a place known to clients.

Typically, a server program runs as a daemon process started at boot time that

constantly listens for service requests. When such a daemon receives a service

request, it “wakes up,” quickly provides the client the requested service, and then

goes back to listening for more requests. Most of the time (especially if the service

provided is time consuming), a server daemon spawns a child to service the specific

request, so that it may go back to listen for more requests. Thus the server daemon

may service many requests at the same time. |

The client process and the server process are peers. They must use the same

communication conventions. In this context, a protocol specifies a formal and

exhaustive definition of the conventions required by peer processes.

093-701024 Licensed material—property of copyright holder(s) 1 a)

Understanding the Client/Server Model

If a system runs several server programs at one time, each listening for service

requests, the system could get clogged and performance could deteriorate. Rather

than run this risk, a system can run a single server program that listens for various

service requests and then passes the request to another server. For servers using

TCP/IP for AViiON Systems, this server program is called inetd. The inetd daemon

listens at a variety of ports specified in a configuration file. When a connection is

requested to a port on which inetd is listening, inetd executes the appropriate server .

program to service the client. Clients are unaware that an intermediary such as inetd

has played any part in the connection. For details about inetd(1M), see the manual

page.

With this background, you are equipped to learn about the protocols, interfaces, and

client and server programs provided by TCP/IP. The next chapter generally describes

the TCP/IP for AViiON Systems package and introduces its programming interface:

sockets. |

End of Chapter

1-6 Licensed material—property of copyright hokder(s) | 093-701024

| Chapter 2

Introduction to TCP/IP, Sockets,

and the TLI

The previous chapter generally described how networking applications work. This

chapter introduces the TCP/IP for AViiON Systems package and describes how

networking applications access it through sockets.

What is TCP/IP for AViiON Systems?
TCP/IP for AViiON Systems is a package of communications software that

implements the TCP/IP family of networking protocols on the DG/UX operating

system. The package consists of several kernel-level protocols, server programs,

administrative utilities, user commands, and user-level protocols.

The Defense Advanced Research Project Agency (DARPA) developed the Internet

protocols for the ARPANET network project. The University of California at

Berkeley developed the 4.2 Berkeley Software Distribution (BSD) release of the

UNIX® operating system based on the DARPA work. Data General developed the

TCP/IP for AViiON Systems software package from the Berkeley release,

substantially revising it to comply with the Defense Data Network (DDN)

specifications. Many BSD 4.3 features subsequently have been added to the TCP/IP

for AViiON Systems package.

093-701024 Licensed material—property of copyright hoider(s) 2-1

What is TCP/IP for AViiON Systems?

Figure 2-1 shows a representation of the TCP/IP for AViiON Systems network

architecture.

User
Protocols TFTP TELNET FTP SMTP

UDP TCP
Kernel

Protocols

IP/ICMP

Network Interface Network Interface

Figure 2-1 TCP/IP for AViiION Systems Network Architecture

The following sections discuss the software at each layer of this architecture.

Introduction to the Network Interface

At the lowest layer are network interfaces. They prepare IP traffic for transmission

onto physical media and receive traffic from the media to deliver it to IP. Typical

network interfaces include a device driver, which is kernel-level software that

manages the communications hardware installed in the computer. TCP/IP currently

uses network interfaces for use on IEEE 802.3/Ethernet media, IEEE 802.5/Token

Ring media, and LXE (Internet to X.25 Encapsulation) interfaces for use on X.25

networks (synchronous lines). For more information about X.25, see Setting Up and

Managing X.25 on the DG/UXTM System.

To prepare traffic for transmission, a network interface translates an IP address into

an address that can be used on the underlying physical medium. Typically, the IP

datagram is then encapsulated into a media-specific frame and sent to a physical

communications device for delivery to the physical network.

When receiving traffic, a network interface accepts frames from a communications

device and strips any network/media specific information from them. What remains

is an IP packet, which is then delivered to IP.

2-2 Licensed material--property of copyright hoider(s) 093-701024

What is TCP/IP for AViiON Systems?

Introduction to the Kernel-level Protocols

Kernel-level protocols are layered on top of the network interfaces. Kernel-level

protocols include network protocols and transport protocols.

The network protocols include the Internet Protocol (IP) and the Internet Control

Message Protocol (ICMP). IP is concerned only with host-to-host communication.

Its job is to get a datagram, which is a self-contained packet of data carrying its

source and destination address, to the next host on the route to the datagram’s final

destination. If an intermediate host is not available, IP examines routing information

that it keeps to find a new path through the network. Since host availability changes,

the packets that make up a complete message may have different routes and may end

up at the destination out of their original order. Some packets may be lost, garbled,

or duplicated in transmission.

ICMP handles error and control messages. Hosts use ICMP to send reports of

problems about datagrams to the source of the datagram. It also provides an echo

request/reply service to test whether a destination can be reached and is responding.

At the next layer up from the network protocols are two transport protocols, the

Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).
Transport protocols provide a mechanism that processes use to communicate.

TCP provides a reliable, full-duplex byte stream between communication endpoints.

Applications use this byte stream to move data, such as files and messages. More

specifically, TCP breaks a user’s data stream into packets and passes these packets to

IP. When applications use TCP, record boundaries may not be preserved.

When packets arrive at their destination, TCP reconstructs the data stream, checking

to ensure that the data is complete and correct before sending it to an application

program. If there is a problem, TCP causes the appropriate retransmissions.

Like TCP, UDP fits into the layered network architecture just above IP. UDP isa

simple protocol that provides a way to deliver datagrams between process endpoints.

It does not check that any datagrams were delivered or check for duplicate

datagrams. When applications use UDP, record boundaries are preserved.

introduction to the User-level Protocols

After the transport protocols come four user-level protocols: TFTP, TELNET, FIP,

and SMTP. They are user-level because programs that use them execute code in user

space. These protocols provide virtual terminal service, file transfer service, and

electronic mail service between systems.

User programs implement the user-level protocols. For example, the ftp program

implements the client side of the FTP protocol (the server side runs as ftpd). The
sendmail program implements the client side of the Simple Mail Transfer Protocol

(SMTP), which allows the transmission of mail messages (the server side runs as

smtp). For information about sendmail, see Managing TCP/IP on the DG/UXTM

System.

093-701024 Licensed material—property of copyright hoiderts) 2-3

Introduction to the DG/UX System Socket Interface

Introduction to the DG/UX System Socket

Interface

The basic building block for network communication through IP, TCP, and UDP is

the socket. Socket is a term that can be used three ways. The first use of the term is

conceptual: a socket is simply a communication endpoint that can be given a name.

The second use of the term refers to the set of system calls that a programmer can

use to access protocol software. When you refer to the socket interface, this is the

sense of the term implied. The socket family of system calls implement the interfaces

that open, name, transmit and receive data, and close communication endpoints. The

calls provide support for both connection-oriented (TCP) and connectionless (UDP,
IP) communication. The third use of the term refers to the socket system call itself.

You use this system call to open a communication endpoint.

This manual most often uses the term socket in the second way. The primary

purpose of this book is to describe how to use the socket family of system calls in

network programs.

For now, though, it is useful to explore the first use of the term socket. Sockets (as

communication endpoints) exist within communications domains. Domains are

abstractions that imply both a specific addressing structure and an associated set of

protocols. Sockets normally exchange data only with sockets in the same domain (it

may be possible to cross between communications domains, but only if some

translation process is performed).

Sockets in the DG/UX system support two communications domains: the Internet

domain for process-to-process communication between hosts that communicate with

one another using the DARPA standard communication protocols, such as IP, TCP,

and UDP, and the UNIX domain for process-to-process communication on the same

host. Naming sockets in the Internet domain is covered in Chapter 3 of this manual.

In the UNIX domain, socket names are UNIX pathnames; for example, a socket may

be named /tmp/foo. For more information about sockets in the UNIX domain, see

UNIX System V Release 4 Programmer's Guide: Networking Interfaces.

To open a socket, you use the socket(2) system call. This call returns a file

descriptor from which you can read and write data. This call is described in detail in

Chapter 3.

As you have read, the DG/UX system implements TCP/IP functionality in the kernel.

Network applications access this functionality through sockets in the Internet domain.

Sockets help to establish a path from an application program on a local system

through TCP/IP to an application program on a remote system. As Figure 2-2 shows,

programs that implement user-level protocols such as TFTP and user-written

applications access TCP/IP functionality in the kernel through the socket interface.

2-4 Licensed material—property of copyright hoider(s) 093-701024

Introduction to the DG/UX System Socket interface

User applications

TFIP | TELNET FTP

User

Kernel
| 1

I Sockets I
i t

UDP TCP

IP

Network Interfaces

Figure 2-2 TCP/IP Socket Interface

Introduction to Socket Types

Within each domain, sockets are grouped into types according to the communication

properties they provide. In general, processes communicate between sockets of the

same type only.

Three types of sockets are available: stream, datagram, and raw. In the Internet

domain, these types have specific uses:

Programs use stream sockets to access TCP protocol software. Stream sockets

send and receive data in continuous streams of bytes without logical breaks or

duplication. Data can pass through the socket in both directions simultaneously,

guaranteeing delivery in the original order in which the data is sent. Except for

two-way data flow, stream sockets provide an interface similar to that of pipes.

Programs use datagram sockets to access UDP protocol software. Datagram

sockets send data in and receive data from both directions simultaneously,

preserving logical breaks in the data, that is, data is delivered in complete

packets rather than streams of bytes. The packets may arrive out of order or

may fail to be delivered. Packets may also be duplicated (delivered more than

once). Datagram sockets closely model the facilities found in many

contemporary packet-switched networks.

093-701024 Licensed material—property of copyright hoider(s) 2-5

introduction to the DG/UX System Socket Interface

@ Raw sockets allow access to IP or ICMP. Raw sockets send information in

datagrams. Raw sockets are provided mainly for those interested in developing

new communication protocols, or for gaining access to some of the more esoteric

facilities of an existing protocol. Only superusers can use raw sockets.

How Sockets Provide Peer-to-peer Communication

As you have read, IP is concerned only with getting a datagram from one host to the

next. All hosts running TCP/IP understand how to handle IP datagrams. If there ts

not a direct path between hosts, routers accept packets from one physical network

and forward them to hosts or routers on another.

Getting datagrams from one host to another requires that every network interface has

a unique Internet address. An Internet address is a 32-bit number that represents a

network and a host. For a thorough discussion of Internet addressing, address

classes, and subnetting, see Managing TCP/IP on the DG/UXTM System.

Typically, applications require more than the host-to-host services provided by IP.

They must be able to associate incoming data with the appropriate process. TCP and

UDP provide such services by offering a set of ports within each host. A port is a

number associated with a communications endpoint. A single process can

communicate with several remote processes simultaneously. Each process can have

several ports, using each to communicate with the port of a different remote process.

Because each local TCP or UDP assigns port numbers independently, a particular

port number is not guaranteed to be unique across an entire network. For unique

identification, the port number is concatenated with the host’s Internet address.

2-6 Licensed material—property of copyright hoider(s) 093-701024

Introduction to the DG/UX System Socket interface

Figure 2-3 broadly illustrates the path that data follow through an implementation of

TCP/TP. |

Process fe 1-— Peerto-Peer___| | Process

Socket Socket

_ _User User

Kernel | | . ~ "Kernel —
UDP] [TCP le. 4 Endpoint-to-Endpoint | J tcp! Jupp

IP | __ Host-to-Host_ | IP

Network Network

interface(s) Interface(s)
Physical Connection

Local Host | Remote Host

Figure 2-3 TCP/IP Process Diagram

The Internet address identifies a network interface on which IP is running. Each

interface’s Internet address is unique across the Internet; each port number is unique

within the host. Thus, the combination of Internet address and port number is

unique for every host on the Internet. Because of its uniqueness, the concatenation

of Internet address and port number can effectively specify communication endpoints

through which one peer process can use a socket to communicate with another. That

is, the concatenation of address and port number can serve as the name of a

communication endpoint, or the socket name. One process can use several different

socket names at the same time.

To open, use, and discard sockets (communication endpoints), you use the socket

family of system calls. The next chapter describes these system calls in some detail.

093-701024 Licensed material—~property of copyright holder(s) 2-7

introduction to the Transport Layer Interface

Introduction to the Transport Layer

Interface

The Transport Layer Interface (TLI) is a user library developed by AT&T that uses

STREAMS mechanisms to access transport-level services in the kernel. The

interface to transport services is designed so that higher-layer applications can use

these services without having to deal with all of the details of the underlying transport

protocol. Thus, a programmer can write applications to access transport services

provided by TCP/IP, an ISO (International Standards Organization) protocol, or a
Netware protocol using a single access method, TLI.

Sockets and the TLI both provide programming interfaces to the transport layer of

the TCP/IP network architecture. Sockets provide a specific interface to TCP, UDP,
and IP. The TLI provides a generic interface to transport services through library

routines. TLI routines manipulate kernel-resident information that conforms to the

Transport Provider Interface (TPI), which is a message-based STREAMS protocol.

The TPI is designed to provide a general interface between any given transport

provider and any given transport user.

A transport provider is any set of routines that provide communications support at

the transport layer for a transport user. A transport user, which could be any

application program or session-layer software, obtains this support by issuing service

requests, such as one to transfer data over a connection. The transport provider

notifies the transport user of events such as the arrival of data on a connection.

2-8 Licensed material—property of copyright holder(s) 093-701024

Introduction to the Transport Layer Interface

To make use of the programming interface provided by the TLI, a transport user

links in the TLI library. When you execute a transport user, TLI routines build a

stream to access a TPI-compliant transport provider, which in turn accesses the

protocol- and device-specific STREAMS modules and drivers needed to provide the

transport service. Figure 24 shows this arrangement.

Transport User

TLI Library

User |
Stream HeadTM |

soem esses f esetnsesesee

Transport Provider

1 i

\ I

Device Driver

Figure 2-4 Implementation of the TLI

For more information about STREAMS, see the UNIX® System V Release 4

Programmer's Guide: STREAMS.

093-701024 Licensed materiai—-property of copyright hoider(s) : 2-9

introduction to the Transport Layer Interface

Chapter 1 of this manual discussed the client/server model of communication. This

same model applies to networking applications that use the TLI to access TCP/IP.

When a client application initiates communication with .a server, the messages that

pass between a transport user and a transport provider on either side conform to the

Transport Provider Interface (TPI). The communication that takes place between the

transport provider on a client system and the transport provider on a server conforms

to TCP or UDP. Figure 2-5 illustrates this point.

Client Application Server Application

Transport User Transport User

TLI Library TLI Library

User | |
Kernel Stream Head | Stream Head |

-
TCP or UDP

Transport Provider +----------- s| Transport Provider

iam on ae ae an ae ae ae oe oe om on

Figure 2-5 Communication Through the Transport Provider Interface

The TLI provides connection-oriented and connectionless services. These roughly

correspond to the kinds of service provided by stream-type sockets and datagram-type

sockets, respectively. As you learned in Chapter 1, connection-oriented services

allow you to transmit data over an established connection in a reliable way.

Connectionless services allows you to transmit data in self-contained units.

The sequence of events when a TLI-based client and a TLI-based server communicate

resemble the sequence of events when a socket-based client and a socket-based server

communicate. First, a local transport user (usually the client) must establish a

channel of communication with its local transport provider; this channel is called the

transport endpoint. Then, an address must be associated with the local endpoint.

With connection-oriented service, a connection now may be established between the

client and a server. Then, the client and server can transfer data to one another.

When data transfer is complete, the connection is closed. For connectionless service,

the client and server can transfer data immediately after the local transport endpoint

is established.

2-1 0 Licensed material—property of copyright holder(s) 093-701024

introduction to the Transport Layer Interface

The transport connection established is described in terms of the state of the
transport endpoints. A transport endpoint has a current state. The TLI

specifications tell how events cause a transport endpoint to change states. They also
describe the events that can occur when a transport endpoint is in a particular state.
For more information, see the UNIX® System V Release 4 Programmer’s Guide:
Networking Interfaces. |

Chapter 7 describes in detail how to use TLI routines to access TCP/IP.

End of Chapter

093-701024 Licensed material—property of copyright holder(s) 2-11

| Chapter 3

Programming with Sockets

The previous chapter introduced the different types of sockets and told how processes

use sockets to exchange information. This chapter provides an overview to

programming with sockets. It introduces the system calls that you use to open and

name sockets, set socket options, communicate through sockets, perform a variety of

operations on communications devices, multiplex input/output, and close sockets.

For more information about the socket system calls described in this and in later

chapters, refer to the manual pages that appear online and in the Programmer's

Reference for the DG/UXTM System.

Opening Sockets

You open a socket by issuing the socket(2) system call. Figure 3-1 shows the syntax

of the call:

#include <sys/types.h>

#include <sys/socket.h>

int socket_des;

socket_des = socket(domain, type, protocol);

Figure 3-1 Syntax of the socket System Call

The domain is the communications domain to use (UNIX or Internet); type is the

type of socket (stream, datagram, or raw); and protocol is the specific protocol in the
domain specified. The socket call returns a descriptor (a small integer) that you may

use in later system calls that operate on sockets.

Specifying a Socket’s Domain, Type, and Protocol

For the UNIX domain, specify the constant AF_UNIX as the first argument to the

socket call. For the Internet domain, specify the constant AF_INET. Domain

numbers begin with the prefix AF_, which stands for address family.

Using sockets in the UNIX domain is beyond the scope of this manual. For more

information about sockets in the UNIX domain, see UNIX System V Release 4

Programmer's Guide: Networking Interfaces.

093-701024 Licensed material—property of copyright hoider(s) 3-1

Opening Sockets

Specify a socket type as the second argument to the socket call with one of the

following constants: SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW. In the

Internet domain, these constants are associated with specific protocols, as Table 3-1

shows.

Table 3-1 Constants for the Socket Type in the socket System Call

Constant Protocol

SOCK_STREAM TCP

SOCK_DGRAM UCP

SOCK_RAW Ip

The file /usr/include/sys/socket.h contains the definitions for all the constants for a

socket’s domain and type.

Optionally, you can request a particular protocol as the third argument to the socket

call. If you specify a value of 0, the system selects a default protocol for the socket

type (for example, SOCK_STREAM sockets would use a protocol value of

IPPROTO_TCP, or 6). Here is a partial listing of accepted constants for the

protocol type. For a complete list, see /usr/include/netinet/in.h.

Table 3-2 Constants for the Protocol Type in the socket System Call

Constant Value Protocol

IPPROTO_TCP 6 TCP

IPPROTO_UDP 17 UDP

IPPROTO_RAW 255 P .

IPPROTO_LICMP 1 ICMP

For example, to open a stream socket in the Internet domain, you could use the

following call:

int socket_des;

socket_des = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (socket_des == -1)

{

}

This call opens a stream socket with TCP providing the underlying communication

support. Because IPPROTO_TCP is the default protocol for stream sockets, you

alternatively could specify a 0 as the third argument. Also, as the example shows,

you should set up a conditional statement to handle error conditions.

To opens a datagram socket, you could use the following call:

3-2 Licensed material—property of copyright hoider(s) 093-701024

Opening Sockets

int socket_des;

socket_des = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP) ;

if (socket _des == -1)

{

}

Here, we are requesting UDP to supply the protocol. Again, you should set up a

conditional statement to handle error conditions.

For a table of the error conditions that could occur when you use the socket call, see

Appendix A.

Binding Sockets

The socket opened by a socket call is simply a bookkeeping entry in a kernel table. In

this form, it cannot be used for Internet communication; it must first be assigned to a

specific Internet address and port number. As you read in the previous chapter, the

concatenation of Internet address and port number is often called the socket name.

For a given protocol, any given socket name is unique throughout the Internet, and

only one socket can be assigned a given name. In other words, the combination of

protocol, Internet address, and port number for a given socket uniquely identifies the

socket throughout the Internet.

The bind system call assigns a name to a socket. Figure 3-2 shows its syntax in the

Internet domain:

#include <netinet/in.h>

#include <sys/socket.h>

int socket_des;

struct sockaddr_in name;

socket_des = socket(AF_INET,SOCK_STREAM, 0);

bind(socket_des, &name, sizeof (name));

Figure 3-2 Syntax of the bind System Call in the Internet Domain

The socket_des is the file descriptor of the socket to which you are binding a name.

The interpretation of the name varies from one communication domain to another

(here, for a socket in the Internet domain, it is declared to be a structure of type

sockaddr_in). The next section discusses this point at length. The last argument

specifies the length of the name in bytes.

093-701024 Licensed materiai—property of copyright holderts) 3-3

Binding Sockets

Naming Sockets in the Internet Domain

In the Internet domain, socket names are contained in a structure of type

sockaddr_in, which is declared in the include file /usr/include/netinet/in.h. The

sockaddr_in structure contains the following fields:

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char Sin_zero [8];

};

The fields that make up sockaddr_in are as follows:

sin family Specifies the communications domain that the socket will use. To

indicate the Internet domain, the entry must be AF_INET.

sin_port This field specifies the port number. A value of 0 in this field

- means that the system will choose an unused port number. Port

numbers used for specific Internet functions are defined in

/usr/include/netinet/in.h and in services databases such as the

Network Information Service (NIS) and /etc/services.

sin_addr Specifies the Internet address portion of the socket name in a

structure called in_addr. This structure, which is defined in

/usr/include/netinet/in.h, lets you refer to Internet addresses either

as a 32-bit integer or as 4 different bytes of information. The

in_addr structure defines host Internet addresses as follows:

struct in_addr {

union {

struct { u_char s_bl,s_b2,s_b3,s_b4; } S_un_b;

struct { u_short s_wl,s_w2; } S_un_w;

u_long S_addr;

} S_un;
#define s_addr S_un.S_ addr

};

Here is an example of how you could fill the above structure:

address.sin_addr.s_addr= a<< 24 + b << 16 t+ c << 8 + d;

sin_zero [8] This field is used as padding to fill out the structure to match the

size of the general sockaddr structure. This field must have the

value 0.

For more information about Internet addressing, see Managing TCP/IP on the

DG/UXTM System.

3-4 Licensed material—property of copyright holders) 093-701024

Binding Sockets

Using Wildcards in Socket Names: Implicit Binding

Binding names to sockets in the Internet domain can be complex. Servers should be

able to accept connections from any network interface; they should not have to

explicitly specify the name of the interface each time a connection is accepted. To

allow servers to accept connections from anywhere, a wildcard address,

INADDR_ANY, is declared in the include file /usr/include/netinet/in.h.

When you specify an address as INADDR_ANY, the system interprets the address as

"any valid address." For example, to bind a specific port number to a socket, but

leave the local address unspecified, the code in the following example could be used:

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define MYPORT 5001

int socket_des;

struct sockaddr_in address;

address.sin_ family = AF_INET;

address.sin_addr.s_addr = INADDR_ANY;

address.sin_port = MYPORT;

bind(socket_des, &address, sizeof (address));

Sockets that have wildcard local addresses can receive messages directed to the

specified port number and messages addressed to any of the possible addresses that

have been assigned a host. For example, if a host is on networks 128.223 and

128.226, and you bind a socket as above, and then issue an accept call, the process

will be able to accept connection requests that arrive either from network 128.223 or

network 128.226. For the connect call, the address of the local interface chosen to

send data to a remote host will be used.

Notice that in the above code fragment, the constant MYPORT is defined to have a

value of 5001. If you define a specific port number in the code for a network
application, it clearly limits the usefulness of the code. Alternatively, we could have

used the getservbyname routine (described in the next section) to obtain a port

number.

We have seen that a server process usually wishes to specify only the port number

part of its socket’s Internet address. Typically, client processes are unconcerned

about the specifics of the local address to which they are bound other than that the

address is unique. In such cases, they want to use wildcard specifications not only for

the Internet address, but also for the port number. If the sin_port field of a

sockaddr_in field is set to zero, the bind call interprets the specification to mean:

“bind to any available port.”

Client processes can often avoid the bind operation entirely. If a connect or send

operation (both are described in subsequent sections) is attempted on an unbound

socket, the system will bind the socket to an available address and port before

proceeding with the requested operation. This is called implicit binding.

093-701024 Licensed materiat—property of copyright holder(s) 3-5

Using Network Library Routines

Using Network Library Routines

If you specify a single Internet address or port number in the code for a network

application, it clearly limits the usefulness of the code. A number of routines are

provided in the DG/UX system run-time libraries to aid in locating and constructing

names or addresses from tables or databases that contain name/address pairs. These

routines are helpful when you program with sockets. The include files for these

routines are located in /usr/include.

All of the network library routines are described at length in Appendix B. Three of

these routines are sufficiently useful to mention here: gethostbyname(3N),
gethostbyaddr(3N), and getservbyname(3N).

The gethostbyname(3N) routine takes a hostname and returns a pointer to a hostent

structure (see below). Since a host can have many addresses that have the same

name, gethostbyname(3N) returns the first matching entry in the hosts database. The

hosts database could be provided by the domain name system (DNS), the Network

Information Service (NIS), or by /etc/hosts. The gethostbyaddr (3N) routine maps

host addresses into this same hostent structure.

The hostname to network address mapping is represented by the hostent structure,

which contains the following fields:

struct hostent {

char th_name; /* official name of host */

char sth aliases; /7* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char *th addr list; /* list of address from name server */

#define h_addr h_addr_list[0] /* address, for backward compatibility */

};

The members of this structure are as follows:

h_name A pointer to the official name of the host.

h_aliases A pointer to a null-terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always AF_INET.

hlength The length, in bytes, of the address.

h_addr_list A pointer to the list of network address from the name server. Host

addresses are returned in network byte order.

The h_addr_list is a new member of the hostent structure. It was needed because of

widespread use of the domain name system (DNS), where one host may have a

number of addresses. Applications coded before widespread use of the DNS used

h_addr as a member of hostent. That member no longer exists, but is present as a

macro for backward source level compatibility.

When you invoke the getservbyname(3N) routine, you pass it a service name and a

protocol name, although you can specify NULL as the protocol name. If you specify

NULL as the protocol, the routine searches from the beginning of /etc/services until

3-6 Licensed materiat—property of copyright holders) 093-701024

Using Network Library Routines

it finds a matching service name or port number, or until it encounters the end of the

file. The routine maps the service name it finds to a servent structure, which is

defined as follows:

struct servent {

char *s name; 7* official protocol name */

char *%s aliases; /* alias list */

long S_port; /* port service resides at */

char *s proto; /* protocol to use */

);

The members of this structure are as follows:

s.name A pointer to the official name of the service.

s_aliases A pointer to a null-terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned

in network byte order (see Appendix B for a description of byte order).

s_proto A pointer to the name of the protocol to use when contacting the service.

Communicating Through Sockets
Once a socket is opened and bound, it can communicate with another socket. How

this happens depends on whether a process uses stream sockets or datagram sockets.

Only sockets of the same type and protocol may be connected, and then only if the

protocol is one that allows connections. A socket may be connected to at most one

other socket.

The following sections generally describe the sequence of events when a client

program and a server program communicate through a socket. For the details about

how a connection is established through stream sockets, see Chapter 4. For the

details about how a connection is established through datagram sockets, see Chapter

5.

093-701024 Licensed material—property of copyright hoider(s) 3-7

Communicating Through Sockets

How Clients and Servers Communicate Through Stream

Sockets

Table 3-3 shows a typical sequence of events when a client and server communicate

using stream sockets. Note that the procedures in the first column are invoked by the

client (a user starts a client program) and the procedures in the second column are
invoked by the server (the server starts at boot time).

Table 3-3 Client/Server Communication Through Stream Sockets

Client Server

1. s2=socket(AF_INET,SOCK_STREAM,0)

2. getservbyname(...)

3. bind(s2,...)

4, listen(s2,...)

5. sixsocket(AF_INET,SOCK_STREAM, 0)

6. gethostbyname(...)

7. getservbyname(...)

8. connect(sl,...)

9. s3 = accept(s2,...)

10. forkQ

11. write(s1,...) |

12. read(s3,...)

Table 3-3 summarizes the following sequence of events.

1. The server begins its initialization process by opening a socket, which is known to

the process by its descriptor, s2. Arguments to the socket call specify the socket

domain (Internet), the type of socket (stream), and the protocol to use (TCP is

the default protocol for stream-type sockets).

2. In the Internet domain, a number of well-defined services are associated with

reserved port numbers. (For example, the FTP file transfer service reserves TCP

port number 21.) Mappings between services and port numbers are specified in

services database such as the Network Information Service (NIS) or
/etc/services. The server uses getservbyname to read the services database;

getservbyname takes the name of a service and a protocol name as input, and

returns a servent structure that contains the reserved port number assigned to the

service.

3. The server binds an Internet address (INADDR_ANY) and port number (the
one returned by getservbyname) to the socket. The socket is identified to bind

by its descriptor, sZ.

3-8 Licensed material—property of copyright hoider(s) 093-701024

Communicating Through Sockets

4. The server issues a listen call on the socket that is bound to the reserved port.

This call does two things: it tells the system that the socket will be listening for

incoming requests for service through the reserved port, and it sets a limit on the

number of such requests that can be enqueued at the socket at any time.

(Requests that arrive when the queue is full are ignored.) The listen call is

described in detail in Chapter 4. The server has now finished its initialization

process; it is ready to accept requests for service from clients.

5. The client process begins its initialization process by opening a TCP stream

socket, which is known to the process by its descriptor, s1.

6. The client uses gethostbyname to map the server’s symbolic name to an Internet

address, which gethostbyname returns in a hostent structure. For details about

gethostbyname(3N), see "Using Network Library Routines” in this chapter and

the manual page.

7. The client process uses getservbyname to map the service name to its reserved

port number, just as the server did.

8. The client asks that the socket it opened (s1) be connected to name, which is the

Internet address and port to which the server’s socket, s2, is bound. The

connect call implicitly binds the client socket (s1) to any locally available Internet

address and port. The connect call is described in detail in Chapter 4.

9. The server process calls the accept routine, which will accept the connection

request at the head of the listen queue. (If the listen queue is empty, accept will

not return to the caller until a connection request arrives in the listen queue.)

The accept routine returns the accepted request in the form of a socket

descriptor, s3. This socket descriptor refers to a newly opened socket that has

been connected to the client socket, s1, from which the connection was

requested. The accept call can be issued at any time after the listen call has been

issued; it does not have to be synchronized with an incoming connection request.

The accept call is described in detail in the Chapter 4 of this manual.

10. Most servers are designed to execute a fork operation at this point, creating a

child process. The server’s child process inherits from its parent the socket that

accepted the connection from the client, s3. The child services the request from

the client at the other end of the socket. When service is complete, the child

process exits and ceases to exist. Meanwhile, the parent is free to service other

clients by executing more accept operations on socket s2 and spawning other

children to service the requests thus accepted. In short, the parent process runs

in a tight loop that accepts client requests and spawns a child for each one; each

child services the request for which it was opened and exits when it completes

service.

11. The client writes data into the socket to the server’s child. For more information

about the write system call, see “Transferring Data” later in this chapter. —

12. The server’s child reads data out of the socket from the client. For more

information about the read system call, see “Transferring Data” later in this

chapter.

093-701024 Licensed material—property of copyright hoider(s) 3-9

Communicating Through Sockets

The relationship between stream sockets is like the one that occurs between the two

parties in.a telephone call: once the connection has been set up, both parties can

send and receive data at will without thinking about how information actually reaches

the other party.

How Clients and Servers Communicate Through

Datagram Sockets

Table 3-4 shows how a typical client/server might begin communication with datagram

sockets. that the procedures in the first column are invoked by the client (a user

starts a client program) and the procedures in the second column are invoked by the

server (the server starts at boot time).

Table 3-4 Client/Server Communication Through Datagram Sockets

Client Server

getservbyname(...)

2. s2= .

socket(AF_INET,SOCK_DGRAM,0)

3. bind (s2,...)

4. gethostbyname(...)

5. getservbyname(...)

6. si= socket(AF_INET,SOCK_DGRAM,0)

7. bind(siI,...)

8. sendto(sl,...) or

sendmsg(sl,...)

9. | recvfrom(s2,...) Or

recymsg(s2,...)

Table 3-4 summarizes the following sequence of events:

1. In the Internet domain, a number of well-defined services are associated with

reserved port numbers. (For example, TFTP reserves UDP port number 69.)

Mappings between services and port numbers are specified in the file

/etc/services. A server begins its initialization process by using getservbyname

to read /etc/services; getservbyname takes the name of a service and a protocol

name as input and returns a servent structure that contains the reserved port

number assigned to the service.

2. The server opens a socket that is known to the process by its descriptor, s2.

Arguments to the socket call specify the socket domain (Internet), the type of

socket (datagram), and the protocol to use (UDP, which is the default protocol

for datagram-type sockets).

3-10 Licensed material—property of copyright holder(s) 093-701024

Communicating Through Sockets

3. The server binds an Internet address INADDR_ANY) and port number (the

one returned by getservbyname) to the socket. The socket is identified to bind

by its descriptor, s2. The server has now completed its initialization process; it is

ready to process requests for service from clients.

4. The client process begins its initialization process by using gethostbyname to map

the server’s symbolic name to an Internet address, which gethostbyname returns

in a hostent structure. For details about gethostbyname(3N), see the manual

page and Appendix B of this manual.

5. The client process uses getservbyname to map the service name to its reserved

port number, just as the server did.

6. The client opens a UDP datagram socket, which is known to the process by its

descriptor, s1.

7. The client performs a bind operation to assign the socket descriptor, s1, to any

available local Internet address and port number.

8. The client uses the sendto or sendmsg call to send a datagram from its socket,

sl, to the server’s socket, s2. For more information about the sendto and

sendmsg system calls, see "Transferring Data” later in this chapter.

9. The server process uses the recvfrom or recvmsg call to receive a datagram from

its socket, s2. Each datagram contains not only data, but also the address of the

socket from which it was sent. For more information about the recvfrom and

recvmsg system calls, see "Transferring Data” later in this chapter.

Client/server communication through datagram sockets differs from its stream socket

analog in some obvious ways: there are no listen, accept, or connect operations.

The relationship between datagram sockets is like an exchange of letters through the

mail: each datagram contains the address to which it is being sent, the address of its

sender (like the return address on a letter), and data. When a server process receives

a datagram, it acts on the data in the datagram and prepares a response datagram that

contains not only data but also the address of the client as it appeared in the original

datagram. .

093-701024 Licensed material—property of copyright holders) 3-11

Transferring Data

Transferring Data
Five pairs of system calls let you send and receive data: write(2) and read(2);
Writey(2) and readv(2); send(2) and recv(2); sendto(2) and recvfrom(2); and

sendmsg(2) and recvmsg(2). Typically, you use read and write; readv and writev;

and send and recv after you use a connect call. Conversely, you use sendto and

recvfrom; and sendmsg and recvmsg with a connectionless protocol such as UDP.

The following sections describe how to use these pairs of system calls. They tell

when it would be useful to use one pair instead of another.

Using the write and read System Calls

Whenever it is appropriate, sockets behave like UNIX files or devices, so you can use

traditional operations like write and read with them. Figure 3-3 shows the syntax of

the write and read system calls.

“int socket_des;
char buf[128];

n = write(socket_des, buf, sizeof (buf));

n = read(socket_des, buf, sizeof (buf));

Figure 3-3 Syntax of the write and read System Calls

Using the writev and readv System Calls

Use the writev and readv system calls when you want a process to write or read a

message without copying it into contiguous bytes. These two system calls use the iovec

structure, which contains a sequence of pointers to blocks of memory from which the

data should be read or into which the data should be stored.

The iovec structure looks like this:

struct iovec {

caddr t iov_base;

int iov_len;

};

3-1 2 Licensed material—property of copyright holder(s) 093-701024

Transferring Data

The members of this structure are as follows:

iov_base Pointer to the base address of an area in memory where data should be

placed.

iov_len The length of an area in memory where data should be placed.

Figure 3-4 shows a program fragment that illustrates the syntax of the the writev call.

#include<sys/types.h>

#include<sys/uio.h>

int sock_desc; /* Socket descriptor */

int retval; /* Return value from system call */

int iovent; /* Number of elements in the scatter/gather array */

/* Declare the data */

char out_strl{] = “now is the time”;
char out_str2[{] = "for all good persons”;
char out_str3[] = "to come to the aid";

char out_str4{] = “of their planet";

/* Declare the scatter/gather array */

struct iovec out_vector[4] =

{
{out_strl, sizeof(out_strl)},

{out_str2, sizeof(out_str2)},

{out_str3, sizeof(out_str3)]},

{out_str4, sizeof(out_str4) }

};

/* Assume socket is open and connected to peer */

/* Compute the number of elements in the scatter/gather array */

iovent = sizeof(out_vector)/sizeof(struct iovec);

/* Write contents of scatter/gather array to previously opened socket */

retval = writev(sock_desc, out_vector, iovent);

Figure 3-4 Syntax of the writev System Call

093-701024 Licensed material—property of copyright holder(s) 3-13

Transferring Data

Figure 3-5 shows a program fragment that illustrates the syntax of the the readv call.

