
The Network File Systemccccccecccces sec e ccc ceeee 1-1

How NFS allows file sharing 0... cc ccc ec cece cece cence neees 1-2

The network services concept000eeeeee cee eee eee eens 1-2

Maintaining service when a server crashesccceceeeeeeeee 1-3

Getting the best use of NFS 2.0.1... eee ccc cee e teense evens 1-3

A sample computing environment ccc ccc c ee ce eee e cee cneees 1-3

Understanding NFS terms cece ccc ccc cee cence eens eneeeees 1-4

How NFS works 0... cece cece cece nee e eee e eee eet neeeceneens 1-5

Mounting a remote file system ccc cece cece eee eee e eens 1-6

Exporting a file system ccc cece cece e eee ee eeeneeeee 1-7

More guidelines for using NFS ccc ccc cece ee cent tenes eneees 1-8

Useful tips 22.0... ec cece cn cee teen ete eee eee eee eeeneees 1-9

Administering ONC/NFS cece cece cece cece ee ccecees 2-1

Installing and setting up the ONC/NFS services: an overview 2-1

Phase 1: Planning the installation 0.0... cc cece cece eens 2-2

Phase 2: Loading the package(s) 0. cc cece cece ect eee tenes 2-3

Phase 3: Setting up NFS and NIS eee eee 2-3

Booting the kernel and run level changes 0.0.0 ce cece ees 2-4

Phase 4: Customizing NFS and NIS cee ce ec eee 2-5

System administration for the NFS service 0... ccc cece cece ees 2-8

Establishing a machine as an NFS server 00. cee eee eee ee eees 2-9

A typical NFS installation 00... cece ccc cee teen eee ences 2-11

Troubleshooting NFS cece cece eee eee ieee eens Sv eeeees veeeqecee 2-12

Suggestions ferigqubleshooting NFS bees ee eR S Meme eee aa uo reve 2-12
_- Remote mount ¢ ilure. . Hekate ees Caieunees Fyne une nene veneer eens 2-13.

| . Slow response ;.. opera alee eee ‘ede wt abtpeccs, ue ay , te ae he meee e toe pees . - 2-20
oo Some notes: about networking on-a UNIX eystem Cag te beeeeewenane’y 2-20

y

Administering NISieivses.+sssieseesuseecsapenesnenegeetted SL.
What is the Network:-Information Service (NIS)?. ween Bande cee eeeneeenes | Ol

oe Understanding NIS termse.e.2.00 eee es vas - , — . . . - e's 3-2

Overview of the Network Information Service Nis) | eee ben eene . . we bdeeee, 3-2
The NIS map00.. bene cases teaes ve veeeunees cg eeeenee! 88

The NIS domain Loueeneeveues whew ene e ee eee os Lene ewe tienes | seneseeee 38 :

Master servers. and slave servers” . egeines reese a Leas , ; . o cote ree, 8.4

‘Servers and clients see eatied eee e eee eeeaees Leveeeeeeees - pee . saeeee ' , 3-4

Commands for maintaining NIS Le vbaeeecdetwuceceeeneveees : - oy seveeeee 8-5

How administrative files-are consulted on an NIS network ve Leceiee: 3-7

ms Accessing information from hosts files ... Le soe t the eee ener eee - veces os 3.8 :

: Accessing information from the passwd file : . a 3-8

a Accessing information from other NIS files0.. cc. cceceueeceeeee 3.97

How the NIS network service worksc cc ccc ccc cc ccccccccceeues 3-9

How NIS handles naming conflicts 0... eee cece eee eee 3-9

How NIS stores data ccc ccc ccc ce cece ence eee e cece eeeeaeas 3-9

How servers provide informationc ccc cece cece eee c ee eeeeeee 3-11

How clients obtain information 0... cece cee cee cee eee e eee nees 3-11

Changing your password cc ccc cee cee cece tenet eee e eens ee eeeeues 3-11

Managing NIS ccc ccc ccc cc ccc ccc cece cece eee ccccee 4-1

NIS administration 0... cece cece ce cee cee e nent teen ee eeeeeeaes 4-]

Setting up a master NIS server cc cece cece cece cece ececnes 4-1

Altering an NIS client’s files to use NIS services ccc ce eeees 4-2

How to set up a slave NIS server ccc cece cece cece ence eeenes 4-4

How to setup an NIS client 0... ccc ccc ccc eee e eet e cease 4-5

Modifying NIS maps after installation 0... ccc eee c eee eens 4-5

Propagating NIS maps 0... cece ccc cece eee ence tenn eee enees 4-7

Making new NIS maps after installation 00... cc cece cece ences 4-8

How to add a new NIS server to the original set cece cece eee 4-8

How to change the master server 0... cece cece eee ee ne tenn tneneenee 4-9

Troubleshooting an NIS client ccc cece ccc c eee cece tee e eee enees 4-10

NIS client problems: commands that hang ccc e cece eees 4-10

NIS client problems: NIS service is unavailable 2.0.02 e eee 4-12

NIS client problems: ypbind crashes 00... cece cece cece eeees 4-12

NIS client problems: ypwhich is inconsistent 0.00 ccc e cece wees 4-14

Troubleshooting an NIS server 0. cece cece cece eee teen eee eeeees 4-14

Different versions of an NIS map cece cece eee e cece ceeeeeaes 4-14

ypserv crashes oo... 0 cece cece cece cece ee eececeecucaveueuceveneevenes 4-15

How security is affected Dy NIS 2... ccc eee ce ee ee tee teen eens 4-16

Special NIS password change cee ee cece cece eee eee eeeece 4-17

Netgroups: network-wide groups of machines and users 4-17

Adding a new user to the NIS database 0.0.00 c cece cece eee eens 4-17

If you do not use NIS 2... cece cece teen e ence tenet neeaee 4-18

An rpcgen programming guide0.. sec c cece ccc ceee 5-1

What is rpcgen? 2.0... ce ccc eee ne eee eee eee teen eee cette eens o-1

Converting local procedures to remote proceduressese sees 5-2

Generating XDR TOULINES 0.0. eee eee eee cece eee e ance eeeceaneceaneeeunes 5-7

The C preprocessor 0. ccc cece ee ee eee eee eee eee teen teen eens 5-12

Some rpegen programming notes cece cece eee eee eee eee eee 5-13

Changing the default time-out on RPC calls0..0 cece cece eens 5-13

Handling broadcasts on the server sideccceeeeee eee eenenes 5-13

Passing information to server procedures 0. cece cece cece eee een 5-14

Defining the RPC language

RPC definitions

XDR typedef

XDR constants

RPC programs

XDR declarations

Special cases

soee5s»5#2efeewmtmltmUOmUCUOmU OU OCmUCUc OChUCUcMOOChUCUcMHrmhUCUCcOChUCcOOrmhUCcOOrmhUCc OhrmhUCUCcOFrmhUCUCcOOrmhUCUc hmhUCUcMCmhCUCcOOmhUCUcMPCmUCUCcOOChUCUCc POCmhUCUCc OC HOC HH HPO ehh ehUcOmhUCUcMmhUhUcUOOCmUCUcMOUC HOUCHOCUhO HPO OF Fe eh ehlUcOhUhOhUhUh hl OhUlUlcCOhUlUcOhlUh

eeoe5o5oeee#hieee#eee«e#ee#eeeee#ee#e#ee#eoe @eeeeee ee eee emhmhUcOrmhUCUCcOmUCUCcOmhUCUCc hmhUCUcMOCmhUCUCcOOmhUCcOOmhUCUCcMOCmhUCcCOChUCcOCmhUCcCOrhUCc HOmhUCUCcOOChUcMOChUhChUcCOChUCUCOhlUchUlUlcrOhlUh

Cr ee

Cr

Remote Procedure Call protocol programming guide

Layers of RPC

RPC’s highest layer

RPC’s intermediate layer

RPC’s lowest layer

The RPC paradigm

Programming in the high and intermediate layers of RPC

Highest layer

Intermediate layer

Assigning program numbers

Passing arbitrary data types

Programming in the lowest layer of RPC

RPC on the server

Memory allocation with XDR

RPC on the client

Other RPC features

Using select on the server

Broadcast RPC

Batching in RPC

Authentication with RPC

Using inetd

More examples that use RPC features

Remote Procedure Calls: protocol specification

Introduction

Defining terms

The RPC model

Transports and semantics

oee5o5#»unteee#secee#eee#ek#eeeks#eesb+“see#ee ee © ®# ®@ @ @ © @ @ © & ee ee ee eh emhlUh hl OrhmUlUc OrmhUCUc OmhUc OCmUCUCc OmhUhClUc PmhUc OhUhUlc OCmUlUhOHrhUhlUhcOhlhO

eoeeeeee#ee#eevsee8 e&eeeseeeeeee ee eh OemhmhlUhOhmhUc OrmhUCUc hmhUlUchOChUlc OC Hh HOhUhhUhMMmhUCUhFrhMUhOOrmhUch CU OmUhHhUh OmhUMMhMUCUcPOOmhUCUcCOrCmhUMOCmhUhHMhUhH PH FH OH FO

eoeestekerfeeee eee © © © &@ ee ee ee ee ee ehUh hmhUh OhUc OhmUCUlUcOhmhUlUc OmhUhOmhUhMMhUCUch hmhUchFhmhUhOmhUhUchOOrhUCUcCOrmhUCUlh OhUlUchmhUhOOmhUlUhhUhlUhF

eoe5s5seoeee# @ eee eee ff ®& ®©@ © @ehmhUhOrmhCUCc OrmhUCUchrmhUCUcOrmhUCUCcrOrhUCUcPOFrhUlUchOmhUchhUcOOrhUlUhOhUhUhhlhFBinding and rendezvous independence

Authentication in RPC Ce er ee ee ee Pe

7-1

7-1

7-1

7-2

7-3

7-3

RPC protocol requirements 0. c cece cece cee cece eee eeeeseeeeee 7-4

Programs and procedures 0.0 ccc cece cece cee cece cece eeeenenes 7-4

Authentication fields 2.0... 0... cc ccc ccc cc cece eee e cece eee eeeeeeee 7-5

Program number assignment 00. c ccc cece cece cece eens eeans 7-5

Other uses of the RPC protocol 0... ccc cc cece ce cence ee eees 7-6

The RPC message protocol 0... cc cece cece cece eevee eee eeeeees 7-7

Authentication protocols 0.0... c ccc ccc cece teen eee e cee eeeeaes 7-10

Null authentication 0.0... ccc ccc cence ee eee ence eeeeaeas 7-10

UNIX authentication 0... 0. ccc ccc ccc cece eee eee ee eeenees 7-10

Record-marking standard 0. cece cece cee cece ences ee ene evens 7-11

RPC language cc ccc ccc eect ene eee e eee eee teeeeeee 7-11

An example service described in the RPC language 7-11

RPC language specification ccc eee cee cee cee teen ee eeeees 7-12

Syntax Notes 2... ec ec cece tee eee te teen eee eeeeeeees 7-12

Portmapper program protocol ccc ccc ce cece cece teen teenies 7-13

Portmapper protocol specification (in RPC language) 7-138

Portmapper operation ccc cece cece cece net e eee ee ene eenas 7-14

Papers cited in chapter text 2.0.0.0... ccc ccc ccc tte eee een e teens eeas 7-16