#include<sys/types .h>

#include<sys/uio.h>

#define RECORDSIZE 255

int fildes; - /* Socket descriptor */
int retval; /* Return value from system call */

/* Declare the buffers for the incoming data */

char in_str1[RECORDSIZE} ;

char in_str2[RECORDSIZE] ;

char in_str3[RECORDSIZE] ;

char in_str4[RECORDSIZE] ;

/* Build the scatter/gather array that references the buffers */

struct iovec in_vector[4] =

{
{in_strl, sizeof(in_strl)],

{in_str2, sizeof(in_str2)},

{in_str3, sizeof(in_str3)]},

{in _str4, sizeof(in_str4)]}

};

/* Compute the number of elements in the scatter/gather array */

iovent = sizeof(in_vector)/sizeof(struct iovec);

/* Read contents of scatter/gather array from previously opened socket */

retval = readv(fildes, in_vector, iovent);

Figure 3-5 Syntax of the readv System Call

Using the send and recv System Calls

The send and recv system calls are similar to read and write, except that they offer an

extra flag argument, through which you can pass special options to manipulate data.

Figure 3-6 shows a program fragment that illustrates the syntax of the send call.

int i; /* Yoop counter */

int sock_desc; /* Socket descriptor */

int retcode; 7* Return code for system calls */

char sendbuf[BUPSIZE }; /* Data buffer */

int bufsize; /* Bytes of data in buffer */

/* Assume that socket has already been opened and connected to peer */

7/* Fill send buffer with binary data */

bufsize = 0;

for (i= 0; i < BUFSIZE; i++)

{
sendbuf[i}] = (unsigned char) i;

bufsize++;

}
retcode = send(sock_desc, sendbuf, bufsize, 0);

Figure 3-6 Syntax of the send System Call

3-14 Licensed material—~property of copyright holderts) 083-701024

Transferring Data

The first argument, sock_desc, is the descriptor for the opened and connected

socket. The second argument, sendbuf, specifies a data buffer through which

information is sent. The third argument, bufsize, specifies the size of the send

buffer. The flag argument passed is 0; no flags were used.

Figure 3-7 shows a program fragment that illustrates the syntax of the recv call.

#define BUFSIZ 1024

int sock_desc; /* Socket descriptor */

int bytes_recv; /* Value returned from recv system call */

char recvbuffer[BUFSIZ J; /* Array to hold receive buffer */

/* Assume that socket is already opened and connected to peer */

7* Read the server socket for the data */

bytes recv = recv(sock_desc, recvbuffer, sizeof(recvbuffer), 0);

Figure 3-7 Syntax of the recv System Call

In this fragment, the size of the buffer is calculated in the call (sizeof(recvbuffer)).

This fragment, like the fragment before it, passed 0 as the flag argument; no special
options were desired. Here is a list of the flags that you can use with send or recv:

MSG_OOB Send and receive urgent (out-of-band) data. Urgent data is a

feature specific to stream sockets. For more information on

urgent data, see the section “Introduction to Urgent Data" in

Chapter 4.

MSG_DONTROUTE Send data without routing packets. This option is currently
used only by the routing table management process. The casual

user is not usually interested in this option.

MSG_PEEK Look at data without reading. Users may want to preview data.

: When MSG_PEEK is specified with a recv call, any data

present is returned to the user. The data, however, is treated as

unread. Subsequent recv calls using this flag yield the same

data. The next read or recv call applied to the socket will

return the data previously previewed.

These options may be combined with the OR function. Here is an example:

n = recv(sock_desc, recvbuf, sizeof(recvbuf), (MSG_OOB | MSG_PEEK));

093-701024 Licensed material—property of copyright holder(s) 3-15

Transferring Data

Using the sendto and recvfrom System Calls

Use the sendto and recvfrom system calls to send a message through unconnected

sockets. Figure 3-8 shows the syntax for the sendto system call.

#include <sys/socket.h>

int retcode, socket_des;

char buf[(128];

struct sockaddr_in to;

int flags;

retcode = sendto(socket_des, buf, sizeof(buf), flags, sto, sizeof(to));

Figure 3-8 Syntax of the sendto System Call

Use the socket_des, buf, and flags parameters the same way as for the send and recv

system calls. The sizeof(buf) value provides the size of the buffer. The to value

provides the address of the intended recipient, while the sizeof(to) value provides the

size of the address.

When using an unreliable datagram interface, it is unlikely any errors will be reported

to the sender. However, if the local system recognizes undelivered messages, sendto

returns -1 and the global variable errno will contain an error number.

To receive messages on an unconnected datagram socket, use the recvfrom system

call. Figure 3-9 shows its syntax.

#include <sys/socket.h>

int socket_des, retcode;

char buf [128]

struct sockaddr_in from;

int fromlen, flags;

fromlen = sizeof (from);

retcode = recvfrom(socket_des, buf, sizeof(buf), flags, &from, &fromlen);

Figure 3-9 Syntax of the recvfrom System Call

The fromlen parameter is handled in a value-result fashion, initially containing the

size of the from buffer and changed upon return to reflect the size of the sockaddr_in

structure returned from the source of the datagram.

For more information about how to use the sendto and recvfrom system calls and for

sample programs that employ them, see Chapter 5.

3-1 6 Licensed material—property of copyright hoider(s) 093-701024

Trafisferring Data

Using the sendmsg and recvmsg System Calls

Use the sendmsg and recvmsg(2) calls when a long list of arguments required for

sendto or recvfrom makes the program inefficient or hard to read. Instead of a long

list of arguments, these system calls use the msghdr structure, which allows access to

non-contiguous buffers. The msghdr structure looks like this: |

struct msghdr {

struct sockaddr * msg_name ;

int msg_namelen ;

struct iovec * msg_iov;

int msg_iovlen;

caddr_t msg_accrights;

int msg_accrightslen;

};

The members of this structure are as follows:

msg_name Pointer to the address associated with the message. If you use |
sendmsg, this is the address of the origin of the message. If you |
use recvmsg, this is the address of the destination of the message.

msg_namelen The size of the address.

msg_iov A pointer to a structure of type iovec. For details about iovec

structures, see "Using the writev and readv System Calls.”

msg_iovien The number of elements in msg_iov.

msg_accrights § The access rights sent and received. (This field is ignored for
Internet domain sockets.)

msg_accrightslen The length of msg_accrights. (This field is ignored for Internet

domain sockets.)

093-701024 Licensed material—property of copyright hoider(s) 3-17

Transferring Data

The program fragment in Figure 3-10 uses the sendmsg system call.

#include<stdio.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<arpa/inet .h>

#include<errno.h>

int socket_des; /* Socket descriptor */

int retval; /* Return value */

struct sockaddr_in data_addr;

char out_strl[] = “now is the time”;

char out_str2{] = “for all good persons”;

char out_str3[] = "to come to the aid”;

char out_str4[] = “of their planet";

struct iovec out_vector[4] =

{
{out_strl, sizeof(out_strl)]},

{out_str2, sizeof(out_str2)]J,

{out_str3, sizeof (out_str3)],

{out_str4, sizeof (out_str4)}

};

struct msghdr out_header =

{
(struct sockaddr *) sdata_addr,

sizeof (struct sockaddr_in),

out_vector,

sizeof(out_vector) / sizeof (struct iovec),

(caddr_t) NULL,

0

};

/* Assume that socket has already been opened and connected to peer */

retval = sendmsg (socket_des, &out_header, 0);

Figure 3-10 Syntax of the sendmsg System Call

The last argument of the sendmsg call is flags. In the previous example, no flags

were passed.

3-18 Licensed material—property of copyright holder(s) 093-701024

Transferring Data

Figure 3-11 shows a program fragment that uses the recvmsg system call.

#include<stdio.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<sys/time.h>

#include<netinet/in.h>

#include<arpa/inet.h>

#include<errno.h>

#define BUFSIZ 512

int socket_des; /* Socket descriptor */

int retval; /7* Return value */

struct sockaddr_in data_addr;

char in_str1[BUFSI2Z];

char in_str2[BUFSI2];

char in_str3[BUFSI2Z];

char in_str4[BUFSI2Z];

struct iovec in_vector[4] =

{
{in_strl, sizeof(in_strl)]},

{in_str2, sizeof(in_str2)},

{in_str3, sizeof(in_str3)},

{in_str4, sizeof(in_str4) }

};

struct sockaddr_in from_addr;

struct msghdr in_header =

{
(struct sockaddr *) &from_addr,

sizeof (struct sockaddr_in),

in_vector,

sizeof(in_ vector) / sizeof (struct iovec),

(caddr_t) NULL,

0

};

/* Assume that socket has already been opened and connected to peer */

retval = recvmsg (sock_desc, &in_header, 0);

printf ("received (length = td): \n", retval);
printf (" s\n %s\n s\n ts\n",

in_strl, in_str2, in_str3, in_str4);

Figure 3-11 Syntax of the recvmsg System Call

As with sendmsg, the last argument of the recvmsg call is flags. In the previous

example, no flags were passed.

093-701024 Licensed material—property of copyright holders) 3-19

Setting and Reading Socket Options

Setting and Reading Socket Options

Sockets have options that can be adjusted after the socket has been opened. These

options can be set with the setsockopt(2) system call and read with the getsockopt(2)

call. Socket options are interpreted at different levels of the protocol stack (for

example the socket level or the transport level). The level at which the option should

be interpreted is set through an argument in the setsockopt call.

Figure 3-12 shows the syntax of the setsockopt and getsockopt system calls. For

more information about these system calls, see the appropriate manual page.

#include <sys/socket.h>

int socket_des setval getval;

int level;

int opiname;

char *optval;

int optlen;

int *optleng;

setval = setsockopt (socket _des, level, optname, optval, optien)

getval = getsockopt (socket_des, level, optname, optval, optleng)

Figure 3-12 Syntax of the setsockopt and getsockopt System Calls

The header file /usr/include/sys/socket.h contains definitions for socket level

options. The argument socket_des is a socket that has been opened with the socket

call. To manipulate options at the socket level, specify the level as SOL_.SOCKET.

Table 3-5 describes the options that you can specify for opiname. To manipulate

options at other levels, you must specify other values for level; these alternatives are

described in later chapters.

For setsockopt, use optval and optien to access option values. For getsockopt, use

optval and optlen to identify a buffer in which the value for the requested options are

to be returned. Specifically, optlen is a value-result parameter that initially contains
the size of the buffer pointed to by optvai and that is changed on return to indicate

the actual size of the value returned. The optname parameter and any specified

options are passed to the appropriate protocol module, where it gets interpreted.

The following socket options are recognized at the socket level. Except as noted, you

can set and examine each with the setsockopt and getsockopt system calls.

NOTE: Default values are supplied, but a well-written program always sets the
value of all the socket options it uses.

SO_LINGER optval is a pointer to struct linger.

optlen is sizeof (struct linger).

Default optval is Lonoff = 0.

Controls the action taken when unsent data is queued on a TCP

3-20 Licensed material—property of copyright holders) 083-701024

Setting and Reading Socket Options

socket and a close call is performed. The linger structure

consists of two fields: int Lonoff and int linger. When linger is

set by making |_onoff in the linger structure true (nonzero), the

close call will wait until all data has been delivered, or until the

number of seconds specified by linger in the linger structure

has been exceeded.

If linger is zero when lonoff is true (nonzero), unsent data is

discarded and the socket is immediately closed. If l_onoff is

false (0), the socket will linger until all data is delivered, or until

the connection with the peer is lost. If the size of the item

pointed to by optval is not sizeof(struct linger) but like Berkeley

4.2 implementations, the BSD 4.2 semantics are used. These

semantics make the optval a boolean switch. If the integer value

pointed to by optval is false (0), the socket is closed immediately.

If the value is true (nonzero), the socket lingers until all data is

delivered, or until the connection with the peer is lost. The

default action for SO_LINGER is to linger until all data is

delivered, or the connection with the peer is lost.

SO_DEBUG optval is a pointer to Boolean flag of type int; nonzero = set/true,

O = reset/false. |

optlen is 4.

Default optval is 0.

When set (nonzero), causes the underlying protocol modules to

collect debugging information. Currently, using this option has

little effect on the underlying protocol implementation.

SO_KEEPALIVE optval is a pointer to a Boolean flag of type int; nonzero =

set/true, 0 = reset/false.

optlen is 4.

Default optval is 0.

When set (nonzero), causes the periodic transmission of messages

on a connected socket to ensure that the connection remains

alive. Should the peer process fail to respond to the message

within a reasonable time, the connection is considered broken.

The user processes are notified with a SIGPIPE signal on the

next socket write or by end of file on the next socket read.

SO_DONTROUTE optval is a pointer to a Boolean flag of type int; nonzero =

set/true, 0 = reset/false.

optien is 4.

Default optval is 0.

When set (nonzero), outgoing messages bypass the standard

093-701024 Licensed material—property of copyright hoider(s) 3-21

Setting and Reading Socket Options

SO_BROADCAST

SO_REUSEADDR

SO_OOBINLINE

SO_SNDBUF

routing mechanisms and are delivered to the network specified

indicated by the network portion of the destination address.

optval is a pointer to a Boolean flag of type int; nonzero =

set/true, 0 = reset/false.

optlen is 4.

Default optval is 0.

When set (*optval is nonzero) the associated socket is permitted

to send broadcast datagrams on the socket. When reset/false (0),

any attempt to send broadcast datagrams results in an EPERM

error being returned. This option has meaning for datagram

sockets only.

optval is a pointer to a Boolean flag of type int; nonzero =

set/true, 0 = reset/false.

optlen is 4.

Default optval is 0.

When set (*optval is nonzero), the rules for binding addresses are

relaxed to allow local addresses to be reused. This puts the

burden of ensuring socket uniqueness on the process issuing this

socket option.

optval is a pointer to a Boolean flag of type int; nonzero =

set/true, 0 = reset/false.

optien is 4.

Default optval = 0.

When true (*optval is nonzero), any out-of-band (urgent) data will
be delivered to the process in sequence in the incoming data

stream. Setting this option makes the out-of-band data accessible

with read or recv calls without setting the MSG_OOB flag.

optval is a pointer to an int variable that contains the size of the

send buffer.

optien is 4.

There is no default optval; the value depends on the protocol.

The integer value pointed to by optval is used as the maximum

buffer capacity for outgoing traffic. The system may impose an

arbitrary upper bound; it returns ENOBUFS when passed an out-

of-range value.

Licensed material—property of copyright holder(s) 093-701024

SO_RCVBUF

SO_TYPE

SO_ERROR

093-701024

Setting and Reading Socket Options

optval is a pointer to an int variable that contains the size of the

receive buffer.

optlen is 4.

There is no default optval; the value depends on the protocol.

The integer value pointed to by optval is used as the maximum

buffer capacity for incoming traffic. The system may impose an

arbitrary upper bound; it returns ENOBUFS when passed an out-

of-range value.

optval is a pointer to an int variable that contains the socket type.

optien is 4.

There is no default optval; the value depends on socket type.

Used only with getsockopt(2) to return the type of socket, such

as SOCK_STREAM.

optval is a pointer to an int variable that contains the error

number.

optlen is 4.

There is no default optval; the value is set to the current socket

error.

Used only with getsockopt(2) to return any pending error on the
socket and to clear the error status.

Licensed material—property of copyright holder(s) 3-23

Setting and Reading Socket Options

The following example shows how to use the getsockopt system call to obtain the size

of the send buffer.

#include <stdio.h>

#include <errno.h>

#include <sys/socket.h>

int sock_desc; /* Socket descriptor */

int retval; 7* Return value from getsockopt system call */

char buf[{ BUFFERSIZE J; /* Array to contain send buffer */

int bufsize; /* Number of elements in send buffer */

/* Assume that socket is already open */

bufsize = sizeof(buf);

/* Get size of send buffer at the socket level with the SO_SNDBUF option */

retval = getsockopt(sock_desc, SOL_SOCKET, SO_SNDBUF, buf, &bufsize);

if(-l1 == retval)

{
fprintf("Cannot get socket option SO_SNDBUF errno %d",errno);

exit(l);

}

Using the ioctl System Call

The ioctl(2) system call performs a variety of information requests and control

operations on communications interfaces, protocol drivers, and other system-level

entities. Figure 3-13 shows the syntax of the ioctl(2) call.

#include <sys/ioctl.h>

int des;

int command;

char *arg;

int ioctl(des, command, arg)

Figure 3-13 Syntax of the ioct! System Call

The des is a valid, active descriptor. Specify a valid control value for for the

command argument. How you declare the arg depends on the command that you

pass; the specifics are covered later in the section.

3-24 Licensed material—property of copyright holder(s) 093-701024

Using the ioctl System Call

When you use the ioctl call on a socket, there are three kinds of device control

commands that you may specify for the command argument: those that you can use

with terminal devices, sockets, and regular files; those that you can use with Internet

sockets; and those that you can use with sockets. Table 3-5 lists the device control

commands that you can use with terminal devices, sockets, and regular files.

Table 3-5 ioctl Commands Used with Terminals, Sockets, and Files

Command argType Description

FIOASYNC int * Change the I/O mode of the socket.

The default I/O mode for a socket is

synchronous I/O mode. This means

that no special notifications are made

to the socket’s process or process

group when data is available to be

read. Use asynchronous I/O mode

when you want signals to indicate that

data is available to be read from a

socket. The process or process group

to which the SIGIO signal is sent may

be set by a previous invocation of the

ioctl system call using the

SIOCSPGRP command.

FIONBIO int * Set or clear nonblocking I/O mode on

the socket. By default, nonblocking

I/O mode is turned off. This means

that all socket calls for the socket do

not return to the user program until

the actions that they perform are

completed. When you choose

nonblocking I/O mode, the socket

system calls return as quickly as

possible, and do not wait for the

desired actions to complete. You can

then use the select system call to

determine status. The behavior of

each socket system call when you use

nonblocking I/O mode is described in

its manual page.

FIONREAD _eint * Retrieve number of bytes of data

available to be read on socket or other

device associated with descriptor.

093-701024 Licensed material—property of copyright holder(s) 3-25

Using the ioctl System Call

Table 3-6 lists the device control commands that apply only to Internet sockets.

Table 3-6 ioctl Commands that Apply Only to Internet Sockets

Command arg Type Description

SIOCATMARK

SIOCGIFADDR

SIOCSIFADDR

SIOCGIFBRDADDR

SIOCSIFBRDADDR

int *

struct ifreq *

struct ifreg *

struct ifreg *

struct ifreq *

Determine if TCP Urgent Data

buffered in socket has been read by

process.

Get the Internet address associated

with the network interface whose name

is specified in the ifr_name field of the

ifreq structure supplied to the call.

The ifreg structure is defined in

<net/if.h>. It is described later in

this section.

Set the Internet address associated

with the network interface whose name

is specified in the ifr_name field of the

ifreq structure supplied to the call.

The ifreq structure is defined in

<net/if.h>. It is described later in

this section.

Get the Internet broadcast address

associated with the network interface

whose name is specified in the

ifr_name field of the ifreq structure

supplied to the call. The ifreq

structure is defined in <net/if.h>. It

is described later in this section.

Set the Internet broadcast address

associated with the network interface

whose name is specified in the

ifr_ name field of the ifreq structure

supplied to the call. The ifreq

structure is defined in <net/if.h>. It

is described later in this section.

(continued)

Licensed material—property of copyright hoider(s) 093-701024

Using the idcti System Call

Table 3-6 ioctl Commands that Apply Only to Internet Sockets

Command arg Type Description

SIOCGIFCONF struct ifconf * Used to obtain information about all

network interfaces in a system. It

takes an ifconf structure (found in

<net/if.h>) as its argument. The

ifconf is described in detail later in this

section. The structure contains a

length field and a pointer to an array

of ifreq structures. You should

allocate an array of ifreq structures

and set the ifconf ifcu_req field to

point to the array you allocate. Set the

ifconf ifc_len field to the byte length of

the ifreq array.

This command returns a name

(ifr_name in the ifreq structure) and

address (ifr_ifru.ifru_addr in the ifreq

structure) for each network interface

configured in the system specified in

the ifreq structure. If an insufficient

number of ifreq elements are supplied,

all supplied elements are filled with

interface information, and the ifc_len

field is set to indicate that all available

space was used. If there are enough

elements to hold all of the network

interface information, the information

is returned and the ifc_len field is set

to the amount of space actually used.

SIOCGIFDSTADDR _ struct ifreq* | Get the Internet address associated

with the remote host on the point-to-

point network interface whose name is

specified in the ifr_name field of the

ifreq structure supplied to the call.

The ifreq structure is defined in

<net/if.h>.

Find out about a point-to-point

interface by using SIOCGIFFLAGS

(see below) and checking for

IFF_POINTOPOINT.

SIOCGIFDSTADDR on a non-point-

to-point interface returns EINVAL.

(continued)

093-701024 Licensed material—property of copyright hoider(s) 3-27

Using the ioctl System Call

Table 3-6 ioctl Commands that Apply Only to Internet Sockets

Command arg Type Description

SIOCSIFDSTADDR struct ifreq * Set the Internet address associated
with the remote host on the point-to-

point network interface whose name is

specified in the ifr_name field of the

ifreq structure supplied to the call.

The ifreq structure is defined in

<net/if.h>.

SIOCGIFFLAGS struct ifreq * Get interface flags associated with
| specific network interface whose name

is specified in the ifr_name field of the

ifreq structure supplied to the call.

The ifreq structure is defined in

<net/if.h>.

SIOCSIFFLAGS struct ifreq * Set interface flags associated with
specific network interface whose name

is specified in the ifr_name field of the

ifreq structure supplied to the call.

The ifreq structure is defined in

<net/if.h>.

SIOCGIFMETRIC struct ifreq* Get metric associated with specific

network interface whose name is

specified in the ifr_name field of the

ifreq structure supplied to the call.

The ifreq structure is defined in

<net/if.h>.

SIOCSIFMETRIC struct ifreq * Set metric associated with specific

network interface whose name is

specified in the ifr_name field of the

ifreq structure supplied to the call.

The ifreq structure is defined in

<net/if.h>.

(continued)

3-28 Licensed materiai—property of copyright holder(s) 093-701024

Using the ioctl System Call

Table 3-6 ioctl Commands that Apply Only to Internet Sockets

Command arg Type Description

SIOCGIFNETMASK _ struct ifreq* Obtain Internet network mask

associated with specific network

interface whose name is specified in

the ifr_name field of the ifreq

structure supplied to the call. The

ifreq structure is defined in

<net/if.h>.

SIOCSIFNETMASK _ struct ifreq* Set Internet network mask associated
with specific network interface whose

name is specified in the ifr_name field

of the ifreq structure supplied to the

call. The ifreq structure is defined in

<net/if.h>.

(concluded)

Finally, Table 3-7 lists the device control commands that apply only to sockets.

Table 3-7 ioctl Commands that Apply Only to Sockets

Command arg Type Description

SIOCGPGRP int * Retrieve ID of process/process group

that owns socket.

SIOCSPGRP int * Associate ownership of socket with

specific process/process group. By

default, the socket is not associated

with the process ID or process group

ID of the process that opened the

socket.

As Table 3-6 indicates, any ioctl call that uses SIOCGIFADDR, SIOCGIFDSTADDR,

SIOCGIFBRDADDR, SIOCGIFNETMASK, SIOCGIFFLAGS, or SIOCGIFMETRIC

as the command argument requires arg to be declared as an ifreq structure, as

follows:

struct ifreq *arg

093-701024 Licensed material—property of copyright hoider(s) 3°29

Using the ioctl System Call

Here is the definition of the ifreq structure:

typedef struct ifreq

{

char ifr_name [IFNAMSIZ];

- union

{

struct sockaddr ifru_addr;

struct sockaddr ifru_dstaddr;

struct sockaddr ifru_broadcast;

struct sockaddr ifru_mask;

unsigned short ifru_flags;

unsigned long ifru_metric;

unsigned long ifru_data;

} ifr_ifru;

} inet_ifreq_type;

Table 3-8 describes the fields that make up the ifreq structure:

Table 3-8 Fields of the ifreq Structure

Name Size Offset Description

ifr_name 16 0 interface name

ifr_ifru.ifru_addr.sa_family 2 16 address

ifr_ifru.ifru_addr.sa_data 14 18 data

ifr_ifru.ifru_dstaddr.sa_family 2 16 other end of p-to-p link

ifr_ifru.ifru_dstaddr.sa_data 14 18 data

ifr_ifru.ifru_broadaddr.sa_family 2 16 broadcast address

ifr_ifru.ifru_broadaddr.sa_data 14 18 . data

ifr_ifru.ifru_flags 2 16 flags

ifr_ifru.ifru_metric 4 16 metric

ifr_ifru.ifru_data 4 16 for use by interface

The ifr_name field contains an interface name that identifies the network interface
with which the ifreq structure is associated. The size of this field is the maximum size

of an interface name. Interface names are null-terminated ASCII strings; the null

byte is counted as part of the size of the name.

You can use several of the fields to provide information about a network interface
that characterizes it on a network supporting IP. The ifr_ifru.ifru_addr structure

specifies the Internet address. Use the ifr_ifru.ifru_dstaddr structure to provide

information about the destination address associated with a network interface. This

field has significance on those interfaces that provide a point-to-point interconnection.

Use the ifra_flags field to provide information on the state of a network interface by

means of interface flags.

3-30 Licensed material—property of copyright holder(s) 093-701024

Using the ioctl! System Call

Any ioctl call that uses SIOCGIFCONF as the command argument requires arg to be

declared as follows:

struct ifconf *arg

Here is a definition of the ifconf structure:

typedef struct ifconf

{

unsigned long ifc_len;

union

{

caddr_t ifcu_buf;

struct ifregq * ifcu_req;

}

ifc_ifcu;

} inet_ifconf_type;

Table 3-9 describes the fields that make up the ifconf structure.

Table 3-9 Fields of the ifconf Structure

Name Size Offset Description

ifc_len 4 0 Amount of space, in

bytes, left unmodified

in the array

referenced by the

ifc_ifcu.ifcu_req

field. |

ifc_icu.ifeu_buf 4 4

ife_ifcu.ifeu_req 4 4 References an array

of ifreq structures.

The ioctl call fills the

array with

information about

each interface

configured in the

system.

0393-701024 Licensed material—property of copyright hoider(s) 3-31

Using the ioctl System Call

The following example shows a program that uses ioctl on an inen0 network interface

to get the network mask. You can use a similar program to obtain information about

any local network interface.

extern int errno;

#include

#include

#include

#include

#include

#include

<sys/types.h>

<sys/socket .h>

<netinet/in.h>

<net/if .h>

<netdb.h>

<stdio.h>

main(arge, argv)

}

int arge;

char *argv[];

int s, ns, addrien, i;

char c, *cp;

struct sockaddr_in addr_base;

struct sockaddr_in *addr = saddr_base;

struct ifreq ifr;

struct sockaddr_in netmask;

if(arge '=1) {

fprintf(stderr, “Usage: serv \n");
exit (1);

addr_base.sin_port = 0;

addr_base.sin_family = AF_INET;

addr_base.sin_addr.s_addr = INADDR_ANY;

s = socket(AF_INET, SOCK_STREAM, 0);

if(s ==-1) [{

fprintf(stderr, “open failed with errno %d\n", errno);
exit(1);

}

strepy(ifr.ifr_name, “inen0");

if (ioctl(s, SIOCGIFNETMASK, &ifr) == -1) {

perror ("ioctl failed");
exit (1);

}

netmask = *((struct sockaddr_in *) &ifr.ifr_addr);

fprintf(stderr, "netmask %x \n", netmask.sin_addr.s_addr);
close(s);

For more information, see the ioctl(2) manual page.

3-32 Licensed material—property of copyright holder(s) 093-701024

Input/Output Multiplexing with the selec System Call

Input/Output Multiplexing with the select

System Call

The DG/UX system provides the ability to multiplex input/output requests among

multiple sockets and files. Use the select(2) call to check for activity on several file

descriptors at once. Figure 3-14 shows the syntax of the select system call.

int nfound, nfds, readfds, writefds, exceptfds;

struct timeval timeout;

nfound = select(nfds, &readfds, &writefds, &exceptfds, &timeout) ;

Figure 3-14 Syntax of the select System Cail

The select call takes three bit masks as arguments. These bit masks are as follows:

readfds File descriptors for reading data.

writefds File descriptors to which data is written.

exceptfds File descriptors that have an exceptional condition pending. For sockets,

this indicates the presence of urgent data in the stream.

Bit masks are used to store file descriptors. The select call watches these masks to

determine whether or not there is data to be read, whether there is a file descriptor

ready to accept data, or whether there are exceptions. Bit masks are created by or-

ing bits of the form "1 << fildes". The form "1 << fildes" allows you to shift the bits

in the mask to the left. That is, a descriptor fildes is selected if a 1 is present in the

file descriptor bit of the mask. The parameter nfds specifies the range of file

descriptors (that is, 1 plus the value of the largest descriptor) specified in a mask.

The parameter nfound contains the total number of descriptors select returns.

083-701024 Licensed material—property of copyright hoider(s) 3-33

Input/Output Multiplexing with the select System Cali

The following example shows how the select call works.

#include <stdio.h>

#include <time.h>.

int fdesc_1, fdesc_2; /* File descriptors from socket call */

int ibits; /* I/O masks for the select call */

int nfds; /* Number of file descriptors to check in select */

/* We have 2 file descriptors for which we are monitoring incoming traffic */

/7* Get the maximum number for the descriptors */

nfds = max(fdesc_1, fdesc_2) +1;

/* Create the mask for all the descriptors */

/* to check for data on input */

/* RESTRICTION: the value of fdesc cannot be bigger than 31 */

ibits = 0;

ibits |= (1 << fdesc_l);
ibits |= (1 << fdesc_2);

if (select (nfds, &ibits, NULL, NULL, NULL) == ~1) {

perror("Error in select");

exit(-1);

} else {

if (ibits & (1 << fdesce_1)) {

printf ("Data on the first socket \n");
eee

}
if (ibits & (1 << fdesc_2)) [{

printf ("Data on the second socket \n");

}

}

You can specify a timeout value if you want to limit the amount of time to wait for

activity. If timeout is set to 0, the selection takes the form of a poll, returning

immediately. If the last parameter is a null pointer, the selection will block

indefinitely. In this case, a return takes place only when a descriptor is selectable, or

when the caller receives a signal that interrupts the system call. select normally

returns the number of file descriptors selected. When the select call exceeds the

timeout limit, a value of 0 is returned.

The select call provides a synchronous multiplexing scheme. You can have
asynchronous notification of output completion, input availability, and exceptional

conditions by using the SIGIO signal.

3-34 Licensed material—property of copyright hoider(s) 093-701024

Ctosing Sockets

Closing Sockets

When a socket is no longer needed, you can discard it by applying a close(2) system
call to the descriptor. Figure 3-15 shows the syntax of the close call.

int socket_des;

close(socket_des);

Figure 3-15 Syntax of the close System Call

If you use close on a socket that promises reliable delivery (a stream socket), the

system continues to attempt to transfer undelivered data. The action of the close call
depends on the state of the SO_LLINGER option for that socket. If the option has not

been previously set, the close call suspends until all data currently written to a socket

is delivered or until the TCP connection is aborted. If the option has been set with a

linger timeout of zero, then the TCP connection is aborted and the close call returns

immediately. If the option has been set with a nonzero linger timeout, then all data

previously written to the socket are delivered to the TCP peer subject to the timeout

restriction. In this instance, close returns when all such data have been delivered or

when the linger timeout period expires. If the linger timeout period expires, close

returns a value of -1, and the errno value is ETIMEDOUT.

You can discard pending data prior to closing a socket with the shutdown(2) call,
whose syntax is shown in Figure 3-16.

int socket_des, how;

shutdown(socket_des, how);

Figure 3-16 Syntax of the shutdown System Call

The value of how specifies the action to take: 0 terminates data reception at the

socket, 1 terminates data transmission from the socket, and 2 terminates both

transmission and reception.

If you use shutdown to terminate reception, all data waiting to be read from the

socket is discarded. Any data that arrive later will also be discarded. If you issue a

read or recv call after terminating reception, the call will return immediately with a

transfer count of zero.

If you use shutdown to terminate transmission on a socket and subsequently try to

write or send to that socket, the request will return the EPIPE error. Furthermore, if

the socket has a connected peer, that peer will be told to expect no more incoming

data, and all read or recv calls at the peer’s end of the connection will return

immediately with a transfer count of zero.

End of Chapter

093-701024 Licensed material—property of copyright holder(s) 3-35

Chapter 4

Programming With the

Transmission Control Protocol

The previous chapter gave an overview to programming with sockets. This chapter

covers topics specific to programming with stream type sockets that communicate

through the Transmission Control Protocol (TCP). It describes the system calls that

you use to establish a connection between stream sockets. It tells how to set socket

options at the transport level. It discusses the notion of urgent data, and describes

how you transmit and receive urgent data. It also provides an example of client and

server programs using TCP.

For a thorough discussion of TCP, see Internet Request for Comments (RFC) 793

(Transmission Control Protocol). Also, see RFC 1122 (Requirements for Internet Hosts

-- Communication Layers) for requirements for host system implementations of TCP.

Establishing a Connection Through Stream

Sockets

You know from reading earlier chapters or from experience that TCP provides
reliable, stream-oriented, process-to-process service. You also know that the DG/UX

system implements TCP as functions in the kernel. You use stream sockets to

connect to and communicate with remote programs using TCP.

To initiate communication, your program must create a communication endpoint with

the socket(2) call (see "Creating Sockets" in Chapter 3). If your program initiates a

server process, it uses the bind(2) call to bind a name to the socket (see "Binding

Sockets” in Chapter 3).

Establishing a connection between stream sockets usually involves one process acting

as a client and the other.as a server. The server, when willing to offer its advertised

services, passively listens on its socket. It must be listening before the client tries to

connect. The client requests services from the server by initiating a connection to the

server’s socket. The following sections focus on how this happens through stream

sockets.

093-701024 Licensed material—property of copyright hoider(s) 4-1

Establishing a Connection Through Stream Sockets

What Server Processes Do

Server processes are started at boot time and run in the background waiting for

incoming connections. Each server has a well known port number. Clients use this

port to access the server.

To establish a connection and begin accepting data, a server program does the

following:

1.

8.

Uses getservbyname(3N) to look up its service definition. The service definition

is a data structure containing the name of the service, an alias list, a port

number, and the protocol the service uses (see Appendix A).

Uses socket(2) to create an interface for communicating across the network.

Uses bind(2) to associate a wildcard address to a socket.

Uses listen(2) to begin listening for incoming connections on the bound socket.

Uses accept(2) to accept an incoming connection.

Uses fork(2) to create a child process that uses the new socket returned by the
accept(2) call.

As the child process begins processing data, the parent process calls accept(2) to

service the next connection.

The server repeats steps 5 through 7 as needed.

The server’s data structure in the service definition is used in later portions of the
code to specify the port number on which the server listens for service requests. An

example of the code follows:

struct servent *server_pointer;

char name [128];

char protocol [16];

server pointer = getservbyname(name, protocol);

if (server_pointer == NULL) {

fprintf(stderr,"service %s not supported \n", name);

exit(1); |

}

The getservbyname call will fail if the service is not defined in /etc/services or in the

Network Information Service (NIS).

4-2 Licensed material—property of copyright hoider(s) 093-701024

Establishing a Connection Through Stream Sockets

Using the listen and accept System Calls

As pointed out earlier, after binding to its socket, a server must perform two steps to

receive a client’s connection: 1) listen for incoming requests and 2) accept a

connection if it is requested. The server performs these steps with the system calls

listen(2) and accept(2). In the Internet domain, you issue the listen call with the

syntax shown in Figure 4-1.

#include <sys/types.h>

#include <sys/socket.h>

int socket_des, backlog;

listen(socket_des, backlog);

Figure 4-1 Syntax of the listen System Call

The backlog specifies the maximum number of outstanding connections that can wait

for acceptance from the server process. When the queue is full, messages requesting

additional connections are ignored. As a result, a busy server has time to make room

in the queue while the client retries the connection. To prevent processes from

monopolizing system resources, the DG/UX system limits the backlog figure to no

more than SOMAXCONN connections on any one queue. SOMAXCONN is defined

in the <sys/socket.h> header file. The listen call does not block while waiting on a

connection.

Once a server is listening, it can accept a connection. In the Internet domain, you

issue the accept system call with the syntax shown in Figure 4-2.

#include <sys/types.h>

#include <sys/socket.h>

int socket_des, snew_des, fromlen;

struct sockaddr_in from;

fromlen = sizeof(from);

snew_des = accept(socket_des, &from, &fromlen);

Figure 4-2 Syntax of the accept System Call

When the server accepts a connection, the accept call returns a new descriptor and a

new socket. If you want to have the server identify its client, supply a buffer for the

client socket’s name through the from parameter. The value-result argument fromlen

is initialized by the server to indicate how much space is associated with the from

argument (the name of the client’s socket). The fromlen argument is modified on

return to reflect the true size of the name. If the client’s name is not important, you

can give the from and fromlen arguments a value of zero.

The accept call normally blocks. This means that the accept call does not return

until a connection is available or until the system call is interrupted by a signal to the

process. Furthermore, a process can indicate that it will accept connections from

only a specific peer. For details about how it can do this, see the description of the

socket option TCP_PEER_ADDRESS later in this chapter. The server process can

accept successive connections from more than one client.

093-701024 Licensed material—property of copyright holder(s) 4-3

Establishing a Connection Through Stream Sockets

The following example uses the listen and accept system calls:

#include <stdio.h>

#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

int sock_desc, new_sock; /* Two socket descriptors */

int retcode; /* Return code from system calls */

struct servent *service; /* Port number for server */

struct sockaddr_in sname, cname; /* Server and client socket names */

int cname_len = sizeof(cname) ; /* Size of client socket name */

sock_desc = socket(AF_INET,SOCK_STREAM,0); /* Open a socket */

if(-1 == sock_desc) {

fprintf(stderr,”"Cannot open socket, errno d\n" ,errno);
exit(1);

}

/* Get port number for the service we want from destination */

service = getservbyname("myservice", “tep");
if (NULL == service) [{

fprintf(stderr, "Cannot get port number from getservbyname\n");
exit(1l);

}

sname.sin family = AF_INET; _/* Set up socket name in the Internet domain */

sname.sin_ port = service->s_port; 7* Put port number for service in socket name */

sname.sin_addr.s_addr = INADDR_ANY; 7/* Use wildcard address for socket name */

7/7* Bind the socket for the connection */

retcode = bind(sock_desc, &sname, sizeof(sname));

if(-1 == retcode) {

fprintf(stderr,"Cannot bind, errno %d\n", errno);

exit(1);

}

/* Get into the listen state */

retcode = listen(sock_desc, 1);

if(0 != retcode) [

fprintf(stderr,"Cannot set socket to listen state, errno td\n", errno);

exit(1l);

}

/* Wait for a connection and return the first connection on the queue */

new_sock = accept(sock_desc, &cname, &cname_len);

if(-1 != retcode) {

fprintf(stderr,” Error in accept, errno %d\n",errno);
exit(1);

}

What Client Processes Do

When you invoke a client program, the client process usually initiates a connection by

doing the following:

1. Locating the service definition (port number of service) with the

getservbyname(3N) call (for details, see "Using the Network Library Routines” in

Chapter 3). |

Looking up the destination host with the gethostbyname(3N) call (again, see

“Using the Network Library Routines” in Chapter 3).

4-4 Licensed material—property of copyright holder(s) 093-701024

Establishing a Connection Through Stream Sockets

3. Create a socket for communicating across the network with the socket system

call.

4. Optionally, associate a name to the socket with the bind system call. If a name is

not associated with bind, TCP will choose and attach one when the connect call

is invoked.

5. Attempt to connect to the server with the connect system call.

Binding a Stream Socket to an Unspecified Port

When a client program uses the bind call to associate a name to a socket, it can leave

the local port unspecified (specified as zero). The DG/UX system will select an

appropriate port number for it. Here is an example.

address.sin_addr.s_addr = MYADDRESS;

address.sin_port = 0;

bind(socket_des, s&address, sizeof (address));

If you specify the local port, the value must meet two criteria: (1) it cannot be a port

numbered 1 through 1024 (these are reserved for the superuser), and (2) it cannot be

already bound to a socket, unless you apply the SO.REUSEADDR socket option to

the socket being bound. If you apply this option to a newly created socket, then you

can bind the new socket to a port number already bound to another socket. You

cannot, however, use the new socket in any way that could create ambiguity. The

new socket cannot be connected to the same remote address as the first socket, nor

can two sockets with the same port number both listen for incoming connections.

The following example shows how you can set the SO.REUSEADDR option with the
setsockopt(2) call.

#include <sys/types.h>

#include <sys/socket.h>

int socket_des;

struct sockaddr_in address;

setsockopt(socket_des, SOL_SOCKET, SO_REUSEADDR, (char*)0, 0);
bind(socket_des, &address, sizeof (address));

Using the connect System Call

In the Internet domain, you issue the connect call with the syntax shown m Figure 4-

3.

#include <sys/socket.h>

int socket _des namelen;

struct sockaddr_in *name;

retcode = connect (socket_des, &name, namelen);

093-701024 Licensed material—property of copyright hoider(s) 4-5

Establishing a Connection Through Stream Sockets

Figure 4-3 Syntax of the connect System Call

where socket_des is the descriptor of a socket that you create (on the client side of

the connection) where you want datagrams sent, name is the name of the peer socket

(on the server side of the connection) from where datagrams will arrive, and namelen

is the length of the name in bytes.

4-6 Licensed material—property of copyright holder(s) 093-701024

Establishing a Connection Through Stream Sockets

You may use the connect call as illustrated in the following example.

#Hinclude <stdio.h>

#include <errno.h>

#include <netdb.h>

#include <sys/socket.h>

#include <netinet/in.h>

int sock_desc; /* Socket descriptor */

int retcode; /* Return code from connect system call */

char *dest_name; /* Pointer to remote hostname */

struct sockaddr_in name; /* Socket name for peer */

struct hostent *dest_addr; /* Address for destination host*/

struct servent *service; /* Port number for server */

struct sockaddr_in to_addr; /* Socket name for destination peer */

/* Open a socket */

sock_desc = socket(AF_INET,SOCK_STREAM,0) ;

if(-1 == sock_desc)

{
fprintf(stderr,"Cannot open socket, errno %d\n", errno);

exit(l);

}

/* Get port number for the service we want from destination */

service = getservbyname("myservice", "tcep");
if (NULL == service)

{
fprintf(stderr, “Cannot get port number from getservbyname\n") ;
exit(1);

}

/* Get the internet address for the destination host */

dest_addr = gethostbyname(dest_name) ;

if (NOLL == dest_addr)

{
fprintf(stderr, “Cannot get destination address ts \n", dest_name) ;

}

/* Set up the sockaddr structure with info about peer. */

to_addr.sin_family = dest_addr->h_addrtype;

to_addr.sin_addr.s_addr = *((int *) dest_addr->h_adar) ;

to_addr.sin_port = service->s_port;

/* Try to connect to server */

retcode = connect(sock_desc, &to_addr, sizeof(to_addr));

The Internet address and port number of the server to which the client process wishes

to speak gets assigned to the second argument of the connect call. If the client

process’s socket is unbound at the time of the connect call, the system automatically

selects and binds a name to the socket. As pointed out earlier, this is how local

addresses are usually bound to a client socket.

If the connect call fails for any reason, it returns an error code. If the connect fails,

you must close the socket on which the error occurred and create a new socket with

the socket call before you reattempt the connection. If there is no error, the socket

is connected to the server, and data transfer may begin.

093-701024 Licensed material—property of copyright holder(s) 4-7

Setting and Reading Socket Options at the Transport Level

Setting and Reading Socket Options at the

Transport Level

Recall from the previous chapter that sockets have options that can be adjusted after

the socket has been created, and that these options can be set and read with the

setsockopt(2) and getsockopt(2) system calls. Here again is the synopsis of these two

system calls.

#include <sys/socket.h>

int socket_des setval getval;

int level;

int opiname;

char *optval;

int optlen;

int *optleng;

setval = setsockopt (socket_des, level, optname, optval, optlen)

getval = getsockopt (socket_des, level, optname, optval, optleng)

To manipulate options at the transport level for TCP, specify the level as

IPPROTO_TCP. Here are the valid options for TCP at the transport level.

TCP_NODELAY optval is an int variable; nonzero = set/true, 0 =

reset/false.

optlen is 4.

Default optval is 0.

When set, the system does not delay sending data

to coalesce small packets. When the option is

reset, the system may defer sending data to

coalesce small packets to conserve network

bandwidth.

TCP_MAXSEG optval is an int variable.

optien is 4.

There is no default optval; value is negotiated by

TCP. This is a read-only option.

When set, all TCP SYN segments from the TCP

endpoint include a TCP Maximum Segment Size

(MSS) option. Values for the TCP Maximum

Segment Size are between 0 and 65,535. |

TCP_URGENT_INLINE optval is an int variable; nonzero = set/true, 0 =

reset/false. .

optlen is 4

4-8 Licensed material—property of copyright holder(s) 093-701024

Setting and Reading Socket Options at the Transport Level

This has no effect in the DG/UX system. Use

SO_OOBINLINE at the socket level.

TCP_PEER_ADDRESS optval is a pointer to struct sockaddr_in.

optlen is size of struct sockaddr_in.

Default optval is INADDR_ANY.

When set, restricts the listen system call to

allowing only those connections initiated by the

supplied address. Used when a process wants to

accept a connection from a single, specific

remote host. Only one remote address may be

specified; subsequent invocations of the option

will override previous address settings.

Introduction to Urgent Data

You can think of a connection between two stream sockets as a pair of queues or data

streams, one for data transmission in each direction. The TCP protocol provides a

way to mark a sequence of bytes in such a data stream as urgent data. (Often, the

terms "urgent data” and “out-of-band data” are used interchangeably.) Only one

urgent message at a time can exist in a data stream.

The protocol driver that handles transmissions from a given socket can quickly notify

the protocol driver that controls the connected receiving socket that urgent data is on

the way before such data arrives at the receiving socket. The receiving socket’s

protocol driver, in turn, sends a SIGURG signal to the process or process group that

owns the receiving socket. The signal notifies that process or process group that

urgent data is being sent.

If there is urgent data in a stream, a special pointer called the "urgent mark" points to

the last byte of urgent data in the stream. The TCP protocol specification stipulates

that the first byte in an urgent-data sequence must be self-identifying; that is, given

the end of an urgent message, the program that receives the message must be able to

discern where it begins.

Transmitting and Receiving Urgent Data

A program can send urgent data with a send call or a sendto call with the flags field

set to MSG_OOB. The urgent mark will point to the last byte in the send buffer.

To receive urgent data, use a recv call or a recvfrom call with the flags field set to

MSG_OOB. If such a call is made when urgent data is neither available at the socket

nor on the way to the socket, the error value EINVAL is returned.

It is possible to peek at received urgent data using a recv call or a recvfrom call with

the flags field set to (MSG_OOB | MSG_PEEK). For more information about these

flags, see "Using the send and recv System Calls” in Chapter 3.

093-701024 Licensed material—property of copyright holder(s) 4-9

introduction to Urgent Data

If a process group owns the socket, a SIGURG signal is generated when the receiver’s

protocol driver is notified by its peer that urgent data is being sent. A process can

use the fentl(2) call with the F.SETOWN command argument to set the process group

ID or process ID that will receive SIGURG signals from a socket.

If multiple sockets have urgent data awaiting delivery, a programmer may use a select

call for exceptional conditions to determine which sockets have such data pending.

Neither the signal nor the select indicate the actual arrival of the urgent data.

Instead, the signal or select indicates that the urgent data has been sent by the remote

peer. In other words, the SIGURG may be dispatched before the urgent data arrives

at the socket. For more information about the select system call, see "Input/Output

Multiplexing" in Chapter 3.

In addition to the urgent message itself, the logical mark called the “urgent mark" is

placed in the data stream to indicate the end of the most recent urgent message. The

remote login and remote shell applications use this facility to propagate signals

between client and server processes. When a signal flushes any pending output from

the remote process or processes, all data in the stream up to the urgent mark are

discarded.

To find out if the read pointer is currently pointing at the urgent mark in the data

stream, the SIOCATMAREK ioctl is provided. Here is an example of how the

SIOCATMARK ioctl may be used.

ioctl(s, SIOCATMARK, &yes);

Here, if yes returns a nonzero value, the next read returns data after the urgent mark.

Otherwise (assuming urgent data has arrived), the next read provides data sent by the
client prior to transmission of the urgent signal.

Receiving Out-of-line and In-line Data

A program receives urgent data one of two ways: either out-of-line (independently of

normal data) or in-line (inserted in the normal data stream). To choose between out-

of-line and in-line reception, set the socket-level option SO_OOBINLINE through the

setsockopt system call; see setsockopt(2) for usage. If not explicitly set,

SO_OOBINLINE defaults to the reset state, making out-of-line urgent reception the

default. |

When a program uses out-of-line urgent reception, the TCP protocol driver takes

special steps to separate the urgent byte (the last byte in the most recently arrived

urgent-data message) from the normal data stream. First, the urgent pointer, which

always points to a byte in the normal data stream, is set to point to the byte that

follows the urgent byte in the data stream. Then, the urgent byte is removed from the

normal data stream and is stored in a special one-byte system buffer that is reserved

for urgent data. (The most recently arrived urgent byte overwrites any datum that

may already be in the urgent buffer.) Once the urgent byte is stored, a recv or

recymsg call with the MSG_OOB flag set will return the single byte of urgent data to

the caller. Normal read-type operations (read calls and recv and recvmsg calls with

the MSG_OOB flag reset) will return data from the normal data stream.

4-1 0 Licensed material—~property of copyright holder(s) 093-701024

Introduction to Urgent Data

When a program uses in-line urgent reception, the TCP protocol driver leaves the

urgent byte in the normal data stream and sets the urgent pointer to point to the

urgent byte. If the urgent byte is not at the head of the stream, normal read-type

operations (read calls and recv and recvmsg calls with the MSG_OOB flag reset) will

return only data that precedes the urgent byte in the stream. If the urgent byte is at

the head of the stream, normal read operations operate exactly as they would if there

were no urgent data in the stream. For in-line urgent reception, urgent read

operations (recv and recvmsg calls with the MSG_OOB flag set) can be thought of as

variations of the normal read operations. If the urgent byte is not at the head of the

stream, urgent read-type operations will return data up to and including the urgent

byte. If the urgent byte is at the head of the stream, urgent read operations will

return just the urgent byte. If there is no urgent byte in the stream, urgent read

operations will return EINVAL.

Figure 4-4 shows the routine used in the remote login process to flush output on

receipt of an interrupt or quit signal. This code reads the normal data up to the

urgent mark (to discard it), and then reads the urgent byte. The code fragment, taken

from the remote login program, provides an example of in-line urgent data reception.

#include <sys/ioctl.h>

#include <sys/file.h>

oob()

{

int out = FWRITE;

char waste[BUFSIZ];

int mark;

/* flush local terminal output */

ioctl(1, TIOCFLUSH, (char *)éout);_

for (;;) {
if (ioctl(rem, SIOCATMARK, &mark) < 0) {

perror("ioctl");

break;

}

if (mark)

break;

(void) read(rem, waste, sizeof waste);

}

if (recv(rem, &mark, 1, MSG _OOB) < 0) {

perror("recv");

Figure 4-4 Receiving In-Line Urgent Data

A process may also read or peek at the urgent data without first reading up to the

urgent mark. This is more difficult when the underlying protocol delivers the urgent

data in line with the normal data but sends a SIGURG before the urgent data actually

arrives at the socket. If the urgent byte has not yet arrived when a recy is done with

the MSG_OOB flag set, the call returns an error of EAGAIN. Worse, there may be

093-701024 Licensed material—property of copyright hoider(s) 4-1 1

Introduction to Urgent Data

enough non-urgent data at the head of the input buffer that normal flow control

prevents the peer from sending the urgent data until the buffer is cleared. In these

circumstances, the process must then read enough of the enqueued data that the

urgent data may be delivered.

Certain programs that use multiple bytes of urgent data and that must handle multiple

urgent signals (for example telnet) expect each urgent message to retain its position

within the data stream. Such programs set the SO_.OOBINLINE option. Having set

the option, a program can read all data up to the urgent mark using a recv call with

the flags field set to zero, then read the data at the urgent mark with another recy

with the flags field set to MSG_OOB. Reception of multiple urgent messages causes

the mark to move, but no urgent data are lost.

A program would use the SIOCATMARK argument to the ioctl call in conjunction

with the recv call to check the position of the read pointer. When a user process

receives a SIGURG signal indicating that urgent data has arrived at the socket, the

process’s signal handler positions the socket’s read pointer at the urgent mark. The

signal handler repeatedly reads in a buffer of data from the socket and calls the ioctl

call with SIOCATMARK to see if the read pointer is at the urgent mark. When the

ioctl call returns a value of true in its return parameter, then the byte that the urgent

mark points to can be read using the recv call. The following example shows how to

use the ioctl call with SIOCATMARK.

#include <sys/ioctl.h>

int socket_des, is_at_mark;

ioctl(socket_des, SIOCATMARK, &1is_at_mark);

Understanding the Subtleties of Urgent-Data Reception

With in-line urgent-data reception, if urgent data is in the socket data queue, a read

operation without the MSG_OOB flag set reads at most the sequence of bytes that

precedes the urgent byte in the queue. A read operation with the MSG_OOB flag set

reads at most the sequence of bytes at the head of the queue that terminates with the

urgent byte.

Also with in-line reception, the parameter returned by the SIOCATMARK ioctl is

nonzero if and only if the next byte to be read from the socket is the urgent byte.

With out-of-line reception, the parameter returned by the SIOCATMARK ioctl is

nonzero if and only if the next byte to be read from the socket is the one that

immediately followed the urgent byte before the urgent byte was pulled out of line.

With in-line reception, if a read operation with the MSG_OOB flag set returns

EAGAIN, the urgent byte may simply not have arrived at the socket yet. On the

other hand, the EAGAIN error may be a sign that there is so much data in the

stream, that the stream is fully congested, and the urgent byte is trapped somewhere

between the remote peer and the receiving socket. In this case, the receiving

program must continue to read data from the socket until the urgent byte arrives.

4-12 Licensed material—property of copyright holder(s) 093-701024

introduction to Urgent Data

With out-of-line reception, if an urgent byte arrives at the socket before a previous

urgent byte has been read, the first urgent byte is lost. In contrast, with in-line

reception, if an urgent byte arrives before a previous urgent byte has been read, the

urgent pointer is simply moved downstream to point at the most recently arrived

urgent byte. Programs must be constructed so as not to be confused by this

asynchronous arrival of urgent messages.

A program that illustrates this phenomenon (albeit one that is not too useful) would

invoke the SIOCATMARK ioctl twice without an intervening read operation. If

urgent data is waiting at the head of the queue before the first invocation, and a

second urgent message arrives between the first and second invocations, the first call

would return TRUE, but the second would return FALSE.

Using the SIGURG Signal and Process Groups

Each process has an associated process group. SIGURG is sent to all processes

within a process group. SIGURG signals are initialized to the process group of their

creator, but can be redefined at a later time by using the ioctl(2) call with

SIOCSPGRP as an argument. The following example illustrates such a call.

#include <sys/socket_ioctl.h>

int socket_des, pgrp;

ioctl(socket_des, SIOCSPGRP, &pgrp);

Use SIOCGPGRP with the ioctl call to determine the current process group of a

socket.

Some Sample Programs

This section contains two programs, one client and one server, both written in C.

The programs use TCP to access a remote service.

The programs, serv.c and client.c, are designed to show how to use the system calls

to create a socket, establish a connection, and send messages back and forth across

the connection. serv.c accepts any number of letters and converts them to

uppercase. client.c takes any number of letters from a local terminal, sends them to

the server for conversion, reads the response from the server, and displays the

response to a terminal. The client program terminates when it reads a % from

serv.c.

Both programs use gethostbyname to return a hostent structure for mapping the host

address to the hostname supplied. If the system is running NFS, the entry may come

from the NIS database. If the system is running DNS, the entry may come from a

name server.

Both programs also use getservbyname to request the service name to the port

number. The service specifications are in /etc/services. The client and server

programs use getservbyname to map their names to a port number. If your system is

running NFS, this entry may be in the Network Information Service (NIS). For more |

information, see Appendix B.

093-701024 Licensed material—property of copyright holder(s) 4-1 3

Some Sample Programs

The client.c Program

This program requests a connection to the server named by its second argument,

receives alphabetic characters from a terminal and sends them to the remote serv.c

process.

extern int errno;

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#include <netinet/in.h>

#include <stdio.h>

main(argc, argv)

/*

*/

4-14

int arge;

char * argv[);

int s, len;

char c;

struct sockaddr_in addr_base;

struct sockaddr_in *addr = &saddr_base;

struct hostent * hp;

struct servent *sp;

if(arge '= 2) {

fprintf(stderr, "Usage:\t client hostname \n");
exit (1);

}
hp = gethostbyname(argv[1], NULL);

if (hp == NULL) {

fprintf(stderr, "No host named %s\n", argv[1]);
exit(1);

}
addr_base.sin_ family = hp~>h_addrtype ;

addr_base.sin_addr.S_un.S_addr = *((int *) hp->h_addr);

Service "tcp_example" must be in the /etc/services file
with a unigue port number.

sp = getservbyname(“tcp_example", NULL);

if(sp == NULL) {

fprintf(stderr, “Can’t find tcp_example in /etc/services \n");
exit(1);

}
addr_base.sin_port = sp->s_port;

Ss = socket(AF_INET, SOCK_STREAM, 0);

if(s-=-l) {

fprintf(stderr, “create failed with errno %td\n", errno);
exit(1);

}

Implicit bind, takes place.

if(connect(s, addr, sizeof(struct sockaddr_in)) == -l1) {

fprintf(stderr, “connect failed with errno %d\n", errno);
exit(1);

Licensed material—-property of copyright holder(s) 093-701024

do {

Some Sample Programs

c = getchar();

if(c == ‘\n’) {

continue;
}

if(write(s, &c, 1) !#=1) {

fprintf(stderr, “client write failed\n");
break;

}
if(read(s, &c, 1) !#=1) {

' fprintf(stderr, “client read failed\n");
break;

}

putchar(c);

putchar(‘\n’);

} while(c != '%’);

The serv.c Program

This program listens for requests for its service from a remote process, establishes a

connection, accepts alphabetic characters from client.c and converts them to

uppercase.

extern int errno;

#include

#include

#include

#include

#include

<sys/types.h>

<sys/socket .h>

<netinet/in.h>

<netdb.h>

<stdio.h>

main(argc, argv)
int arge;

char *argv[];

int s, ns, addrlen, i; —

char c, *cp;

struct sockaddr_in addr_base;

struct sockaddr_in *taddr = é&addr_base;

struct servent *sp;

if(arge != 1) {

}

fprintf(stderr, “Usage: serv \n");
exit (1);

* Service "tcp_example” must be in the /etc/services file

x with a unigue port number.

sp = getservbyname("tcp_example", NULL);
if(sp == NULL) {

fprintf(stderr, “Service tcp_example not in /etc/services \n");
exit(1);

addr_base.sin_port = sp->s_port;

addr_base.sin_family = AF_INET;

addr_base.sin_addr.s_addr = INADDR_ANY;

083-701024 Licensed material—property of copyright holder(s) 4-15

Some Sample Programs

S = socket(AF_INET, SOCK_STREAM, 0);

if(s==-l) {

fprintf(stderr, “create failed with errno %d\n", errno);

exit(1);

}

if(bind(s, addr, sizeof(struct sockaddr_in)) == -1) {

fprintf(stderr, “bind failed with errno %d\n", errno);

exit(1);

}

if(listen(s, 3) ==-1) {

fprintf(stderr, “listen failed with errno %d\n", errno);
exit(l);

printf(“The server is up. Place it in the background.\n");

for(+;) {
addrlen = sizeof(struct sockaddr_in);

ns = accept(s, addr, gaddrien);

if(ns == -l1) {

fprintf(stderr, “accept failed with errno td\n", errno);

continue;

} else {

fprintf(stderr, “Connection accepted from ");
cp = (char *) addr;

for(i= 0; i < 16; it+) f{

fprintf(stderr, "%d ", *cpt++);

}
fprintf(stderr, “\n");

do {

if (read(ns, &¢c, 1) !=1) {

fprintf(stderr, “Broken read with errno %d\n", errno);
break;

}

if (’a’ <e co G& c <@ ’g’) {
ec >= “AS - "a’;

}

if (write(ns, &c, 1) !=1) {

fprintf(stderr, “Broken write with errno td\n", errno);

break;

}
} while(c != ’%);

fprintf(stderr, “server done\n”);

close(ns);

End of Chapter

4-16 Licensed material—property of copyright holder(s) 093-701024

Chapter 5

Programming with the User

Datagram Protocol

This chapter discusses how to program with datagram sockets to access the User

Datagram Protocol (UDP).. It describes the system calls you use to communicate

through datagram sockets. It also includes an example of a client and a server

program.

For a thorough discussion of UDP, see Internet Request for Comments (RFC) 768

(User Datagram Protocol). Also, see RFC 1122 (Requirements for Internet Hosts --

Communication Layers) for requirements for host system implementations of UDP.

Communicating Through Datagram Sockets

Sockets created in UDP require no connections. Even so, they are created much the

same way as sockets in TCP. Once created through the socket call and associated

with a port number through the bind call, a UDP socket is ready for use by a

program.

System calls associated with connection-oriented sockets, such as listen(2) and

accept(2) are not allowed. Instead, a program uses the sendto(2) and recvfrom(2)

system calls to send and receive data between peer processes. Arguments to these

calls provide the destination address for the data.

Figure 5-1 illustrates the syntax of the sendto call and Figure 5-2 illustrates the syntax

of the recvfrom call.

093-701024 Licensed material—-property of copyright hoider(s) 5-1

Communicating Through Datagram Sockets

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <errno.h>

int sock_desc; /* Socket descriptor */

int retcode; /7* Return code from system calls */

char buf[BUFSIZE J; /* Data buffer */

int buflen; /* Number of elements in data buffer */

char *dest_name; /* Pointer to remote hostname */

struct hostent *dest_addr; /* Address for destination host */

struct servent *service; /* Port number for server */

struct sockaddr_in to_addr; /* Socket name for the destination peer */

sock_desc = socket(AF_INET,SOCK_DGRAM,0); /* Open a socket */

if(-1 == sock_desc) {

fprintf(stderr,"Cannot open socket, errno %d\n”, errno);

exit(1);

}

7* Get port number for service from destination */

service = getservbyname("myservice", “udp");

if (NULL == service) {

fprintf(stderr, “Cannot get port number from getservbyname\n") ;
exit(l);

}

/* Get Internet address for destination host */

dest_addr = gethostbyname(dest_name) ;

if (NULL == dest_addr) {

fprintf(stderr, “Cannot get destination address %s \n", dest_name);

/* Setup the sockaddr structure with info about peer */

to_addr.sin_family = dest_addr->h_addrtype;

to_addr.sin_addr.s_addr = *((int *) host->h_addr) ;

to_addr.sin_port = service->s_port;

/7* Put data in buffer (buf) and compute length of buffer (buflen) */

retcode = sendto(sock_desc, buf, buflen, 0, &to_addr, sizeof(to_addr)); /* Send the data */

if (-1 == retcode) {

fprintf(stderr, “Error in send %d \n", errno);

else {

printf ("Sent %d bytes\n", retcode);

}

Figure 5-1 Syntax of thé sendto System Call

5-2 Licensed material—property of copyright holder(s) 093-701024

Communicating Through Datagram Sockets

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <errno.h>

#include <memory.h>

#include <netdb.h>

int sock_desc; /* Socket descriptor*/

int retval; /7* Return value from system calls */

char buf[{ BUFSIZE J; /* Data buffer */

struct sockaddr_in from_addr; /* Socket name for the destination peer */

int from_addr_len; /* Size of socket name */

struct servent *service;

struct sockaddr_in bind_addr;

/* Open a socket */

sock_desc = socket (AF_INET,SOCK_DGRAM,0);

if(-1 == sock_desc)

{

fprintf(stderr,”"Cannot open socket, errno %d\n", errno);

exit(1);

}

service = getservbyname("myservice", “udp");

if (NULL == service)

{ .

fprintf(stderr, "Cannot get port number from getservbyname\n”);
exit(1);

}

memset ((caddr_t)&bind_addr, 0, sizeof(struct sockaddr_in));

bind addr.sin_family = AF_INET;

bind_addr.sin_port = service->s_port;

result = bind(sock_desc, (struct sockaddr *)&ébind_addr,sizeof(struct sockaddr));

if (result == -1)

{

fprintf(stderr, “bind failed\n");

exit(1);

}

/* Compute the length of buffer for the socket name of the destination peer */

from_addr_len = sizeof(from_addr);

/* Read the data from peer */

retval = recvfrom(sock_desc, buf, sizeof(buf), 0, &from_addr, &from_addr_len);

if (~1 == retval)

{
fprintf(stderr, "Error in recvfrom %d \n", errno);

}

else

{
printf("Read %d bytes\n", retval);

}

Figure 5-2 Syntax of the recvfrom System Call

For both calls, the fourth argument is a flags argument, through which you can pass

special options to manipulate data. The two program fragments above passed 0 as the

flags argument; no special options were desired.

093-701024 Licensed material—property of copyright hoider(s) 5-3

Communicating Through Datagram Sockets

Using the connect System Call with Datagram Sockets

Datagram sockets can also use the connect(2) call to associate a socket with a specific

address. Data sent on the socket is automatically addressed to the connected peer.

Only one connected address is honored for each socket (that is, no multicasting).

When you use the connect(2) call on datagram sockets, requests return immediately

because the system has only to record the peer’s address. These requests do not call

the peer and establish a connection.

Connected UDP sockets allow you to use the write/read, writev/readv, and send/recv

system calls to transfer data.

Broadcasting and Datagram Sockets

Datagram sockets can be used to send broadcast packets on those types of networks

that can broadcast, such as Ethernet networks. Broadcast messages can place a high

load on a network since they force every host on the network to service them.

There are two ways to send broadcast packets: become the superuser or, as an

ordinary user, specify the socket option (SO_BROADCAST). To send a broadcast

message, you must follow these steps:

1. Create an Internet datagram socket.

2. Bind at least a port number to the socket (you can bind the host number as well,

which specifies a complete Internet address).

3. Determine Internet broadcast address.

4. Address the message.

5. Issue a sendto call.

5-4 Licensed material—property of copyright hoider(s) 093-701024

Communicating Through Datagram Sockets

Figure 5-3 shows a code fragment that sends a broadcast message.

#include <sys/types.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netdb.h>

#include <netinet/in.h>

#include <stdio.h>

#include <signal.h>

/* Must be superuser to execute code */

int socket_des, cc;

char buf [128];

int buflen;

struct sockaddr_in dst, sin;

struct ifreq ifr;

/7* Fill in buf and buflen here */

socket_des = socket(AF_INET, SOCK_DGRAM, 0);

sin.sin_family = AF_INET;

Sin.sin_addr.s_addr = INADDR_ANY;

sin.sin_port = MYPORT;

bind(socket_des, (char *)&sin, sizeof (sin));

strepy(ifr.ifr_name, “inen0O") ; .
ioctl (socket_des, SIOCGIFBRDADDR, (caddr_t) sifr);

dst.sin_family = AF_INET;

dst.sin_addr.s_addr = ((struct sockaddr_in *) é&ifr.ifr_broadcast)->

Sin_addr.s_ addr;

dst.sin_ port » DESTPORT;

cc = sendto(socket_des, buf, sizeof(buf), 0, &dst, sizeof (dst));

Figure 5-3 Sending a Broadcast Message

Received broadcast messages contain the sender’s address and port (datagram sockets

must be bound to an address before a message is allowed to go out). In this example,

the device is set to inen0. Normally, you would use SIOCGIFCONF ioctl to get a list

of interfaces, and you would check whether any given interface is capable of

broadcasting.

093-701024 Licensed material—property of copyright holder(s) 5-5

Some Sample Programs

Some Sample Programs

This section contains two programs, are_you_there.c and i_am_here.c, both written

in C. The programs use UDP to access a remote service.

The server program, i_am_here.c, is written to be put in the background. After you

invoke it, the server will accept a message from any client sending one to its port and

running in the Internet domain. When the server receives a message, it sends a

message to the client process indicating that it is alive.

The client program, are_you_there.c, binds to any address, sends a message to the

server program i_am_here.c, and waits for a reply. When it receives a reply, the

client program prints a message to the screen indicating that the server is running.

Both the client and server programs use the gethostbyname routine to return a

hostent structure for mapping the hostname supplied on the command line to the host

address. If your system is running NFS, this entry may be in an NIS database. If

your system is running the domain name system, the entry may come from a name

server. For more information, see Appendix B.

Both the client and server programs also use getservbyname to request the service

specification indicated in /etc/services. If your system is running NFS, this entry

may be in an NIS database. For more information, see Appendix B.

The are_you_there.c Program

This is a client program that sends a message to a server program to see whether that
server is running. If this program receives a response, it prints a message to the

terminal indicating that the server is running.

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#include <netinet/in.h>

#include <stdio.h>

#include <signal.h>

extern int errno;

void alarmed();

main (argc, argv)

int arge;

char *argv[{};

int s, ns, i, ec, flags, fromlen;

char c, *cep, buf[{1024], msg[17];

char *name = "tcp example";
struct sockaddr_in addr_base;

struct sockaddr_in *addr= sgaddr_base;

struct sockaddr_in from;

struct sockaddr_in to;

struct servent *sp;

struct hostent *hp;

strepy(&msg[0],"Hello!");

5-6 Licensed material—property of copyright holder(s) 093-701024

Some Sample Programs

if (arge '= 2) {

fprintf (stderr, “Usage:\t are_you_there hostname \n”);
exit (1);

}

hp = gethostbyname (argv[1], NULL);

if (hp == NULL) {

printf ("no host named %s\n", argv{l1]);

exit (1);

}
/*

*Service name must be in /etc/services.

*/

sp = getservbyname (name, NULL);

if (sp == NULL) {

printf (“no known service named %s\n", name);
exit (1);

}
/*

x We are a client, so we ask to be bound to any port

* (addr_base.sin_port = 0). We don’t care what port

* we are on, only what port the server is on. Bind

* will assign us a port.

*/

bzero((char *)addr, sizeof(struct sockaddr_in));

addr_base.sin_family = hp-—>h_addrtype;

s = socket (AF_INET, SOCK_DGRAM, 0);

if (s==-1)

perror("socket");

exit (1);

}

if (bind (s, addr, sizeof(struct sockaddr_in)) == -1) {

perror(“bind”);
exit(1);

}
/*

® Next we want to send a message to the server. The

* theory is that he will send a message back and we'll

* know that he is alive.
x

® In preparation for this, we’ll zero out the "to" struct.
® This makes sure that there is no garbage to interfere

* with our call. We set up the “to” struct with the

* correct family and the port number and address

* of the server. We got the port number from the service

* name and the address from the hostname. Both

® of these parameters came from the command line.

*/

flags = 0;

bzero((char *)&to, sizeof(to));

to.sin_family = AF_INET; /* Assign family */

to.sin_port = sp->s_port; /* Assign port */

to.sin_addr.s_ addr = *(int *)hp->h_addr; /* Specify address of server */

cc = sendto (s, msg, sizeof(msg), flags, &to, sizeof(to));

if (cc == -l) {

perror(“sendto”);

exit(1);

093-701024 Licensed material—property of copyright hoider(s) 5-7

Some Sample Programs

/*

* Finally, we’ll wait for the server to return our call.
* :

* Once again we start by zeroing out the ‘from’ structure

* and setting ’fromlen’ to the length of that struct. Then

® we let recvfrom() do the rest.

*/

printf(“waiting for response from %s\n", hp->h_name);
Signal(SIGALRM, alarmed);

alarm(5);

bzero((char *)&from, sizeof(from));

fromlen = sizeof(from);

cc = recvfrom (s, buf, sizeof(buf), flags, &from, &fromlen);

if (cc == -1) {

perror(“recvfrom");

exit(1);

}

printf ("Other machine is alive and kicking \n");

}

void alarmed({)

printf(“Whoops - no answer!\n");
exit(0);

The t_am_here.c Program

This is a server program that receives messages from a remote client process and

sends a message to that process, informing the client that it is up and running.