External Data Representation: DG technical notes 8-1

Justification 2.6... Lc ccc ec ee eee eee ee teen teen eee ee eeeenes 8-2

A canonical standard ccc ccc ccc eee ee cece teen tees eee eteenee 8-4

XDR library 21... cece ee eben eee teen e etn e nee eeneees 8-5

XDR library primitives 0... ccc ccc cece eee e eee ee neeaes 8-7

Number filters ence cece eee eee eee teen ten eeeeees 8-7

Floating-point filters 2.0... 0... eect enn ene ee nteees 8-8

Enumeration filters 0.0... 0.0... ccc ccc cece eee e ence eee teenies 8-9

| Coe F-1 8-9

Constructed data type filters ccc eect ne eeee 8-9

Non-filter primitives 2... 0.0... ccc cece ete e eee e tenet eeeeeee 8-17

XDR operation directions 0... . ccc ccc cee eee tec n ence eee nenee 8-18

XDR stream access cee eee eee e eee eee eee neens 8-18

XDR stream implementation 0. ccc ccc ccc cee eee een neaee 8-20

Advanced topicS ccc ccc cee cece nee e ee ene eee teen neeeeee 8-21

Linked lists cece cc cc cece cece teen tee eee ne nne ene 8-22

External Data Representation Standard: protocol specification 9-1

Introduction cc ccc cc eect ee eee teen eee ete nee neneeaes 9-1

Basic block Size 2.0... ccc ccc ce eee ence eee e eee nee eneeeees 9-1

XDR data typeS 2... .. ccc ccc cece eee ee ee ee ee eee e teen eee eeenes 9-2

XDR signed integers 2.0... ccc ccc cee eee ete cence een e eens 9-2

XDR unsigned integers 0... ccc cee cece e eee e eee eeeeaee

Fiumerations ccc ccc cc cnc eee een ee ee te tees eeesenees

Boolean data types ccc ccc ccc cece ence eet et etenees

Hyper integers and unsigned hyper integers 0.00 cece ee eees

Floating-point data types ccc ccc cece cece eee e eee eeeeees

Double-precision floating-point data types 0. cece eee e eee eee ee

Fixed-length opaque data ccc ccc cece cece enn e tne eeenees

Variable-length opaque data ccc cece cece ence teen ee eeeee

Typedef data type cece ccc ccc cece e eect eee e ene ee eens

Optional-data 2... ccc cece eee eee e teen ene ee eeeee

Areas for future enhancement 2. ccc eee e eee teenie eens

Major features of the XDR standard cee cece eee eens

Why a language for describing data? 0... . cc cece cece eee eee

Why only one byte-order for an XDR unit? 0.0... cee eee eee

Why does XDR use big-endian byte-order? cee eee eee eee

Why is the XDR unit four bytes wide? ccc cece cee eee eee

Why must variable-length data be padded with zeros?

Why Is there no explicit data-typing? 0... ccc cee cece eee

XDR language specification ccc ec cee cece cence eee tenn anes

Notational conventions ccc eee eee cece ee een tence eens

Lexical noteS cece ccc ce eee teen ene e teen eee e eee neenes

Syntax information 0... cece cece eee eee eee e eee eens

A sample XDR data description 0.0... eee cece eee eee teens

Works cited in text... 0... ccc ccc eee eee eee eee reece eee eens

Using the automounter #eeees8teeseseeen1eerttkteeeeue0et @eoeesve56ess#s*eeeses#8F#8¢6¢680 86 @

How the automounter works ccc cece ce cece cee cece eee aeeeeees

SUMMALY 2.0... cece eee eee ee ee eee eee ee eee eee e eee e eee

Preparing the Maps 0... cece cece eee te eee e eee cnet eee e eee

The master Map cece eee cette eee eee eee ee ee eee ee eeees

Direct and indirect MapS cece eee eee eee eee eee eens

Writing a master Map cece ee eee ee eee eee e nent ene eee

Mount point /— 0... ec eee eee ee eee eee ee ee ee teens

Mount point /home cece cee ee eee ee ee eee eee eens

9-3

9-3

9-3

9-4

9-5

9-5

9-7

A-5

Mount point /net 0... .. ccc ccc ccc cence teen eee te ee eenees

Writing an indirect map 0... ccc ccc cee nee eee nen e eee e ee ennes

Writing a direct Map ce cece eee ene e teen e eee nee eeens

Multiple mounts cece eee ec eee teen eee e teens

Multiple locations 0... ccc ccc ccc cence ence tence nees

Specifying subdirectories 0... . cece cece cee ence cette en neeees

Substitutions 20... ce cee eee eee ee eee eee eee e eee eeee

Special characters 0.0... ccc cee tence ence eee e ee eeeeeee

Environment variables 0... eee cece eee ee teen ene ees

Invoking automount 0.0... cece ccc eee eee e eee ee een ee eenees

The temporary mount point 0... cece ccc eee eee een eeeees

The mount table 2.0... 0. ccc ce eee eee eee nee een e eens

Modifying the mapS cece eee ee eee ee eee eee eee eens

Setting up automount in a client-server environment.................0008-

Error MESSAGES .. 1... ee eee eee ee ee ete eee eee e eens

A sample nfs.params file ccc cc ccc ccc c cece ccc cceccece

1 The Network File System

This chapter provides an overview of the DG/UXTM system implementation

of Sun Microsystems’ Network File System (NFS®). Advanced users may

want to skip to the section “How NFS works,” later in this chapter.

NFS is a facility for sharing files in a heterogeneous environment of

machines, operating systems, and networks. File sharing is accomplished

by allowing two or more machines to access a single disk. NFS allows users

to access remote directories and files as if they were local.

NFS allows you to mount a file system from another machine and access its

contents. It also allows other systems access to file systems on your

machine. The system administrator must export (make available) those file

systems that other systems and their users will access. The system

administrator for the systems that have been granted access must then

mount the exported file systems.

After a file system has been exported and mounted on a remote machine,

users on the remote machine can use any file system commands, such as

cd(1), to access the mounted file system and its contents. NFS, however,

does not allow these users to log into the machine where the file system

resides. Nor can these users access file systems that have not been

exported. While these users do not need a profile on the machine where the

file system resides, they must belong to the group that is permitted access.

IMPORTANT The Network Information Service (NIS) is an optional

network service that helps the system administrator keep

administrative files on networked machines consistent. You do not need

to install and set up NIS to use NFS. NIS is a centralized, read-only

database that manages such information as passwords and host

addresses for an entire domain over a network. NIS contains all the

information usually kept in the following files in /etc: passwd, hosts,

group, networks, protocols, netgroup, services, bootparams,

aliases, rpc, ethers, netmasks, netid, publickey and ypservers.

Chapter 3 discusses NIS in more detail.

093-701049-04 Licensed Material - Property of Data General Corporation 1 =

How NFS allows file sharing

How NFS allows file sharing

In a network environment, sharing programs and data can sometimes be

tedious. Files either must be copied to each machine where they are needed,

or users must log in to the remote machine owning the required files.

Network logins can be time-consuming, and maintaining multiple copies of

a file can become confusing as changes are made to separate copies. NFS

solves these problems by using a distributed file system. This strategy

permits users on one machine access to files on a remote system without

having to log in to the remote system. Thus, users can avoid

time-consuming logins and a single copy of the shared file can be

maintained.

8

NFS provides a distributed file system by allowing any machine running

NFS to act as an NFS client and/or NFS server. Machines requesting

resources are called NFS clients, while machines providing services are

called NFS servers. A server machine makes designated local file systems

available. Client machines can mount and access these remote file systems

as if they were local file systems.

After NFS has been set up and configured, users can access the files they

require without knowing on which machine the file resides. To the user,

there appears to be no difference between reading or writing a file on a local

disk and reading or writing a file on a disk elsewhere on the network.

The network services concept

A distributed file system requires an architecture that provides features

without disturbing the software environment. NFS accomplishes this by

providing additional capability through server processes that work closely

with the operating system, rather than by adding code to the operating

system itself. That is, network services use a set of protocols for data

exchange rather than integrate network features into the operating system.

These protocols can be easily extended and are described in later chapters.

NFS is a standard for the exchange of data between different machines and

operating systems that promotes multi-vendor and multiple operating

system computing solutions. NFS is not a distributed operating system; it is

an interface that allows a variety of operating systems and machines to

play the role of client or server.

1 =2 Licensed Material - Property of Data General Corporation 093-701049-04

Getting the best use of NFS

Maintaining service when a server crashes

The file server protocol is designed so that client systems continue to

operate even when the server must be rebooted. Should a client fail, the

server (or server administrator) does not need to take any action. Should a

server or the network fail, applications on client systems continue trying to

execute NFS operations until the server or network is restored.

This resilience is especially important in a complex network of

heterogeneous systems. Many systems may not be controlled by an

operations staff, or may be rebooted without warning. NFS continues to

function after reboot without requiring special recovery operations on the

server.

Getting the best use of NFS

You can configure NFS to run efficiently on the machines installed at your

particular site. For example, configuring servers with large,

high-performance disks and clients with minimal disk storage may yield

better performance at lower cost than having many machines with small

disks. Furthermore, you can distribute the file system data across many

servers and get the added parallelism without losing transparency: NFS

remains transparent regardless of the number of servers to which a client is

connected. In the case of read-only files, copies can be kept on several

servers to prevent bottlenecks.

NFS is integrated into the DG/UX system kernel when you set up the

system. NFS requires the DG/UXTM TCP/IP product, which must be built

into the kernel as well. After these products are built into the kernel,

DG/UX systems supporting NFS can be either clients or servers. You may

then access any other system that supports either a client and/or server

interface.

A sample computing environment

This section depicts a typical NFS computing environment on a DG/UX

system, one comprising an AViiON® system, an AViiON station, and a Sun

Workstation®. Such an environment may resemble that illustrated in

Figure 1-1.

093-701049-04 Licensed Material - Property of Data General Corporation 1 =

Understanding NFS terms

Figure 1-1

Diskless 5

AViION un

Station Workstation

ETHERNET

IBM PC AViiION

(client only) System Printer

Workstation network

Through NFS, all disks on the network become available as you need them.

Individual computers can be granted access to all information residing

anywhere on the network on hosts supporting NFS.

Understanding NFS terms

This section explains some commonly used NFS terms.

Application

A program or set of programs that runs on a client or server.

External Data Representation (XDR)

A set of library routines that allow C programmers to describe arbitrary

data structures in a machine-independent fashion. Data for remote

procedure calls are transmitted using the XDR standard.

File system

A data structure residing on disk. Each file system comprises one or

more files.

File system data

The data comprising the file system’s structure and contents.

File system operations

The code implementing the operations of a file system or the operations

a user or administrator perform on a file system.

Local file

A file on disk that is physically connected to the same computer.

Mount point

The directory in which a file system is logically located.

Licensed Material - Property of Data General Corporation 093~701049-04

How NFS works

NFS client

A computer that requests file system resources provided by servers.

NFS server

A computer that provides file system resources to the clients.

Remote file

A file on a disk that is physically connected to a computer other than

the local computer using the file.

Remote procedure call (RPC)

A facility that provides a mechanism whereby one process (the caller

process) can have another process (the server process) execute a

procedure call as if the caller process had executed the procedure call in

its own address space.

User

A person logged in to a client or server computer.

How NFS works

093-701049-04

System administrators must know how to set up the NFS server machine

so that client workstations can mount all the necessary file systems.

The administrator makes file systems available for remote mounting by

placing entries identifying the file systems in the /etc/exports file, and

then exports them using exportfs(1M) or by using the sysadm function

addfs. (For more information on sysadm or addfs, consult Installing the

DG/UXTM System and Managing the DG/UXTM System.)

Here is an entry from a sample /etc/exports file for a typical server

machine:

/usr/server -access=staff

The pathnames specified in /etc/exports must be directories that exist on

local disks. Often, these directories are the mount-point pathnames of a

local file system.

You can give a machine (or group of machines) access to these directories by

listing the machine’s hostname after the file system. NIS allows you to

specify a group of machines under a single netgroup name. Thus, if you

have a group of machines with the netgroup name staff, remote mounts are

limited to machines that are members of the netgroup staff. (See

netgroup(5) and hostname(4) for format details.) At any one time, the

system administrator can execute the showmount(1M) command to see

which local file systems have been remote-mounted by other systems.

To enable the use of NFS, your system administrator first must prepare the

file system holding the file to be accessed. This action involves entering the

file system and server names in certain administrative files. Once the file

system has been prepared, you simply make sure the file system is

mounted before you use it. The next section gives an example of how you

do this.

Licensed Material - Property of Data General Corporation 1 «5

How NFS works

victor# df

/

/usr

/lib

/usr/server

/usr/catman

The system administrator must have appropriate privilege to enable NFS.

On a traditional DG/UX system, appropriate privilege is granted by having

an effective UID of 0 (root). On a system with DG/UX information security,

appropriate privilege is granted by having one or more specific capabilities

enabled in the effective capability set of the user. The various roles may

have different system prompts. See cap_defaults(5) for the default

capabilities for this command.

IMPORTANT The conventions for a system prompt on a traditional

DG/UX system are:

for a superuser, and

% for others.

Mounting a remote file system

Suppose you want to view some on-line manual pages that are not

available on your principal server machine called victor but are available

on a machine called docserv. Mount the directory containing the manuals as

follows:

victor# /etc/mount docserv:/usr/catman /usr/catman

You must be superuser to issue this command and the directory

/usr/catman must exist on your local machine. Note that the file system

will remain mounted until you issue a umount or reboot the system.

Now you can use the man(1) command from victor, which gives you

information about other commands. Run the df(1M) command after you’ve

mounted the remote file system. The output from this command will show

the amount of free space on all mounted file systems, including the

newly-mounted file system /usr/catman.

Provided that /lib and /usr/server already are remotely mounted, the

output is similar to the following:

(/dev/dsk/root): 29538 blocks 5003 files

(/dev/dsk/usr): 19637 blocks 23805 files

(docserv:/lib): 17935 blocks 0 files

(docserv: /usr/server) : 14685 blocks 0 files

(docserv:/usr/catman) : 138685 blocks 0 files

Figure 1-2 below diagrams this configuration. In this figure, ellipses

represent machines, and boxes represent remote file systems. At the top of

the diagram are the file system layouts for the two machines, victor and

docserv, before victor mounts/usr/catman. Immediately below these file

system layouts, the diagram shows victor’s file system layout after

/usr/catman has been mounted.

Licensed Material - Property of Data General Corporation 093-701049-04

Figure 1-2

093-701049-04

How NFS works

/lib /usr

a
| jusr/server | /usr/bin /usr/catman

“oN
ie

aN
i /usr/server | /usr/catman

Remote file system mount

Exporting a file system

Suppose that you and a colleague collaborate on a programming project.

The source code is on your machine, in the directory /udd/proj. Your

colleague cannot remote-mount your directory until you export it. Until you

have exported your directory, attempts to remote—mount it fail, displaying a

“permission denied” error message.

To export a directory, you must become superuser and either use the

sysadm function addfs or edit the file /etc/exports (see exports(5) for details

on export file format). If your colleague is on a machine named cohort, you

could put the following line in /etc/exports:

/udd/proj -access=cohort

After editing the /etc/exports file, you must execute the exportfs(1M)

command. This command maintains the file /ete/xtab, which lists

directories currently exported. You can run this command by typing the

following in the shell:

fusr/bin/exportfs -a .!

Licensed Material - Property of Data General Corporation 1 =f

More guidelines for using NFS

In the absence of the access=cohort option, users with superuser

privileges on any client machine on the network can remote-mount your

directory, /udd/proj. The NFS mount request daemon mountd(1M) reads

the /etc/xtab file, if necessary, when it receives a request for a remote

mount. Now your colleague can remote-mount the file system on cohort by

typing:

cohort# /etc/mount yourmachine:/udd/proj /udd/colleague/proj

Your colleague may now change his or her working directory to the source

directory by typing:

cohort% cd /udd/colleague/proj .<!

Since both you and your colleague now can access files in your project

directory, you may want to use a source code control system such as SCCS

or RCS (see UNIX Software Development Tools).

More guidelines for using NFS

An NES server can be a client of another NFS server, but will not act as an

intermediary between a client and another server. Thus, you must mount

the file system from the host that owns the disk. A client may query the

server for its remote mounts, then attempt to make similar remote mounts.

To query the server, use the command showmount -e server_name.

NFS does not support all DG/UX file system operations. For example, the

special file abstraction of devices is not supported for remote file systems.

Thus, only disk devices are accessible through NFS.

NFS is a stateless service. The term stateless, when applied to a client,

means that it alone is responsible for completing work. When applied to a

server, the term means it need not remember anything from one client call

to the next.

Finally, due to the use of data caches to enhance NFS performance, file

updates are not always instantaneous. That is, the completion of a write

call to a file accessed through NFS does not guarantee that the write call is

reflected immediately upon subsequent read operations executed from a

remote machine. Typically the delay is less than 30 seconds.

IMPORTANT A close call immediately forces all locally cached data

to the server’s disk.

1-8 Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

More guidelines for using NFS

Useful tips

The following information can make using NFS more simple and efficient.

NFS assumes that user name to uid and group name to gid mappings

are identical on all machines running with NFS. If not, users may lose

access over NFS that they have locally, and may obtain access to files

that they are not meant to access. To prevent this, you can manually

ensure that /etc/passwd and /etc/group have the same mappings on

all systems, or you can use the Network Information Service (NIS) to

manage the propagation of passwd and group data. (See Chapters 3

and 4 for more information on NIS.)

IMPORTANT You do not have to run NIS to use NFS.

To avoid confusion and enhance application portability, system

administrators should establish similar file hierarchies on systems

linked with NFS. See the section entitled “A typical NFS installation” in

Chapter 2 for an example.

If an NFS server is unavailable, commands referencing that system

hang, and diagnostic messages appear on the system console.

Hard-mounted file systems are file systems in which a program

attempts to communicate with a server until the server responds,

regardless of whether the server is slow or down. When you use

hard-mounted NFS file systems, commands referencing the downed

server continue from where they left off when the server comes back up.

Alternatively, you may mount remote file systems as interruptible so

that you may elect to interrupt or kill the hung processes. You should

kill or interrupt hung processes only as a last resort, since file data may

be lost as a result. See mount(1M) for details of the hard and

interruptible options. Writing to soft-mounted file systems may result

in data loss.

End of Chapter

Licensed Material - Property of Data General Corporation 1 =9

Administering ONC/NFS

This chapter provides an overview of the installation and administration of

the services available on the DG/UX Open Network Computing (ONC)

Network File System (NFS) and optional Network Information Service

(NIS). It also provides information about maintaining and troubleshooting

the ONC/NFS service. Although NIS is an optional service, we recommend

its use in environments that allow a large amount of shared file access.

Chapter 3 and Chapter 4 discuss NIS in more detail.

In the examples throughout this chapter, we assume:

e that the system administrator has appropriate privilege on the system

being addressed, and

e that the remote system’s environment is DG/UX.

If the remote system is not a DG/UX system, commands and terminal

functions may behave differently. Consult the documentation for that

system if you encounter variations from the procedures discussed in this

chapter.

Installing and setting up the ONC/NFS services: an

overview

093-701049-04

The installation and setup information presented in this chapter is

intended only as background for a better understanding of the actual

procedures. The detailed procedures for installing and setting up NFS and

NIS appear in Installing the DG/UXTM System.

Before installing ONC/NFS you should read the DG/UX system release

notice, which describes any changes to installation procedures that

occurred after this manual went to print, and provides an installation

checklist.

For purposes of discussion, this chapter classifies the installation and setup

procedures as four phases:

Phase 1. Planning the installation—Cautions you about disk space

requirements and tells you what information you must collect

before installing NFS.

Phase 2. Loading the software—Outlines the steps involved in loading

the ONC/NFS product files, manual pages, and release notice.

Phase 3. Setting up NFS and NIS—Discusses the initialization of re (run

command) script links and the /etc/nfs.params file. It also

provides information on booting the kernel.

Licensed Material - Property of Data General Corporation a-1

Installing and setting up the ONC/NFS services: an overview

2-2

Phase 4. Customizing NFS and NIS—Discusses the entries required for

each of the system database files used by NFS and NIS.

Each of these phases is presented below.

Phase 1: Planning the installation

You must ensure that adequate disk space is available for NFS and

(optionally) NIS. Before beginning the installation procedure, be sure that

you have enough free space in the /usr file system. (Refer to the DG/UX

system release notice accompanying this product for the number of free

blocks required.) Also, you must collect certain information on NFS and

NIS and predetermine the names of the files created during installation.

Information required for setting up NFS

To set up the NFS database files, you must compile a list of the NFS servers

and clients you work with, including:

e A list of the remote host file systems you want to mount.

e Alist of remote hosts that “own” the file systems.

e Alist of remote host administrators you must consult to ensure that the

desired file systems are exported.

Information required for setting up NIS

To install NIS on the host, you must supply the following information:

e Your own hostname.

e The NIS class (master, server, client) of your host.

e The domainname for your NIS domain.

NIS master servers must:

e Determine name(s) for the NIS domain(s).

e Develop a policy concerning the addition of new hosts to the NIS

network.

e Coordinate the maintenance of the host database with the TCP/IP

administrator.

NIS server or NIS client hosts must:

e Contact the NIS administrator and arrange to be added to the

databases.

e Learn the name(s) of the NIS domains(s) you will be using.

e Get the network name and address of the NIS master host needed by

clients.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Installing and setting up the ONC/NFS services: an overview

If you are an NIS slave server, you must also:

e Be able to establish a connection with the NIS master. You can verify

this condition by issuing the command:

ping MASTER NAME .!

The message MASTER NAME is alive should appear.

e Confirm with the NIS administrator that you are listed in the

ypservers map on the master.

Phase 2: Loading the package(s)

To install ONC/NFS for the first time from the DG/UX release tape, you use

the installation utility. You load the ONC/NFS package onto an existing

DG/UX system with the sysadm program.

IMPORTANT On the DG/UX release tape, NFS and ONC are distinct

software packages. That is, the designator NFS refers to the

stand-alone version of NFS: selecting NFS from the Sysadm Main

Menu loads NFS only. The designator ONC refers to the remainder of

the ONC suite, which includes NIS. Thus to load both NFS and NIS,

you must select both NF'S and ONC from the menu.

Consult Installing the DG/UXTM System for detailed, step-by-step

installation instructions. For more information about the sysadm program

and its many facilities, see Managing the DG/UXTM System.

Phase 3: Setting up NFS and NIS

After you have loaded the product files, you must set up (configure) NFS

and NIS on your host.

IMPORTANT Normally, NFS and NIS are set up separately. The

Sysadm Main Menu, however, allows you to automate the loading and

setup procedures for both products:

Setting up NFS

To set up NFS, you don’t need to supply any special information: setup

proceeds automatically when you select the NFS Install or Setup option.

You will need to perform some final setup tasks after you build and boot the

custom kernel. Setup for NFS comprises two tasks: 1) initializing the re

script links so the NFS daemons and file system mounts are started

properly when the system changes to the appropriate run level; and 2)

initializing the /etc/nfs.params file. Both steps are done for you

automatically when you select the Install option from the Sysadm Main

Menu to load NFS, or when you issue the command sysadm setup package

and respond to the prompts.

Licensed Material - Property of Data General Corporation 2-3

Installing and setting up the ONC/NFS services: an overview

If you are working in a graphics environment, you also can use the

xsysadm facility to set up NFS; see the manual Managing the DG/UXTM

System for more information about this program.

Setting up NIS

All classes of NIS hosts (master, slave, and client) must set up their system

for NIS. By default, hosts are set up as NIS clients. You must: 1) initialize

the re script links and 2) initialize the /etc/nfs.params file. The re script

links guarantee that the proper NIS daemons are started when you change

run levels to make NIS available. Both steps are done for you automatically

when you select the Install option from the Sysadm Main Menu to load

ONC (NIS), or when you issue the command sysadm setup package and

respond to the prompts. You must, however, supply the NIS domain name,

which is available from your network (NIS) administrator. After running

sysadm setup package and rebooting the kernel, you'll have to run a few

commands to complete the setup as an NIS master or server; see

“Customizing NIS” below and Chapter 4 for more information.

If you are working in a graphics environment, you also can use the

xsysadm facility to set up NIS; see the manual Managing the DG/UXTM

System for more information about this program.

Booting the kernel and run level changes

After loading ONC/NFS and setting up NFS and/or ONC, you must build a

kernel. Consult the manual Installing the DG/UXTM System for

instructions. Once you have built the kernel you can reboot your system.

The default init run levels behave as follows:

e Run level state 2 makes NIS services available to the network services

(TCP/IP), which are also started in run level state 2. The NIS services

made available to TCP/IP include the hosts,networks, services, and

other databases typically managed by NIS.

e Run level state 3 starts the NFS daemons, runs exportfs, and mounts

any NFS file systems listed in /etc/fstab.

When you are ready to boot the kernel, follow the same procedure as for

any other kernel.