#include <sys/types.h>

#include <netinet/in.h>

#include <netdb.h>

#include <sys/socket.h>

#include <stdio.h>

extern int errno;

Main (argc, argv)

int argc;

char *argv[];

int s, ns, buflen, i, cc, flags, *fromien, tolen;

char c, *ep, buf[1024), *msg;

char *name = “tcp_example";

char hostname [14];

struct sockaddr_in addr_base;

struct sockaddr_in *addr;

struct sockaddr_in *from;

struct sockaddr_in *to;

struct servent *sp;

struct hostent *hp;

struct sockaddr_in from_container;

int fromlen_container;

5-8 Licensed material—property of copyright holder(s) 093-701024

/*

Some Sample Programs

if (arge '= 1) {

fprintf (stderr, “usage: \t i_am_here \n");
exit (1); _

}

if(-l == gethostname(hostname, sizeof (hostname))) {

printf("Can’t gethostname() errno %d",errno) ;
exit(1);

}

hp = gethostbyname (hostname, NULL);

if (hp == NULL) [{

printf (“can’t find host %s\n", hostname);

exit (1);

}

*Service name must be in /etc/services.

*/

093-701024

sp = getservbyname (name, NULL);

if (sp == NULL) {

printf ("can’t find %s\n", name);

exit (1);

}

addr_base.sin_port = sp->s_port;

addr_base.sin_family = AF_INET;

addr_base.sin_addr.s_addr = INADDR_ANY;

s = socket (AF_INET, SOCK_DGRAM,0);

if (s=-1) {

fprintf (stderr, "create failed with errno %d\n", errno);
exit(1l);

}

addr = saddr_base;

if (bind (s, addr, sizeof (struct sockaddr_in)) == -1) {

fprintf (stderr, “bind failed with errno %d \n", errno);
exit (1);

}
from = &from_container;

fromlen_container = sizeof (from_container) ;

fromlen = &fromlen_container;

buflen = sizeof (buf);

for (i;){
cc = recvfrom (s, buf, buflen, flags, from, fromlen);

if (cc == -l) {

fprintf (stderr, “receive failed with errno d\n", errno);
exit (1);

}
cc = sendto (s, buf, buflen, flags, from, *fromlen);

if (cc == -1) {

fprintf (stderr, “send failed %d\n", errno);
exit (1);

End of Chapter

Licensed materlal—property of copyright holder(s) 5-9

Chapter 6

Programming with the Internet

Protocol and Internet Control

Message Protocol

This chapter discusses programming with the Internet Protocol (IP) and the Internet

Control Message Protocol (ICMP). It describes why and how to use raw sockets. It

tells how to set and read socket options at the IP level. It also includes a sample

program that uses raw sockets to communicate with other hosts.

For a thorough discussion of IP, see Internet Request for Comments (RFC) 791

(Internet Protocol). Also, see RFC 1122 (Requirements for Internet Hosts --

Communication Layers) for requirements for host system implementations of IP. For

a thorough discussion of ICMP, see RFC 792 (Internet Control Message Protocol).

Programming at this level is not for inexperienced programmers. Access to this level

of programming is limited to superusers, typically system programmers. System

programmers use this level to write programs that use IP to create and experiment

with new protocols. Programmers can also use this level to gain access to facilities

provided by the Internet Control Message Protocol (ICMP). ICMP provides error

reporting, an echoing facility, and access to gateways.

Creating Raw Sockets for the Internet

Protocol

As with programming at the TCP or UDP level, you use sockets to access the IP

level. As with TCP and UDP, you create sockets in IP through the socket(2) system

call. To program at the IP level, you must use the Internet domain and raw socket

type. The following example shows how to create a raw socket.

int socket_des;

socket _des = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);

where AF_INET represents the Internet domain, SOCK_RAW represents the raw

socket type, and IPPROTO_RAW represents the specific protocol in the domain

specified.

IP delivers datagrams to sockets based on the following:

e If incoming datagrams are addressed to an existing kernel level protocol (that is,

TCP or UDP), they are given to the specified protocol.

093-701024 Licensed material—property of copyright hoider(s) 6-1

Creating Raw Sockets for the Internet Protocol

e If incoming datagrams are not addressed to a specified protocol, they are given to

all raw sockets that can accept them.

Typically you use the sendto/recvfrom or sendmsg/recvmsg system calls to transfer

data through raw sockets. If you use the connect system call to specify an address for

a raw socket, then you may use the send/recv system calls to transfer data.

Communicating Through IP

Table 6-1 shows how communication might begin using IP and ICMP. Note that the

procedures for the bind and connect calls are optional. Data can be sent without

binding or connecting the processes to specific addresses.

6-2 Licensed material—property of copyright holder(s) 093-701024

Table 6-1

Creating Raw Sockets for the internet Protocol

How Communication Begins with IP and ICMP

a Dee a.
ele

Calling Process Action

gethostbyname(...)

gethostname(...)

sl=socket(AF_INET,SOCK_RAW,0)

bind(s1,...)

Build an IP header.

sendto(sl,...)

recvfrom(s1,...)

The calling process uses this library routine to turn

the name of the foreign host into a host address.

The calling process uses this call to find the name

of the local host and look up the Internet address

corresponding to that name. This address is used

for the bind call.

The calling process creates a raw socket. The

socket call creates an endpoint for communicating

between the processes. Arguments to the call

specify the socket domain (Internet), type of

socket (raw), and the protocol to use (IP is the

default).

The calling process binds its socket to an address

on the local host. Arguments to the call specify

the socket, name to be bound to the socket, and

the length of the name (in bytes).

The calling process builds an IP header to

accompany the data transferred. IP headers may

contain IP options. For more information, see

“Specifying an IP Header.”

The calling process sends a datagram that includes

the IP header and data. Arguments to the sendto

call specify the socket to which to send the

message, the message buffer, the length of the

message (in bytes), the flags to use when sending

the message, the name of the destination, and the

length of the destination name (in bytes).

Arguments to the recvfrom call specify the socket

to receive the message from, the buffer of the

message, the length of the buffer, the flags for

transfer, the structure to hold the sender’s name,

and the number of bytes returned.
shew

4

093-701024 Licensed material—property of copyright holder(s) 6-3

Setting and Reading Socket Options at the IP Level

Setting and Reading Socket Options at the

IP Level

At the IP level, sockets have options that can be adjusted after the socket has been

created. These options can be set and read with the setsockopt(2) and getsockopt(2)

system calls. Here is the synopsis of these two system calls.

int socket_des setval getval;

int level;

int opiname;

char *optval;

int optlen;

int * optleng;

setval = setsockopt (socket_des, level, optname, optval, optlen)

getval = getsockopt (socket_des, level, opmame, optval, optleng)

To manipulate options for IP, specify the level as IPPROTO_IP.

Here are the valid socket options for IP.

IP_TX_OPTIONS

IP_RX_OPTIONS

optval is a pointer to the option string.

optlen is the size of the option string.

Default optval is NULL.

Allows all IP-specific options to be set in one option management

call for outgoing datagrams. The following option strings are

recognized:

IPOPT_EOL (End of option list);

IPOPT_NOP (No operation);

IPOPT_LSRR (Loose source and record route);

IPOPT_SSRR (Strict source and record route);

IPOPT_TS (internet timestamp); and

IPOPT_SECURITY (Security — some environments may require

this).

optval is a pointer to the option string.

optien is the size of the option string.

There is no default optval; the value depends on the options

received in the last IP packet for the endpoint.

Gives an application the ability to obtain the IP options in

incoming datagrams. Recognizes the same option strings as

IP_TX_OPTIONS.

Licensed material—property of copyright hoider{s) 093-701024

IP_TOS

Ip_TTL

IP_DONTFRAG

093-701024

Setting and Reading Socket Options at the IP Level

optval is an int variable.

optien is 4.

Default optval is 0.

Specifies the Type of Service field for all subsequent IP

transmissions from the socket. The leftmost three bits of the

most significant byte of the option value (bits 7-5) indicate the

minimum acceptable IP precedence level for the transport

endpoint. The next leftmost bit of the option value (bit 4)

specifies the Delay characteristic for all subsequent IP

transmissions associated with the transport endpoint. The next

leftmost bit of the option value (bit 3) specifies the Throughput

characteristic for all subsequent IP transmissions associated with

the transport endpoint. The next leftmost bit (bit 2) specifies the

Reliability characteristic for all subsequent IP transmissions

associated with the endpoint. The rightmost two bits (bits 0-1) are

reserved.

optval is an int variable.

optien is 4.

There is no default optval; the value depends on the protocol.

Specifies the Time to Live field for all subsequent IP

transmissions from the socket.

optval is an int variable.

optien is 4.

Default optval is 0 (fragmentation is allowed).

Prohibits fragmentation of IP datagrams.

Licensed material—property of copyright holderts) 6-5

introduction to IP Message Formats

Introduction to IP Message Formats

A typical IP message contains an IP header and the data to be transferred. The data

section can be further divided when you use other protocols with IP, such as ICMP.

In this case, the data section contains an ICMP header and the data to be transferred.

Specifying an IP Header

IP only sends data from host to host. IP sends the necessary address information

along with the data. This information is included in a header. When programming

with IP, you must provide information for the IP header.

TCP/IP for AViiON Systems supports IP options. These options would follow the

destination address field on the header. Adding options will affect the value of the

THL field. Figure 6-1 shows the header format.

1 2 3
01234567890123456789012345678901

Version IHL Type of Service , Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Figure 6-1 A Sample internet Datagram Header

6-6 Licensed material--property of copyright hoider(s) 093-701024

introduction to IP Message Formats

Table 6-2 describes each element in the header and provides the number of bits in the

element’s field.

Table 6-2. Elements in an Internet Datagram Header

Element Description Bits

Version

Type of

Service

Total length

Identification

Flags

Fragment

Offset

Indicates the version of the Internet header

your system is running. Current Internet

version is 4.

Internet Header Length (IHL). Indicates the

length of the header in 32-bit words. The

minimum value for a correct header is 5. If this

value is more than 5, everything after the fifth

word will be options (see MIL-STD-1777).

Specifies service parameters to use when

transmitting a datagram through a particular

network. Use a 0 or see MIL-STD-1777.

Indicates the total length of a datagram

measured in octets (8-bit quantities), including

the Internet header and data. This field allows

the length of a datagram to be as many as

65,535 octets.

Indicates the value assigned by the sending

process that helps in assembling fragments.

This field is used internally; set it to 0.

Indicates whether fragmenting is allowed. If

fragmentation is allowed, this element indicates

whether more fragments exist. Bit 0 is

reserved. Bit 1 controls whether the datagram

can split into fragments (0 indicates the

datagram can be fragmented, 1 indicates it

cannot). Bit 2 indicates whether the fragment

received is the last one (0 indicates this is the

last fragment, 1 indicates more fragments exist).

Indicates where each fragment belongs in the

datagram. Fragment offset is measured in units

of 8 octets (64 bits). The first fragment has

offset 0. Use 0 in this field.

16

16

0393-701024 Licensed material—property of copyright hoider(s)

(continued)

introduction to IP Message Formats

Table 6-2 Elements in an internet Datagram Header

Element Description Bits

Time to Live

Protocols

Header

Checksum

Source

Adress

Destination

Address

Specifies the maximum number of hops that a

datagram is allowed to travel in the Internet

system before it is destroyed. If this field

contains the value 0, the datagram is destroyed.

This field is decremented by at least 1 whenever

the Internet header is processed. Set this field

to at least one greater than the number of

gateways through which the datagram travels.

Indicates the protocol above IP (for example,

ICMP=1). See the file

/usr/include/netinet/in.h.

Checks the header for errors at each point that

the Internet header is processed. The algorithm

is the 16-bit one’s complement of the one’s

complement sum of all 16-bit words in the

header. Clear this field before calculating

checksum.

Indicates the Internet address of the sender.

Indicates the Internet address of the intended

receiver.

16

32

32

Specifying an IP Header When Using ICMP

When specifying an IP header for an ICMP message, you must fill in values for the

fields. To fill in these values, create a header based on the information given earlier

in this chapter in Table 6-2 but set Protocol to the constant IPPROTO_ICMP,

defined in the file /usr/include/netinet/in.h, and Header Checksum to 0.

6-8 Licensed material—property of copyright hoider(s)

(concluded)

093-701024

Introduction to ICMP Message Formats

Introduction to ICMP Message Formats

ICMP is used for reporting errors to hosts. The ICMP messages provide feedback

about problems in the communication environment. These messages can be sent

when a datagram cannot reach its destination, the gateway does not have the buffering

capacity to forward a datagram, or the gateway can direct the host to send traffic

through a shorter route. A gateway is an intermediate host that allows other hosts

that do not have direct connections to communicate through a system of

interconnected networks.

When programming with ICMP, use the proper ICMP format. Since ICMP messages

are sent as part of the IP datagram, you must specify the IP header. In addition, you

must specify the ICMP header for each message used. For example, if you use the

ICMP echo message, then you must specify a basic IP header and an ICMP header

for the echo message.

Figure 6-2 shows the ICMP message format.

1 2 3
01234567890123456789012345678901

Type Code Checksum

Unused

IP Header + 64 bits of Original Data Datagram

Figure 6-2 A Sample ICMP Message

For detailed information on how to fill in headers for ICMP messages, see RFC 792

Internet Control Message Protocol.

093-701024 Licensed material—property of copyright holder(s) 6-9

Introduction to ICMP Message Formats

Specifying an ICMP Message Header

ICMP message headers start with the following three fields: Type, Code, and

Checksum. Table 6-3 describes each field and indicates and the number of bits in

each field.

Table 6-3 Elements in the ICMP Message Header

Field Description Bits

Type

Code

Checksum

Indicates the specific message being used and

determines the format of the remaining data.

Indicates the particular reason for the message. For

error messages, it indicates, for example, the

particular reason that data did not reach its

destination.

Checks the header elements for errors at each point

that the ICMP header is processed. The algorithm is

the 16-bit one’s complement of the one’s complement

sum of all 16-bit words of the ICMP message, starting

with the Type.

16

6-10 Licensed material—property of copyright holder(s) 093-701024

introduction to ICMP Message Formats

ICMP can send messages and replies. Table 6-4 lists and describes ICMP messages.

Table 6-4 Description of ICMP Messages

Message Description

Source Quench Requests that the host send messages to the

Internet destination at a slower rate.

Echo Sends a message to a host.

Subnet Mask Request Requests that a host send a reply containing

its address mask.

Information Request Requests that a host send a reply containing

the number of the network it is on.

Destination Unreachable Indicates that the network specified in the

Internet destination field of a datagram is

unreachable or that the datagram could not

be delivered.

Redirect Indicates to the host that a path shorter than

the one indicated exists for the specified

destination.

Time Exceeded Indicates that the Time to Live is 0 or that a

host did not receive all the fragments in time

to complete reassembly of the datagram.

Parameter Problem Indicates that a host or gateway encountered

a problem with the IP header parameters.

Timestamp Sends a message to a foreign host indicating

the time the sender last touched the message

before sending it.

093-701024 Licensed material—property of copyright holder(s) 6-1 1

Introduction to ICMP Message Formats

Table 6-5 lists and describes ICMP replies.

Table 6-5 Description of ICMP Replies

Reply Description

Echo Reply Returns the same message to the host that

sent an echo message.

Subnet Mask Reply Sends a reply containing an address mask to

a host that has sent a subnet mask request.

Information Reply Sends a reply to a host that has sent an

information request.

Timestamp Reply Returns the message to a host that sent a

timestamp and includes the time the

recipient first touched it.

A Sample Program: pong.c

This section contains a program, pong.c, that uses the raw socket interface and the

ICMP netmask request to communicate with remote machines. The pong program

illustrates how to specify headers for IP, ICMP, and the ICMP netmask request.

The pong program sends an ICMP netmask request message to a host using a raw

socket interface. If the ICMP packet is sent and received correctly, then a message is
printed indicating the network mask of the requested host. If there are errors
locating the host, creating the socket, sending the message, or receiving the message,

then an error message is printed.

The program continues testing the network until timeout seconds have elapsed, or an

answer is received. The default timeout is 20 seconds. The program accepts either a

hostname argument or an Internet address.

R.4) au ah aasiai tine mf ani mtad tamlisiasta\i AA®_FnANDBA

A Sample Program: pong.c

SEEAAEARRAKKKRERAERKEKEKRKKAAKEERARERKEEEKKEKEKEREREKKEREREREE

* Copyright (C) Data General Corporation, 1988 - 1989 *

* All Rights Reserved. x

* Licensed Material-Property of Data General Corporation. *
REAARKKAARKRAEEEKERERKEKAEEEKEKEEEEEEERERKEREEREKEEKERERREREREE /

[J RAAKREKKRAEREKEREKEREREEEREKEREREKRREREEREERKEEERERE

* This software is made available solely pursuant *

x to the terms of a DGC license *

* agreement that governs its use. *
KRAEKKKKEKKRERKEREERAREKEREERREKRERAKEREERERKEERERREREER /

* pong host [timeout]

* attempts to see if machine is alive by ponging it for

* timeout seconds (default is 20)

*/
#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

<stdio.h>

<sys/types.h>

<sys/socket.h>

<netinet/in.h>

<netdb.h>

<sys/time.h>

<sys/param.h>

<netinet/ip.h>

<netinet/ip_icmp.h>

<signal .h>

<sys/wait.h>

<ctype.h>

<malloc.h>

#include <memory.h>

char *address_to_string();

char *host;

int noresponse() ;

int end_it_all();

int my_pid;

#define DEFTIMEOUT 20

#define MAXALARM 2147483647 + /* max arg to alarm() */

struct in_addr inet_addr();

main(argec, argv)

int argc;

char *argv[];

char *buf_ptr;

char *buf_icmp ptr;

char *buf_ip ptr;

char *buf_time_ptr;

char mysys [512];

struct icmp icmp_hdr;

struct icmp *icmp_hdr ptr = é&icmp_hdr;

struct in_addr address;

struct ip ip_hdr;

struct ip *ip_hdr ptr = &ip_hdr;

struct timeval time;

struct hostent *hp;

struct sockaddr_in to, from;

union wait status;

int len, cc, packetsize;

int timeout, s;

if (arge < 2) { /*® usage message =/

fprintf(stderr, “usage: pong host [timeout]\n”);

exit(1);

093-701024 Licensed material—property of copyright holder(s) 6-1 3

A Sample Program: pong.c

/* Determine Internet address of remote host to pong */

/*® The parameter to pong could be the Internet x/

/* address or the hostname «/

host = argv[l];

/* Test for how address was specified. */

if (isdigit(host[0])) {f{

/* Address specified in digits */

address = inet_addr(host);

}

else {

/* Address specified as hostname */

if ((hp = gethostbyname(host)) == NULL) {

fprintf(stderr, “can’t find host %s\n", host);

exit(1); ;

}
address = *((struct in_addr *)hp->h_addr);

}
/* If third parameter was specified, use it as a timeout value. */

if (argc == 3) {

timeout = atoi(argv[2]);

if (timeout < 0 || timeout > MAXALARM) [{
fprintf(stderr, “invalid timeout\n”);
exit(1);

}

}

else { /* Otherwise use the default timeout value. */

timeout = DEFTIMEOUT;

}

/* Get hostname of own system and look up the Internet */

7* address corresponding to that hostname. «/

gethostname(mysys, sizeof(mysys));

if ¢((hp = gethostbyname(mysys)) == NULL) {

fprintf(stderr, “can’t find host %s\n", mysys);
exit(l);

}
/* Allocate socket to make ICMP request */

if ((s = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP)) < 0) [

perror(“pong: socket");

exit(1);

}

/* Packet holds IP and ICMP information */

packetsize = sizeof(struct ip) + sizeof(struct icmp);

buf_ptr = malloc(packetsize);

/* Set socket type and address for sending */

memset((char *)&to, ‘\0’, sizeof(struct sockaddr_in));

to.sin_ family = AF_INET;

to.sin_addr = address;

7* Initialize IP data in packet */

memset((char *)ip hdr ptr,’\0’, sizeof(struct ip));

ip_hdr ptr->ip_v = 4;

ip_hdr_ ptr->ip_hl = 5;

ip hdr ptr->ip_len = packetsize;

ip_ hdr ptr->ip_ ttl = Oxff;

ip_hdr ptr->ip_p = 1;

ip_hdr_ ptr->ip_sre = INADDR_ANY;

ip_hdr ptr->ip_dst = address;

buf_ip ptr = buf_ptr;

memcpy(buf_ip ptr, (char *)ip_hdr ptr, sizeof(struct ip));

6-1 4 Licensed materia!l-—property of copvriaht hoider(s) 092.701N24

A Sample Program: pong.c

/* Initialize ICMP data in packet */

memset((char *)icmp hdr ptr, ’ ’, sizeof(struct icmp));

icmp_hdr_ptr->icmp_ type = ICMP_AMREQ;

icmp_hdr_ptr->icmp_id = 1;

icmp_hdr_ptr->icmp seg = 1;

buf_icmp_ ptr = buf_ip_ ptr + sizeof(struct ip);

memcpy(buf_icmp ptr, (char *)icmp_hdr_ ptr, sizeof(struct icmp));

/* Calculate checksum and place it in the packet */

((struct icmp *)buf_icmp_ptr)->icmp_cksum =

in_checksum((short *)buf_icmp_ ptr,

sizeof(struct icmp));

/* Fork a child process to receive response from the ICMP request. */

/* If there is no response within 20 seconds, the process x/

/* will terminate. =/

my_pid = fork();

if «(my_pid <0) {

perror(“pong: fork”);

exit(l);

J
if (my_pid '!= 0) { /* parent */

signal(SIGINT, end_it_all);

for (;;) {
if (sendto(s, buf_ptr, packetsize, 0, &to, sizeof(to)) != packetsize) {

perror(“pong: sendto”);

kill (my_pid, SIGKILL);

exit(1l);

}

sleep(1);
if (wait3(é&status, WNOHANG, 0) == my_pid)

if (status.w_termsig == 0)

exit(status.w_retcode) ;

else

exit(-1);

} /* end of for loop */

} /* end of if */

if (my_pid == 0) {. /* child */

alarm(timeout);

Signal(SIGALRM, noresponse);

for (;;) {
len = sizeof(from);

if ((cc = recvfrom(s, buf_ptr, packetsize, 0, &from, &len)) < 0) {

perror(“pong: recvfrom”);
continue;

}
if (cc != packetsize) [{

continue;

}
if (((struct icmp *)buf_icmp ptr)->icmp_type != ICMP_AMREPLY) [

continue;

}

printf("%s has address mask %x\n",
address to_string(from.sin_addr),

((struct icmp *)buf_icmp_ ptr)->icmp_address_mask);

exit(0);

/* NOTREACHED */

093-701024 Licensed material—property of copyright holder(s) 6-1 5

A Sample Program: pong.c

/* kill process */

end_it_all()

{
kill (my_pid, SIGKILL);

exit(1);

}

noresponse()

{
printf("no response from %s\n", host);

exit(1);

}
/* Calculate checksum */

in_checksum(addr, length)

u_short *addr;

int length;

register u_short *ptr;

register int sum;

u_short *lastptr;

sum = 0;

ptr = (u_short *)addr;

lastptr = ptr + (length/2);

for (; ptr < lastptr; ptr++) [{

sum += *ptr;

if (sum & 0x10000) {

sum &= Oxffff;

sumt++ ;

}

}
return (“sum & Oxffff) ;

}
char *

address_to_string(address)

struct in_addr address;

{
struct hostent *hp;

char buf[100];

hp = gethostbyaddr((char *)é&address, sizeof(address), AF_INET);

if (hp == NULL) {

sprintf(buf, “"Oxtx", address.s_addr);

return buf;

}
else {

return hp->h_name;

}

End of Chapter

6-16 Licensed material—property of copyright hoider(s) 093-701024

Chapter 7

Using the Transport Layer

Interface to Access TCP/IP

Previous chapters have described how to use the socket family of system calls in

networking applications. The socket calls provide an interface to the TCP/IP

protocol stack that directly accesses kernel services. Alternatively, you can use the

Transport Layer Interface (TLI) to access TCP/IP. The TLI is a library of routines

that uses STREAMS mechanisms to access transport-level services in the kernel.

Chapter 3 generally describes the system calls you use to open, use, and close a

socket. This chapter describes the routines you use to establish, use, and close a

transport connection through the TLI. It contrasts the use of socket calls with the

use of TLI routines to perform specific communications functions. For detailed

information about each of the routines covered in this chapter, see the appropriate

manual page.

This chapter contrasts socket calls with TLI routines because many network

programmers already use sockets and are familiar with them. In providing

communication facilities between peer processes, the TLI and sockets are much alike.

Thus, it should be easier to learn TLI if you already know sockets.

As you write networking applications, you may find that there are times that you want

to use TLI routines, times that you want to use sockets, and times that either

interface would do. If you want a program to be portable or to run on a system

compatible with System V Release 4, use the TLI. If you want complete access to

TCP/IP functionality, use sockets. Socket-based applications do not run on an OSI-

based stack.

Chapter 3 is organized around the sequence of events when a client and server

communicate through a socket. This chapter is organized around the sequence of

events when a client and server communicate through a TL]-based transport

endpoint. A local program that uses the TLI to access TCP/IP has to create a

communication endpoint and bind an address/name to it. The TLI routines that act

on a communication endpoint expect certain data structures. If the program is a

server, it has to listen for and accept a connection request. If the program is a client,

it has to place a request for a connection. After endpoints are connected, clients and

servers need to send and receive data. When data transmission is complete, a

program has to close the endpoint. The following sections cover these events in

detail.

093-701024 Licensed material—property of copyright holder(s) 7-1

Opening a Communication Endpoint

Opening a Communication Endpoint

Recall that one definition of the term socket is conceptual: it is simply a

communication endpoint that you can give a name. In the socket realm, you create

this communication endpoint through the socket(2) system call.

In the TLI realm, the communication endpoint is called a transport endpoint. To

create a transport endpoint with the TLI, you must use the t_open routine. Figure 7-1

shows the syntax of the t_open routine.

#Hinclude <tiuser.h>

int fd;

char *path; /* Read only */

int oflag; /* Read only */

struct t_info protocolinfo; /* Write only */

fa = t_open(path, oflag, sprotocolinfo) ;

Figure 7-1 Syntax of the t.open Routine

You do not specify the protocol family type of service or optional protocol ID for

t_open as you do for the socket system call. Instead, you use t_open to open a

special file that identifies a particular transport provider. The path argument points

to the pathname of the transport provider to open. When you use TLI to access

TCP/IP, have path point to a file system entry for a STREAMS-based clonable driver

such as /dev/tcp or /dev/udp.

The oflag argument of t_open identifies open flags. These flags indicate the open

intent (read, write, or both) and, optionally, open behavior (wait for a carrier before

return, and so on) of the connection. You can construct the value for oflag by

performing the OR function with an open intent flag and an open behavior flag, or

you can simply specify an open intent flag.

When you use TLI to access TCP/IP, you can use the O_RDWR open intent flag for

oflag. This indicates that you intend to read and write through the connection. You

can use the O_NONBLOCK optional open behavior flag.

For details about the open flags, see open(2).

7» On A terialomrnAnarh af eararriaht haicdaca\ ne2..7ninega

Opening a Communication Endpoint

You can use the protocol_info argument to return various characteristics of the

underlying transport protocol (TCP or UDP). The argument points to a structure of

type t_info. A t_info structure contains the following members:

long addr;

long options;

long ~~ _tsdu;

long etsdu;

long connect;

long discon;

long servtype;

The addr member of a t_info structure specifies the maximum size of a protocol-

specific address. The options member specifies the size in bytes of protocol-specific

options.

If the value of the tsdu member is greater than 0, it specifies the maximum size in

bytes of a transport service data unit (TSDU). A value of 0 means that the transport

provider does not support TSDUs, but it does support sending a byte stream of data.

A value of —1 indicates no limit to the size of a TSDU. A value of —2 indicates that

the transport of normal data is not supported. Here are the values of tsdu for TCP,

UDP, and IP:

Protocol tsdu Value |

TCP 0

UDP 65507

IP 65515

If the value of the etsdu member is greater than 0, it specifies the maximum size in

bytes of an expedited transport service data unit (ETSDU), or in the language of

socket-based applications, a unit of urgent data. A value of 0 indicates that the

transport provider does not support ETSDUs, but it does support sending an

expedited data stream with no logical boundaries preserved across the connection. A

value of 1 indicates no limit to the size of the ETSDU. A value of —2 indicates

that expedited data is not supported. Here are the values of etsdu for TCP, UDP,

and IP:

Protocol etsdu Value

TCP 0

UDP -2
IP -2

The connect member specifies the maximum amount of user data that can be sent

with connection primitives. This is needed because some protocols support the

transfer of user data with a connection request. The discon member specifies the

maximum amount of data that can be sent with disconnect primitives. For TCP, the

values of these members depend on the TCP Maximum Segment size, which is based

on the Maximum Transmission Unit (MTU) of the interfaces used by peers to

communicate. For example, two locally connected Ethernet peers have a Maximum

Segment size of 1420. For UDP and IP, these members have the value of -2, since

the protocols don’t support connection-oriented service.

The servtype member specifies the provider service type. There are three legal

values:

093-701024 Licensed material—property of copyright holder(s) 7-3

Opening a Communication Endpoint

T_COTS Connection-oriented service without orderly release

T_COTS_ORD _Connection-oriented service with orderly release

T_CLTS Connectionless service

For TCP, servtype would have the value T.COTS_ORD. For UDP and IP, it would

have the value T_CLTS.

The t_open routine returns a file descriptor (fd) that identifies the new transport

endpoint. You would use this descriptor in later TLI calls to associate an address to

the endpoint.

Specific examples should make the contrast between the socket call and the t_open

routine clearer. Here’s how you would use the socket call to open a TCP endpoint.

#include <sys/socket.h> /* defines AF_INET, SOCK_STREAM, and IPPROTO_TCP */

int net_fd;

net_fd = socket (AF_INET,SOCK_STREAM, IPPROTO_TCP) ;

if(net_fd < 0){

perror("Socket failed\n");

exit(1);

}

In this call, the arguments assume the constant values AF_INET (Internet domain),
SOCK_STREAM (stream sockets), and IPPROTO_TCP (TCP protocol). The code
returns an error message if the socket call fails.

Here’s how you would use t_open to open a TCP transport endpoint.

#include <tiuser.h> /* defines T_CALL and other T_* structures */
#include <stdio.h> '/* aefines print routines and NULL */

#include <fentl.h> /* defines O_RDWR used in t_open call */

int net_fd;

net_fd = t_open("/dev/tcp”,O_RDWR, NULL);

if(net_fa < 0){

t_error("t_open failed\n");
exit(1);

}

The first argument to the t_open routine is /dev/tep, which is a STREAMS-based

clonable driver that accesses the transport provider for a stream connection in the

Internet domain. The second argument specifies the open intent flag O_RDWR: this

means that the connection is intended for read and write operations. The third

argument specifies NULL: this means that t_open returns no protocol information

through the protocol_info argument. If you want an application to use the

information returned by the protocol_info argument, declare the third argument as a

t_info structure. As with the socket system call, an error message is returned if the

call fails.

1-4 Licensed material—property of copyright hoker(s) 093-701024

Allocating Data Structures

Allocating Data Structures

Most of the data structures passed between a transport user and transport provider

contain one or more netbuf structures, each of which contains a pointer to a buffer

used to send and receive data or addresses. The netbuf structure is covered later in

this section.

You must explicitly tell the TLI routines that operate on a transport endpoint what

kind of data to expect and in what format to expect it. One way to do this is through

the t_alloc routine.

When TLI routines operate on a transport endpoint, they use a specified set of data

structures to manipulate data. You use the t_alloc routine to allocate dynamically a

particular data structure for the task that you want to perform. The specific data

structures that t_alloc allocates are covered later in this section. Alternatively, you

can specify statically the data structures that the TLI routines should expect.

You also use t_alloc to allocate memory for buffers referenced by a data structure.

The maximum buffer sizes are all available in the t_info structure returned by t_open.

This point is covered in a little more detail later.

In the socket realm, you would either use malloc(3) to dynamically allocate the data
structures, or explicitly declare the structures in the user program. For more

information about malloc, see the manual page.

Figure 7-2 shows the syntax of the t_alloc routine.

#include <tiuser.h>

int fd;

int structtype;

int fields;

char *t_alloc(fd, structtype, fields)

Figure 7-2 Syntax of the t.alloc Routine

093-701024 Licensed material—-property of copyright hoider(s) 1-5

Allocating Data Structures

The fd is the file descriptor. Each of the six allowed values of struct_type specifies

the allocation of a specific type of structure:

T_BIND allocates a t_bind structure

T_CALL allocates a t_call structure

T_DIS ; allocates a t_discon structure

T_UNITDATA __ allocates a t_unitdata structure

T_UDERROR _ allocates a t_uderr structure

T_INFO allocates a t_info structure

Each of these structures is described in more detail in the section about the TLI

routine that uses them. For example, the t_bind structure is discussed in the section
that explains how to use the t_bind rc tine. |

You use t_alloc’s fields argument to allocate memory for the buffer associated with

the particular data structure specified. The arguments that you can pass are the

bitwise-OR of any of the following:

T_ADDR Allocate the addr member of the t_bind, t_call, t_unitdata, or t_uderr

structures.

T.UDATA Allocate the udata member of the t_call, t_discon, or t_unitdata

structures. |

TALL Allocate all relevant members of the given structure.

Here is an example that uses t_alloc to allocate address information to which an

endpoint is bound.

int result;

struct t_bind* bind_info_ ptr;

struct sockaddr_in *sin_ptr;

struct servent *service_ptr;

/* Assume that the file descriptor is open */

bind_info_ptr = (struct t_bind*)t_alloc(lstn_fd,T_BIND,T_ADDR) ;

if(bind_info_ ptr == NULL) {

t_error("t_alloc of T_BIND packet failed\n”);

exit(1);
} |

bind_info_ptr—->addr.len = sizeof(struct sockaddr_in);

bind_info_ptr- glen = 2;

sin_ptr = (struct sockaddr_in*)bind_info_ptr—->addr.buf;

memset((char *)sin_ ptr, 0, sizeof(*sin_ptr));

sin_ptr->sin_port = service_ptr—>s_port;

sin_ptr->sin_family = AF_INET;

sin_ptr->sin_addr.s_addr = INADDR_ANY;

In this example, the t_alloc routine allocates a t_bind data structure for the descriptor

named bind_info_ptr and allocates memory for the addr member of the structure.

Then, the address struciure pointed to by the addr member is initialized.

7-6 Licensed material—property of copyright holder(s) 093-701024

Allocating Data Structures

To release an allocated data structure, use the t_free routine. Figure 7-3 shows the

syntax of the routine.

#include <tiuser.h>

int retcode;

char *ptr;

int strucltype;

retcode = t_free(ptr, structtype);

Figure 7-3 Syntax of the tfree Routine

The t_free routine frees memory for the specified structure, and also frees memory

for buffers referenced by the structure. The pir argument points to one of the six

structure types described for t_alloc, and struct_type identifies the type of the

structure.

The data structures allocated by t_alloc most often contain one or more structures of

type netbuf. The netbuf structure consists of the following members:

unsigned int maxlen;

unsigned int len;

char *buf;

The buf member points to a data buffer. The maxlen member has meaning only
when you use buf to receive data from a TLI routine; then, it specifies the amount of

data that can be copied into the buffer. When you pass data from a read-only buffer

to a TLI routine, maxlen is ignored.

When you use buf to receive data, the value of len is specified on return to be the

amount of data actually copied into the buffer. When you use buf to send data, the

len argument specifies the number of valid bytes in the buffer. If you use buf for

both input and output, the calling routine replaces the value of len on return.

093-701024 | Licensed material—property of copyright hoider(s) (-7

Allocating Data Structures

The layout of buf depends on whether you use it to pass an address, option

information, or user data. Figure 7-4 shows how you could use a netbuf structure to

send the address of a transport endpoint to another TLI routine. The figure shows

the address in the form of a sockaddr_in structure, which is defined in

/usr/include/sys/socket.h and is discussed in detail in Chapter 3. The maximum

length of the buffer is specified as 1024 bytes, but because you are sending data to a

TLI routine, this specification is ignored. The len is 16, which is the length of a

sockaddr_in structure.

addr -> maxlien = 1024

len = 16

buf holds address in sockaddr_in

buf -> 7 sin_family

1 | sin_port sockaddr_in
| 16 .
1 sin_addr

) ; sin_zero

i

I

t

1024

!

i

i

i

i

i

i

i

i

'

LL. =

Figure 7-4 Sending an Internet Address Through netbuf

Sections of Chapters 3, 4, and 6 describe how to set and get protocol-specific options

through the socket system calls. When you set and get protocol-specific options

through a TLI routine, you put opthdr-value pairs into netbuf’s data buffer. The

opthdr is a fixed-length structure that specifies the protocol-specific option you wish

to set or get. The value specifies the option value itself.