After NIS has been set up, your machine is an NIS client. If you want your

machine to be an NIS server, proceed to run level state 3 and follow the

instructions in the section “Phase 4: Customizing NIS,” below. To set up

your machine as an NIS master, perform the customization steps at run

level state 1, then proceed to run level state 3.

You can verify that NFS is working correctly by mounting an NFS file

system and trying to access its files. You can check NIS with any of the

following commands:

Licensed Material - Property of Data General Corporation 093-701049-04

Installing and setting up the ONC/NFS services: an overview

e ypwhich, which returns the name of your NIS server.

e domainname, which returns your current NIS domain name.

e ypcat ypservers, which lists NIS server hosts.

Phase 4: Customizing NFS and NIS

After installing and setting up NFS and NIS, you can customize them by

making entries in the system database files used by these services. See the

appropriate online manual pages for detailed information about these

entries.

Customizing NFS

At this point the installation of NFS is largely complete. All that remains is

for you to adapt it to your working environment by making certain entries

in the following database files:

e /etc/exports, which identifies the local file systems you want to make

available to other hosts. If this file does not exist, other systems will be

unable to mount your file systems. The file /etc/exports.proto is

provided as a template.

e /etc/fstab, which lists the local and remote file systems you want init

to mount automatically.

e /etc/hosts, which lists the remote hosts you want to access.

After setting up NFS, you can modify the NFS runtime characteristics by

editing the /etc/nfs.params file. The nfs.params file contains the

arguments and parameters used to establish the behavior of the NFS and

NIS daemons. In most cases, the default values shipped with the product

are adequate. (Refer to the discussions of sysadm and xsysadm utilities in

Managing the DG/UXTM System for alternate methods of modifying the

contents of the nfs.params file.)

The /etc/nfs.params file shipped with the product can be customized for

your particular system. It contains two types of variables that control the

way NFS and NIS are invoked and initialized whenever you change to an

appropriate run level with init. These variables are as follows:

nfsserv_ START _ starts the daemons required for a machine to be an

NFS server.

nfsfs START initializes the machine as an NFS client by

automatically mounting the remote file systems listed

in /etc/fstab.

_ARG variables determine the parameters supplied to the

daemons/services when they are started.

nfsd_ARG defines the number of NFSD server processes

available to service remote NFS client requests. The

normal value is 8, although you may improve NFS

performance on heavily loaded NFS servers by

increasing this value to 12 or higher.

093-701049-~04 Licensed Material - Property of Data General Corporation 2-5

Installing and setting up the ONC/NFS services: an overview

Host as an

NIS client

Host as a

master

NIS server

2-6

You must supply values for these variables for NFS to set up properly. Do

this by editing the file /etc/nfs.params with vi or another text editor, or by

using the sysadm or xsysadm programs discussed in Managing the

DG/UXTM System. Appendix B contains a sample nfs.params file.

Customizing NIS

After setting up your machine as an NIS client, you can then make it an

NIS master or slave server by following the procedures in Chapter 4. The

next three sections provide overviews of how to set up a host as an NIS

client, NIS master, and NIS slave server.

To create a new NIS client, you must do the following on the client machine:

1. Note the possible alterations to the client’s /ete database as discussed in

the section “Altering an NIS client’s files to use NIS services” in

Chapter 4. Because some files may be missing or altered, it is not

always obvious how the ASCII databases are being used. The escape

conventions used within those files to force inclusion and exclusion of

data from the NIS databases are documented in the manual pages

passwd(5) and group(5).

2. Notice in particular that changing passwords in /etc/passwd by editing

the file or by running passwd(1) affects only the local client’s

environment. To make a global password change, use yppasswd(1) or

edit the source passwd file on the master, then run make(1) in

/etc/yp; see ypmake(1M).

This section provides an overview of configuring an NIS master server. The

setup procedures below are performed on the host you are establishing as

the NIS master.

Before setting up a host machine as a master NIS server, make sure the

following files in /etc are complete and up-to-date on your system: passwd,

hosts,group, networks, protocols, netgroup, services, bootparams,

aliases, rpc, ethers, netmasks, netid, and publickey. If you have

decided on the contents of netgroup, set this file up now; see the

netgroup(5) man page for more information. Otherwise, when you run

ypinit(1M) the netgroup map will be empty.

Follow this procedure to create a new master server:

1. Shut down the system by entering the command:

shutdown -g0 -y

2. Start run level 1 by entering:

init 1 J

3. Modify the following lines in the /etc/nfs.params file to read as

follows:

Licensed Material - Property of Data General Corporation 093-701049-04

Host as an

NIS slave

server

093-701049-04

Installing and setting up the ONC/NFS services: an overview

domainname_ARG="new_ domainname”

ypserv_START=“MASTER”

yppasswdd_ARG=“/etc/src/passwd -m SRC_DIR=/etc/src/passwd”

IMPORTANT For domainname ARG and yppasswdd_ARG, be sure

to enter information that is appropriate for your system.

Set the domain name as follows:

domainname new_domainname .!

Set the hostname. (By default, /usr/sbin/init.d/rc.tepipport sets the

hostname, using parameters in /etc/tcpip.params.)

hostname new_hostname .|

Run ypinit with the -m switch. You are asked if you want the

procedure to die at the first non-fatal error (recommended if you haven’t

done the procedure before), or to continue despite non-fatal errors.

You are then prompted for a list of other hosts that will also be NIS

servers. Initially, this list comprises the set of NIS slave servers, any of

which could become the NIS master server. Specify other hosts if you

are setting up more NIS servers. Doing this can save you some work

and incurs very little runtime penalty. But because there is some

runtime penalty, do not name every host in the network.

Start run level 3 by entering:

init 3 I

For security reasons, you may want to restrict access to the master NIS

machine to a smaller set of users than those defined by the complete

/etc/passwd file; see passwd(5).

Follow this procedure to create a new NIS server:

1. On both the slave server and master server machines, ensure that the

/etc/passwd file provides an entry for the daemon. This entry must

precede any other entries in either file that has the same wid; you

should verify this condition since the setup process that creates the

/etc/passwd file may reorder the entries. This entry must be of the

form:

daemon:*:1:1::/:

The values of uid and gid do not have to be 1.

On the slave server machine, run the command ypinit -s

MASTER HOST. You are asked if you want the procedure to die at the

first non-fatal error (recommended if you haven’t done the procedure

before), or to continue despite non-fatal errors.

After setting up NIS, you must modify the local host’s NIS role (client,

master server, or slave server) as defined by the ypserv_START variable

by editing the /etc/nfs.params file. This file contains the arguments and

parameters used to establish the behavior of NIS daemons.

Licensed Material - Property of Data General Corporation O-/

System administration for the NFS service

Just as with setting up NFS, you must supply values for variables and

arguments in the file /etc/nfs.params. The variables that must be set for

NIS are as follows:

ypserv_START

Turns NIS services on or off and specifies the class of the host (master,

server, or client). To turn NIS services off, set this variable to false. Set this

variable to MASTER for an NIS master host, SERVER for an NIS server

host; and CLIENT for an NIS client host.

domainname ARG

Sets the NIS domain name for the system’s default domain.

domainname_ARG="sam_kernel”

yppasswdd_ARG

Specifies the arguments for the yppasswd daemon which runs on the NIS

master and services update requests from yppasswd commands executed

on hosts in the domain. By default the setting is:

yppas swdd_ARG= noon

which is sufficient for NIS slave servers and clients. If, however, your host

is the NIS master and your password file is kept in /etc, you should specify:

yppasswdd_ ARG="/etc/passwd -m passwd”

Likewise, if your password is kept in an alternate such as /ete/sre, you

would specify:

yppasswdd_ ARG="/etc/src/passwd -m SRC_DIR =/etc/src/passwd”

NIS also requires a + entry in the /etc/passwd and /etc/group files. The

files shipped with the DG/UX system already contain these entries.

In general, you should remove duplicate entries in the local and NIS

databases from the local database files. Your security concerns, network

configuration, and user population affect this decision. See “How

administrative files are consulted on an NIS network” in Chapter 3 for

guidance in setting up /ete/passwd and /etc/group.

NIS servers and masters must run the ypinit command after setting up as

clients and entering run level 3. The command ypinit is an interactive

script that prompts you for required information. See the man page

ypinit(1M) for more information.

System administration for the NFS service

This section discusses system administration for NFS. It describes how to

set up machines to act as NFS servers and explains how to mount and use

remote file systems.

2-8 Licensed Material - Property of Data General Corporation 093-701049-04

Step 1

Step 2

Step 3

Step 4

093-701049-04

System administration for the NFS service

Establishing a machine as an NFS server

NFS is implemented by both user and kernel code. The user programs

mount and mountd initiate NFS service. On the server machines, daemon

processes (usually kernel processes) provide NFS services to clients. Note

that an NFS server can export only its own file systems.

The following tasks must be performed by the system administrator with

appropriate privilege. To make a local file system available for mounting on

remote machines, follow these steps:

Verify that the NFS server daemons are running. Remote mount needs a

mountd daemon and some number of nfsd daemons (see nfsd(1M)) to

execute on NFS servers. In addition, a number (typically 8) of biod

daemons should be executed on the NFS client (see biod). The daemons are

invoked after system boot by the files /usr/sbin/init.d/re.nfsserv and

/usr/sbin/init.d/re.nfsfs when run level 3 is entered.

Add the file system to the /etc/exports file of the server machine. This file

declares the file system available for remote mounting use. A user with

appropriate privilege on the server machine should place the pathname of

the directory you want to export in the file /etc/exports. Often, the

directory will be the mount-point pathname of a local file system. See

exports(5) for file format details.

For example:

/usr/global/bin # export to all hosts

/usr/new -root=spikel:mars2 # give root access to these hosts

are possible entries for /etc/exports.

To access the file system, a client machine must be given access rights in

the /etc/exports entry. Here /usr/global/bin is exported to all hosts. The

/etc/exports entry may include a list of the client machines that can have

access to the file system. See exports(5) for a full description of the format.

Make sure the file system to be exported is mounted locally. If the file

system is exported before it is mounted, remote NFS users will not be able

to access it. This may happen if a file system fails to mount during system

setup. The problem can be corrected by unexporting and re-exporting the

file system. See exportfs(1M) for more information on these options.

Execute the exportfs(1M) command with the options -v and -a. (The

command exportfs(1M) with no options displays a list of currently

exported directories located in the file /ete/xtab.) At this point, a client can

mount or unmount file systems from the server machine.

Licensed Material - Property of Data General Corporation 2-9

System administration for the NFS service

2-10

The command exportfs updates the /etc/xtab file and some tables that are

internal to the kernel. The /etc/xtab file lists directories that are currently

exported. mountd looks in this file for information on how to mount

specified file systems. It has a format that is identical to /etc/exports. The

/etc/exports file’s contents, however, are not altered by exportfs. Do not

edit /etc/xtab manually because this causes exportfs to malfunction. The

command exportfs -a is executed automatically by re scripts upon

changing to run level 3. Thus, any file system named in /etc/exports is

exported automatically. The exportfs command can be issued manually at

a later date to export additional file systems.

How to remote-mount a file system

You can mount any exported file system onto your machine under the

following conditions: 1) you can reach the server over the network; 2) you

have some biod processes running locally; 3) you are included in the

/etc/exports list for that file system; and 4) exportfs(1M) was run on the

server. While logged in as superuser on the machine on which you want to

mount a file system, you use the mount command as follows:

mount [-o options] server_name:/server_directory /local_directory

For example, to mount a global bin (executables) file system from remote

machine elvis on your directory /usr/global/bin, type:

mount elvis:/usr/global/bin /usr/global/bin

In the preceding example, the subdirectory /usr/global/bin must already

exist and cannot be the current directory. To make sure you have mounted a

file system correctly, use either /etc/df(1) or /etc/mount(1M) without an

argument. Each of these commands displays the currently mounted file

systems. Once mounted, the remote-mounted files appear as if they are

local. Note that the files in your local directory cannot be accessed when a

remote file system is mounted.

By placing an entry in the file /etc/fstab, you can automate the mounting

of frequently-used file systems at startup; see fstab(4).

IMPORTANT When running NFS, be aware that if an NFS server is

unavailable, commands hang and diagnostic messages appear on the

console. On AViiON workstations, diagnostic messages appear on your

screen or, if you are running the X Window System, on your console

window. The mount command's -intr option lets you interrupt most

commands when they hang while attempting to access a server that is

down. See the end of the section “Remote mount failure” under

“Troubleshooting NFS,” below, for more information on the

interruptability feature.

Licensed Material - Property of Data General Corporation 083-701049-04

System administration for the NFS service

Hard-mounted file systems are file systems in which a program continues

trying to communicate with a server until the server responds, regardless of

whether the server is slow or down. Hard-mounted file systems should be

used whenever a remote file system is mounted as read-write, to ensure

that no data is lost if the server crashes or is slow to respond. When using

hard-mounted NFS file systems, you are able to kill hung processes.

Soft-mounted file systems allow a remote access to fail, returning an error

to the calling program after a certain number of attempts have been made

to contact the server. Soft-mounts should only be used with remote file

systems that have been mounted as read-only.

A typical NFS installation

Viewing the output from certain mount invocations helps explain the

operation of NFS on NFS clients. The output below illustrates the mounted

file systems on a server and on one of its clients. The client file systems are

mounted under /usr/catman and on the global directories /udd and /pdd.

Also, nfsclient is a client of nfsserver.

nfsserver% mount ./

/dev/dsk/root on / type dg/ux (rw)

/dev/dsk/usr on /usr type dg/ux (rw)

/dev/dsk/tmp on /tmp type dg/ux (rw)

/dev/dsk/projects on /projects type dg/ux (rw)

/dev/dsk/documents on /documents type dg/ux (rw)

/dev/dsk/sac_ release on /pdd/sac/release type dg/ux (rw)

/dev/dsk/udd_doc on /udd/doc type dg/ux (rw)

/dev/dsk/usr_catman on /usr/catman type dg/ux (rw)

/dev/dsk/usr nfsserver on /usr/nfsserver type dg/ux (rw)

nfsclient% mount J

/dev/dsk/root on / type dg/ux (rw)

/dev/dsk/usr on /usr type dg/ux (rw)

nfsserver:/pdd/sac/release on /pdd/sac/release type nfs

(rw,hard)

nfsserver:/udd/doc on /udd/doc type nfs (ro,soft)

nfsserver:/usr/catman on /usr/catman type nfs (ro,soft)

Meaningful file system and mount point names help provide a consistent

environment for users and programs. Here /udd is the name given to the

user data directory, and /pdd the name for the project data directory.

093-701049-04 Licensed Material - Property of Data General Corporation 2-1 1

Troubleshooting NFS

Name selections also can be used to provide information and limit

contention for name space. For example (using the /pdd/hosiname directory

naming convention), the name /pdd/loach/foo informs the user that the

server is loach; if this server is known to be down, the user won’t expect to

be able to access the file systems on it. Only that host should use

/pdd/loach in naming file system mount points. Using

fadd/hostname/username as the login directory and exporting

fadd/hostname lets users access their .login and data files when they log in

to the remote host that has mounted /udd/hostname. If, however, you

expect a file system to be relocated to another machine in the future, do not

use the hostname convention.

Troubleshooting NFS

2-12

This section offers some guidelines for performing NFS troubleshooting. It

provides some suggestions and discusses problems related to mounting,

hung programs, slow response, and architectural incompatibilities between

NFS file systems and regular DG/UX file systems.

Before trying to solve an NFS problem, you should read the following

manual pages: biod(1M), exportfs(1M), mount(1M), nfsd(1M),

showmount(1M), rpcinfo(1M), mountd(1M), fstab(4), mnttab(4) and

exports(5). While you don’t have to understand the man pages fully, you

should be familiar with the names and functions of the various daemons

and database files.

Most problems involving NFS services lie in one of the following four areas:

1. Either the NFS access control policies do not allow the specified

operation or architectural constraints prevent it.

2. The NFS client or NFS server is not operating.

3. The server or client environment is configured incorrectly.

4. The underlying network is not functioning.

When tracking down an NFS problem, remember that—as with all network

services—the common points of failure are the server, the client, or the

network itself. The troubleshooting strategy outlined attempts to isolate the

component that isn’t working.

Suggestions for troubleshooting NFS

When network or server problems occur, programs that access

hard-mounted remote files fail in a different manner than those that access

soft-mounted remote files. Programs attempting to access hard-mounted

remote file systems continue making the request until the server responds.

Such programs hang as long as the server fails to respond. In this event,

NFS displays an appropriate message on the console.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Troubleshooting NFS

On the other hand, soft-mounted remote file systems return an error after

attempting an operation a specified number of times. The number of retries

can be specified at mount time. On a soft-mounted file system, the message

Connection timed out (ETIMEDOUT) appears when a program attempts to

access a file located on a server that is not responding. (Because many

UNIX programs do not check return conditions on file system operations,

you may not see this error message when you access soft-mounted files.

Nevertheless, the NFS error message “NFS server name not responding”

appears on the console.)

If a client is having problems with NFS, first verify that the server is up

and running a mountd daemon to service the remote mount requester.

From the client, use the command rpcinfo with the following format:

% /etc/rpcinfo -p server name

to check the server’s status. If the server is up, a list of program, version,

protocol, and port numbers similar to the following should appear:

[program, version, protocol, port]:

100000 2 tcp 111 portmapper

100000 2 udp 111 portmapper

100005 1 udp 714 mountd

100005 1 tcp 716 mountd

Having noted that mountd is program number 100005 using udp protocol,

you can also use rpcinfo(1M) to check whether the mountd(1M) server is

running:

% rpcinfo -u server name 100005 1 .!

If mountd is running, the following message should appear:

program 100005 version 1 ready and waiting

If mountd is not running, the following message appears:

rpcinfo:RPC:Timed out

program 100005 Version 1 is not available

See rpcinfo(1M) for descriptions of the program and protocols.

Remote mount failure

This section discusses problems resulting from mount requests. It identifies

the steps involved in a mount request to help you narrow the problem to its

likely source. The section then lists the error messages that may appear

and suggests corrective actions.

Licensed Material ~ Property of Data General Corporation 2-1 3

Troubleshooting NFS

2-14

The mount(1M) command can get its parameters either from the command

line or from the file /etc/fstab. The example below assumes command line

arguments, but the same troubleshooting techniques apply if /ete/fstab is

used by the mount -a command.

Consider this sample mount request:

mount krypton:/usr/sre /krypton.sre |

For a remote mount to succeed the following events must occur:

1.

10.

11.

12.

13.

14.

Local mount opens /etc/mnttab and confirms that this mount has not

been done.

Local mount parses the first argument into the hostname krypton and

remote directory name /usr/sre.

Local mount determines the Internet address of the remote host

krypton.

If NIS is running, mount calls the NIS binder daemon, ypbind, to

determine which machine is running the NIS server. It then calls the

ypserv daemon on that machine to get the Internet address of

krypton. Otherwise, it reads the local /etc/hosts file to obtain the

INTERNET address.

Local mount calls krypton’s portmapper to get the port number of

krypton’s mountd(1M). The portmapper is a program that provides

NFS client programs with the port number of the NFS server program.

Local mount calls krypton’s mountd and passes the directory

argument /usr/src to it.

krypton’s mountd reads /etc/xtab (a file created by exportfs(1M))

and checks for the exported file system that contains /usr/src.

mountd expands the hostname and netgroup entries in the export list

for /usr/src. It also links the local host’s INTERNET address to its

name.

If NIS is running, krypton’s mountd calls the NIS server ypserv to

expand the hostnames and netgroups in the export list for /usr/sre and

to perform the address-to-name translation. Otherwise, mountd uses

/etc/hosts.

krypton’s mountd gets the file handle for /usr/sre and returns it to

the client machine.

On the client machine, mount does adg_mount(2) system call with

the file handle and /krypton.src.

Local dg mount checks whether the caller has appropriate privilege

and whether /krypton.src is a directory.

Local dg_mount does a statfs NFS call to krypton’s NFS server (nfsd).

Local mount opens /etc/mnttab and appends an entry to the file.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Troubleshooting NFS

Any one of these steps can fail, some of them in several ways. The following

discussion identifies the failures associated with specific error messages

and suggests corrective actions for them:

e Operation not supported

The system file has not been updated to make use of NFS, an optional

product. Use a text editor to append the letters NFS (in uppercase) to

the system configuration file, which is used to create the bootable

DG/UX file. After editing the system file, rebuild the kernel and reboot.

e /etc/mnttab: No such file or directory

The mounted file system table is kept in the file /etc/mnttab. This file

must exist before the mount can succeed. It is recreated after each

system boot but may have been inadvertently deleted. If so, type

true>/etc/mnttab to create an empty mnttab file.

e mount: ... already mounted

The file system you are trying to mount is already mounted; check if

you can access the desired file system. An invalid entry for it may occur

in /ete/mnttab. This error message may appear if you have just

rebooted the system to single-user mode but the boot was only partially

successful. (The client machine should be running at run level 3.) Clear

any invalid entries in /etc/mnttab and try again.

e mount: ... Block device required

You probably omitted the krypton: part of the command and have a

local directory named /usr/scr. The mount command assumes you are

doing a local mount unless it sees a colon in the file system name or the

file system type is nfs in /etc/fstab. The message No such file or

directory informs you if the local directory /usr/scr does not exist.

e mount: ... not found in /etc/fstab

The argument you gave to mount was not in any of the entries in

/etc/fstab.

If mount is called with only one argument, it looks in /ete/fstab for an

entry whose file system or directory field matches the argument. For

example:

mount /krypton.sre

searches /etc/fstab for a line that has a directory name field of

/krypton.srce. If it finds an entry such as:

krypton:/usr/sre /krypton.sre nfs rw,hard 0 0

it executes the mount as if you had typed the following:

mount -o rw,hard krypton:/usr/sre /krypton.sre

Licensed Material - Property of Data General Corporation a-1 5

Troubleshooting NFS

2-16

/etc/fstab: No such file or directory

Mount did not find the directory name in /ete/fstab. Create /ete/fstab

with the associated entry and try again.

..not in hosts database

The host lookup failed. If your system is not running NIS, this message

means the hostname you gave to mount does not exist in the

/etc/hosts file on your machine. If NIS is running, NIS could not find

the hostname you gave it in the hosts map. First check the spelling and

the placement of the colon (:) in your mount(1M) command line. Then

check the hosts map by typing the following:

ypmatch hostname hosts

If this fails, do not assume that NIS is not functioning properly. The

most likely cause is that the hostname does not exist or is not in the

database. In the latter case, the message “No such key in map” appears.

mount: directory path must begin with /

The second argument is the pathname of the directory that will be the

mount point for the remote file system. This argument must be an

absolute pathname starting at /.

mount: ... server not responding: RPC: Port mapper failure - RPC:Time

out

Kither the server you are trying to mount from is down or its port

mapper is dead or hung. Try the command:

rpcinfo -p server-name

A list of registered program numbers should appear. If not, the port

mapper on the server should be killed and restarted. Note that

restarting the port mapper requires that other RPC daemons on the

server be killed and restarted. See portmap(1M).

If your attempt to use rlogin to log in to the server fails, but the server

is up, check your network connection by trying to rlogin to another

machine. Also check the server’s network connection. If the network

connections are fine, use telnet(1C) to log in to the server.

mount: ... server not responding: RPC_PROG NOT REGISTERED

The mount(1M) command reached the port mapper but the NFS mount

daemon (mountd) was not registered. Restart the mountd daemon on

the server.

mount: ...: Not a directory

Either the remote or local path is not a directory. Check your spelling

and verify both directories with the command Ils -ld.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Troubleshooting NFS

mount: ...: No such file or directory

Kither the remote or the local directory doesn’t exist. Check your

spelling and verify both files or directories with the command Is -ld.