7-8 Licensed material-—property of copyright hoider(s) 093-701024

Allocating Data Structures

The opthdr structure contains three members: level, name, and length. Valid level-

name pairs in the opthdr structure are as follows. The length specifies the length of

the option value.

Table 7-1 Valid level-name Pairs for the opthdr Structure

level name

IPPROTO_IP IPp_TX_OPTIONS

IP_TOS

IP_TTL

IP_DONTFRAG

IP_RX_OPTIONS

IPPROTO_TCP TCP_NODELAY

TCP_MAXSEG

TCP_URGENT_UINLINE

TCP_PEER_ADDRESS

TCP_ACCEPT_QUEUE_LENGTH

Figure 7-5 shows two options (32 bytes) being passed through a netbuf structure.

opt -> maxlien = 1024

len = 32

buf contains opthdr-value pairs

e@epee~«q«)cq»p «»p a
level

name

length

buf ->

opthdr

value
GWNO

level

name

length

-—_o——or oro ooo
1024

opthdr

valuerere

r f ‘ !

Figure 7-5 Passing Protocol-Specific Options Through netbuf

093-701024 Licensed material—property of copyright hoider(s) 7-9

Allocating Data Structures

For more information about IP options, see Chapter 6. For more information about

TCP options, see Chapter 4.

Figure 7-6 shows how you could use buf to receive data from a TLI routine. Assume
that you are using a buffer of 1024 bytes, and that the routine returns with 32 bytes of

data.

udata -> maxien = 1024

len = 32

buf contains user data

7
t

data

data

data

data

data

data

data

data

buf ->

GdND

1024

Peooror or oer oe

r ' t t

Figure 7-6 Receiving Data Through netbuf

Binding an Address to an Endpoint

In the socket realm, the bind system call assigns a name to a communication

endpoint. In the TLI realm, the analog to the bind system call is the t_bind routine.

Figure 7-7 shows the syntax of the routine.

7-10 Licensed material—property of copyright holder(s) 083-701024

Binding an Address to an Endpoint

#include <tiuser.h>

int fd;

int retcode;

struct t_bind *req;

struct t_bind *ret;

retcode = t_bind(fd, req, ret);

Figure 7-7 Syntax of the t_bind Routine

The t_bind routine associates a local address with the transport endpoint that you

specify (here fd) and activates that endpoint. The req and ret arguments each point to

a t_bind structure, which contains the followimg members:

struct netbuf addr;

unsigned glen;

The addr member of the t_bind structure is a netbuf structure that contains an

address. The qlen member of the t_bind structure, which is meaningful only for

connection-oriented servers, indicates the maximum number of outstanding

connection requests.

Use reg to request that an address be bound to the transport endpoint specified by fd.

_ When you use the TLI to access TCP/IP, the address is conveyed in a sockaddr_in

structure. The len member of the req structure specifies the number of bytes in the

address, and the buf member points to the address. The maxlen member has no

meaning for req.

If req is NULL or if reg is not null and the length of the address is 0, it does not

matter to the transport user what address gets assigned to the endpoint, and qlen is

assumed to be 0. The provider uses a wildcard IP address and an unused port

number in the range 1024 to 5000. If req is not null and the length of the address is

greater than 0, the transport user specifies an address for the transport provider to

assign to the endpoint.

On return, ret contains the address that the transport provider actually bound to the

transport endpoint; this may be different from the address specified in req. Again,

the address is conveyed in a sockaddr_in structure. You specify the maximum size of

the address buffer in the maxlen member of the ret structure. Specify the buffer

where the address is to be placed in the buf member of vet. On return, len specifies

the number of bytes in the bound address and buf points to the bound address.

If the qlen member has a value greater than 0, the endpoint is passive, accepting

connections. Then, the value of qlen specifies how many connection requests can be

enqueued at that particular transport endpoint.

What happens after t_bind activates the endpoint depends on whether the transport

user is a server or a client, and on whether it is connection-oriented or

connectionless. A connection-oriented server may begin accepting connections on

the transport endpoint immediately after t_bind activates the endpoint. In this case,

then, t_bind handles the functionality of the bind and listen calls in the socket realm.

093-701024 Licensed material—property of copyright holder(s) 7-11

Binding an Address to an Endpoint

For a connection-oriented client, the t_bind routine handles only the functionality

associated with the bind call. The transport user must issue a t_connect after t_bind

to initiate a connection with a server.

A connectionless user (server or client) may begin sending or receiving data through

the transport endpoint immediately after the t_bind is issued.

Here’s how you use the bind call to associate an address with a socket.

#include <sys/socket.h> /* defines AF_INET and SOCK_STREAM */

#include <arpa/inet.h> 7* defines inet_ntoa */

int sock_fd;

struct sockaddr_in addr_base;

struct sockaddr_in *taddr = &addr_base;

addr_base.sin_port = 0;

addr_base.sin_family = AF_INET;

addr_base.sin_addr.s_addr = INADDR_ANY;

if(bind(sock_fd, addr, sizeof(struct sockaddr_in)) == -1) {

fprintf(stderr, "bind failed with errno %d\n", errno);
exit(l);

}

Lines of code before the bind call explicitly fill in the members of the address

structure bound to the endpoint.

Here’s how you can use t_bind routine to associate a local address with a transport

endpoint and activate the endpoint.

/* Assume that net_fd is a transport endpoint previously

created by a call to t_open. */

result = t_bind(net_fd, NULL, NULL);

if(result < 0){

t_error("t_bind failed");

exit(1);

}

Notice that a NULL value is specified for the req argument. This means that it does

not matter to the transport user what address gets assigned to the endpoint.

7-12 Licensed material—property of copyright holder(s) 093-701024

Listening for and Accepting a Connection Request

Listening for and Accepting a Connection

Request

In the socket realm, a server program uses the listen call to specify the length of a

queue of connection requests on a particular socket, and the accept call to extract a

connection request from the queue and establish the connection. In the TLI realm,

the maximum length of a queue of connection requests is specified through the t_bind

routine. A server uses t_listen to obtain information about a pending connection.

When t_listen returns an indication of a connection, a server typically uses t_open to

open a new endpoint and t_bind to bind to it. Finally, a server accepts the

connection through the t_accept routine.

Figure 7-8 shows the syntax of the t_listen routine, which a server routine uses to

listen for a client’s request for service.

#include <tiuser.h>

int retcode;

int fd;

struct t_call *call;

retcode = t_listen(fd, call);

Figure 7-8 Syntax of the tlisten Routine

As you have seen, in the TLI realm the t_bind routine associates a protocol address

with a particular transport endpoint and activates that endpoint. A connection-

oriented server may begin accepting connections on an endpoint immediately after

t_bind activates the endpoint. The t_bind routine also specifies the number of

outstanding connection indications that the transport provider should support for the

given endpoint. Thus, the t_bind routine combines the functionality of the bind and

listen calls in the socket realm.

The t_listen routine listens for a connection indication (T.CONN_IND) from a calling

transport user. A server process needs this indication to accept a connection; it

cannot accept a new connection without this indication.

The fd argument specifies the descriptor of the transport endpoint where connection

indications arrive. On return, call contains information about the connection

indication. The call argument points to a t_call structure.

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In call, the addr member returns the protocol address of the calling transport user,

the opt member returns protocol-specific parameters associated with the connect

request, and the udata member returns any user data sent by the caller on the

connect request. The sequence is a number that uniquely identifies the returned

connection indication. The sequence value enables the transport user process to

listen for multiple connect indications before responding to any of them.

083-701024 Licensed material—property of copyright holder(s) 7-13

*

Listening for and Accepting a Connection Request

Thus, the cail argument of the t_listen routine passes information about the

connection indication. To a large extent, it provides the functionality of the accept

call in the socket realm.

Since t_listen returns values for the addr, opt, and udata members of call, the

maxlen member of each structure must be set before issuing the t_listen to indicate

the maximum size of the buffer for each.

By default, t_listen waits for a connection indication to arrive before returning to the

transport user. However, if you set O_.NDELAY (through t_open or fentl), t_listen

polls for existing connection indications. If there are none, t_listen returns —1 and

sets t_errno to the value TNODATA.

A server accepts a connection through the t_accept routine. Figure 7-9 shows the

syntax of this routine.

#include <tiuser.h>

int retcode;

int fd;

int resfd;

struct t_call *call;

retcode = t_accept(fd, resfd, call);

Figure 7-9 Syntax of the t_accept Routine

The fd argument of the t_accept routine identifies the local transport endpoint where

the connection indication arrived. The resfd argument specifies the local transport

endpoint where the connection is to be established. The call argument is a t_call

structure that contains information required by the transport provider to complete the

connection. The t_call structure, as you have seen, contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

In this case, addr is the address of the caller, opt contains any protocol-specific

parameters associated with the connection, udata points to any user data to be

returned to the caller, and sequence is the value returned by t_listen that uniquely

associates the response with a previously received connection indication.

The following program fragment from Chapter 4 uses the listen and accept system

calls. Assume that the local socket has been opened and named.

7-14 Licensed material—property of copyright holder(s) 093-701024

Listening for and Accepting a Connection Request

#include <stdio.h>

#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

int sock_desc, new_sock; /* Two socket descriptors */

int retcode; /* Return code from system calls */
struct sockaddr_in cname; /* Client socket name */

int cname_len = sizeof(cname); /* Size of client socket name */

/* Get into the listen state */

retcode = listen(sock_desc, 1);

if(-l1 == retcode) [{

fprintf(stderr,"Cannot set socket to listen state, errno $d\n", errno);

exit(l); .

}

/* Wait for a connection and return the first connection on the queue */

new_sock = accept(sock_desc, &cname, &cname_len);

if(new_sock < 0) {

fprintf(stderr,"

exit(1);

}

Error in accept, errno %d\n",errno) ;

Here’s a program fragment that uses the t_listen and t_accept calls to accept a

connection from a remote host. Again, assume that the local endpoint has been

opened and named.

#define SERVER_PORT 5001

int lstn_fd; /* Descriptor for endpoint to listen for connections */

int new_con_fd; /7* Descriptor for new connection */

int result;

struct t_call * lstn_info_ptr;

struct sockaddr_in *sin_ptr;

/* Allocate T_CALL structure for t_listen. */

lstn_info_ptr = (struct t_call *)t_alloc(lstn_fd,T_CALL,T_ALL);

if(lstn_info_ptr == NULL) {

t_error("t_alloc of T_CALL packet failed\n");
exit(1);

}

/* Wait for a connection to arrive. */

result = t_listen(lstn_fd,lstn_info_ptr);

if(result < 0){

t_error("t_listen failed");

exit(1l);

}
con_bind ptr = (struct t_bind*)t_alloc(new_con_fd,T_BIND,T_ALL) ;

if(con_bind ptr == NULL) [

t_error("t_alloc of T_BIND packet for new con failed");
exit(l);

}
/* Open the new file descriptor. */

new_con_fd = t_open("/dev/tcp”, O_RDWR, NULL);
if(new_cond_fd < 0){

t_error("t_open failed");

exit(1); 7

}

093-701024 Licensed material—property of copyright holders) 7-15

Listening for and Accepting a Connection Request

/* Do a bind on the new file descriptor.

Address information is provided, but not required. */

con_bind ptr->addr.len = sizeof(*sin_ptr);

con_bind_ ptr->qlen = 0;

sin_ptr = (struct sockaddr_in*)con_bind_ptr->addr.buf;

memset ((char *)sin_ptr, 0, sizeof(*sin_ptr));

sin_ptr->sin_family = AF_INET;

result = t_bind(new_con_fd,con_bind_ptr,NULL) ;

if(result <0) {

t_error("new connection t_bind failed");

exit(1);

}

lstn_info_ptr->opt.len = 0;

/* Associate connection with new file descriptor.

Use t_revdis to identify the cause of a disconnect if

it occurs. Use t_close to close the endpoint. */

result = t_accept(lstn_fd,new_con_fd,lstn_info_ptr);

if(result < 0){

t_error("t_accept failed");

if(t_errno == TLOOK) {

result = t_revdis(lstn_fd,NULL);

if(result < 0){

t_error("t_revdis failed");

exit(1);

}
result = t_close(new_con_fd);

if(result < 0){

t_error("t_close failed");

exit(l);

}
continue;

}

First, address information in a t_bind structure is allocated for t_bind through the

t_alloc routine. Next, t_bind associates the listening endpoint with the allocated

address information. Then, all relevant members of a t_call structure are allocated

for t_listen through t_alloc. After the members are allocated, t_listen waits for a

connection to arrive. When it does arrive, t_open opens a new connection, t_bind

binds the connection to the new file descriptor, and t_accept associates the

connection with the new file descriptor. If a disconnect occurs, t_revdis identifies the

cause. Finally, t_close closes the endpoint. The t_revdis and t_close are discussed
later in the chapter.

Thus, for the listening endpoint, the action of the t_bind routine mirrors the action of

the bind and listen system calls. For the descriptor of the accepting endpoint, the
action of the t_open, t_bind, t_listen, and t_accept routines mirrors the action of the

accept system call.

7-16 Licensed material—property of copyright holder(s) 093-701024

Requesting 4 Connection

Requesting a Connection

Once a socket is created and bound, it can communicate with another socket.

Precisely how this happens depends on whether a process uses stream sockets or

datagram sockets. With datagram sockets, you can send and receive data as soon as

sockets at both ends of the connection are bound to an address. With stream

sockets, a client program must first use the connect system call to establish a

connection with a server.

With the TLI, a client process initiates a connection with a server through the

t_connect routine. Figure 7-10 shows the syntax of the routine.

#include <tiuser.h>

int retcode;

int fd;

struct t_call *sndcall;

struct t_call *rcveall;

retcode = t_connect(fd, sndcall, rceveall) ;

Figure 7-10 Syntax of the t.connect Routine

The t_connect routine is valid only for connection-oriented transport endpoints.

The fd argument identifies the descriptor of the transport endpoint where the

connection is established. The sndcall and rcvcall arguments point to t_call

structures. Remember from the discussions of t_listen and t_accept that a t_call

structure has the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

Here, addr specifies the caller’s address (again, a sockaddr_in address), opt specifies

call options, and udata contains user data. The sequence member has no meaning
for the t_connect routine. |

The sndcall argument specifies information needed by the transport provider to

establish a connection. The rcvcall argument specifies the location of information

about the new connection passed from the transport provider.

In sndcall, the addr member specifies the address of the peer’s communication

endpoint. The opt member presents any protocol-specific information that might be

needed by the transport provider. The udata member points to optional user data

that may be passed to the destination transport user during the establishment of a
connection.

On return in rcvcall, addr returns the address associated with the responding

transport endpoint. The opt member contains any protocol-specific formation

associated with the connection. The udata member points to optional user data that

may be returned by the peer process during connection establishment. |

093-701024 Licensed materia!—property of copyright holder(s) 7-17

Requesting a Connection

By default, t_connect waits for the destination process’s response before returning

control to the local process. A successful return indicates that the connection has

been established.

If you set the O_NDELAY option (through the t_open routine or the fentl system

call), t_connect does not wait for the remote process’s response. Instead, it returns

control immediately to the local process and returns ~1 with t_errno set to

TNODATA to indicate that the connection has not yet been established.

Here’s a code fragment that uses the connect system call.

int sock_fd;

int result;

struct sockaddr_in sin;

/* Assume socket is open and bound */

result = connect(sock_fd,&sin,sizeof(sin));

if(result < 0){

perror("connect failed");

exit(l);

}
printf("Connection established\n") ;

Here’s a code fragment that uses t_connect to connect to a TCP endpoint.

int result;

int net_fd;

struct t_call *call_info_ptr;

struct sockaddr_in *sin_ptr;

/* Assume transport endpoint has been opened and named.

Allocate data structures for new endpoint. */

call_info_ptr = (struct t_call *)t_alloc(net_fd,T_CALL,T_ADDR) ;

if(call_info_ptr == NULL) [{

t_error("t_alloc of T_CALL packet failed\n");
exit(1);

}

call_info_ptr—>addr.len = sizeof(struct sockaddr_in);

sin_ptr = (struct sockaddr_in*)call_info_ptr->addr.buf;

sin_ptr->sin_family = AF_INET;

Sin_ptr->sin_port = service_ptr->s_port;

sin_ptr->sin_addr = host_address;

printf("Connecting to address=%s (%X), port number=%d\n",
inet_ntoa(host_address),

host_address.s_addr,

service_ptr->s_port);

7-18 Licensed material—property of copyright holder(s) 093-701024

Requesting a Connection

result = t_connect(net_fd,call_info_ptr,NULL);

if(result < 0)f{

if(t_errno == TLOOK && t_look(net_fd) == T_DISCONNECT) {

printf("Connection not established\n");

printf("Disconnection indication received\n");

exit(l);

}
t_error("t_connect failed\n");

exit(l);

}
printf("Connection established\n");

To connect to the remote host, this code first declares, allocates, and initializes

address information. Then, it asks the transport provider (TCP) to establish the
connection.

Sending and Receiving Data over a

Transport Connection

Like sockets, the TLI provides two kinds of communication service: connection-

oriented and connectionless. How an application sends and receives data through a

transport connection depends on the type of communication service it uses.

Connection-oriented communication allows the reliable transmission of data through

an established connection. Connectionless communication transfers data in self-

contained units. This kind of communication does not require an established

connection.

Sending Data with Connection-Oriented Service

In the socket realm, an application uses the write, writev, or send system calls to

send data after it establishes a connection. With connection-oriented service, a TLI-

based application uses the t_snd routine to send data. Figure 7-11 shows the syntax of

the routine.

#include <tiuser.h>

int retcode;

int fd;

char *buf;

unsigned nbytes;

int flags;

retcode = t_snd(fd, buf, nbytes, flags);

Figure 7-11 Syntax of the t_snd Routine

Use this routine to send either normal or expedited data. The fd argument identifies

the local transport endpoint over which data should be sent. The buf argument points

to the user data, nbytes specifies the number of bytes of user data to be sent, and

flags specifies any optional flags.

093-701024 Licensed material—property of copyright holder(s) T-1 9

Sending and Receiving Data over a Transport Connection

By default, t_snd may wait if flow-control restrictions prevent the data from being

accepted by the local transport provider when the call is made. However, if you set

O_NDELAY (through t_open or fentl) and flow-control restrictions, t_snd fails

immediately.

Receiving Data with Connection-Oriented Service

In the socket realm an application uses the read, readv, or recy system calls to

receive data after it establishes a connection. With connection-oriented service, a

TLI-based application uses the t_rev routine to receive data.

Figure 7-12 shows the syntax of the t_rev routine.

int retcode;

int fd;

char *buf;

unsigned nbytes;

int *flags;

retcode = t_rev(fd, buf, nbytes, flags);

Figure 7-12 Syntax of the rcv Routine

The fd identifies the local transport endpoint through which to expect data. The buf

argument points to a buffer where user data is placed, and nbytes specifies the size of

the buffer. The flags argument may be set on return from t_rev; for details, see the

manual page.

By default, t_rev waits for data to arrive if none are currently available. However, if

you have set O_NDELAY (through t_open or fentl), t_rev fails if no data are

available.

Here’s a socket-based example of sending and receiving data with connection-oriented

service.

#define FROM_STDIN 0

#define FROM_NET 1

typedef int data_direction_type;

data_direction_type wait_data();

for(;;) {
int nbytes; /* Holds number of bytes moved */

char buffer([80]; /* Holds data for/from network. */

int result;

switch (wait_data(fileno(stdin) ,net_fd))[{

7-20 Licensed matertal—property of copyright holder(s) 093-701024

Sending and Receiving Data oves_a Transport Connection

case FROM_STDIN: {

if (gets(buffer) == NULL) {

printf(" Sending EOF \n");

result = shutdown(net_fd,1);

if(result < 0){

perror("“shutdown failed\n");

}
break;

}
streat(buffer,"\r\n");

nbytes = send(net_fd,buffer,strien(buffer) ,0);

if(mbytes < 0){

perror(”send failed\n");

exit(1);

}
break;

} /* end FROM_STDIN case */

case FROM_NET: {

nbytes = recv(net_fd,buffer,sizeof (buffer) ,0);

if(nbytes <0) {

perror("recv failed\n");

exit(1);

}
if(nbytes == 0)[

printf("Received end of file\n");

goto END_OF_FILE;

}

write(fileno(stdout) ,buffer,nbytes);

break;

} /* end FPROM_NET case */

} /* end switch */

} /* end data movement loop */

END_OF_FILE:

Here’s a TLI-based example of sending and receiving data with connection-oriented
service.

#define FROM_STDIN 0

#define FROM_NET 1

typedef int data_direction_type;

data_direction_type wait_data();

for(;:) {
int nbytes; /* Holds number of bytes moved */

char buffer[80]; /* Holds data for/from network. */

int flags; /* Used with t_* calls. */

switch (wait_data(fileno(stdin) ,net_fd)){

093-701024 Licensed material--property of copyright holder(s) 7-21

Sending and Receiving Data over a Transport Connection

case FROM_STDIN: {

if (gets(buffer) == NULL) {

int result;

printf(" Sending EOF \n");

result = t_sndrel(net_fd);

if(result < 0)f{

t_error("t_sndrel failed\n"); ©

}

break;

}
streat (buffer, "\r\n");

flags = 0;

nbytes = t_snd(net_fd,buffer,strlen(buffer) ,&flags) ;

if(nbytes < 0){

t_error("t_snd failed\n");

exit(1);

}
break;

} /* end FROM_STDIN case */

case FROM_NET: [{

flags = 0;

nbytes = t_rev(net_fd,buffer,sizeof(buffer) ,&flags);

if(nbytes <0) {

t_error("t_rev failed\n");

exit(l);

}
if(nbytes == 0){

printf("Received end of file\n");
goto END_OF_FILE; . "

}

write(fileno(stdout) ,buffer,nbytes) ;

break;

} /* end FROM_NET case */

} /* end switch */

} /* end data movement loop */

END_OF_FILE:

In the first case, the code reads data from standard input. At the end of the file, the

code does an orderly release. (The t_sndrel routine is covered later in this chapter.)

A Carriage Return character and a New Line character are added to permit

communication through FTP or SMTP. Finally, data is written to the network. In

the other case, the code gets data from the network. It exits a loop when it gets an

End of File character, and then writes data to standard output.

Sending Data with Connectionless Service

With sockets, you use the sendto or sendmsg system calls to send data with a

connectionless protocol such as UDP. With connectionless service, an application

uses the t_sndudata routine to send data. Figure 7-13 shows the syntax of this

routine.

#include <tiuser.h>

int fd;

int retcode;

struct t_unitdata *unitdata;

retcode = t_sndudata(fd, unitdata);

1-22 Licensed material—property of copyright holders) 093-701024

Sending and Receiving Data over a Transport Connection

Figure 7-13 Syntax of the t_sndudata Routine

Use this routine to send a data unit to another connectionless transport user. The fd

argument identifies the local transport endpoint through which to send data, and

unitdata points to a t_unitdata structure that contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

In the unitdata argument, addr specifies the protocol address of the destination user,

opt identifies protocol-specific options that you want associated with this request, and

udata specifies the data to be sent. You may choose not to specify which protocol

options are associated with the transfer by setting the len member of opt to zero. In

this case, the provider uses default options.

By default, t_sndudata may wait if flow-control restrictions prevent the data from

being accepted by the local transport provider at the time the call is made. However,

if you have set O_NDELAY (through t_open or fentl), t_sndudata fails under such

conditions.

Receiving Data with Connectionless Service

With sockets, you use the recvfrom or recymsg system calls to receive data with a

connectionless protocol such as UDP. With connectionless service, a TLI-based

application uses the t_rcvudata routine to read data. Figure 7-14 shows the syntax of

this routine.

#include <tiuser.h>

int retcode;

int fd;

struct t_unitdata *unitdata;

int *flags;

retcode = t_rcevudata(fd, unitdata, flags);

Figure 7-14 Syntax of the trcvudata Routine

093-701024 Licensed material—property of copyright holder(s) 1-23

Sending and Receiving Data over a Transport Connection

Use this routine to receive a datagram from another connectionless transport user.

The fd argument identifies the local transport endpoint through which to expect data.

The unitdata points to a t_unitdata structure that holds data associated with the

received datagram. If the flags argument is set to T.MORE on return, the

application’s buffer was not large enough to hold the entire datagram. The rest of the

datagram may be retrieved with subsequent t_revudata calls.

The t_unitdata structure contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

The addr member specifies the address of the incoming or outgoing datagram. The

opt member specifies options. The udata member specifies user data. The maxlen

member of addr, opt, and udata must be set before issuing this routine to indicate

the maximum size of the buffer for each.

By default, t_rcvudata waits for a datagram to arrive if none is currently available.

However, if you have set O_NDELAY (through t_open or fentl), t_rcvudata fails if no

datagrams are available.

Releasing a Transport Connection

A connection-oriented TLI-based application can release a transport connection

abruptly or gracefully. Figure 7-15 shows the syntax of the t_snddis routine, which

you use to initiate an abrupt release on an already established connection or to reject

a connect request.

#include <tiuser.h>

int retcode;

int fd;

struct t_call *call;

retcode = t_snddis(fd, call);

Figure 7-15 Syntax of the t.snddis Routine

The fd argument identifies the local transport endpoint of the connection. The call

argument is a structure of type t_call that specifies information associated with the

abortive release. As you have read, the t_call structure has the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The meaning of the values in call differ depending on the context of the call to

t_snddis. When rejecting a connect request, call must be non-NULL and contain a

valid value of sequence to identify uniquely the rejected connection indication to the

transport provider. In this case, the addr and opt members of the t_call structure are

ignored. :

1-24 Licensed material—property of copyright hoider(s) 093-701024

Releasing a Transport Connection

In all other cases, call need only be used when data is being sent with the disconnect

request. The addr, opt, and sequence members of the t_call structure are ignored.

If you do not wish to send data to the remote user, the value of call may be NULL.

If the process that called t_snddis sends data with the disconnect, that is, if it sends

data through the udata structure to which the call argument points, the receiving

process has to pass a non-NULL discon argument to the t_revdis routine to retrieve

the data. You use the t_revdis routine to identify the cause of a disconnect and to

retrieve any user data sent with the disconnect.

Here is the syntax of the t_revdis routine:

#include <tiuser.h>

int retcode;

int fd;

struct t_discon *discon;

retcode = t_revdis(fd, discon);

Figure 7-16 Syntax of the trcvdis Routine

The fd argument identifies the local transport endpoint. The discon argument points

to a structure of the type t_discon. The t_discon structure has the following

members.

struct netbuf udata;

int reason;

int sequence;

The udata member contains user data. The reason member specifies the error

number of the disconnection (for example, EACCES to indicate that the caller has

inadequate privileges to do what it tried to do). The sequence member specifies the

sequence number. If the sequence is —1, the connection is associated with the

Stream; if the sequence is not —1, one of the enqueued connections is yet to be

accepted.

Figure 7-17 shows the syntax of the t_sndrel routine, which you use to release a

connection gracefully.

#include <tiuser.h>

int retcode;

int fd;

retcode = t_sndrel(fd);

Figure 7-17 Syntax of the t.sndrel Routine

Use t_sndrel to initiate an orderly release of a transport connection and indicate to

the transport provider that the transport user has no more data to send. The fd

argument identifies the local transport endpoint where the connection exists.

After issuing t_sndrel, you may not send any more data over the connection.

However, you may continue to receive data if an orderly release indication has been

received.

093-701024 Licensed material—property of copyright holder(s) 7-25

Releasing a Transport Connection

This routine is an optional service of the transport provider, and is only supported if

the transport provider returned service type T.COTS_ORD on t_open or t_getinfo(3).

A connection-oriented or connectionless TLI-based application can release a

transport connection abruptly through the t_close routine. Figure 7-18 shows the

syntax of this routine.

#include <tiuser.h>

int retcode;

int fd;

retcode = t_close(fd);

Figure 7-18 Syntax of the t.close Routine

Use the t_close routine to tell the transport provider that you are finished with the

transport endpoint specified by fd. The routine frees any local resources associated

with the endpoint. Also, t_close closes the file associated with an endpoint.

You should call t_close from the T.UNBND state. For details, see the t_getstate(3N)
manual page. However, t_close does not check state information, so it may be called

from any state to close a transport endpoint. If this occurs, the local library

resources associated with the endpoint are freed automatically. In addition, close(2)
is issued for that file descriptor. If no other process has the file open, the close

breaks any transport connection that may be associated with that endpoint.

Handling Errors

A socket system call returns an error through the errno variable. A TLI routine sets
the variable t_errno when it returns an error (like errno, t_errno is not cleared on

successful calls). The array named t_errlist can be indexed by t_errno to get an

ASCII error message for a particular value of t_errno.

Figure 7-19 shows how to call the global t_error routine, which writes a message to

standard error that describes the last error encountered during a call to a particular

routine.

7-26 Licensed material—property of copyright holder(s) 093-701024

Handling Errors

#include <tiuser.h>

char *errmsg;

extern int t_errno;

extern char *t_errlist[];

extern int t_nerr;

void t_error(errmsg) ;

Figure 7-19 Syntax of the terror Routine

The argument string errmsg is a user-supplied error message. t_nerr is the largest

message number provided for in the t_errlist table.

Suppose a datagram is transmitted correctly by the transport provider but an error is

detected in the datagram somewhere else in the network. For example, suppose the

datagram has an invalid address. The provider needs a way to tell the user that an

error has occurred. Also, the transport user needs some way of determining the

cause of the error.

The TLI provides such a way by setting the return code of t_revudata to —1 and by

setting t_errno to T.LOOK. A program can then call the t_revaderr routine to

determine what happened and to clear the error status. Figure 7-20 shows the syntax

of the t_rcvuderr routine.

#include <tiuser.h>

int retcode;

int fd;

struct t_uderr *uderr;

retcode = t_revuderr(fd, uderr);

Figure 7-20 Syntax of the trcvuderr Routine

The fd argument identifies the local transport endpoint through which the error report

is received. The uderr argument points to a t_uderr structure, which contains the

following members.

struct netbuf addr;

struct netbuf opt;

long error;

The addr member specifies the destination address of the packet that caused the

error. The opt member specifies any options contained in the message that caused

the error. The error member passes an error code.

If you do not care about the error indication, set the uderr argument to NULL. This

clears the error status without returning information about the error. A datagram

error may arrive at any time after the datagram was sent.

083-701024 Licensed materia!—property of copyright hoider(s) 7-27

Opening, Using, and Closing a Connection

Opening, Using, and Closing a Connection

The previous sections have described how you would create, use, and close a

transport connection through TLI routines. The following five figures depict a simple

scenario of just that. Figure 7-21 shows the creation of a passive endpoint on a server

system. Once created, this passive endpoint waits for a connection request from a

client.

Transport

User (Server)

t_open establish
TL t_bind passive

tlisten | endpoint

ee Jd
Stream
Head

|
Transport

Provider

Figure 7-21 Establishing a Passive Endpoint

The server program (the transport user) uses t_open to open a STREAMS

connection to the transport provider (let’s assume in this case that it is TCP). It then

uses t_bind to associate an address with a passive endpoint. It then uses t_listen to

listen for connection requests on the endpoint.

1-28 Licensed matectal—property of copyright holder(s) 093-701024

Opening, Using, and Closing a Connection

A client program also uses t_open to open a STREAMS connection to the transport

provider (TCP). It then uses t_bind to associate an address with an active endpoint.

Then, it initiates a connection with a server through the t_connect routine. Figure

7-22 shows these events.

093-701024

Transport

User (Client)

t_open

t_bind TL
t_connect

Stream
Head

connect

to v

server

Transport

Provider

Figure 7-22 Establishing an Active Endpoint

Licensed material—property of copyright hoider(s) 7-29

Opening, Using, and Closing a Connection

Figure 7-21 showed the server program using t_listen to listen for connection requests

on a passive endpoint. Figure 7-22 showed the client telling the server that it wanted

a connection. This causes the transport provider to send the T.CONN_IND signal

(connection indication) to the TLI streams head. The provider then opens a new

communications endpoint. Figure 7-23 illustrates these events.

Transport

User (Server)

TU t_listen

| T_CONN_IND

Transport

Provider

connection
request

from client

Figure 7-23 Listening for a Connection

7-30 Licensed material—property of copyright holder(s) 093-701024

Opening, Using, and Closing a Connection

Figure 7-24 shows that when the server program gets the connection indication signal,

it uses t_open to create a new Stream head for a new connection. It then uses t_bind

to associate an address with the new connection.

Transport

User (Server)

t_open

t_bind Tu

do
Stream Stream
Head Head

Transport

Provider

Figure 7-24 Opening a New Connection

083-701024 Licensed material—property of copyright hokder(s) 1-31

Opening, Using, and Closing a Connection

Figure 7-25 shows that the server program uses t_accept through the original stream

to accept the new connection.

7-32

Transport

User (Server)

Tu t_accept

doy
Stream
Head

Stream
Head

|
Transport
Provider

Figure 7-25 Accepting the New Connection

Licensed material—property of copyright hoider(s) 093-701024

Opening, Using, and Closing a Connection

Finally, Figure 7-26 depicts how data is sent and received through the new Stream

with t_snd and t_rev. The passive endpoint waits for a new connection request.

Transport

User (Server) |

t_snd .
t rev TL t_listen

Stream Stream
Head Head

Transport

Provider

Figure 7-26 Sending and Receiving Data Through the New Connection

Comparison of Sockets to TLI Routines

Table 7-2 summarizes the comparison of sockets to TLI routines. It shows the

sequence of socket calls and TLI routines that a server program, a client program, or

either type would use to open, use, and close a communication endpoint.

093-701024 Licensed material—property of copyright holder(s) 7-33

Comparison of Sockets to TLI Routines

Table 7-2 Comparison of Sockets and TLI Routines

initiator Activity Sockets TLI

Server or Client Set endpoint Data structure t_allocQ

data structure requirements depend

requirements on socket domain

Server or Client Create socket() t_open(Q
communication

endpoint

Server or Client Bind address to bindQ t_bindO

communication

endpoint

Server Specify queue > listenQ For a connection-
oriented server,

t_bindO does the same

work as bind(Q) and

listen()

Client Connect to connect() t_connect()

server

Server Wait for a accept() t_listenQ

connection and t_open()

get a new t_bind()

descriptor for t_accept()

the incoming

connection -

Server or Client Send and receive readQ t_rev()

data write() t_snd()

recvQ

send()

Server or Client Send andreceive recvfrom() t_revudata(

datagrams sendto() t_sndudata()

Server or Client Close the closeQ t_closeQ

connection shutdown() t_sndrel()

t_snddisQ

1-34 Licensed material—property of copyright holder(s) 093-701024

Compiling a Program to Use the TL Library

Compiling a Program to Use the TLI Library

To have a program use the TLI, link in the TLI library when you compile the

program. For example, if you wanted a program named user.c to use the TLI, you

would compile it with the following command line:

% cc user.c -lnsl 9

What follows are three sample programs: two that use TLI routines and one that uses

sockets. The first program is a TLI-based server that passively receives a connection

and transfers data. The second program is a TLI-based client that establishes a

connection and transfers data. The last program is the same client application, but

written to use sockets.

A TLI-Based Server Program

Here is a sample server program that uses TLI routines to passively receive a

connection and transfer data. Invoke the program as follows:

% program [service_name] 9

The service_name can be either a name of a well-known service (the default is echo)

or a port number. Once the connection has been established, the program reads data

from the network and echos it back to the network.

#include <stdio.h> /* Defines print functions and NULL. */

#include <memory.h> /* Defines memcpy. */

#include <netdb.h> /* Defines types for gethostbyname and getservbyname. */

#include <sys/types.h> /* Defines u_long types used by following file. */

#include <netinet/in.h> /* Defines in_addr. */

#include <arpa/inet.h> /* Defines inet_ntoa. */

#include <fentl.h> /* Defines O_RDWR used in t_open call. */

#include <sys/socket.h> /* Defines AF_INET. */

#include <tiuser.h> /* Defines T_CALL and other T_* things for TLI. */

extern int t_errno; /* Make TLI error codes available. */

main(argc,argv,envp)

int arge;

char *argv[];

char *envp[];
{

char *portname; /* Holds service name to listen on. */

struct servent* service_ptr; /* Used to lookup port number. */

struct servent atoi_servent; /* Used if getservbyname fails. */

int lstn_fd; /* Holds listening file descriptor. */

struct t_call * lstn_info_ptr;

int result;

093-701024 Licensed materiali—property of copyright holder(s) 7-35

Compiling a Program to Use the TLI Library

7-36

/*

* Check if argument specifies service to listen on.