The local mount point must exist.

mount: permission denied

Your machine name is not in the export list for an existing file system

you want to mount from the server. You can display a list of the server’s

exported file systems and which hosts and netgroups may access them

by using the showmount command with the following format:

% showmount -e server_hostname

If the file system you want is not in the list, or if your machine name or

netgroup name is not in the user list for the file system, log in to the

server and run the command exportfs -va. If the file system you want

is not in the command’s output or the file system isn’t exported by the

server, check the /etc/exports file; see exportfs(1M). If the file system

is in /etc/exports, the exportfs -va command could not translate the

line in the file, it could not find the file system, or the file system name

was not a locally mounted file system. See exports(5) for more

information.

mount: ...: Permission denied

This message indicates that some forms of authentication failed on the

server. It could simply be that your system name is not in the export list

(see above), or the server couldn’t identify your system (ypbind dead),

or the server doesn’t recognize your system. If mountd cannot

translate your address to a name, the mount command fails, even if

the /etc/exports file specifies that anyone can mount the file system. If

NIS is running, check the server’s /etc/exports and ypbind. Check

your hostname using hostname(1); if it does not match the name in

/etc/exports, change it and retry the mount.

mount: ...: RPC: Authentication Error

This error message may result when attempting to mount a remote file

system and the user’s id contains more than eight groups (which some

earlier versions of NFS support). To check, execute the id(1) command

and verify the number of groups. If greater than eight, reduce the

number to eight or less and retry. (Systems known to have this problem

with NFS include those of Silicon Graphics, Inc.; ULTRIXTM; and SunTM,

versions 3.5 and earlier.)

Must be root to use mount

You have to perform the mount as root on your machine.

Licensed Material - Property of Data General Corporation 2-1 7

Troubleshooting NFS

2-18

e 167 - Stale file handle error

This message indicates one of two problems: 1) the file you are trying to

edit is in a file system that has not been exported from the server or has

been exported without permissions for reading and writing; or 2) the

file system was exported properly but the file has been deleted.

To correct the first problem, be sure that the file system containing the

file you want has been exported. To do so, check the server’s

/etc/exports file for an entry for the file system. If the file system has

been exported with rw (read and write) privileges, check the

permissions on the file you are interested in. The permissions must

allow reading and writing to the file.

To correct the second problem, you must check for users on the server

that may be working on the file you are interested in.

If programs hang while doing file-related work, you may see a console

message indicating that the NFS server is not responding. This message

indicates a problem with one of the NFS servers or with the network.

Programs can also hang if an NIS server dies (see Chapter 4).

If many processes on your machine hang, check the status of the server(s)

from which you have mounted. If one or more of them is down and your file

systems are hard-mounted, the server will come back up and your

programs will continue automatically: no files are lost.

If an NFS server for a soft-mounted file system dies, other work is not

affected. Programs that time-out while trying to access soft-mounted

remote files fail with the message errno ETIMEDOUT. If the program is

writing data to the server, data may be lost. Work with your other file

systems is not disrupted.

Use ping <hostname> to determine whether the low-level network protocol

layers (used by NFS) can contact the server.

If all of the servers are running and can be accessed from another client,

ask a colleague who also is using the server or servers if they are

functioning properly. If more than one machine is having difficulty getting

service, most likely the problem is with the server’s NFS daemon, nfsd(4).

Log in to the server and issue the command ps to learn if nfsd is

accumulating CPU time. If not, the nfsd daemon processes should be killed

and restarted. If this fails to correct the problems, the server should be

rebooted.

If other users are accessing the server without difficulty, check your

network connection and the connection to the server using a utility such as

ping. You can check your network connection by using rlogin to log in to

another machine. If you can log in to the server with rlogin, both machines

are connected to the network. If rlogin logs you in to other machines but

not to the server, the problem is with the server or with routing.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Troubleshooting NFS

IMPORTANT DG/UX 5.4 supports the mount(1) command option

~intr for file systems mounted by NFS. When the -intr option is

specified, system calls that access files on NFS mounted file systems

may return EINTR if one of the following signals is received (and a

signal handler is invoked) while the call is in progress: SIGINT,

SIGQUIT, SIGHUP or SIGTERM. These signals terminate a process

or, in the case of command interpreters like sh(1), terminate a

sub-command and return to keyboard input mode.

If the -intr option is not specified, only those signals that terminate the

program (for example, SIGKILL) can interrupt system calls that

require remote NFS access. This behavior differs from that of SunOSTM,

where program termination is only allowed when -intr is specified and

one of the signals listed above is received.

DG/UX supports the -intr option for both hard- and soft-mounted file

systems, providing a uniform programming environment. SunOSTM

allows the -intr option for hard mounts only.

The advantage of using the -intr option for NFS mounts is that most

commands can be interrupted when they hang trying to access a server

that is down. The -intr option, however, may produce unexpected

results for programs that do not expect systems calls to return EINTR

for these signals.

e NFS file handle no longer valid

This error message appears when one user removes a file that is currently

being accessed by another remote user. This situation can affect both data

files and directories, including mounted directories. If a directory that is

exported by an NFS server is removed (or is not available because it has not

been mounted), this error message will be seen by all users attempting to

remotely access the file system mounted on that directory. Attempts to

unmount the directory from the server will also fail. Normally, the unmount

simply pends until the problem on the server is fixed.

If the remote directory has been removed permanently or has been replaced

by a copy of the directory (for example, when a new file system is created

following the installation of a replacement disk drive), the client’s unmount

request will continue to fail forever. In this instance, a different method of

mounting the new copy of the directory is required.

The preferred work-around for this problem is to rename the client’s mount

point for the remote directory. Then a new mount point can be created and

the new remote directory can be mounted. For example:

mv /mnt/remote_mount_point /mnt/remote_mount_point.old

mkdir /mnt/remote mount point

mount remote _host:/mount_point /mnt/remote_mount_point

The old mount point (mnt/remote_mount_point.old) can be removed

after the next reboot of the NFS client. |

Licensed Material - Property of Data General Corporation 2-1 9

Troubleshooting NFS

2-20

A second work-around for this problem is to reboot the NFS client machine.

This is necessary if the remote file system with which you are having

difficulty is mounted on a local read-only file system such as /usr on a

diskless OS client machine.

Slow response

If access to remote files seems unusually slow, type:

ps-ef .

on the server to be sure it is not being disrupted by a runaway daemon or

bad tty line. If the server seems fine and other users are getting good

response, make sure the client’s block I/O daemons are running; type ps -e

and look for biod.

If biod is running, check your network connection. The netstat -i

command tells you whether packets are being dropped. Also, the commands

nfsstat -c and nfsstat -s can be used to check whether the client is doing

lots of retransmitting or whether there are many bad calls. A

retransmission rate of five percent is considered high. Excessive

retransmission usually indicates a bad network board, a bad network tap, a

mismatch between board and tap, or a mismatch between your network

board and the server’s board.

Some notes about networking on a UNIX system

The UNIX® operating system was not designed to accommodate

networking applications. As a result, three problems must be addressed

when using UNIX over high-performance networks:

1. UNIX does not yield to a higher authority like a network authentication

server for critical information or services. As a result, some UNIX

semantics are hard to maintain over the network. By default, root

privileges are reserved for local system administrators. If you are

accessing remote files, your root privileges do not exist across the

network unless they are granted by the server.

2. Some UNIX execution semantics are difficult to implement using the

NFS protocol. Who should open a file on a network: the local or remote

system? With DG/UX ONC/NFS, the local system opens the file. A

UNIX client machine cannot own an open file; therefore, a server can

remove a client’s open file.

3. A UNIX machine stops all its applications when it crashes. However,

when a network node crashes—whether client or server—it should not

kill all of its bound neighbors. Thus, NFS provides flexible behavior for

hosts on the network that are down: a system of stateless protocols

prevent a crashing server from bringing down its bound clients.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04 |.

Troubleshooting NFS

IMPORTANT A stateless protocol is one where a client is

independently responsible for completing work, and where a server

need not remember anything from one client call to the next.) When a

server crashes, the connection established between client and server

remains the same. There is no state to recover when the server comes

back up. To the client, a crashed server that returns to service appears

no different from a very slow server.

Clock skew in user programs

Because the clocks of the NFS server and client are not synchronized,

timing problems may arise. Many programs operate with the assumption

that a file could not have been created in the future. In a network

environment, however, in which clocks are not synchronized, such an event

may appear to happen. If possible, you should modify your applications to

allow for this condition.

IMPORTANT Make(1) is particularly sensitive to clock skew. See

make(1) for usage warnings concerning NFS.

End of Chapter

Licensed Material - Property of Data General Corporation 2-21

Administering NIS

ONC/NFS network services include the Network File System (NFS),

discussed in Chapter 2, and the Network Information Service (NIS),

discussed in this chapter. Each of these services is independent of the other;

NFS can be used without NIS, and vice versa. This chapter provides an

overview of NIS and its functions, and explains the commands for

maintaining it.

What is the Network Information Service (NIS)?

093-701049-04

NIS is a centralized, read-only database that helps system administrators

maintain consistency among administrative files on networked machines.

The information in the database is maintained by the system administrator

on a single machine, called the NIS master server. This information is

automatically distributed to local NIS servers, keeping files consistent for

all networked machines.

NIS simplifies the administration of standard files located in subdirectory

/ete. By default, NIS master and slave servers use NIS maps based on the

following files: /etc/passwd, /etc/group, /etc/networks, /etc/hosts,

/ete/services, /etc/protocols, /etc/bootparams, /etc/ethers, /etc/atiases,

/ete/rpe, /etc/publickey, and /etc/netid.

A new file, netgroup, can be created and included in the NIS database. By

default, the ypservers’s map stores the list of server hosts in the domain.

NIS provides the following:

e Asingle source for each map. Maps are hashed files derived from ASCII

files in the directory /etc; see “The NIS map” later in this chapter. This

single source is maintained on the NIS master server; copies of these

maps are sent to each NIS server.

e A look-up service. It maintains a consistent set of distributed NIS maps

for querying. Programs can request the value associated with a

particular key, or all the keys, in a database. (Keys represent the

particular database information contained in the NIS maps.) For

example, the keys in the /etc/hosts map are the names of the hosts.

e Transparent service. Applications need not know the location of data or

how it is stored. Instead, they communicate with a database server that

maintains this information. After the database on the master NIS

server has been updated, the information is automatically distributed to

servers on the network.

Licensed Material - Property of Data General Corporation 3-1

Overview of the Network Information Service (NIS)

e Redundant databases. Databases are fully replicated on several

machines known as NIS servers. The servers’ databases are updated

only by the master server, ensuring consistency. Once information has

been propagated any server may answer a request: the answer is the

same everywhere.

Understanding NIS terms

Following are some common NIS terms.

Master NIS server A host machine running the ypbind, ypserv, and

yppasswdd processes. This machine stores the

ASCII source files from which the NIS maps are

derived. All updates to the database are made on

this machine. It disseminates information to the

other server machines using ypmake and yppush.

Slave NIS server A host machine running the ypbind and ypserv

processes. It provides services to other processes

running on the same or different machines. Note

that an NIS server is an NIS client as well.

NIS client A host machine running the ypbind process. It

makes use of NIS services that are on the same or

different machines.

NIS domain A directory in /etc/yp/<domain_name> that contains

a set of NIS maps. It is a named set of NIS maps.

Machines that have this directory as their default

NIS domain share the data found in its maps. This

applies only to servers (master and slave).

NIS map A hashed file in dbm(3X) format derived from

ASCII files in /ete such as passwd. group, hosts,

networks. These files store sets of keys and

associated values for use by NIS.

The following sections provides a brief overview of NIS and some concepts

related to it. Chapter 4 discusses the management of NIS in more depth.

Overview of the Network Information Service (NIS)

DG/UX system releases without NIS provide each machine on the network

with its own copy of /etc/hosts, a file containing the Internet address of

each machine on the network. When a machine is added to the network,

each networked machine must update its /etc/hosts file.

Because NIS contains network-wide databases such as /etc/hosts, only the

master copy of the file /etc/hosts must be updated. Servers throughout the

network store copies of the databases. When a given machine on the

network wants to access /etc/hosts, it instead makes an RPC call to one of

the servers to get the information it needs.

NIS can serve any number of databases. Normally these include files

previously located in /etc, such as /etc/hosts and /etc/passwd. However,

users can add their own databases to NIS.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Overview of the Network Information Service (NIS)

NIS most commonly is used to administer user IDs in /ete/passwd. If, for

example, each machine uses its own local copy of the /etc/passwd

database, users jones and smith each could have identical id numbers

provided they used separate systems. Because NFS uses the UNIX

authorization scheme across the network, user jones would have the same

access to smith’s files if they were remotely mounted on jones’ system.

A common /etc/passwd database for all machines on the network provides

a single point of administration, preventing users jones and smith from

having the same ID. NIS provides a single point of administration, letting

all machines access the most recent data, whether or not it is locally kept.

Because the NIS interface is implemented using RPC and XDR, the NIS

service is available to non-Data General machines and operating systems

other than UNIX. NIS servers do not interpret data; thus, new databases

can take advantage of the NIS service.

The following sections discuss how NIS operates; identify the NIS files; and

explain the terms maps, domains, servers, clients, masters, and slaves in some

depth.

The NIS map

NIS server information is stored in files called maps. Each NIS map

contains a set of keys and associated values. For example, the hosts map

contains all hostnames on a network and their corresponding Internet

addresses. The hostnames are the keys, and the Internet addresses are the

associated values. Kach NIS map has a unique map name that is used by

programs to access its data. To make use of these maps, programs must

know the format of the data they contain.

Currently, most maps are derived from ASCII files such as passwd, group,

hosts, and networks. These files normally are located in /etc.

Map data is stored in files with dbm(8X) formats that are located in the

directory /etc/yp/your_domainname on NIS server machines.

The NIS domain

An NIS domain is a subdirectory in /etc/yp containing a set of maps. The

name of this subdirectory is the name of the NIS domain. Machines with

the same default NIS domain share the data found in the domain’s maps.

Each machine on the network belongs to the default domain established at

boot time by the domainname(1) command in the /etc/nfs.params file.

The command domainname(1) displays the name of your default NIS

domain. Note that NIS domains differ from both Internet domains and

sendmail domains.

Licensed Material - Property of Data General Corporation 3.3

Overview of the Network Information Service (NIS)

3-4

Table 3-1

An NIS domain name is required for retrieving data from an NIS database.

For example, if your NIS domain is dg and you need the Internet address of

host dbserver, you can use the command ypmatch from the command line

(see ypmatch(1)). You also can accomplish this with the yp_match(3)

procedure for the value associated with the key dbserver in the map

hosts.byname within the NIS domain dg (see ypclnt(3)).

An NIS server stores all the maps for an NIS domain in a subdirectory of

/etc/yp. This subdirectory is named after the domain. In the preceding

example, maps for the dg domain would be stored in /etc/yp/dg.

Master servers and slave servers

NIS server hosts and processes are either master or slave. For any map,

one NIS server host or process is designated the master. All changes to the

map should be made on the master machine. After determining which

server is the master, do all database updates and builds there, not on

slaves. These changes are then propagated from master to slaves.

Different maps can have different servers as master. Therefore, a given

server may be a master to one map, and a slave to another map. Unless

there is a compelling reason to split the domain’s maps between several

masters, let one host serve as the master for all maps created by the

command ypinit(1M) in a domain.

This chapter assumes the straightforward case in which one server is the

master for all maps in the database. This is the only machine whose

database should be modified. The other servers are slaves whose data is

periodically brought up-to-date with that of the master.

Servers and clients

Servers provide resources; clients consume them. A machine’s processes

determine whether it can be a client, a server, or both.

Table 3-1 shows the processes that determine clients and servers for NIS.

NIS client and server processes

NIS Host Process

client ypbind

server ypbind, ypserv

master ypbind, ypserv, yppush, yppasswdd

Licensed Material - Property of Data General Corporation 093-701049--04

Commands for maintaining NIS

Thus, an NIS server is also an NIS client, and an NIS master server is also

an NIS client and an NIS server. Unlike NFS servers, NIS master and

slave servers do require extra space and processing time on a host. The

characteristics of NIS clients and servers follow:

NIS clients

e Allow as many clients as you want.

e Require no registration on master and slave servers.

e Run ypbind on demand (that is, upon entering run level 2 or 3).

e Use no extra disk space.

NIS slave servers

e Allow as many servers as you want, but each server requires

processing time on the master server.

e Require registration by the master server.

e Run ypbind and ypserv on demand (that is, upon entering run

level 2 or 3).

e Use disk space on each server to store copies of NIS maps.

NIS masters

e Allow only one master server per map.

e Run ypbind, ypserv, yppush, and yppasswdd on demand.

e Use disk space to store copies of maps and source data files for

maps.

e Run cron and ypxfr periodically.

Commands for maintaining NIS

ypserv

ypbind

ypinit

093-701049-04

This section briefly describes NIS commands you can use to set up and edit

maps and to perform other NIS-related functions. These commands are

described in detail in the manual pages. (You can access manual pages

on-line with the man(1) command.)

Searches for information in its local database of NIS maps. ypserv

is a server process that runs only on NIS server machines with a

complete NIS database.

Stores information that allows client processes on a single node to

communicate with a particular ypserv process. ypbind runs on all

machines using NIS services, both NIS servers and clients.

Automatically constructs maps from files located in /etc, such as

/etc/hosts, /etc/passwd, and others. ypinit also constructs initial

versions of required maps that are not built from files in /ete; for

example, ypservers. Use ypinit to set up the master NIS server

and the slave NIS servers for the first time. Typically you do not use

ypinit as an administrative tool for running systems.

Licensed Material - Property of Data General Corporation 3-5

Commands for maintaining NIS

ypmake

makedbm

yppush

ypset

yppoll

ypcat

ypmatch

ypwhich

Builds the NIS database. ypmake can be used to create dbm

databases for a particular NIS map or all maps that are

out-of-date.

Converts an input file to a pair of dbm files, which then become a

valid NIS map. For example, ypservers.dir and ypservers.pag

are both dbm files. You can use makedbm to build or rebuild maps

not built from /etc/yp/Makefile. You can also use makedbm -u to

disassemble a map to reveal the key-value pairs comprising it. The

disassembled form is in the format required for input back into

makedbm, and can be edited.

Moves an NIS map from one NIS server to another, using NIS itself

as the transport medium. You can run ypxfr interactively, or peri-

odically from a crontab file.

Tells a master NIS server process (ypserv) to direct its peer pro-

cesses to set the master of the named map to that master server,

and to get a new copy of the named map. If the host is not the mas-

ter of the named map, the command will succeed, but no action will

be taken by the NIS server. You run ypserv on the master NIS

server.

Instructs a ypbind process (the local one, by default) to get NIS

services for a domain from a named NIS server. This command is not

for casual use. The ypset command can be used by an experienced

system administrator to untangle network access: it is a specialized

tool. It is useful for binding a client node which is not on a broad-

cast net, or is on a broadcast net that is not running an NIS server

host. It also is useful for debugging NIS client applications: for

example, where an NIS map exists only at a single NIS server host.

See the ypset(1M) man page for more information.

Asks any ypserv for the information it holds about a single map.

Displays the contents of an NIS map. Use it when you do not care

which server’s version you are seeing. If you need a particular serv-

er’s map, log in to that server using rlogin (or use .rsh) and use

makedbm.

Prints the value for one or more specified keys in an NIS map.

Again, you have no control over which NIS server’s version of the

map you see.

Identifies which NIS server a host currently is using for NIS ser-

vices, or (with the -m option) which NIS server is master of a par-

ticular map.

Licensed Material - Property of Data General Corporation 093-701049-04

Commands for maintaining NIS

How administrative files are consulted on an

NIS network

NIS can serve any number of maps. Typically these include maps based on

some files in /etc. NIS services make updating these files much simpler

since each system administrator does not have to make the same change to

every machine on the network. For example, on networks that do not run

NIS, programs read the /etc/hosts file to find an Internet address. When

the system administrator adds a new machine to the network, he or she

must add an entry for this machine to the /etc/hosts files on every machine

on the network. On the other hand, networks running NIS programs that

need to consult /etc/hosts merely perform a remote procedure call to the

NIS server to acquire the same information.

NF'S and other programs do not consult the same system administrative

files on a network employing NIS that they would on a network where NIS

is not installed: they consult NIS maps instead. The following lists the

administrative files consulted by programs using a network employing NIS.

etc/passwd Always consulted. If there are + or - entries, the
NIS password map is consulted; otherwise, NIS is

not used. See passwd(5).

/etce/group Always consulted. If there are + or - entries, the
NIS group map is consulted; otherwise, NIS is not

used. See group(5).

/etc/services Never consulted. The data formerly obtained from

this file now is read from the NIS services map.

/etce/protocols Never consulted. The data formerly obtained from

this file now is read from the NIS protocols map.

/etc/networks Never consulted. The data formerly obtained from

this file now is read from the NIS networks map.

/ete/netgroup Never consulted. The data formerly obtained from

this file now is read from the NIS netgroup map.

fetc/bootparams Never consulted. The data formerly obtained from

this file now is read from the NIS bootparams

map.

/etc/ethers Never consulted. The data formerly obtained from

this file now is read from the NIS ethers map.

/etc/hosts By default, consulted only when booting with the

ifconfig command in the /usr/sbin/init.d/rc.tcpip-

port file. Subsequently, the NIS map is used

instead. The file /ete/svcorder determines the order

of address resolution; see svcorder(4).

/etc/aliases Always consulted. Local aliases take precedence

over those in the NIS database. See aliases(5).

/etc/netmasks Never consulted. The data formerly obtained from

this file now is read from the NIS netmasks map.

(This file is not included with DG/UX; a map is built,

however, if /etce/netmasks exists.)

093-701049-04 Licensed Material - Property of Data General Corporation 3.7

Commands for maintaining NIS

3-8

/etc/rpe Never consulted. The data formerly obtained from

this file now is read from the NIS rpe map. See the

man page rpc(5).

/etc/publickey Never consulted. The data formerly obtained from

this file now is read from the NIS publickey.by-

name map.

/ete/netid Never consulted. The data formerly obtained from

this file now is read from the NIS netid.byname

map.

Accessing information from hosts files

If NIS is running, the system queries the NIS host maps for host

information. Otherwise, the system seeks this information in the local

/etc/hosts file. (The file /etc/svcorder determines the order of address

resolution; see svcorder (4).) Library routines such as getpwent(3),

getgrent(3), and gethostent(8N) use NIS when it is available. When a

program calls the library routine gethostbyname(38N), a single RPC call to

a server retrieves the entry from the hosts.byname map. Similarly,

gethostbyaddr(3N) retrieves the entry from the hosts.byaddr map. If

NIS is not running, gethostbyname reads the /etc/hosts files, as usual.

You can configure NIS to search the TCP/IP Domain Name System (DNS) if

it cannot locate a host entry in its own NIS maps. The TCP/IP Domain

Name System supplies host information through a series of distributed

Internet data base servers. If DNS is installed and operating, you can

enable the Domain Name service from NIS by setting the INTERDOMAIN

flag in the hosts map. Use the -b option with the make command to turn

on the INTERDOMAIN flag. (See Managing TCP/IP on the DG/UXTM

System for information on how to install the Domain Name System.)

Knable DNS by making the hosts map as follows:

make INTERDOMAIN=-b hosts J

You can also set the INTERDOMAIN flag by editing the Makefile in

letc/yp. Change the line “INTERDOMAIN=” to read “INTERDOMAIN=-b”.

This latter method enables the Domain Name System automatically

whenever a change is made to the hosts map. When typing these

commands, do not space before or after the equals (=) sign.

Accessing information from the passwd file

The system goes to the /etc/passwd file for password information. The

/etc/passwd file can have lines that begin with a plus sign (+) or minus

sign (—) that forces use of the NIS databases for those lines (see

passwd(5)).

Licensed Material - Property of Data General Corporation 093-701049-04

How the NIS network service works

Accessing information from other NIS files

Of the files in /etc, /etc/group is treated like /ete/passwd, in that

getgrent(3N) consults NIS only if instructed by the /ete/group file. See

group(5). The files /etc/netgroup, /etc/protocols, /etc/services,

/etce/networks, /etc/bootparams, /etc/ethers, /etc/rpc, /etc/publickey,

/etc/netmasks, /etc/netid, and /etc/ypservers are treated like /etc/hosts;

for these files, the library routines go directly to NIS without consulting the

local files.

How the NIS network service works

093-701049-04

After the system administrator has established the NIS files for each

administrative database supported by NIS, certain administrative files in

/ete are no longer accessed. The library routines that access those files (for

example, gethostent(8N) and getgrent(3N)) now access the NIS service;

see “Accessing information from hosts files,” above. Consequently, programs

employing these library routines use NIS implicitly.