*/
if (arge > l){

portname = argv[(l];

} else {

portname = "echo";
} .

if (arge >2){

printf("Too many arguments\n”");
exit(l); |

}

/*

* Find port number for named service.

* (This should be replaced with netdir_getbyname

* (see netdir(3N)) to be transport independent.)

*/
service_ptr = getservbyname(portname, "tcp") ;

if(service_ptr == NULL) {

service_ptr = &atoi_servent;

service_ptr->s_port = atoi(portname) ;

if(service_ptr->s_port == 0)[

printf("Can’t resolve portname %s\n",portname) ;
exit(1);

}

/*

* Print banner with port number.
x

printf("Starting %s with port number=%d\n",

argv[0),
service_ptr->s_port);

/*

* Open tcp.

*/
lstn_fd = t_open("/dev/tcp",O_RDWR, NULL);
if(lstn_fd < 0){

t_error("listen t_open failed");
exit(1);

/*

% Bind local port to listening file descriptor.
@

First declare, allocate, and initialize address information.
* Then ask Transport Provider to bind local port number.

*/

”

struct t_bind* bind_info_ptr;

struct sockaddr_in *sin_ptr;

bind_info_ptr = (struct t_bind*)t_alloc(lstn_fd,T_BIND,T_ADDR);

if(bind_info_ptr == NULL) {

t_error("t_alloc of T_BIND packet failed");

exit(1);

}
bind_info_ptr->addr.len = sizeof(struct sockaddr_in);

bind_info_ptr->qlen = 2;

sin_ptr = (struct sockaddr_in*)bind_info_ptr->addr.buf;

memset((char *)sin_ptr, NULL, sizeof(*sin_ptr));

sin_ptr->sin_family = AF_INET;

sin_ptr->sin_port = service_ptr->s_port;

Licensed material—property of copyright hoider(s) 093-701024

Compiling a Program to Use the TL Library

result = t_bind(lstn_fd, bind_info_ptr, NULL);

if(result < 0){

t_error(“t_bind for lstn_fd failed");

exit(l);

}

result = t_free(bind_info _ptr,T_BIND);

if(result < 0){

t_error("t_free bind_info_ptr failed");

exit(l);

}

}
/*

* Allocate T_CALL structure to hold t_listen information.

*/
lstn_info_ptr = (struct t_call *)t_alloc(lstn_fd,T_CALL,T_ALL);

if(lstn_info_ptr == NULL) {

t_error("t_alloc of T_CALL packet failed”);

exit(l1);

}

/*

* Loop Accepting connections from the remote host.
x

*/

for(;;){
int new_con_fd; /* file descriptor for new connection. */

struct t_bind * con_bind ptr;

struct sockaddr_in *sin_ptr;

/®

* Wait for a connection to arrive.

*/
result = t_listen(lstn_fd,lstn_info_ptr);

if(result < 0)f{

t_error("t_listen failed");

exit(1);

}

/*

* Get a file descriptor for the new connection.

*/
new_con_fd = t_open("/dev/tcp",O_RDWR, NULL);

if(new_con_fd < 0){

t_error("“connection t_open failed");

exit(1);

}
/*

* Do a bind on the new file descriptor.

*/
con_bind ptr = (struct t_bind*)t_alloc(new_con_fd,T_BIND,T_ALL);

if(con_bind ptr == NULL) [{

t_error("t_alloc of T_BIND packet for new con failed");
exit(1);

}

con_bind_ ptr-daddr.len = sizeof(*sin_ ptr);

con_bind ptr->glen = 0;

sin_ptr = (struct sockaddr_in*)con_bind_ptr->addr.buf;

memset((char *)sin_ ptr, NULL, sizeof(*sin_ptr));

sin_ptr->sin_family = AF_INET;

093-701024 Licensed material—property of copyright hoider(s) 7-37

Compiling a Program to Use the TL Library

1-38

result = t_bind(new_con_fd,con_bind_ ptr,NULL);

if(result <0)f{

t_error("new connection t_bind failed");
exit(l);

j

/*

* Free bind structure.

*/
result = t_free(con_bind_ ptr,T_BIND);

if(result < 0){

t_error("t_free con_bind_ptr failed");

exit(1);

}

lstn_info_ptr->opt.len = 0;

/*

* Associate connection with new file descriptor.

* If two connections are pended, this fails.

* This code should be prepared to do multiple

* calls to t_listen before doing the t_accept.

x/ :

result = t_accept(lstn_fd,new_con_fd,lstn_info_ptr) ;

if(result < 0)f{

t_error("t_accept failed");
if(t_errno == TLOOK) {

result = t_revdis(lstn_fd,NULL);

if(result < 0){

t_error("t_revdis failed");

exit(l);

}
result = t_close(new_con_fd);

if(result < 0){

t_error("t_close failed");
exit(l);

}

continue;

}
exit(1);;

} .

printf ("Accepted a connection.\n");

/*

* Loop echoing data back to network.

* A real server should probably do a fork

* to handle the new connection in parallel

* with accepting new connections.

*/

for(;;) {
int nbytes; /* Holds number of bytes moved */

char buffer[80]};/* Holds data for/from network. */

int flags; /* Used with t_* calls. */

/*

* Get data from network.

* Exit loop on disconnect.

*/
flags = 0;

nbytes = t_rev(new_con_fd,buffer,sizeof (buffer) ,&flags) ;

if¢(nbytes <0)[

t_error("error return from t_rcev");
break;

}
/*

* Ignore zero length reads.

*/
if(nbytes == 0){

continue;

J

Licensed material—property of copyright holder(s) 093-701024

Compiling a Program to Use the TL Library

/*

* Deliver data to network.

a/ ,

flags = 0;

nbytes = t_snd(new_con_fd,buffer,nbytes,&flags);

if(nbytes < 0)f{

t_error("t_snd failed");

break;

}
} /* end loop to move network data. */
/*

* Handle end condition.

*/
if(t_errno == TLOOK) {

result = t_look(new_con_fd);.

if(result < 0){ :
t_error("t_look failed");

exit(1);

}
switch (result) [

case T_DISCONNECT: {

struct t_discon discon_info = {0};

result = t_revdis(new_con_fd, &discon_info);

if(result < 0){

t_error("t_revdis failed");

}
printf("Disconnect indication: (reason= %d) %s\n",

discon_info. reason,

strerror(discon_info.reason));

break;

case T_ORDREL: {

result = t_rcvrel(new_con_fd);

if(result < 0){

perror("t_revrel failed");

exit(l1);

printf ("Received orderly release.\n");

result = t_sndrel(new_con_fd);

if(result < 0){

perror("T_sndrel failed");

}
break;

}
default:

printf("Unknown result from t_look: ts\n",
result);

} /* end switch */

}
x

* Close the data connection.

*/
result = t_close(new_con_fd);

if(result < 0){

t_error("t_close failed");

exit(1);

}
} /® end loop to process new connections */

093-701024 Licensed material--property of copyright holder(s) 7-39

Compiling a Program to Use the TLI Library

A TLI-Based Client Program

Here is a sample client program that uses TLI routines to access TCP to establish a

connection and transfer data. Invoke the program as follows:

% program [hostname [service_name]] 9

The default hostname is localhost. The default service_name is echo, but

service_name can also be a decimal number. Once the connection has been

established, the program reads data from standard input and writes it to the network,

and reads data from the network and writes it on standard output.

#include <stdio.h> /* defines print functions and NULL */

#include <memory.h> /* defines memcpy */

#include <netdb.h> /* defines types for gethostbyname and getservbyname */

#include <sys/types.h> /* defines u_long types used by next include file */

#include <netinet/in.h> /* defines in_addr */

#include <arpa/inet.h> /* defines inet_ntoa */

#include <fcentl.h> /* defines O_RDWR: used in t_open call */

#include <sys/socket.h> /* defines AF_INET used in t_bind structure t/

#include <tiuser.h> /* defines T_CALL and other T_* TLI things */

#include <errno.h> /* defines EINTR used by select */

#include <macros.h> /* defines max */

extern int t_errno; /* Make TLI error codes available. */
/*

* Declare function that does select.

*/

#define FROM_STDIN 0

#define FROM_NET 1

typedef int data_direction_type;

data_direction_type wait_data();

main(argc,argv,envp)

int argc;

char *argv[);
char *tenvp[];

{
Holds name of remote host. */

Holds service name to call. */

Used to look up host address. */

Used to lookup port number. */

Used if getservbyname fails. */

Holds internet address to call.

/*

/*

/*

/*

/*

/*

char *hostname;

char *portname;

struct hostent* hostent_ptr;

struct servent* service _ptr;

struct servent atoi_servent;

struct in_addr host_address; */
int net_fd; /* Holds file descriptor for tcp. */

int valid_connection; /* FPlag for data movement loop. */

int result; /* Result of last system call. */
/*

* Check if arguments specify hostname and service to call.

*/
if (arge > 1){

hostname = argv[l];

} else {

hostname = “localhost”;

}

if (arge >2){

portname = argv[2];

} else {

portname = "echo";

}

if (arge >3){ |

printf("Too many arguments\n") ;

1-40 Licensed material—property of copyright holder(s) 093-701024

0$3-701024

Compiling a Prograrn to Use fie TL! Library

exit(1);

}
/*®

* Print banner message to say program has started.

*/
printf("Starting %s with hostname=%s, portname=%s\n",

argv[0} ,hostname, portname) ;

“* .

Look up hostname and port number to get remote address.

(AT&T has introduced the netdir facility, which includes

netdir_ getbyname, as a transport independent way to

manipulate addresses. Programmers who wish to write

transport independent code should consider using it.

See "Network Selection and Name-to-Address Mapping"

in “UNIX System V Release 4 Programmer’s Guide:

Networking Interfaces” for more details.)*» ew + #8 #8 8 BM 8
x/

hostent_ptr = gethostbyname(hostname) ;

if(hostent_ptr == NULL) {

printf("Can’t resolve hostname %s\n",hostname) ;
exit(l);

}
(void) memcpy((char *)&host_address,

hostent_ptr->h_addr_list[0],

sizeof (host_address));

service_ptr = getservbyname(portname, "tcp");

if(service_ptr == NULL) [{

service_ptr = &atoi_servent; .

service_ptr->s_port = htons(atoi(portname));

if(service_ptr->s_port == 0){

printf("Can’t resolve portname %s\n",portname) ;

exit(1);

}

}
/*

* Open tcp.

*/
net_fd = t_open("/dev/tcp”,O_RDWR, NULL);
if(net_fd < 0){

t_error("t_open failed");
exit(1);

}
/*

* Bind local port of connection.

x

* Ask Transport Provider to bind local port.

*/
{

result = t_bind(net_fd, NULL, NULL);

if(result < 0){

t_error("t_bind failed");

exit(1);

Licensed material—property of copyright holder(s) 7-41

Compiling a Program to Use the TL Library

/*

* Connect to remote host.

* Then ask Transport Provided to establish the connection.

*/

struct t_call *call_info_ptr;

struct sockaddr_in *sin_ptr;

* First declare, allocate, and initialize address information.

call_info_ptr = (struct t_call *)t_alloc(net_fd,T_CALL,T_ADDR) ;

if(call_info_ ptr == NULL) {

t_error("t_alloc of T_CALL packet failed");

exit(1);

}

call_info ptr->daddr.len = sizeof(struct sockaddr_in);

Sin_ptr = (struct sockaddr_in*)call_info_ptr-—daddr.buf;

sin_ptr->sin_ family = AF_INET;

Sin_ptr->sin_port = service_ptr->s_port;

sin_ptr->sin_addr = host_address;

printf("Connecting to address=%s (%X), port number=%d\pn",

inet_ntoa(host_address),

ntohl (host_address.s_addr),

ntohs(service_ptr->s_port));

result = t_connect(net_fd,call_info_ptr,NULL);

if(result == 0)[{

printf("Connection established\n") ;

} else {

t_error("Connection NOT established") ;

}

{ int result2;

result2 = t_free(call_info_ptr,T_CALL);

if(result2 < 0){

t_error("t_free call_info failed");

exit(1);
} ;

}

}
/*

* Loop moving data between network and stdin/stdout.

*/
while(result >= 0) {

char buffer[80]; /* Holds data for/from network. */

int flags; /* Used with t_* calls. */

Switch (wait_data(fileno(stdin) ,net_fd)) {

case FROM_STDIN: { :

/*

* Read from stdin.

* On end of file, send orderly release.

* Add a CR NL to talk with FIP or SMTP.

* Write data to network.

*/
if (gets(buffer) == NULL) {

printf(" Sending EOF \n");

result = t_sndrel(net_fd);

if(result < 0){

t_error("t_sndrel failed");

}
break;

}
streat(buffer,"\r\n");

1-42 Licensed material—property of copyright holder(s) 093-701024

Compiling a Program to Use the TL Library

flags = 0;

result = t_snd(net_fd,buffer,strlen(buffer),&flags) ;

if(result < 0){

t_error("t_snd failed");

exit(1);

}

break;

} /* end FROM_STDIN case */

case FROM_NET: {
/*

* Get data from network.

* Write data to stdout.

*/
flags = 0;

result = t_rev(net_fd,buffer,sizeof (buffer) ,éflags) ;

if(result > 0){

fwrite(buffer,result,1,stdout) ;

} else {
/*

* Ignore zero length reads.

*/
if(result == 0){

continue;

} else f{

t_error("t_rev failed”);

)

}
break;

} /* end FROM_NET case */

} /* end switch */

} /* end data movement loop */

/*

* Try to print out message saying why the connection was closed.

* Close connection.

*/
if(t_errno == TLOOK) {

result = t_look(net_fd);

if(result < 0)f{

t_error("t_look failed");

exit(1);

}
switch (result) {

case T_DISCONNECT: {

struct t_discon discon_info = {0};

result = t_revdis(net_fd, &discon_info);

if(result < 0){

t_error("t_revdis failed");

}
printf("Disconnect indication: (reason= %d) %s\n",

discon_info.reason,

strerror(discon_info.reason));

break;

093-701024 Licensed material—property of copyright holderts) 7-43

Compiling a Program to Use the TLI Library

case T_ORDREL: {

result = t_revrel(net_fd);

if(result < 0){

perror("t_revrel failed");

exit(1);

}

printf("Received orderly release.\n");

break;

}
default:

printf("Unknown result from t_look: %s\n",

result);

} /* end switch */

}

result = t_close(net_fd);

if(result < 0){

t_error("t_close failed");

exit(1);

This function determines when either of two files has data

ready to read. The return value indicates which file descriptor

has data. If both files have data, the file descriptor

returned is arbitrary.»» 6
This function uses select(2) to wait for data to arrive.

TLI applications typically use poll(2) rather than select.

Using poll could increase portability. Programmers should

use the function most appropriate for their application.

Using select as here illustrated also works on an AT&T 3B2

running System V release 4.*eet te »
*/

data_direction_type wait_data(stdin_fd,net_fd)

int stdin_fd;

int net_fd;

{
int result;

fd_set ibits, obits, ebits;
/*

* Loop to ignore interrupts.

*/
do { |

FD_ZERO(&ibits) ;

FD_ZERO(&0bits) ;

FD_ZERO(&ebits) ;

FD_SET(stdin_fd,é&ibits);

FD_SET(net_fd,&ibits);

result = select(max(stdin_fd,net_fd)+1,éibits,éobits,ésebits,0);

if(result < 0){

if(errno != EINTR) {

perror("select failed");

}

}
} while(result <= 0);

1-44 Licensed material—property of copyright holders) 083-701024

Compiling a Program to Use the TLI Library

if(FD_ISSET(stdin_fd,é&ibits)) {

return FROM_STDIN;

} else {

return FROM_NET;

}

093-701024 Licensed material—property of copyright holder(s) 7-45

Compiling a Program to Use the TL! Library

A Socket-Based Client Program

Here is the same client program written to use sockets to establish a connection and

transfer data. Invoke the program as follows:

% program [hostname {service_name]] 3

As with the previous program, the default hostname is localhost. The default

service_name is echo, but service_name can also be a decimal number.

#include <stdio.h> /* defines

#include <memory.h> /* defines

#include <netdb.h> /* defines

#include <sys/types.h> /* defines

#include <netinet/in.h> /* defines

#include <arpa/inet.h> /* defines

#include <sys/socket.h> /* defines

#include <errno.h> /7/* defines

#include <macros.h> /* defines

/*

print routines and NULL */

memcpy */
types for gethostbyname and getservbyname */

u_long types used by next include file */

in_addr */

inet_ntoa */

AF_INET used in socket call */

EINTR used by select */

max */

* Peclare routine that does select.
x

#define FROM_STDIN 0

#define FROM_NET l

typedef int data_direction_type;

data_direction_type wait_data();

main(argc,argv,envp)

int argc;

char *argv[];

char *envp[j;

{
char *hostname;

char *portname;

struct hostent* hostent_ptr;

struct servent* service_ptr;

struct servent atoi_servent;

struct in_addr host_address;

int net_fd;
/*

/*

/*

/®

/*

/*

/*

/*

Holds name of remote host. */

Holds service name to call. */

Used to look up host address. */

Used to lookup port number. */

Used if getservbyname fails. */

Holds internet address to call. */

Holds file descriptor for tcp. */

* Check if arguments specify hostname and service to call.

*/
if (arge > lj{

hostname =

} else {

hostname =

argv[1];

"localhost";

}

if (arge >2){

portname =

} else {

portname =

argv [2];

"echo";

}

if (arge >3){

printf("Too many arguments\n”") ;
exit(l1);

1-46 Licensed material—property of copyright hoider(s) 093-701024

Compiling a Program to Use the TLI Library

/*

* Print banner message to say program has started.
x/ .

printf("Starting %s with hostname=%s, portname=%s\n",
argv[0]} ,hostname, portname) ;

/*.

* Find the internet address for the remote machine.

*/
hostent_ptr = gethostbyname(hostname) ;

if(hostent_ptr == NULL) {

printf("Can’t resolve hostname %s\n",hostname) ;

exit(l);

}
(void) memcpy((char *)&host_address,

hostent_ptr->h_addr_list[0],

sizeof (host_address));

/* |
* Find binary port number for named service.

*/
service_ptr = getservbyname(portname, “tcp") ;

if(service_ptr == NULL) [{

service_ptr = &atoi_servent;

service_ptr->s_port = atoi(portname) ;

if(service_ptr->s_port == 0){

printf("Can’t resolve portname %s\n",portname) ;

exit(l);

}

}

/*

* Open tcp.

*/
net_fd = socket(AF_INET,SOCK_STREAM,0);

if(net_fd < 0){

perror(”socket failed");

exit(l);

}

/*

* Connect to remote host.

2

/
{ int result;

struct sockaddr_in sin;

int length;

sin.sin_family = AP_INET;

Sin.sin_port = service_ptr->s_port;

Sin.sin_addr = host_address;

printf("Connecting to address=%s (%X), port number=%d\n",

inet_ntoa(host_address),

host_address.s_addr,

service _ptr->s_port);

result = connect (net_fd,ésin,sizeof(sin));

if(result < 0){

perror("connect failed");

exit(1);

}
printf("“Connection established\n");

093-701024 Licensed material—property of copyright holder(s) 1-47

Compiling a Program to Use the TLI Library

/*

* Loop moving data between network and stdin/stdout.

*/

for(;;) {
int nbytes; /* Holds number of bytes moved */

char buffer[80]; /* Holds data for/from network. */

int result;

switch (wait_data(fileno(stdin) ,net_fd)){

case FROM_STDIN: {

/ x

* Read from stdin.

* On end of file, Shutdown network.

* Add a CR NL to talk with FTP or SMTP.

* Write data to network.

=/
if (gets(buffer) == NULL) {

printf(" Sending EOF \n");

result = shutdown (net_fd,1);

if (result < 0){

perror(”shutdown failed”);

}

break;

}
streat(buffer,"\r\n");

bytes = send(net_fd,buffer,strilen(buffer) ,0);

} /*
case

} /*

} /*

if(nbytes < 0){

perror("send failed");

exit(1);

}

break;

end FROM_STDIN case */

FROM_NET: {

/*

* Get data from network.

* Exit loop on end of file.

* Write data to stdout.
s/

nbytes = recv(net_fd,buffer,sizeof (buffer) ,0);

if(nmbytes <0) {

perror(”recv failed");

exit(1l);

}
if(nbytes == 0){

printf("“Received end of file\n");

goto END_OF_FILE;

}

fwrite(buffer,nbytes,1,stdout) ;

break;

end FROM_NET case */

end switch */

} /* end data movement loop */

7-48 Licensed material—property of copyright hoider(s) 083-701024

Compiling a Program to Use the TL! Library

END_OF_FILE:

/*

* Close connection.

*/

{

int result;

result = close(net_fd);

if(result < 0){

perror("close failed");

exit(l);

}
/*

* The following routine uses select to determine when

* either of the two file descriptors has data.

* The return value indicates which file descriptor has data.

*/

data_direction_type wait_data(stdin_fd,net_fd)

int stdin_fd;

int net_fd;

{
int result;

fa_set ibits, obits, ebits;
/*

* Loop to ignore interrupts.

*/
do {

FD_ZERO(&ibits) ;

FD_ZERO(&obits) ;

FD_ZERO(&ebits) ;

FD_SET(stdin_fd,&ibits) ;

FD_SET(net_fd,&ibits);

result = select(max(stdin_fd,net_fd)+1,éibits,éobits,&ebits,0);

if(result < 0){

if(errno != EINTR) {

perror("select failed");

}

}
} while(result <= 0);

if(PD_ISSET(stdin_fd,éibits))[{

return FROM_STDIN;

}) else {

return FROM_NET;

}

End of Chapter

093-701024 Licensed material—property of copyright holder(s) 7-49

Chapter 8

TCP/IP for AViiON Systems

Manual Pages

Here are manual pages that are useful to a network programmer using the TCP/IP for

AViiON Systems package. These manual pages are also available online through the

man(1) command.

The following manual pages are included:

Table 8-1 List of TCP/IP Manual Pages

Name Description

intro(6) Introduces the TCP/IP protocol family

inet(6f) | Provides more detail about the TCP/IP protocol family

ip(6) Internet protocol

loop(6) Loopback interface

tep(6) Transport control protocol

udp(6) + _ User datagram protocol

093-701024 Licensed material—property of copyright hoider(s) 8-1

intro(6) UNIX System V intro(6)

NAME

intro — Communications Protocols introduction to networking facilities

INCLUDE FILES

#include <netinet/tcp.h>

#include <netinet/udp.h>

' #include <netinet/ip.h.

#include <netinet/ip_icmp.h>

#include <net/if.h>

DESCRIPTION

This section briefly describes the DG/UX system networking facilities. Docu-

mentation in this section covers three areas: the Internet protocol family, the

available protocols, and the network interfaces. The Internet protocol family

is described on the inet(6F) manual page, whereas entries describing the pro-

tocols are on manual pages marked 6P. Network interfaces are described on

manual pages marked 6.

The Internet family includes the Transmission Control Protocol (TCP), User

Datagram Protocol (UDP), Internet Protocol (IP), and Internet Control Mes-

sage Protocol (ICMP). These protocols are communications facilities imple-

mented in the DG/UX system kernel that transfer information from user pro-

grams to the network and back. Programmers writing user-level programs can

access TCP, IP, and UDP with the socket(2) family of system calls.

The Transmission Control Protocol (TCP) fits into the layered networking

architecture just above IP. Application programs, such as remote terminal

agents and file transfer agents, usually run on top of TCP, using its services.

TCP assures reliable end-to-end delivery of a data byte stream. TCP deals

with user data copied to the protocol’s buffers. It packages the data into seg-

ments and passes this information to IP, which then breaks the information

into packets that can be easily transmitted across the network. IP then deter-

mines the next hop on a path through the network for the packet being

transmitted and transfers the packet to the first host on the path. A gateway

host would receive the packet and route it to the destination host. When

packets arrive at the destination host, TCP reconstructs the entire message,

checking to ensure that the data is complete and correctly ordered before

sending it to application programs. If there is a problem, TCP requests that

the message be retransmitted.

Like TCP, the User Datagram Protocol (UDP) fits into the layered network-

ing architecture just above IP. It provides procedures for application pro-

grams to send messages to other programs with a minimum of protocol

mechanism. UDP is a simple datagram protocol. Unlike TCP, it neither

guarantees reliable delivery nor does it provide protection from duplicate mes-

Sages.

The Internet Protocol (IP) is primarily concerned with getting a datagram to

the next host on the route to the datagram’s final destination. A datagram is

a self contained package of data carrying sufficient information for hosts to

deliver it to its destination. Since host availability changes, the packets that

make up a complete message may have different routes and may end up at the

destination out of their original order. The TCP layer is responsible for re-

ordering the packets correctly. Some packets may be lost or garbled in

transmission. IP frequently notifies higher level protocols when packets are

lost or damaged, but sometimes does not.

8-2 Licensed material—-property of copyright holder(s) 093-701024

intro(6) UNIX System V intro(6)

The Internet Control Message Protocol (ICMP) is used to report errors in

datagram processing. ICMP is an integral part of IP and must be imple-

mented by every IP module. ICMP messages are sent to report problems in

the communication environment, not to make IP a reliable protocol. -

ADDRESSING

Associated with each protocol family is an address format. The following

address formats are used by the system:

#define AF_UNIX 1 /* local to host (pipes) */

#define AF_INET 2 /* internetwork: UDP, TCP, etc. */

INTERFACES

Each network interface in a system corresponds to a path through which mes-

sages may be sent and received. A network interface usually has a hardware

device associated with it, though certain interfaces such as the loopback inter-

face, loop (6), do not.

The following ioctl calls may be used to manipulate network interfaces. See

Programming with TCP/IP on the DG/UXTM System for details.

SIOCSIFADDR

Set interface address. Following the address assignment, the “initiali-

zation” routine for the interface is called.

SIOCGIFADDR

Get interface address.

SIOCSIFBRDADDR

Set interface broadcast address. This is address is used to send IP

broadcast packets on broadcast capbable interfaces.

SIOCGIFBRDADDR

Get interface broadcast address.

SIOCSIFDSTADDR

Set the destination address for point-to-point network interfaces.

SIOCGIFDSTADDR

Get interface destination address.

SIOCSIFMETRIC

Set the interface routing metric. This information is used by routing
applications.

SIOCGIFMETRIC

Get the interface routing metric.

SIOCSIFNETMASK

Set the interface subnetwork mask.

SIOCGIFNETMASK

Get the interface subnetwork mask.

SIOCSIFFLAGS

Set interface flags field. If the interface is marked as down, any

processes currently routing packets through the interface are notified.

SIOCGIFFLAGS

Get interface flags.

083-701024 Licensed material—property of copyright holder(s) 8-3

intro(6) UNIX System V intro(6)

SIOCGIFCONF

Get interface configuration list.

SEE ALSO

socket(2), ioctl(2), Programming with TCP/IP on the DG/UXTM System.

8-4 Licensed material—property of copyright hoider(s) 093-701024

inet(6f)

NAME

UNIX System V inet(6f)

inet - Communications Protocol Internet protocol family

INCLUDE FILES

#include <netinet/in.h>

DESCRIPTION

The Internet protocol family is a collection of protocols based on and includ-
ing the Internet Protocol (IP), the Transmission Control Protocol (TCP), and

the User Datagram Protocol (UDP). Each of these protocols uses the Inter-

net address format. The Internet family provides protocol support for the

SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types; the

SOCK_RAW interface provides access to the IP.

ADDRESSING

Internet addresses are four-byte quantities, stored in network standard for-
mat. The include file netinet/in.h defines this address as a discriminated

union.

Sockets bound to the Internet protocol family utilize the following addressing
structure:

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero(8]; };

Sockets may be created with the address INADDR_ANY to affect wildcard
matching on incoming messages.

PROTOCOLS

The Internet protocol family consists of the Internet Protocol (IP), Internet

Control Message Protocol (ICMP), Transmission Control Protocol (TCP),
and User Datagram Protocol (UDP). TCP is used to support the

SOCK_STREAM abstraction, whereas UDP is used to support the
SOCK_DGRAM abstraction. A raw interface to IP is available by creating
an Internet socket of type SOCK_RAW. The ICMP is not directly accessi-
ble.

SEE ALSO

093-701024

tcp(6P), udp(6P), ip(6P).

Licensed material—property of copyright holder(s) 8-5

ip(6p) UNIX System V ip(6p)

NAME

IP — Communications Protocol Internet Protocol

INCLUDE FILES

#include <sys/socket.h>

#include <netinet/ip.h>

SYNTAX
This is an example of how you would create an endpoint for the IP connec-

tion.

s = socket(AF_INET, SOCK_RAW, 0);

DESCRIPTION

IP is the network/internetwork layer protocol used by the Internet protocol

family. It may be accessed through a raw socket when developing special-

purpose applications. A raw socket can be opened only by the superuser.

IP sockets are connectionless, and are normally used with the sendto and

recvfrom calls, though the connect(2) call may also be used to fix the destina-

tion for future packets (in which case the read(2) or recv(2) and write(2) or

send(2) system calls may be used).

Outgoing packets must have an IP header prepended to them.

OPTIONS |
IPPROTO_LIP options recognized by IP:

IP_TX_OPTIONS _ IP transmit options. When setting, the system will ver-
ify that the option string is well formed.

IP_RX_OPTIONS __ IP receive options. When setting, the system will verify
that the option string is well formed.

IP_TOS IP Type Of Service.

IP_TTL IP Time To Live. Number of routing hops a packet
may make before reaching its destination.

IP_DONTFRAG _ IP Dont Fragment flag. When non-zero, IP will try to

send a packet without fragmenting. If a packet is too

large to send without fragmenting, the packet is

dropped.

SEE ALSO

connect(2), send(2), recv(2). |

intro(6), inet(6f), Programming with TCP/IP on the DG/UXTM System.

8-6 Licensed material—property of copyright holder(s) 093-701024

loop(7) UNIX System V loop(7)

NAME

loop — Communications Interface software loopback network interface

SYNOPSIS

loop

DESCRIPTION

The loop(7) interface is a software loopback mechanism that may be used for

performance analysis, software testing, and/or local communication. By

default, the loopback interface is accessible at address 127.0.0.1; this address

may be changed with the SIOCSIFADDR ioctl. It is usually called localhost

in the DG/UX system /etc/hosts file.

The loop interface will be configured into the DG/UX system only if the

appropriate one-word entry is included in the system configuration file.

EXAMPLE

loop()

This entry in a system file will define the loop device.

DIAGNOSTICS

Use the —i switch with netstat(1C).

SEE ALSO

system(4).

intro(6), inet(6F).

093-701024 Licensed material—property of copyright holder(s) 8-7

tep(6p) UNIX System V tcp(6p)

NAME

TCP — Network Protocol Internet Transmission Control Protocol

INCLUDE FILES

#include <sys/socket.h>

#include <netinet/tcp.h>

SYNTAX
This is an example of how you would create an endpoint for the TCP connec-

tion:

s = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION

Transmission Control] Protocol (TCP) provides reliable, flow-controlled, two-

way transmission of data. It is a byte-stream protocol used to support the

SOCK_STREAM abstraction. TCP provides a per-host collection of port

addresses on top of the standard Internet address format. Thus, each address

is composed of an Internet address specifying the host and network, with a

specific TCP port on the host identifying the peer entity.

Sockets utilizing the TCP are either active or passive. Active sockets initiate

connections to passive sockets. By default TCP sockets are created active;

only active sockets may use the connect(2) call to initiate connections. To

create a passive socket, the listen(2) system call must be used after binding

the socket with the bind(2) system call. Only passive sockets may use the

accept(2) call to accept incoming connections.

Passive sockets may underspecify their location to match incoming connection

requests from multiple networks. This technique, termed wildcard address-

ing, allows a single server to provide service to clients on multiple networks.

To create a socket that listens on all networks, the Internet address

INADDR_ANY must be bound to the socket. The TCP port may still be

specified at this time; if the port is not specified, the system will assign one.

Once a connection has been established, the socket’s address is fixed by the

peer entity’s location. The address assigned to the socket is the address

associated with the network interface through which packets are being

transmitted and received.

OPTIONS

IPPROTO_TCP level options recognized by TCP:

TCP_NODELAY When the option value is non-zero, the system does not

delay sending data to coalesce small packets. When the

option value is zero, the system may defer sending data

to coalesce small packets to conserve network

bandwidth.

TCP_MAXSEG When set prior to a connect(2) call, TCP will use the

option value to negociate the maximum size of TCP

packets sent and received during the life of the connec-

tion. Values for the TCP Maximum Segment Size are

between 1 and 65,535. This option is only valid prior to

establishing a connection. The result of segment size

negociation is less than or equal to the option value.

TCP_URGENT_INLINE

This option has no effect in the DG/UX system. Use

the SO_OOBINLIN socket level option.

8-8 Licensed material—property of copyright holder(s) 093-701024

tcp(6p) UNIX System V tep(6p)

TCP_PEER_ADDRESS

Restricts the passive TCP endpoint to only accept con-

nections initiated by the address supplied in the option

value. The option value must contain a pointer to a

sockaddr_in structure.

TCP_ACCEPT_QUEUE_LENGTH

Sets the number of outstanding connections allowed at

the TCP passive endpoint.

SEE ALSO

intro(6), inet(6F), Programming with TCP/IP on the DG/UXTM System.
getsockopt(2), setsockopt(2).

093-701024 Licensed material—property of copyright hoider(s) 8-9

udp(6p) UNIX System V udp(6p)

NAME

UDP - Communications Protocol Internet User Datagram Protocol

INCLUDE FILES

#include <sys/socket.h>

#include <netinet/udp.h>

SYNTAX
This is an example of how you would create an endpoint for the UDP connec-
tion:

s = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION

UDP is a simple, unreliable datagram protocol that is used to support the

SOCK_DGRAM abstraction for the Internet protocol family.

UDP sockets are connectionless, and are normally used with the sendto(2)

and recvfrom(2) calls. The connect(2) and bind(2) calls may also be used to

fix the destination for future packets (in which case the recv(2) or read(2) and

send(2) or write(2) system calls may be used). Listen(2) and accept(2) are

not valid operations on datagram sockets.

SEE ALSO

send(2), recv(2), sendto(2), recvfrom(2).

intro(6), inet(6F), Programming with TCP/IP on the DG/UXTM System.

End of Chapter

8-1 0 Licensed material—property of copyright holder(s) 093-701024

Appendix A

Error Messages

This appendix describes the error messages that may appear when you use the socket

family of system calls.

A socket call could fail for any of the following reasons:

Table A-1 Error Messages from the socket System Call

Error Description

EAFNOSUPPORT The specified address family is not supported in this

version of the system. Check the address family

specified in the sockaddr_in structure.

ESOCKINOSUPPORT The specified socket type is not supported in this

address family.

EPROTONOSUPPORT The specified protocol is not supported.

EMFILE The per-process descriptor table is full.

ENOBUFS No buffer space is available. The socket cannot be

created. Try again; more memory may be available.

EPROTOTYPE No default protocol could be found for the socket

type. Check the socket type and specify the protocol.

ENOSR The system is out of STREAMS resources, and could

not create the protocol stream. Check the number of

active sockets, reconfigure the kernel NQUEUE to be

a larger number (each socket requires three queues).

093-701024 Licensed material—property of copyright hoider(s)

Error Messages

The setsockopt or getsockopt could fail for any of the following reasons:

Table A-2 Error Messages from the setsockopt and getsockopt System

A-2

Calls

Error Description

EBADF The argument socket_des is not a valid descriptor.

ENOTSOCK The argument socket_des is not a socket.

ENOPROTOOOPT The option is unknown at the level indicated.

EFAULT The address to which optval points is not in a valid

part of the process address space. For getsockopt,

this error may also be returned if optlen is not in a

valid part of the process address space.

EINVAL The option value is invalid.

ENOBUFS There are no internal buffers available.

EOPNOTSUPP The option is unsupported.

EISCONN The TCP option is invalid while in the connected

state.

EACCES Caller has inadequate privileges to set the option.

Socket privilege is based on the euid of the process

when the socket was created.

Licensed material—property of copyright hoider(s) 093-701024

Error Messages

A bind call could fail for any of the following reasons:

Table A-3__ Error Messages from the bind System Call

Error Description

EBADF socket_des is not an active valid descriptor.

EAFNOTSOCK socket_des is not a socket.

EADDRNOTAVAIL The address is not a valid address for the local

machine.

EADDRINUSE The address is already in use. Retry after a reason-

able period.

EINVAL The socket is already bound to an address. The size

of the buffer pointed to by name is insufficient to form

a valid address.

EFAULT The name is not in a valid part of the user address

space.

ENOBUFS There are no internal buffers available.

EISCONN The socket is already connected.

EPERM The caller is not allowed to use the address.

EACCES Caller has inadequate privilege to bind to a port in the

reserved range. Socket privilege is based on the euid

of the process when the socket was created.

The shutdown call could fail for any of the following reasons:

Table A-4 Error Messages from the shutdown System Call

Error Description

EBADF socket_des is not a valid descriptor.

ENOTSOCK socket_des is not a socket.

ENOTCONN The specified socket is not connected. _

EINVAL The how parameter is out of range.

093-701024 Licensed material—property of copyright hoider(s) A-3

Error Messages

Some of the more common errors returned when a connect call fails are as follows:

Table A-5 Error Messages from the connect System Call

Error: Description

EBADF socket_des is not an active valid descriptor.

EAFNOTSOCK socket_des is not a socket.

EADDRNOTAVAIL The address is not a valid address for the local

machine.

EAFNOSUPPORT Addresses in the specified address family cannot be

used with this socket.

EISCONN This socket is already connected.

ETIMEDOUT Connection establishment timed out without establish-

ing a connection.

ECONNREFUSED The attempt to connect was rejected by a foreign host.

ENETUNREACH The network is not reachable from this host.

EADDRINUSE This address is already in use. There is an existing

connection using the same local and remote addresses.

EFAULT The name parameter specifies an area outside the pro-

cess address space.

EAGAIN The socket is nonblocking and the connection cannot

be completed before returning from the system call.

The socket can be selected while it is connected by

selecting it for writing. :

ENOBUFS There are no internal buffers available.

EINVAL Invalid system call argument.

EALREADY The connect operation has already been stated on this

socket and has not yet finished.

EINTR System call returned due to interrupt.

EOPNOTSUPPORT The socket is in listen state.

Licensed material—property of copyright hoider(s) 093-701024

Error Messages

The listen system call could fail for any of the following reasons:

Table A-6 Error Messages from the listen System Call

Error Description

EBADF The argument socket_des is not a valid descriptor.

EINVAL The backlog parameter is a negative number.

ENOTSOCK The argument socket_des is not a socket.

EOPNOTSUPP The socket is not of a type that supports the listen

operation. |

The accept system call could fail for any of the following reasons:

Table A-7 Error Messages from the accept System Call

Error Description

EBADF The argument socket_des is not a valid descriptor.

ENOTSOCK The argument socket_des refvrences a file, not a

socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EFAULT The from or fromlen parameter is not in a writable

part of the user address space.

EAGAIN The socket is marked nonblocking and no connections

are present to be accepted. Use select for reading.

EINVAL The socket is not in the listen state.

EINTR The call was interrupted by a signal.

EMFILE Too many file descriptors were opened by the process.

ECONNABORTED The listening socket was marked unreadable by the

system. This is usually caused by a network failure.

083-701024 Licensed material—property of copyright hoider(s)

Error Messages

The send system call could fail for any of the following reasons:

A-6

Table A-8 Error Messages from the send System Call

Error Description

EBADF The argument socket_des is not an active valid file

descriptor.

ENOTSOCK The argument socket_des is not a socket.

EFAULT The buf parameter points to an invalid portion of the

process address space.

EMSGSIZE The socket requires that messages be sent atomically,

and the size of the message made this impossible.

EAGAIN The socket is marked nonblocking and the requested

operation would block.

EOPNOTSUPP The flags argument included the MSG_OOB B flag
applied to a UDP socket. .

ENOTCONN The socket is an unconnected UDP socket.

EINTR The call was interrupted by a signal.

EPIPE An established connection on a SOCK_STREAM

socket was closed by the remote peer.

Licensed material—property of copyright hoider(s) 093-701024

Error Messages

The recv system call could fail for any of the following reasons:

Table A-9 Error Messages from the recv System Call

Error Description

EBADF The argument socket_des is not an active valid file

descriptor.

ENOTCONN The socket is not connected.

ENOTSOCK The argument socket_des is not a socket.

EAGAIN The socket is marked nonblocking and the receive
operation would block.

EINTR The call was interrupted by a signal.

EFAULT The data was specified to be received into a non-

existent or protected part of the process address

space.

EINVAL Invalid argument.

EOPNOTSUPP The flags argument included the MSG_OOB flag

applied to a UDP socket.

093-701024 Licensed material—property of copyright hoider(s) A-7

Error Messages

The sendto system call could fail for any of the following reasons:

Table A-10 Error Messages from the sendto System Call

Error Description

EBADF The argument socket_des is not an active valid descrip-

tor.

ENOTSOCK The argument socket_des is not a socket.

EFAULT The msg, to, or tolen parameter points to an invalid

portion of the process address space.

EMSGSIZE The socket requires that messages be sent atomically,

and the size of the message made this impossible.

EAGAIN The socket is marked nonblocking and the receive

operation would block.

EINTR The call was interrupted by a signal.

EFAULT One of the pointer parameters specified a non-existent
or protected part of the process address space.

EISCONN Cannot use sendto with connected socket.

The recvfrom system call could fail for any of the following reasons:

Table A-11. Error Messages from the recvfrom System Call

Error Description

EBADF The argument socket_des is not an active valid descrip-

tor.

ENOTSOCK The argument socket_des is not a socket.

EAGAIN The socket is marked nonblocking and the receive

operation would block.

EINTR The call was interrupted by a signal.

EFAULT One of the pointer parameters specified a non-existent

or protected part of the process address space.

EINVAL An invalid argument has been specified.

A-8 Licensed material—property of copyright holder(s) 0923-701N24

Error Messages

The sendmsg system call could fail for any of the following reasons:

Table A-12 Error Messages from the sendmsg System Call

Error Description

EBADF The argument 2socket_des is not an active valid

descriptor.

ENOTSOCK The argument socket_des is not a socket.

EFAULT The buf parameter points to an invalid portion of the

process address space.

EMSGSIZE The socket requires that messages be sent atomically,

and the size of the message made this impossible.

EAGAIN The socket is marked nonblocking and the requested

operation would block.

ENOTCONN The socket is an unconnected UDP socket.

EISCONN ‘The socket is connected and cannot accept a destina-
tion address.

EINTR The call was interrupted by a signal.

The recvmsg system call could fail for any of the following reasons:

Table A-13 Error Messages from the recvmsg System Cail

Error Description

EBADF The argument socket_des is not an active valid descrip-

tor.

ENOTSOCK The argument socket_des is not a socket.

EAGAIN The socket is marked nonblocking and the requested

operation would block.

EINTR The call was interrupted by a signal.

EFAULT One of the pointer parameters specified a non-existent

or protected part of the process address space.

EMSGSIZE Too many entries in the I/O array.

Licensed material—property of copyright hoider(s) A-9

Error Messages

The readv system call could fail for any of the following reasons:

Table A-14 Error Messages from the readv System Call

Error Description

EBADF The argument socket_des is not an active valid descrip-

tor.

EINTR The call was interrupted by a signal.

EFAULT Part of the iovec points outside the process’s allocated

address space.

EINVAL The iovent parameter was invalid, or the length of one

of the values in the iovec array was negative, or the

sum of the lengths in the iovec array overflowed a 32-

bit integer.

The writev system call could fail for any of the following reasons:

A-10

Table A-15 Error Messages from the writev System Call

Error Description

EBADF The argument socket_des is not an active valid descrip-

tor.

EPIPE An attempt is made to write to a pipe not open for
writing or a socket of type SOCK_STREAM that is

not connected to a peer socket.

EFBIG An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size.

EINTR The call was interrupted by a signal.

EFAULT Part of the iovec points outside the process’s allocated

address space.

EINVAL The iovent parameter was invalid, or the length of one

of the values in the iovec array was negative, or the

sum of the lengths in the iovec array overflowed a 32-

bit integer.

End of Appendix

Licensed material—property of copyright hoider(s) 093-701024

Appendix B.

Using the Network Library Rou-

tines

Although TCP/IP for AViiON Systems currently supports only the DARPA standard

Internet protocols, the network library routines are flexible. They allow communica-

tion protocols to use the same interfaces when accessing network-related databases,

regardless of protocol. If new protocols become available, they should differ only in

the values returned. Because the values returned are usually supplied to the system,

the communication protocol and naming conventions in use can be hidden from

users.

The network library routines are designed to aid in mapping hostnames, addresses,

and other information that is necessary to allow communication throughout a net-

work. For a client and server to communicate, two levels of mapping must be done

to locate a service on the remote host: (1) a service is assigned a name convenient

for users (for example, the login server on host A); and (2) the assigned name and

the name of the peer host are translated into network addresses. The DG/UX system

provides standard routines for mapping the following items to one another:

© Hostames to network addresses

@ Network names to network numbers

e@ Protocol names to protocol numbers

@ Service names to port numbers

@ Appropriate protocols for communicating with the server process

Include the file netdb.h when using the routines.

093-701024 | Licensed material—property of copyright holder(s) B-1

Mapping Hostnames to Network Addresses

Mapping Hostnames to Network Addresses

Three library routines aid in mapping hostnames to network addresses. These rou-

tines are gethostent(3N), gethostbyname(3N), and gethostbyaddr(3N). The gethos-

tent routine is the primitive upon which gethostbyname and gethostbyaddr are built.

It extracts a line from the network hosts database and returns a pointer to a hostent

structure. The network hosts database could be provided by /etc/hosts, the Network |

Information Service (NIS), or the domain name system. The routines gethostbyname

and gethostbyaddr use the hostent structure.

The gethostbyname routine takes a hostname and returns a pointer to a hostent struc-

ture (see below). The gethostbyaddr routine maps host addresses into a hostent

structure. Since a host can have many addresses that have the same name, gethost-

byname returns the first matching entry in the network hosts database.

The hostname to network address mapping is represented by the hostent structure,

which contains the following fields:

struct hostent {

char *h_name; /* official name of host */

char zkh aliases; 7* alias list */

int - h_addrtype; /* host address type */

int h_length; /* length of address */

char sh addr; /* address */

};

The members of this structure are as follows:

h_name A pointer to the official name of the host.

h_aliases A pointer to a null-terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always AF_INET.

hjength The length, in bytes, of the address.

h_addr A pointer to the network address for the host. Host addresses are

returned in network byte order (see "Additional Routines” later in this

appendix for a description of network byte order).

If the entry returned is not the one wanted, you can use the lower level routine

gethostent. Because gethostbyname returns only the first entry by that name, you

will have to use gethostent for subsequent entries by that name.

For example, to obtain a hostent structure for a host on a particular network, you

could use the following routine (this routine considers only Internet addresses):

B-2 Licensed material—property of copyright hoider(s) 093-701024

#include

#include

#include

#include

#include

struct h

Mapping Hostnames to Network Addresses

<stdio.h>

<sys/types.h>

<sys/socket.h>

<netinet/in.h>

<netdb.h>

ostent*

get_host_by_name_and_net(name, net

char *name;

int net;

struct hostent *host_ptr;

char **Cp;

sethostent(0);

/*

+ We’1ll look at the host file one entry at a time until

* we either run out of entries or find one that matches

name and net.

*/

*

while ((host_ptr + gethostent()) != NULL) {

/*

i

i

* We’re interested only in Internet addresses...

*/

f(host_ptr->h_addrtype != AF_INET) (.

continue;

* If name matches either the h_name or any of

* the h_aliases for this entry we’ll goto

* found: and decide if the net matches also.

* If we don’t match, we’1ll loop up and get
* another host entry.

f (stremp(name, host_ptr->h_name)) {

for (cp = host_ptr->h_aliases; cp && *cp; cp+t) {

if (!stremp(name, *cp) == 0) {
goto found;

}
}
continue;

}
/* If our net matches, we can go ahead and return the
* pointer to the host structure.

*/

found:

if(inet_netof(*(struct in_addr *)host_ptr->h_addr)) == net)
break;

}

/*

*

*

*

*

We didn’t match anything, and since the last gethostent

failed, host_ptr is a NULL pointer. Returning it will

let the caller know we failed.

/

endhostent();

return(host_ptr);

093-701024 Licensed material—property of copyright hoider(s) B-3

Mapping Hostnames to Network Addresses

The routines gethostent and endhostent open and close the network hosts database.

The sethostent routine also rewinds the file. The inet_netof routine returns the net-

work number of an Internet address.

Mapping Network Names to Network

Numbers

Three library routines are provided to aid in mapping network names to network

numbers. These routines are getnetent(3N), getnetbyname(3N), and

getnetbyaddr(3N). The getnetent routine is the primitive upon which getnetbyname

and getnetbyaddr are built. It extracts a line from the network database file and

returns a pointer to a netent structure. The network database could be provided by

/etc/networks or by NIS. The getnetent routine can be used to develop new routines

for extracting a specific entry from the network database.

The netent structure returns the official name of the network and its public aliases. It

also returns an address type and network number. The netent structure is as follows:

struct netent [

char *n_ name; /* official name of net */

char *%n aliases; /7* alias list */

int n_addrtype; 7* net address type */

int n_net; /*® network # */

};

The members of this structure are as follows:

n_name A pointer to the official name of the network.

n_aliases A pointer to a null-terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AF_INET.

n_net The network number. Network numbers are returned in network byte

order.

The getnetbyname routine takes a network name and returns a pointer to a netent

structure. The getnetbynumber routine takes a network number and returns 2 pointer

to netent structure. Since a host can have many names that have the same number,

getnetbyname returns the first matching entry in the network database.

B-4 Licensed material—property of copyright hoider(s) 083-701024

Mapping Protocol Names to Protocol Numbers

Mapping Protocol Names to Protocol

Numbers

Three library routines aid in mapping protocol names to protocol numbers. These

routines are getprotoent(3N), getprotobyname(3N), and getprotobynumber(3N).

The getprotoent routine is the primitive on which getprotobyname and getproto-

bynumber are built. It extracts a line from the protocol database and returns a

pointer to the protoent structure. The protocol database could be provided by

/etc/protocols or by NIS. You can use getprotoent to develop new routines for

extracting a specific entry from the protocol database.

The getprotobyname and getprotobynumber routines also return a protoent struc-

ture. The protoent structure contains the official name of the protocol, the

protocol’s public aliases, and a port number. The protoent structure is as follows:

struct protoent {

char *p name; /* official protocol name */

char *tp aliases; /* alias list */

int p_proto; 7/* protocol to use */

};

The members of the protoent structure are as follows:

p_name_ A pointer to the official name of the protocol.

p_aliases A pointer to a null-terminated list of alternate names for the protocol.

p.proto The protocol number.

The getprotobyname routine takes a protocol name and returns a pointer to a pro-

toent structure. The getprotobynumber routine maps network numbers into a pro-

toent structure. Since a protocol can have many names that have the same number,

getprotobyname returns the first matching entry in the protocol database.

093-701024 Licensed material—property of copyright holder(s) B-5

Mapping Service Names to Port Numbers

Mapping Service Names to Port Numbers

Three library routines aid in mapping service names to port numbers. These routines

are getservent(3N), getservbyname(3N), and getservbynumber(3N). The getservent

routine is the primitive upon which getservbyname and getservbynumber are built. It

extracts a line from the services database and returns a pointer to the servent struc-

ture. The services database could be provided by /etc/services or by NIS. You can

use getservent to develop new routines for extracting a specific entry from the ser-

vices database.

The getservbyname and getservbynumber routines return a servent structure, which

is as follows:

struct servent {

char *s name; /* official protocol name */

char z*s aliases; /* alias list */

long S_port; /* port service resides at */

char ®s_ proto; /* protocol to use */

};

The members of this structure are as follows:

s.name A pointer to the official name of the service.

s_aliases A pointer to a null-terminated list of alternate names for the service.

s.port The port number at which the service resides. Port numbers are returned

in network byte order (see “Additional Routines” later in this chapter for a

description of byte order).

s_proto A pointer to the name of the protocol to use when contacting the service.

The getservbyname routine maps service names to a servent structure by specifying a

service name and a protocol. Although the protocol must be specified, it can be

specified as NULL. For example, the following call returns the service specification

for a chargen server using any protocol:

#include <netdb.h>

struct servent *server_ptr

server_ptr = getservbyname("chargen", NULL);

On the other hand, the following call returns only the TELNET server that uses the

TCP protocol:

server_ptr = getservbyname("chargen”, “tep");

The getservbyport routine functions much like the getservbyname routine. It maps a

service port number to a servent structure by specifying a service port number and a

protocol. The protocol must be specified, but can be supplied as NULL. For exam-

ple, the following call returns the service specification for a chargen server using any

protocol: :

B-6 Licensed material—property of convriaht halderfe) Na2_7N1 NA

Mapping Service Names to Port Numbers

server ptr = getservbyport("19", NULL);

In contrast, the call returns only the chargen server that uses the TCP protocol:

server _ptr = getservbyport("19", "tep");

Port number specifications are listed in the services database.

Using Additional Routines

Because of the support routines described so far, application programs should rarely
have to deal directly with addresses. Services, therefore, can be developed as

independently as possible from the network on which they are used.

In addition to the address-related database routines, routines to handle byte-swapping

of network addresses and values are also provided. These routines are defined in the

file /usr/include/netinet/in.h. The DG/UX system expects addresses to be supplied

in network order. Some machines, however, reverse this order. Thus, programs are

sometimes required to byte-swap addresses.

093-701024 Licensed material—property of copyright hoider(s) B-7

Using Additional Routines

Table B-1 summarizes the routines for handling byte-swapping of network addresses

and values.

Table B-1 Routines for Byte-Swapping Network Addresses

Routine Meaning What it Does

htonl(val) host to network

long

htons(val) host to network

short

ntohl (val) network to host
long

ntohs(val) network to host

short

Convert 32-bit value from host to

network byte order.

Convert 16-bit value from host to

network byte order.

Convert 32-bit value from network

to host byte order.

Convert 16-bit value from network

to host byte order.

NOTE: We recommend that these routines be used in all programs that use the

network. While these routines do not affect programs on Data General

equipment, they are essential in arranging the byte order for programs on

some other systems. Using these routines increases the portability of pro-

grams across systems with different architectures.

Users should encounter the byte-swapping problem only when interpreting network

addresses. For example, to print out an Internet port, the following code is required:

struct servent *sp;

printf("port number %d\n", ntohs(sp->s_port));

End of Appendix

B-8 Licensed material—property of copyright holder(s) 093-701024

Glossary

address class

A class of address recognized on the Internet network. There are three

classes available: Class A, Class B, and Class C. The Defense Data

Network — Network Information Center (NIC) assigns network

numbers, and individual organizations assign host numbers. Conceptu-

ally, the 32-bit address consists of a class identifier, a network number,

and a host number. The format of the address depends on the class as

the diagram shows:

Class A Internet Address

1 2 3

01234567890123456789012345678901

O| Network Host Number

MSB LSB

Class B Internet Address

1 2 3

01234567890123456789012345678901

1 Of Network Host Number

MSB LSB

Class C intemet Address

1 | 2 3

01234567890123456789012345678901

110 Network Host Number

MSB LSB

See also Internet address.

Address Resolution Protocol (ARP)

A kernel-level protocol used to map an Internet address to a physical

address (Ethernet address). ARP can be used only across a single

083-701024 Licensed material—property of copyright hoider(s) Glossary-1

Glossary

architecture

ARPANET

association

physical network and can be used only over networks that support

broadcasts over the communications medium.

See network architecture.

A wide-area network funded by the Defense Advanced Projects

Research Agency (DARPA). The ARPANET served as the basis for

early networking research and as a center backbone during the develop-

ment of the Internet network.

Binds communicating processes to one another over a network. An

association is composed of a local address bound to a local port and a

remote address bound to a remote port.

Berkeley Software Distribution (BSD)

A general term for the version of UNIX created at the University of Cal-

ifornia at Berkeley. When DARPA first made TCP/IP widely available,

they decided to encourage university researchers to use the protocols.

Most university computer science departments were running BSD UNIX

at that time. DARPA funded a company to implement TCP/IP under

BSD UNIX and funded UC Berkeley to integrate them with its distribu-

tion. TCP/IP first appeared in the BSD 4.2 distribution, and was revised

in the 4.3 and 4.3 Tahoe revisions. BSD UNIX offered more than the

basic TCP/IP protocols; it also offered UNIX-like utilities to use the

protocols, for example, rep. BSD UNIX also provided the socket

abstraction that allows application programmers to access the protocols.

Data General’s implementation of TCP/IP is based on the BSD imple-

mentation.

binding Assign a name to a socket so that a process can use the socket to com-
municate with another process. See the bind(2) manual page for details.

broadcast To send the same message to all systems on a network at the same time.

broadcast address |

An Internet address used for all hosts on the network. Any Internet

address with a host portion that consists of all 1s is reserved for broad-

cast for systems compatible with BSD 4.3. Any Intern dress with a

host portion that consists of all Os is reserved for bro t for systems

compatible with BSD 4.2. On networks where both BSD 4.2 and BSD

4.3 software is used, a host portion of all Os works best.

BSD See Berkeley Software Distribution (BSD).

client

An operating system (OS) client.

2. An executing program that sends a request to a server for services

and waits for a response. Thus, there are network clients, Network

Information Service (NIS) clients, Network File System clients, and

clients of the domain name system.

Glossa ry-2 Licensed material—property of copyright hoider(s) 093-701024

Glossary

client-server model

Refers to a pattern of interaction among application programs that com-

municate over the network. Server programs provide services (such as

remote login facilities) and client programs consume them. The relation-

ship describes which program initiates a connection, sends data first,

and controls the communication link. See also client, server.

connection The path between two processes that provides reliable, stream-oriented,

process-to-process delivery service.

connection-oriented communication

Characteristic of the reliable, stream-oriented, process-to-process service

offered by the Transmission Control Protocol (TCP). System calls are

used to connect to and communicate with remote processes.

connectionless communication

Characteristic of the packet delivery service offered by the Internet Pro-

tocol or the User Datagram Protocol. Treats each packet or datagram as

a separate entity that contains the source and destination address. Con-

nectionless services may drop or duplicate packets or deliver them out of

sequence.

DARPA See ARPANET.

daemon An unattended background process, often perpetual, that performs a

system-wide public function; for example, inetd. See also server.

datagram A self-contained package of data carrying the necessary information to

route itself from source to destination. It is the unit of transmission in

the IP protocol. To cross a particular network, a datagram is encapsu-

lated inside a packet.

datagram socket

Sends datagrams in and receives datagrams from both directions simul-

taneously, preserving logical breaks in the data. Data travels in com-

plete packets rather than streams or bytes. The packets may arrive out

of order or may fail to be delivered. This service is known as connec-

tionless communication. See also socket, User Datagram Protocol.

Defense Data Network (DDN)

Used loosely to refer to the MILNET and ARPANET networks and the

TCP/IP protocols that these networks use.

Defense Data Network — Network Information Center (NIC)

The part of the Defense Data Network (DDN) with the authority to

assign Internet addresses.

device driver

A set of software used to manage a peripheral device. For example,

hken is a device driver used to manage a V/Ethernet 3207 Hawk Local

Area Network (LAN) Controller. See also controller.

093-701024 Licensed material—property of copyright hoider(s) Glossary-3

Glossary

Ethernet _A type of local area network developed by the Xerox Corporation. An

Ethernet network consists of cable and interface hardware that connects

hosts. Only one host can use the network at a time. Hosts send out

packets of information over the network whenever they detect that other

hosts are not using it. .

Ethernet address

A number that identifies a specific host on an Ethernet-based local area

network. Ethernet addresses are set on a host during manufacture with

hardware switches and are guaranteed to be unique.

file system See logical disk-file system.

File Transfer Protocol (FTP)

A user-level protocol accessed through the ftp command. FTP allows

you to transfer files from one host to another. The File Transfer Proto-

col uses TCP as the transport level protocol.

host A computer that is configured to share resources with other computers

in a network. Refers to any computer: stand-alone, OS server, or OS

client. See also local host, remote host.

host ID A unique number that identifies the host. In the DG/UX system, the

host ID typically is the host’s most commonly used Internet address. See

also host number.

hostname __ A string that represents a host. Hostnames are associated with Internet

addresses in the /etc/hosts file.

host number

The host portion of a computer system’s Internet address. See also

address class, Internet address.

Internet The collection of networks and gateways, including the ARPANET and

the MILNET, that use the TCP/IP protocol suite and function as a sin-

gle, cooperative virtual network.

Internet address |

A unique 32-bit number that identifies a specific host on the Internet.

Internet addresses are expressed in dot notation, and have the general

form a.b.c.d, where each letter represents eight bits, or one octet. One

part of the Internet address represents the network number, and one

part represents the host number. There are three classes of Internet

address: Class A, Class B, and Class C. The difference among classes

depends on the length of the network number: Class A network

numbers are one octet long, Class B network numbers are two octets

long, and Class C network numbers are three octets long. Network

numbers are assigned by the Defense Data Network — Network Infor-

mation Center, or simply the NIC. See also address class.

Internet Control Message Protocol (ICMP)

The part of IP that handles error and control messages. Gateways and

hosts use ICMP to tell the source of datagrams about problems

Glossa ry-4 Licensed material—property of copyright holder(s) 093-701024

Glossary

delivering the datagrams. ICMP also allows a host to test whether a des-

tination is reachable and responding.

Internet Protocol (IP)

interface

internetwork

A kernel-level protocol that defines unreliable, connectionless delivery

. of datagrams. An IP datagram contains the addresses of its source and

destination, and the data transmitted. Connectionless service means that

the protocol treats each datagram as a separate entity; the protocol can

deliver packets out of sequence, or can drop packets. IP defines the

exact format of data as it travels through a network, but delivery of data

is not guaranteed.

A common boundary between two devices, programs, or systems. More

specifically, an interface consists of the types and forms of messages that

each layer of a network architecture uses to communicate with the layer

above or below it. An interface gives two systems that handle informa-

tion differently a way to interact.

A technology that allows the interconnection of disparate physical net-

works into a coordinated functional unit. An internetwork (for example,

the Internet) accommodates different networking hardware by adding

physical connections and by implementing a standard set of protocol

conventions.

interoperability _

kernel

The ability of diverse computing systems to cooperate in solving compu-

tational problems.

The nucleus of the DG/UX operating system. It controls access to the

computer, manages the computer’s memory, maintains the file system,

and allocates the computer’s resources among users. The kernel is

sometimes described as the DG/UX system proper; resident code that

implements the system calls.

local area network (LAN)

A network within a small area or a common environment, such as within

a building. Ethernet is a type of LAN.

local host The computer your terminal is connected to. A local host can send and

receive information from a remote host through connection-oriented or

connectionless communication.

local port See port.

logical network

A network that may consist of one or more physical networks or may be

a subdivision of a single physical network. You set up a logical network

through the addressing scheme you use.

mapping Associating the elements of two different representations of a system so
that a correspondence exists between the two systems. Every element in

one system can be mapped to an element in the other system.

093-701024 Licensed material—property of copyright holders) Glossary-5

Glossary

MILNET _ Originally part of the ARPANET, the MILNET was partitioned in 1984

to give military installations reliable network service while the

ARPANET continues to be a research network. The MILNET uses the

same hardware and protocols as the ARPANET.

multiplexing

Using a device to handle several similar but separate operations simul-

taneously by alternating attention among them.

name server

Part of the domain name system. The name server runs as a daemon

process called named, and responds to queries by consulting its data-

base. If the answer is not in its database and the name server acts recur-

sively, the name server forwards a query to other name servers. For

more information, see Managing TCP/IP on the DG/UXTM System.

netmask See subnet mask.

network The hardware and software that constitute the interconnections between

computer systems, permitting electronic communication between the sys-

tems and associated peripherals. Networking for computer systems _

means sending data from one system to another over some medium

(such as coaxial cable or phone lines). Common networking services

include file transfer, remote login, and remote execution.

network architecture

The set of layers, interfaces, and protocols that govern communication

over a network.

Network File System (NFS) |

A service that allows many users to share file systems over a network.

For more information, see Managing ONCTM/NFS® and Its Facilities on

the DG/UXTM System.

Network Information Service (NIS)

A service that maintains a set of databases about hosts, networks, and

services for an entire network. For more information, see Managing

ONCTM/NFS® and Its Facilities on the DG/UXTM System.

network number

The network portion of an Internet address. The length of the network

number depends on the address class. See also address class, Internet

address.

NIC See Defense Data Network — Network Information Center.

NIS domain

1. A named set of NIS maps, which are set of keys and associated
values.

2. A logical grouping of hosts in a NIS environment. Each host in a

domain relies on the same servers for certain resource sharing and

G lossarv-6 Licensed material—-propertv of copvriaht haiderfe) naa.7n1nes

Glossary

security services. Each domain has one master and zero or more

slave servers.

For more information, see Managing ONCTM/NFS® and Its Facilities on

the DG/UXTM System.

NIS server. A computer that creates and maintains the following information for

hosts in a NIS domain: advertised resources, hostnames and passwords,

names and addresses for name servers of other domains (optional), host

user and group information used for ID mapping (optional). For more

information, see Managing ONCTM/NFS® and Its Facilities on the

DG/UXTM System.

Open Network Computing/Network File System (ONC TM/NFS®)

A package that consists of the Network Information Service (NIS),

NFS, and other networking facilities. For more information, see

Managing ONCTM/NFS® and Its Facilities on the DG/UXTM System.

OS server

1. A host that is willing to share resources with another host in a NFS

environment.

2. A host providing disk space for operating system software. OS
servers can be stand-alone, homogeneous or heterogeneous.

See also server.

packet Refers to the unit of data sent across a packet-switching network. The

format of a packet is typically defined by the protocol.

peer processes |

Processes on different computer systems that run at the same level in the

communications hierarchy. That is, both processes run at the user-level

or both run at the kernel-level. Peer processes use protocols to

exchange data that their peer can understand.

physical network

The hardware (computers, communication controllers, media) that

makes up a network.

port

1. The point of connection between a device, such as a communica-

tions controller, and the CPU.

2. The number used to determine which process on a host receives

information. Networking software uses ports to allow processes on

different computers to communicate. A single process can use

several ports, using each to communicate with the port of a different

remote process. The local port exists on the local host. The remote

port exists on the remote host.

process A program in execution. When a process is being executed by several

people simultaneously, there are several processes, but only one pro-

gram. Each process is cataloged in the system’s process table.

093-701024 Licensed material—property of copyright holder(s) Glossary-7

Glossary

protocol _A set of rules that govern the transfer of data and communication

between two or more devices in a network. Includes rules for handshak-

ing and line discipline.

raw socket Allows access to the underlying communication protocols (such as IP)
. that support higher level protocols. These sockets normally send infor-

mation in datagrams, but their characteristics depend on the interface

provided by the protocol. See also socket.

remote host

The other computer that a local host sends information to and gets infor-

mation from though connection-oriented or connectionless communica-

tion. |

remote port

See port.

Request for Comments (RFC)

A series of technical papers that contain surveys, measurements, tech-

niques, specifications, and proposed and accepted Internet protocol

standards. RFCs are available from the Defense Data Network — Net-

work Information Center (known as the NIC), SRI International, Menlo

Park, CA, 94025.

Reverse Address Resolution Protocol (RARP)

A kernel-level protocol used by a diskless system at startup to find its

Internet address. The diskless system broadcasts a request that contains

its Ethernet address and the server responds by sending the machine its

Internet address.

RFC See Request for Comments (RFC).

route The path that network traffic takes from its source to its destination.

router A box (a computer or special equipment) that forwards packets of a par-

ticular protocol type (for example, IP) from one network to another. It

is possible to use a computer as a router as long as it has more than one

network interface, and its software is prepared to forward datagrams.

sendmail A command that implements the Simple Mail Transfer Protocol

(SMTP), which allows the dispatch of mail messages. The sendmail

command uses TCP as the transport level protocol.

server

An OS server.

2. A server process that provides network services to a client process,

for example, telnetd. |

3. A Network Information Service (NIS) server, which provides NIS

database information to NIS clients.

Glossary-8 | Licensed material—property of copyright hoider(s) 093-701024

Glossary

4. A Network File System (NFS) server, which provides file system

access to remote NFS clients.

5. A name server, which is part of the domain name system. For more

information about DNS, see Managing TCP/IP on the DG/UX Sys-

tem.

shell A command interpreter and programming language that acts as an inter-

face to the UNIX® system. As a command interpreter, the shell

accepts commands and acts on them. As a programming language, the

shell’s features include flow control and string-valued variable definition.

When you log in to the system, you acquire a login shell. In this shell,

you can run another shell program, which becomes a subshell to your

login shell. The two most common shells are the Bourne shell and the C

shell. For more information, see Using the DG/UXTM System.

socket An abstraction representing a communications endpoint. A socket is

implemented as a mechanism in the kernel to act as an interface between

processes on different computers. There are three types of sockets

available with TCP/IP for AViiON Systems: stream sockets, datagram

sockets, and raw sockets. |

socket address

In the Internet domain, the concatenation of an Internet addresses with

a port number. Also called a connection endpoint. See also socket.

stream A full duplex, processing and data transfer path in the kernel. It imple-

ments a connection between a driver in kernel space and a process in

user space, providing a general character I/O interface for the user

processes.

STREAMS A full-duplex character processing mechanism that regularizes the

kernel’s character I/O facilities. It defines a standard interface between

modules, provides tools for managing buffers that modules have in com-

mon, and standardizes ways to pass control between modules.

stream socket

Used to access TCP to send and receive data in continuous streams of

bytes without logical breaks or duplication. Data can pass through the

socket in both directions simultaneously, guaranteeing delivery in the ori-

ginal order in which the data is sent. See also socket.

subnet An extension of the Internet addressing scheme that allows a site to use

a portion of its host address field as a subnet field. Outside the site,

routing divides the destination address into an Internet portion and a

local portion. Routers and hosts inside a site that uses subnets interpret

the local portion of the address by dividing it into a physical network

portion and a host portion. Thus, a site can present a single local net-

work number to the world, but still maintain distinct physical networks

and routing internally.

092-701024 Licensed material—property of copyright holder(s) Glossa ry-9

Glossary

subnet mask

A bit mask, associated with the network interface, that corresponds with

the bits of the Internet address that determine the network portion of

the address.

TELNET . A user-level protocol accessed through the telnet command. The TEL-

NET protocol allows a user on one host to interact with a remote host as

if the terminal is directly connected to the remote host. TELNET uses

TCP as the transport level protocol.

Transmission Control Protocol (TCP)

A kernel-level protocol that defines reliable, end-to-end delivery of

datagrams. TCP is connection-oriented because it establishes a connec-

tion between communicating hosts before transmitting data. TCP allows

a process on one host to send data to a process on another through a

byte stream. TCP uses IP to transmit information along an Internet net-

work. TCP messages include a protocol port number that allows the

sender to distinguish multiple programs on the remote host.

Transport Layer Interface (TLD

A library of routines that uses STREAMS mechanisms to access

transport-level services in the kernel. |

Trivial File Transfer Protocol (TFTP)

A user-level protocol accessed through the tftp command — allows file

transfer with minimal capability and overhead. The tftp command

depends on the UDP protocol.

During first stage boot with the AViiON station, the boot program, once

it determines its Internet address, uses TFTP to transfer a file that con-

tains the executable image of a second-stage boot program.

User Datagram Protocol (UDP)

A kernel-level protocol that allows a process on one host to send a

datagram to a process on another. UDP is a connectionless transport

protocol. UDP messages include a protocol port number that allows the

sender to distinguish multiple programs on the remote host.

wide area network (WAN)

A network that extends across a wide area, such as across a street or

across an ocean.

workstation A system with its own processor, its own graphics terminal, and graphics

software (shared or host-dependent). A workstation could be an OS

server, a diskless client, or a client with a disk.

Glossary-10 Licensed material—property of copyright holders) 093-701024

Index

Note: Boldfaced page numbers (e.g., 1-

5) indicate definitions of terms or other

key information.

/etc/hosts file 3-6

/etc/protocols file B-5

/etc/services file 3-4, 3-8, 4-13, B-6

/usr/include/netinet/in.h file 3-2, 3-4,

3-5, B-7

/usr/include/sys/socket.h file 3-2

A

accept system call 3-5, 3-8, 4-2, 4-3, 7-13,

7-33

blocking 43

comparison to t_accept library routine

7-16

error messages A-5

Activating endpoint 7-11

Address

class Glossary-1

Ethernet Glossary-1, Glossary,

Glossary-8

INADDR_ANY wildcard address 3-5

Internet 2-6, 2-7, Glossary-1,

Glossary-2, Glossary-4, Glossary-6,

Glossary-8, Glossary-9

Address Resolution Protocol (ARP)

Glossary-1, RD-2

AF_INET constant 3-1

Applications

network 1-3

Architecture Glossary-2

network 1-1, 2-2, Glossary-6

ARPANET 2-1, Glossary-2, Glossary-6

Background File Transfer Program

(BFIP) RD3

Berkeley Software Distribution (BSD)

2-1

093-701024 Licensed material—property of copyright hoider(s)

bind system call 3-3, 3-8, 3-10, 4-1, 42,

5-1, 6-2, 7-10, 7-33

comparison to t_bind library routine

7-16

error messages A-3

Binding address to an endpoit 7-11

Binding name to socket 3-3

Broadcast Glossary-2

address Glossary-2

Broadcasting 5-4

datagram sockets 5-4

Byte-swapping B-7

Cc

Client 1-5, 3-5, 3-8, B-1, Glossary-2

characteristics of 44

establishing a connection 4-1, 44

OS Glossary-2, Glossary-4

Client-server model 1-5, Glossary-3

peers 1-5

close system call 3-35, 7-26, 7-33

Communication domain 2-4, 3-1

Communication endpoint 2-7

Compiling a program to use the TLI

library 7-35

connect system call 3-5, 3-8, 4-5, 5+,

6-2, 7-33

error messages A-4

Connection

requesting a 7-17

Connection, errors 4-7

Connection-oriented communication

Glossary-3

Connection-oriented service 1-4

using the TLI 7-19

Connectionless communication

Glossary-3

Connectionless service 1-4

using the TLI 7-19

Connectionless sockets 5-1

recvirom system call 3-16

sendto system call 3-16

UDP 5-1

Iindex-1

index

Constants and structures defined by

Internet 3-2, 3-4, 3-5, B-7

Controller Glossary-7

D

Daemon 1-5, Glossary-3

DARPA Glossary-3

Data reception

in-line, urgent 4-10

out-of-line, urgent 4-10

Data structure

service definition 4-2

Data structures

allocating 7-5

Datagram 2-3, Glossary-3, Glossary-5

Datagram socket 2-5, 3-2, Glossary-3

Defense Data Network (DDN) 2-1,

Glossary-3

Network Information Center

Glossary-1, Glossary-3

Defense Data Network — Network Infor-

mation Center RD-2

Device driver Glossary-3

Domain name system RD-3

Domain name system (DNS) 3-6,

Glossary-2

endhostent library routine B-4

Error messages

accept system call A-5

bind system call A-3

connect system call A-4

getsockopt system call A-2

listen system call A-5

readv system call A-10

recv system call A-7

recvfrom system call A-8

recvmsg system call A-9

send system call A-6

sendmsg system call A-9

sendto system call A-8

setsockopt system call A-2

shutdown system call A-3

socket system call A-1

writev system call A-10

Establishing a connection 4-1

client 4-1, 44

index-2 Licensed material—property of copyright holder(s)

Establishing a connection (cont.)

server 4-2, 4-3

Ethernet 5-4, Glossary-4, RD-1

Ethernet address Glossary-4, Glossary-8

association with Internet address

Glossary-1

F

fcntl system call 4-10

File Transfer Protocol (FTP) 2-3,

Glossary-4, RD-3

FIOASYNC ioctl 3-25

FIONBIO ioctl 3-25

FIONREAD ioctl 3-25

MSG_DONTROUTE 3-15

MSG_OOB 3-15, 4-9, 4-10, 4-11, 4-12

MSG_PEEK 3-15, 4-9

fork system call 3-8, 4-2

Formats, message

Internet Control Message Protocol

(ICMP) 6-9

Internet Protocol (IP) 6-6

ftp command Glossary-4

G

Gateway 6-9

gethostbyaddr library routine 3-6, B-2

gethostbyname library routine 3-6, 3-8,

3-10, 4-4, 4-13, 5-6, 6-2, B-2

gethostent library routine B-2, B-4

gethostname library routine 6-2

getnetbyaddr library routine B-4

getnetbyname library routine B-4

getnetent library routine B-4

getprotobyname library routine B-5

getprotobynumber library routine B-5

getprotoent library routine B-5

getservbyname library routine 3-5, 3-6,

3-8, 3-10, 4-2, 4-4, 4-13, 5-6, B-6

getservbynumber library routine B-6

getservbyport library routine B-6

getservent library routine B-6

getsockopt system call 3-20, 3-23, 3-24,

4-8, 64

error messages A-2

093-701024

H

Headers

Internet Protocol (IP) 6-6

Host Glossary-4

local Glossary-5

remote Glossary-8

Host number Glossary-4

hostent structure 3-6, B-2

h_addr field 3-6, B-2

h_addrtype field 3-6, B-2

h_aliases field 3-6, B-2

h_length field 3-6, B-2

h_name field 3-6, B-2

Hostname Glossary-4

Hosts file 3-6

htonl library routine B-8

htons library routine B-8

ICMP, see Internet Control Message Pro-

tocol (ICMP)

ifconf structure 3-26, 3-31

ifreq structure 3-27, 3-30

In-line urgent data reception 4-10

in_addr structure 3-4

INADDR_ANY wildcard address 3-5

inetd daemon 1-6

Interface 1-1, 1-3, Glossary-5 —

International Standards Organization

(ISO) 1-2, 2-8

Internet Glossary-4

Internet address 2-6, 2-7, Glossary-2,

Glossary-4, Glossary-6, Glossary-8,

Glossary-9

association with Ethernet address

Glossary-1

Class A Glossary-1, Glossary-4

Class B Glossary-1, Glossary-4

Class C Glossary-1, Glossary-4

Internet Control Message Protocol

(ICMP) 2-3, 6-1, Glossary-4, RD-2

message formats 6-9

message headers 6-10

message types 6-10

Internet domain 2-4

Internet Protocol (IP) 2-3, 6-1,

Glossary-3, Glossary-5, Glossary-10,

RD-2 |

bind system call 6-2

093-701024 Licensed material—property of copyright holder(s)

index

Internet Protocol (IP) (cont.)

connect system call 6-2

gethostbyname library routine 6-2

gethostname library routine 6-2

headers 6-6

message formats 6-6

programming concepts 6-1

recv system call 6-2

recvfrom system call 6-2

recvmsg system call 62

sample program 6-12

send system call 6-2

sendmsg system call 6-2

sendto system call 6-2

socket system call 62

Internetwork Glossary-5

ioctl system call 3-24

FIOASYNC 3-25

FIONBIO 3-25

FIONREAD 3-25

SIOCATMARK 3-26, 4-10, 4-12, 4-13

SIOCGIFADDR 3-26, 3-29 |

SIOCGIFBRDADDR 3-26, 3-29

SIOCGIFCONF 3-26, 3-31, 5-5

SIOCGIFDSTADDR 3-26, 3-29

SIOCGIFFLAGS 3-27, 3-29

SIOCGIFMETRIC 3-27, 3-29

SIOCGIFNETMASK 3-28, 3-29

SIOCGPGRP 3-29

SIOCSIFADDR 3-26

SIOCSIFBRDADDR 3-26

SIOCSIFDSTADDR 3-27

SIOCSIFFLAGS 3-27

SIOCSIFMETRIC 3-27

SIOCSIFNETMASK 3-28

SIOCSPGRP 3-29, 4-13

to get network mask 3-31

1ovec structure 3-12

iov_base field 3-13

iov_len field 3-13

IP, see Internet Protocol (IP)

IP_RX_OPTIONS socket option 6-4

IP_TOS socket option 6-5

IP_TTL socket option 6-5

IP_TX_OPTIONS socket option 64

IPC

Internet domain 2-4

socket naming 2-4

UNIX domain 2-4

IPPROTO_ICMP constant 3-2

IPPROTO_RAW constant 3-2

Iindex-3

index

IPPROTO_TCP constant 3-2

IPPROTO_UDP constant 3-2

ISO, see International Standards Organi-

zation (ISO)

K

Kernel Glossary-5

L

Library routine 3-6

endhostent B-4

gethostbyaddr 3-6, B-2

gethostbyname 3-6, 3-8, 4-4, 4-13, 5-6,

6-2, B-2

gethostent B-2, B-4

gethostname 6-2

getnetbyaddr B-4

getnetbyname B-4

getnetent B-4

getprotobyname B-5

getprotobynumber B-5

getprotoent B-5

getservbyname 3-5, 3-6, 3-8, 4-2, 44,

4-13, 5-6, B-6

getservbynumber B-6

getservbyport B-6

getservent B-6

hton! B-8

htons B-8

malloc 7-5

ntohl B-8

ntohs B-8

sethostent B-4

t.accept 7-13, 7-14, 7-16, 7-33

t_alloc 7-5, 7-16, 7-33

t_bind 7-10, 7-13, 7-16, 7-33

t.close 7-16, 7-26, 7-33

t_connect 7-17, 7-33

terror 7-26

tfree 7-7

tlisten 7-13, 7-16, 7-33

t_open 7-2, 7-13, 7-16, 7-33

trcv 7-20, 7-33

t.rcvdis 7-16, 7-25

t.rcvudata 7-23, 7-33

t.revuderr 7-27

t.snd 7-19, 7-33

t.snddis 7-24, 7-33

index-4 Licensed material—-property of canuriaht haldaric\

Library routine (cont.)

t.sndrel 7-25, 7-33

t.sndudata 7-22

using B-1

listen system call 3-8, 4-2, 4-3, 7-13, 7-33

comparison to t_bind library routine

7-16

error messages A-5

Local area network Glossary-5

Local host Glossary-5

Logical network Glossary-5

malloc library routine 7-5

Management Information Base (MIB)

RD-3

Mapping Glossary-5

Message formats

Internet Control Message Protocol

(ICMP) 6-9 |

Internet Protocol (IP) 6-6

MILNET Glossary-6

MSG_DONTROUTE flag 3-15

MSG_OOB flag 3-15, 4-9, 4-10, 4-11,

4-12

MSG_PEEK flag 3-15, 4-9

msghdr structure 3-17

msg_accrights field 3-17

msg_accrightslen field 3-17

msg_iov field 3-17

msg_iovlen field 3-17

msg_name field 3-17

msg_namelen field 3-17

Multiplexing 3-33, Glossary-6

Name server Glossary-6

Naming sockets 2-4

netbuf structure 7-7

netent structure B-4

n_addrtype field B-4

n_aliases field B-4

n_name field B-4

n_net field B~4

Network 1-1, Glossary-6

applications 1-3

architecture 1-1, 2-2, Glossary-6

byte order B-7

AAA DPAL4AMA

Network (cont.)

hardware, installation of RD-1

local area network Glossary-5

Logical network Glossary-5

number Glossary-6

physical layer 1-2

user interface programs 1-1

Network controller RD-2

Network File System (NFS) 4-13, 5-6,

Glossary-2, Glossary-6, Glossary-9

Network Information Service (NIS) 3-4,

3-6, 3-8, 4-13, 5-6, B-5, B-6,

Glossary-2, Glossary-6, Glossary-8

domain Glossary-6

server Glossary-7

Network interface 2-2, 3-31

Network library routine 3-6

endhostent B-4

gethostbyaddr 3-6, B-2

gethostbyname 3-6, 3-8, 44, 4-13, 5-6,

6-2, B-2

gethostent B-2, B-4

gethostname 6-2

getnetbyaddr B-4

getnetbyname B-4

getnetent B4

getprotobyname B-5

getprotobynumber B-5

getprotoent B-5

getservbyname 3-5, 3-6, 3-8, 4-2, 44,

4-13, 5-6, B-6

getservbynumber B-6

getservbyport B-6

getservent B-6

htonl B-8

htons B-8

ntohl B-8

ntohs B-8

sethostent B-4

using B-1

NFS, see Network File System (NFS).

NIC, the Glossary-1, Glossary-3, RD-2

NIS, see Network Information Service

(NIS)
ntohl library routine B-3

ntohs library routine B-8

O

ONC/NFS Glossary-7, RD-1

open system call 7-2

093-701024 Licensed material—property of copyright hoider(s)

Index

Open Systems Interconnection (OSI)

1-2, 7-1

OS client Glossary-2, Glossary-4

OS server Glossary-4, Glossary-7,

Glossary-8, Glossary-10

Out-of-band data, see Urgent data

Out-of-line urgent data reception 4-10

p

Packet Glossary-7

Peer processes 1-3

Peers 1-5

Physical network Glossary-7

Port 2-6, 2-7, 3-5, Glossary-5,

Glossary-7, Glossary-8, Glossary-9

numbers B-6

Process 1-3, Glossary-2, Glossary-3,

Glossary-7, Glossary-8

groups 4-13

peer 1-3, Glossary-7

Program, sample

Internet Protocol (IP) 6-12

socket-based client 7-46

TLI-based client 7-40

TLI-based server 7-35

Programs, sample

Transmission Control Protocol (TCP)

4-13

User Datagram Protocol (UDP) 5-6

Protocol 1-1, 1-3, Glossary-8

Address Resolution Protocol (ARP)

Glossary-1

File Transfer Protocol (FTP) 2-3,

Glossary-4

Internet Control Message Protocol

(ICMP) 2-3, 6-1, Glossary-4

Internet Protocol (IP) 2-3, 6-1,

Glossary-3, Glossary-5,

Glossary-10

Reverse Address Resolution Protocol

(RARP) Glossary-8

Simple Mail Transfer Protocol (SMTP)

2-3, Glossary-8

Transmission Control Protocol (TCP)

2-3, 3-8, 4-1, Glossary-3,

Glossary-4, Glossary-9,

Glossary-10

Trivial File Transfer Protocol (TFTP)

2-3, Glossary-10

User Datagram Protocol (UDP) 2-3,

3-10, 5-1, Glossary-3, Glossary-10

Index-5

index

Protocols file B-5

protoent structure B-5

p_aliases field B-5

p_name field B-5

p_proto field B-5

Provider -

transport 2-8

R

Raw socket 2-6, 3-2, 6-1, Glossary-8

read system call 3-8, 3-12, 3-35, 7-33

MSG_OOB flag 4-10

readv system call 3-14

error messages A-10

Receiving data

in-line, urgent 4-10

out-of-line, urgent 4-10

recv system call 3-15, 3-35, 6-2, 7-33

error messages A-7

MSG_OOB flag 4-10

MSG_PEEK flag 4-9

recvfrom system call 3-10, 3-16, 5-2, 6-2,

7-33

error messages A-8

MSG_PEEK flag 4-9

recvmsg system call 3-17, 3-19, 6-2

error messages A-9

MSG_OOB flag 4-10

Reliable service 1-4

Remote host Glossary-8

Request for Comments (RFC)

Glossary-8, RD-2

List of RD-2

Reverse Address Resolution Protocol

(RARP) Glossary-8

RIP, see Routing Information Protocol

(RIP)
Router Glossary-8

Routes Glossary-8

Routing Information Protocol (RIP)

RD-3

Ss

Sample program

Internet Protocol (IP) 6-12

socket-based client 7-46

TLI-based client 7-40

TLI-based server 7-35

Index-6 Licensed material—property of copyright holder(s)

Sample programs

Transmission Control Protocol (TCP)

4-13

User Datagram Protocol (UDP) 5-6

select system cal] 3-33, 3-34, 4-10

exceptfds bit mask 3-33

readfds bit mask 3-33

timeout value 3-34

writefds bit mask 3-33

send system call 3-5, 3-14, 3-35, 6-2, 7-33

error messages A-6

MSG_OOB flag 4-9

sendmail command Glossary-8

sendmsg system call 3-17, 3-18, 6-2

error messages A-9

sendto system call 3-10, 3-16, 5-1, 5-4,

6-2, 7-33

error messages A-8

MSG_OOB flag 4-9

servent structure B-6

s_aliases field 3-7, B-6

s_name field 3-7, B-6

s_port field 3-7, B-6

s_proto field 3-7, B-6

Server 1-5, 3-8, B-1, Glossary-2,

Glossary-8

characteristics of 4-2

establishing a connection 4-2, 43

OS Glossary-4, Glossary-7,

Glossary-8, Glossary-10

telnetd Glossary-8

Services file 3-4, 3-8, 4-13, B-6

sethostent library routine B-4

setsockopt system call 3-20, 4-8, 6-4

error messages A-2

SO_OOBINLINE option 4-10

Shell Glossary-9

shutdown system call 3-35, 7-33

error messages A-3

SIGIO signal 3-34

SIGURG signal 4-10

Simple Mail Transfer Protocol (SMTP)

2-3, Glossary-8, RD-2

Simple Network Management Protocol

(SNMP) RD-3

SIOCATMARK ioctl 3-26, 4-10, 4-12,

4-13

SIOCGIFADDR ioctl 3-26, 3-29

SIOCGIFBRDADDR ioctl 3-26, 3-29

SIOCGIFCOMF ioctl 3-26, 3-31, 5-5

SIOCGIFDSTADDR ioctl 3-26, 3-29

093-701024

SIOCGIFFLAGS ioctl 3-27, 3-29

~ SIOCGIFMETRIC ioctl - 3-27, 3-29

SIOCGIFNETMASK ioctl 3-28, 3-29

SIOCGPGRP ioctl 3-29

SIOCSIFADDR ioctl 3-26

SIOCSIFBRDADDR ioctl 3-26 .

SIOCSIFDSTADDR ioctl 3-27

SIOCSIFFLAGS ioctl 3-27

SIOCSIFMETRIC ioctl 3-27

SIOCSIFNETMASK ioctl 3-28

SIOCSPGRP ioctl 3-29, 4-13

SO_BROADCAST socket option 3-22

SO_DEBUG socket option 3-21

SO_DONTROUTE socket option 3-21

SO_ERROR socket option 3-23

SO_KEEPALIVE socket option 3-21

SO_LINGER socket option 3-20

SO_OOBINLINE option 4-12

SO_OOBINLINE socket option 3-22,

4-10

SO_REUSEADDR socket option 3-22

SO_SNDBUF socket option 3-22

SO_TYPE socket option 3-23

SOCK_DGRAM constant 3-2

SOCK_RAW constant 3-2

SOCK_STREAM constant 3-2

sockaddr_in structure 3-4

sin_addr field 3-4

sin_family field 3-4

sin_port field 3-4

Socket 2-4, 7-1, Glossary-9

accept system call 3-8, 4-2, 4-3, 7-13

bind system call 3-3, 3-8, 3-10, 7-10

binding name to Glossary-2

close system call 3-35

connect system call 3-5, 3-8, 45, 5-4,

6-2

datagram 2-5, 3-2, Glossary-3

domain 2-4

establishing a connection 4-1

getsockopt system call 3-20, 3-23, 3-24,

4-8, 6-4

interface 2-4

ioctl system call 3-24

IP_RX_OPTIONS option 6-4

IP_TOS option 6-5

IP_TTL option 6-5

IP_TX_OPTIONS option 6-4

listen system call 3-8, 4-2, 4-3, 7-13

MSG_DONTROUTE flag 3-15

. MSG_OOB flag 3-15, 4-9

093-701024 Licensed material—property of copyright hoider(s)

index

Socket (cont.)

MSG_PEEK flag 3-15, 4-9

naming 2-4, 2-7

opening a 3-1

raw 2-6, 3-2, 6-1, Glossary-8

read system call 3-8, 3-12

readv system call 3-14

recv system call 3-15, 6-2

recvirom system call 3-10, 3-16, 5-2,

6-2

recvmsg system call 3-17, 3-19, 6-2

select system call 3-33, 4-10

send system call 3-5, 3-14, 6-2

sendmsg system call 3-17, 3-18, 6-2

sendto system call 3-10, 3-16, 5-1, 5-4,

6-2

setsockopt system call 3-20, 4-8, 6-4

shutdown system call 3-35

SIGURG signal 4-10

SO_BROADCAST option 3-22

SO_DEBUG option 3-21

SO_DONTROUTE option 3-21

SO_ERROR option 3-23

SO_KEEPALIVE option 3-21

SO_LINGER option 3-20

SO_OOBINLINE option 3-22, 4-10

SO_REUSEADDR option 3-22

SO_SNDBUF option 3-22

SO_TYPE option 3-23

socket system call 3-8, 3-10, 7-2

specifying a communication domain

3-1

specifying a protocol 3-2

specifying a type 3-2

stream 2-5, 3-2, Glossary-9

TCP_MAXSEG option 4-8

TCP_NODELAY option 4-8

TCP_PEER_ADDRESS option 49

types 2-5

write system call 3-8, 3-12

writev system call 3-13

socket system call 2-4, 3-1, 3-8, 3-10, 4-1,

4-2, 5-1, 6-1, 62, 7-33

error messages A-1

Socket types and constants file 3-2

Stand-alone system Glossary-4

Stream Glossary-9

Stream socket 2-5, 3-2, Glossary-9

urgent data 3-15

STREAMS 1-4, 2-8, 2-9, 7-1, 7-2, 7-4,

7-28, 7-29, Glossary-9, Glossary-10

Index-7

index

Subnet Glossary-9

Subnet mask Glossary-10

Subnets RD-3

Syntax ©

accept system call 43

bind system call 3-3

Close system call 3-35

connect system call 4-5

getsockopt system call 3-20

ioctl system call 3-24

listen system call 4-3

read system call 3-12

readv system call 3-14

recv system call 3-15

recvfrom system call 3-16, 5-2

recvmsg system call 3-19

select system call 3-33

send system call 3-14

sendmsg system call 3-18

sendto system call 3-16, 5-1

setsockopt system call 3-20

shutdown system call 3-35

socket system call 3-1

t_accept library routine 7-14

t_alloc library routine 7-5

t_bind library routine 7-10

t_close library routine 7-26

t_connect library routine 7-17

t_error library routine 7-26

t_free library routine 7-7

t_listen library routine 7-13

t_open library routine 7-2

t_rev library routine 7-20

t_revdis library routine 7-25

t_rcvudata library routine 7-23

t_rcvuderr library routine 7-27

t_snd library routine 7-19

t_snddis library routine 7-24

t_sndrel library routine 7-25

t_sndudata library routine 7-22

write system call 3-12

writev system call 3-13

System call

accept 3-5, 3-8, 42, 4-3, 7-33

bind 3-3, 3-8, 3-10, 4-1, 4-2, 5-1, 6-2,

7-33

close 3-35, 7-33

connect 3-5, 3-8, 4-5, 5-4, 6-2, 7-33

fnctl 4-10

fork 3-8, 4-2

getsockopt 3-20, 3-23, 3-24, 4-8, 6-4

index-8 Licensed material—property of copyright holder(s)

System call (cont.)

ioctl 3-24, 3-25, 3-26, 3-27, 3-29, 3-31,

4-10, 4-12, 4-13

listen 3-8, 4-2, 4-3, 7-33

read 3-8, 3-12, 3-35, 4-10, 7-33

readv 3-14

recv 3-15, 3-35, 4-10, 6-2, 7-33

recvfirom 3-10, 3-16, 5-2, 6-2, 7-33

recvmsg 3-17, 3-19, 4-10, 6-2

select 3-33, 3-34, 4-10

send 3-5, 3-14, 3-35, 6-2, 7-33

sendmsg 3-17, 3-18, 6-2

sendto 3-10, 3-16, 5-1, 5-4, 6-2, 7-33

setsockopt 3-20, 4-8, 4-10, 6-4

shutdown 3-35, 7-33

socket 2-4, 3-1, 3-8, 3-10, 4-1, 4-2, 5-1,

6-1, 6-2, 7-33

socket family of 24

write 3-8, 3-12, 3-35, 7-33

writev 3-13

T

t_accept library routine 7-13, 7-14, 7-16,

7-33

t_alloc library routine 7-5, 7-16, 7-33

t_bind library routine 7-10, 7-13, 7-16,

7-33

behavior for a connection-oriented

client 7-12

behavior for a connectionless user 7-12

t_bind structure 7-11

t.call structure 7-13, 7-14, 7-16, 7-17,

7-24

t_close library routine 7-16, 7-26, 7-33

t_connect library routine 7-17, 7-33

t.discon structure 7-25

tlerrno variable 7-26

terror library routine 7-26

t_free library routine 7-7

t_info structure 7-3

tlisten library routine 7-13, 7-16, 7-33

t_open library routine 7-2, 7-13, 7-16,

7-33

trcv library routine 7-20, 7-33

t_rcvdis library routine 7-16, 7-25

t.rcvudata library routine 7-23, 7-33

t.rcvuderr library routine 7-27

t_snd library routine 7-19, 7-33

t_snddis library routine 7-24, 7-33

t_sndrel library routine 7-25, 7-33

083-701024

t_sndudata library routine 7-22

t_uderr structure 7-27

t_unitdata structure 7-24

TCP, see Transmission Control Protocol

(TCP)
TCP/IP for AViiON Systems 2-1

network architecture 2-2

TCP_MAXSEG socket option 48

TCP_NODELAY socket option 4-8

TCP_PEER_ADDRESS socket option

4-9

telnet command Glossary-10

TELNET protocol 2-3, Glossary-10,

RD-2

telnetd server Glossary-8

tftp command Glossary-10

Timeout 3-34

TLI, see Transport Layer Interface (TLI)

Token ring RD-1

Transferring data 3-12

read system call 3-12

readv system call 3-14

recv system call 3-15

recvmsg system call 3-17

send system call 3-14

sendmsg system call 3-17

write system call 3-12

writev system call 3-13

Transmission Control Protocol (TCP)

2-3, 4-1, Glossary-3, Glossary-4,

Glossary-9, Glossary-10, RD-2

accept system call 3-8

bind system call 3-8, 4-1

connect system call 3-8

gethostbyname library routine 3-8

getservbyname library routine 3-8

listen system call 3-8

read system call 3-8

sample programs 4-13

socket system call 3-8, 4-1

write system call 3-8

Transport Layer Interface (TLI) 2-8, 7A,
Glossary-10

comparison to sockets 7-33

linking in the TLI library 7-35

netbuf structure 7-7

sample program 7-35, 7-40, 7-46

t_accept library routine 7-13, 7-14,

7-16, 7-33

t_alloc library routine 7-5, 7-16, 7-33

t_bind library routine 7-10, 7-13, 7-16,

7-33

093-701024 Licensed matariai—property of copvriaht holder{s)

index

Transport Layer Interface (TLI) (cont.)

t_bind structure 7-11

t_call structure 7-13, 7-14, 7-16, 7-17,

7-24

t.close library routine 7-16, 7-26, 7-33

t_connect library routine 7-17, 7-33

t_discon structure 7-25

t_errno variable 7-26

terror library routine 7-26

t_free library routine 7-7

t_info structure 7-3

t_listen library routine 7-13, 7-16, 7-33

t_open library routine 7-2, 7-13, 7-16,

7-33

trcv library routine 7-20, 7-33

t_rcvdis library routine 7-16, 7-25

t_rcvudata library routine 7-23, 7-33

t.revuderr library routine 7-27

t_snd library routine 7-19, 7-33

t_snddis library routine 7-24, 7-33

t.sndrel library routine 7-25, 7-33

t_sndudata library routine 7-22

tLuderr structure 7-27

t_unitdata structure 7-24

Transport provider 2-8

Transport user 2-8

Trivial File Transfer Protocol (TFTP)

2-3, Glossary-10, RD-2

U

UDP, see User Datagram Protocol (UDP)

UNIX domain 2-4

Unreliable service 1-4

Urgent data 3-15, 4-9 |

in-line reception 4-10, 4-11, 4-12

out-of-line reception 4-10, 4-13

receiving multiple bytes of 4-12

User

transport 2-8

_ User Datagram Protocol (UDP) 2-3, 5-1,
Glossary-3, Glossary-10, RD-2

bind system call 3-10

gethostbyname library routine 3-10, 5-6

getservbyname library routine 3-10, 5-6

programming features 5-1

recvfrom system call 3-10

sample programs 5-6

sendto system call 3-10

socket system call 3-10

User interface programs 1-1

index-9

index

Using the network library routines B-1

W

Wide area network Glossary-10

Workstation Glossary-10

write system call 3-8, 3-12, 3-35, 7-33

writev system call 3-13

error messages A-10

X

X.25 2-2

index-10 | Licensed material—property of copyright holder(s) 083-701024

Related Documents

The following list of related manuals gives titles of Data General manuals followed by

nine-digit numbers used for ordering. You can order any of these manuals via mail or

telephone (see the TIPS Order Form in the back of this manual).

For a complete list of AViiON® and DG/UXTM manuals, see Guide to AViiON® and

DG/UXTM System Documentation (060-701085). The on-line version of this manual

found in /usr/release/doc_guide contains the most current list.

Data General Software Manuals

Using TCP/IP on the DG/UXTM System (093-701023).

Introduces Data General’s TCP/IP family of protocols and describes how to use the

package. :

Managing TCP/IP on the DG/UXTM System (093-701051).

Explains how to prepare for the installation of Data General’s TCP/IP package on

AViiON computer systems. Tells how to tailor the software for your site, use sysadm

or xsysadm to manage the package, and troubleshoot system problems.

System Manager's Reference for the DG/UXTM System (093-701050).

Alphabetical listing of manual pages for commands relating to system administration

or operation. |

Managing ONCTM/NFS® and Its Facilities on the DG/UXTM System (093-701049).

Shows how to install, manage, and use the DG/UX ONC/NFS product. Contains

information on the Network File System (NFS), the Network Information Services |

(NIS), Remote Procedure Calls (RPC), and External Data Representation (XDR).

Data General Hardware Manuals

Ethernet/IEEE 802.3 Local Area Network Installation Guide (014-000793).
Explains how to install both the coaxial cable plant of an Ethernet local area network

(LAN) and the transceivers that connect the network to a node communication con-

troller.

DG/Token Ring Local Area Network Installation Guide (014-001730). |
Tells how to install DG/Token Ring. Describes the physical and functional aspects of |
the DG/Token Ring network, identifies the network components and lists important _|
physical, functional and environmental specifications.

AViON 300 and 400 Series Stations: Programming System Control and I/O Registers

(093-001800).

Describes the workstation architecture and explains how to program the system

093-701024 Licensed material—property of copyright hoider(s) RD-1

Related Documents

control logic, monochrome and color graphics controller subsystems, keyboard port,

mouse port, serial and parallel ports, LAN interface, and SCSI port. |

Configuring the VME Token Ring Controller (VTRC) for AViiON Systems (014-001730).

Provides information about programming and installing the VME Token Ring Con-

troller (VTRC).

Setting Up and Installing VMEbus Options in AViiON Systems (014-001867). |

Provides information about how to insert the VME Token Ring Controller (VTRC) |

board in 2-slot VME chassis and how to jumper the board.

Expanding the AViiON® 5000 Series System (014-001850).

Explains how to open and close the computer, plan a configuration, and install add- |

on boards. Includes a description of the computer subassemblies.

V/Ethernet 3207 Hawk Local Area Network Controller for Ethernet User’s Guide (014-

001818).

Contains information about programming and installing the V/Ethernet 3207 Hawk

Local Area Network Controller (VLC).

Request for Comments

Technical reports, protocol proposals, and protocol standards appear in a series of

documents called Request for Comments, or RFCs. You can get copies of RFCs from

the Defense Data Network — Network Information Center (known as the NIC), SRI

International, Menlo Park, CA, 94025. The following RFCs may be helpful to you as

you administer a TCP/IP-based network.

© RFC 768 (User Datagram Protocol)

@ RFC 783 (Trivial File Transfer Protocol)

@® RFC 791 (Internet Protocol)

@ RFC 792 (Internet Control Message Protocol)

@ RFC 793 (Transmission Control Protocol)

@ RFC 821 (Simple Mail Transfer Protocol)

@ RFC &22 (Standard for the Format of ARPA Internet Text Messages)

@ RFC &26 (An Ethernet Address Resolution Protocol)

@ RFC 854 (Telnet Protocol)

@ RFC 877 (A Standard for the Transmission of IP Datagrams Over Public Data Net-

works)

@ RFC 903 (A Reverse Address Resolution Protocol)

RD-2 Licensed material—property of copyright hoider(s) 0983-701024

Related Documents

@ RFC 950 (Internet Standard Subnetting Procedures)

@ RFC 952 (DOD Internet Host Table Specification)

@ RFC 959 (File Transfer Protocol)

e@ RFC 974 (Mail Routing and the Domain System)

@ RFC 1034 (Domain Names — Concepts and Facilities)

@ RFC 1035 (Domain Names -- Implementation and Specification)

@ RFC 1042 (A Standard for the Transmission of IP Datagrams over IEEE 802 Net-

works)

© RFC 1047 (Duplicate Messages and SMTP)

@ RFC 1058 (Routing Information Protocol)

@ RFC 1068 (Background File Transfer Program)

@ RFC 1101 (DNS Encoding of Network Names and Other Types)

@ RFC 1122 (Requirements for Internet Hosts -- Communication Layers)

@ RFC 1123 (Requirements for Internet Hosts -- Application and Support)

@ RFC 1155 (Structure and Identification of Management Information for TCP/IP-

based Internets)

@ RFC 1156 (Management Information Base for Network Management of TCP/IF-
based Internets) |

@ RFC 1157 (Simple Network Management Protocol)

@ RFC 1158 (Management Information Base for Network Management of TCP/IP-

based internets: MIB-II)

End of Related Documents

093-701024 Licensed material—property of copyright holder(s) RD-3

TO ORDER

1. An order can be placed with the TIPS group in two ways:

a) MAILORDER-—Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE-—Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. As acustomer, you have several payment options:

a) Purchase Order — Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order — Make payable to Data General Corporation.

c) Credit Card —A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. Todetermine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:

Total Quantity | Shipping & Handling Charge

1—4 Units $5.00

5-10 Units $8.00

11—40 Units $10.00

41—200 Units $30.00

Over 200 Units ‘$100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-$499.99 10%
Over $500 20%

TERMS AND CONDITIONS

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhéred to

at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870—1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General

Subsidiary or Representative. Any TIPS orders received by Data General U.S. Headquarters will be

forwarded to the appropriate DG Subsidiary or Representative for processing.

Mail To: Data General Corporation
Attn: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581 - 9973

COMPANY NAME COMPANY N NAME"
ATIN: ATIN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) Ext.
(Agrees to terms & conditions on reverse side)
Serene EM MED aD Oe cetteA ae re

5
id

eeeSe Stance Pn

ERRRERERERE Re

ORDER TOTAL

Order Amount Save | Less Discount -
1-4 ems $ 5.00 $0 - $149.99 0% See B
5-10ltems $ 8.00 $150 - $499.99 10% | Ta Exar SUB TOTAL
11-40 hems $ 10.00 Over $500.00 20% or Sales Tax

Gf applicable) Your local* +
41-200 Items $ 30.00 sales tax

200+ Items $100.00 ippins and +

Check for faster delivery _hetling — See A
sae es erate TOTAL - See C
V UPS Blue Label (2 day shipping)

LV TSO ene ee PER Te nD ee enna THANK YOU FOR YOUR ORDER

P.O. number is - Gnclude hardcopy P.O.) PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
V Check or Money Order Enclosed PLEASE ALLOW 2 WEEKS FOR DELIVERY.

V Visa V MasterCard ($20 minimum on credit cards) REFUND:

. . a

mccount Number —_ Sapet mas chen DO mans eft ios crea Sco
CIT} Pleaso inclads local taxes when determining the total vales of your arder. If you

aan uocecuin shout de comet tax asus, gaat call 508-370-1 1600,

Authorized Signamre

(Condit card orders without signetase and expiration dats cannot be processed.)

—

Form 702
Rev-8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS
SERVICE

TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance with the

following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form. These terms

and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer accepts and agrees to be bound

by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub—licensee of the software which is the

subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under this

Agreement, exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS :

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide

by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs,

engineering details and other data pertaining to the products described in such publication. Licensed software materials are provided

pursuant to the terms and conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made

a part of and incorporated into this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a

publication or public disclosure. |

4. LIMITED MEDIA WARRANTY ,

DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a period of

ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided it is returned

postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and DGC’s sole obligation and

liability for defective media. This limited media warranty does not apply if the media has been damaged by accident, abuse or misuse.

&. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO

LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT

EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.

THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY

DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE

FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT

LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR DELIVERY

DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY THEREOF; OR
FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION
ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational Services
Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of law rules. Such
contract is not assignable. These terms and conditions constitute the entire agreement between the parties with respect to the subject
matter hereof and supersedes all prior oral or written communications, agreements and understandings. These terms and conditions
shall prevail notwithstanding any different, conflicting or additional terms and conditions which may appear on any order submitted by
Customer. DGC hereby rejects all such different, conflicting, or additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)
Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific to a

particular revision of the product. Consequently user programs or systems based on this information and material may be
revision—locked and may not function properly with prior or future revisions of the product. Therefore, Data General makes no
representations as to the utility of this information and material beyond the current revision level which is the subject of the manual.

Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from any such use and J and
my company (Customer) hold Data General completely harmless therefrom.

Cut here and insert in binder spine pocket

¢» Data General
Data General Corporation, Westboro, Massachusetts 01580