How NIS handles naming conflicts

Imagine a company with two networks, each of which maintains a separate

list of hosts and passwords. Within each network, usernames, numerical

user IDs, and hostnames are unique. Duplication between these two

hypothetical networks, however, does occur. Therefore, connecting these

two networks would wreak havoc. The hostname, returned by the

hostname(1) command and the gethostname(2) system call, may no

longer uniquely identify a machine. To resolve this issue, the command

domainname(1) and the system call getdomainname(2) have been

added.

In this example, each of the two networks could be given a different domain

name. This would allow the continued use of independent naming within

the two domains. If a significant amount of networking between the two

domains occurs, however, the domains should be merged into one.

Networking services such as telnet(1C) often assume that the mappings of

names to internal identifiers are universally consistent. When domains are

merged, however, naming conflicts must be resolved manually.

How NIS stores data

The NIS data is stored in dbm(8X) format. Thus the database

hosts.byname for the domain dg is stored as

letc/yp/dg/hosts.byname.pag and /etc/yp/dg/hosts.byname.dir. The

command makedbm(1M) converts an ASCII file such as /etc/hosts into

dbm files suitable for use by NIS. The system administrator on the master

normally uses the makefile in /etc/yp to create new dbm files. This

makefile in turn calls makedbm(1M).

Licensed Material - Property of Data General Corporation 3-9

How the NIS network service works

3-10

Table 3-2

IMPORTANT For all NIS database files, you can use the ypeat(1)

program to view an entire database, and ypmatch(1) to search for a

particular entry in a database. Note also that multiple maps are created

from certain /etc files (*.byname, *.byaddr, and so on) and the map

suffix identifies the key used to make the dbm files. Thus, for example,

the command ypmatch 196 passwd.byuid searches the

passwd.byuid map for the entry for the user whose uid is 196.

NIS map files

Table 3-2 lists the NIS maps and their uses.

NIS Map Use

passwd.byname

passwd.byuid

group.byname

group.bygid

hosts.byname

hosts.byaddr

netgroup.byhost

netgroup.byuser

ethers.byname

ethers.byaddr

rpc.bynumber

networks.byname

networks.byaddr

protocols.byname

protocols.bynumber

services.byname

ypservers

bootparams

mail.aliases

publickey.byname

netid.byname

netmasks.byname

netmasks.byaddr

Obtains passwd entries indexed by username.

Obtains passwd entries indexed by user ID.

Obtains group entries by group name.

Obtains group entries by group ID.

Translates hostname to Internet address.

Translates Internet address to hostname.

Obtains netgroup entries by hostname.

Obtains netgroup entries by username.

Translates ethernet address to hostname.

Translates hostname to ethernet address.

Obtains the name of a defined RPC program indexed by

number.

Translates network name to Internet network number.

Translates Internet network number to network name.

Translates protocol name to Internet protocol number.

Translates Internet protocol number to protocol name.

Translates Internet service names to port numbers.

List of NIS servers in the domain.

Obtains root and swap files for diskless client.

Translates alias entries to mail addresses for users and

groups.

Obtains publickey and password-encrypted secret key

by netnames.

Obtains user and group IDs by netnames.

Obtains network masks by network name.

Obtains network masks by network address.

Licensed Material - Property of Data General Corporation 093-701049-04

Changing your password

How servers provide information

To become an NIS server, a machine must:

e contain the NIS databases, and

e be running the NIS daemon ypserv.

The ypinit(1M) command takes a flag that indicates whether you are

creating a master or a slave.

When updating the master copy of a database, an administrator can

encourage the immediate propagation to all the slaves with the

yppush(1M) command. This command distributes the information to all

the slaves. The makefile in /etc/ypfirst executes makedbm to make a new

database, then calls yppush to propagate the change throughout the

network.

How clients obtain information

A machine that is not running an NIS server process does not contain any

NIS data. Its NIS client process makes an RPC call to an NIS server

process on a remote machine whenever it needs information from an NIS

database. When a client boots and goes to run level 2 or 3, ypbind(1M)

broadcasts and requests the name of an NIS server. Similarly, if a client has

previously bound to a server and the client’s server crashes, ypbind

broadcasts a request for the name of a new server. The ypwhich(1)

command displays the name of the server that ypbind currently points to.

Changing your password

To change data in NIS, you (typically the system administrator) must log in

to the master machine and edit the appropriate databases there;

ypwhich(1) identifies the master server. Because changing NIS passwords

is a recurring task for regular users, the yppasswd(1) command has been

provided for this purpose. Its user interface is identical to that of the

passwd(1) command. The yppasswdd(1M) daemon on the NIS master

server machine listens for requests and updates the passwd maps.

End of Chapter

093-701049-04 Licensed Material - Property of Data General Corporation 3-1 1

4
Managing NIS

This chapter discusses NIS administration, troubleshooting, and security

issues regarding the NIS environment. (Chapter 3 presents an overview of

NIS and its terminology.)

NIS administration

093-701049-04

This section explains how to perform the following administrative tasks:

Set up a master NIS server

Alter an NIS client’s database to use NIS services

Set up a slave NIS server

Set up an NIS client

Modify individual NIS maps after installing NIS

Propagate an NIS map

Make new NIS maps after installing NIS

Add an NIS server

Change the master server to a different machinepo eOnNo&ar wn
Setting up a master NIS server

IMPORTANT This section assumes you have installed and set up

ONC (that is, NIS) using the sysadm utility; these procedures are

explained in Installing the DG/UXTM System.

Before you can set up the master NIS server, you must perform the

following steps:

e Set the NIS domain name if it differs from the name selected for your
network domain during installation with the sysadm utility.

e Set the hostname.

By default, /usr/sbin/init.d/rc.ypserv sets the domainname and

/usr/sbin/init.d/re.tcpipport sets the hostname, when you go to run

level 2 or 3, using parameters in /etc/nfs.params and /etc/tcpip.params.

Your machine should be at run level 1 before becoming a master; thus it

maybe necessary to set the domain name and host name manually.

You use the ypinit(1M) command to establish an NIS database on an NIS

server. It can be used to set up a master or a slave server; see the man page

ypinit(1M) for more information. Before you run ypinit, the following files

in /ete should be up-to-date: passwd, hosts, ethers, group, networks,

protocols, netgroup, bootparams, hosts.equiv, aliases, netmasks,

rpe, and services. Also, if you know how /etc/netgroup is going to be set

up, set that file up before running ypinit. Otherwise, ypinit creates an

empty netgroup map.

Licensed Material - Property of Data General Corporation 4-1

NIS administration

For security reasons, you may not want to use the contents of the files in

/ete to create the NIS maps. If so, copy the fourteen files from /ete to

another directory, for example /etc/yp/dg_sre. Then edit these files to

reflect the contents of the NIS maps. Remove the + entries from group and

passwd. You also may want to remove root and other system ID’s already

in the /etc/passwd file.

To build the new NIS maps that do not use the files in /etc, you should

change the SRC_DIR variable in /etc/yp/Makefile; in this example, you

would change it to SRC_DIR=/etc/yp/dg src. It is important to set the

SRC_DIR variable in the Makefile if you are using an alternate source

directory, as this variable determines some sysadm values.

After performing these steps, you are ready to create a new master server.

Become superuser and make /etc/yp the current directory. Then run ypinit

with the -m option.

To create a new master server on an existing network, enter the directory

/etc/yp on the new master server machine and execute the command

ypinit. You are asked whether you want the procedure to die at the first

non-fatal error (in which case you can fix the problem and restart ypinit;

recommended if you haven’t done the procedure before), or to continue

despite non-fatal errors. In the latter event you can try to fix all the

problems manually, or fix some, then restart ypinit.

ypinit prompts you for a list of other NIS servers. Initially, the master

server is the only NIS server. You need not add any other hosts at this time,

but if you know that you will be setting up more NIS servers, add them

now. You will save yourself some work later, and there is little runtime

penalty for adding them. Do not, however, name every host in the network.

You must edit the /ete/nfs.params file and change the value of

ypserv_START to MASTER. Also, you should change

yppasswdd_ARG="" to the appropriate entry (see yppasswdd(1M)).

Appendix B contains a sample /ete/nfs.params file.

To initiate NIS services, go to run level 3. Now NIS starts up automatically

from /usr/sbin/init.d/rc.ypserv whenever the server boots.

Altering an NIS client’s files to use NIS services

Once you decide to run NIS at your site, all hosts on the network should

access the NIS maps, not potentially outdated information in their local

administrative files. You can enforce this policy by running a ypbind

process on the client machine (including machines that may be running

NIS servers), and by abbreviating or eliminating files traditionally

implemented by NIS maps.

Table 4-1 lists these files.

Licensed Material - Property of Data General Corporation 093-701049-04

NIS administration

Table 4-1 List of NIS map source files

/etc/hosts /etc/passwd

/etc/group /etc/networks

/etc/services /etc/netgroup

/etc/aliases /etc/netmasks

/etc/ethers /etc/netid

/etc/protocols /etc/bootparams

/etc/publickey /etc/rpe

The following discussion provides some background information and

explains the purpose of some of these files.

e /etc/aliases, the aliases file on the master NIS server, is used for the

mail.aliases NIS map. Thus, the /etc/aliases files on the various hosts

in a network become largely obsolete. Domain-wide aliases should

ultimately be resolved into user names on specific hosts. The sendmail

program first tries to locate the username in /etc/aliases; if that fails, it

searches mail.aliases. Like local logins, local aliases for sendmail are

allowed.

e /etc/hosts must contain entries for the local host’s name, and the local

loopback interface name. These are accessed at boot time when the NIS

service is not yet available. After the system is running, and after the

ypbind process is up, the /etc/svcorder file determines the order in

which /etc/hosts and NIS are searched for address resolution (see

svcorder(4)). An example of the hosts file for an NIS client named ray

is:

127.0.0.1 localhost

192.9.1.87 ray # stefania

e /etc/passwd should contain entries for the root username and the

primary users of the machine, and the + escape entry to force the use of

the NIS service. An additional entry of a daemon to allow file-transfer

utilities to work is reeommended. A sample NIS client’s /etc/passwd

file is similar to the following:

093-701049-04 Licensed Material - Property of Data General Corporation ; 4-3

NIS administration

4-4

root::0:1: Special Admin login:/:/sbin/sh

sysadm::0:0 $Regular Admin login:/admin:/sbin/sh

daemon:*:1:1: Daemon Login for daemons needing permissions:/:/sbin/sh

bin:*:2:2: Admin :/bin:

sys:*:3:3: Admin :/usr/sre:

adm:*:4:43 Admin :/usr/adm:/sbin/sh

uucp:*:5:53 UUCP Login:/usr/spool/uucp:/usr/lib/uucp/uucico
nuucp:*:5:1: UUCP Admin Login :/usr/lib/uucp:/sbin/sh

lp:*:6:2: Printer:/usr/lib:/sbin/sh

mail:*:8:1: Sendmail Login for mail delivery:/usr/mail/:/usr/bin/mail

sync::19:1: Disk Update Login without password:/:bin/sync

yp:*:373:37: YP Admin :/usr/etc/yp:/sbin/sh

nfs:*:38:38: NFS Admin :/:/sbin/sh

ftp:*:39:39: FTP guest Login:/var/ftp:/sbin/sh

nobody: * :65534:65534::/:

+3

The last line instructs the library routines to use the NIS service.

Removing the last line in the passwd file disables NIS password

access.

A program that calls /etc/passwd first opens the password file on your

machine; it opens the NIS password file only if your machine’s

password file contains + (plus sign) entries. Earlier entries in the

password file take precedence over, or mask, later ones with the same

username or user [D. Therefore, note the order of the entries for root

and for sysadm (which have the same user ID) and use it in your own

file.

e /etc/group may be reduced to a single line:

+3

which forces all translation of group names and group IDs to be made by

the NIS service. This is the recommended procedure.

How to set up a slave NIS server

The network must be working before you can set up a slave NIS server—in

particular, you must be able to communicate with the master NIS server.

To create a new slave server, run ypinit with the -s option. You must be

superuser when you run ypinit. Name a host already set up as an NIS

server as the master. Ideally, the named host is the master server, but it

can be any host that has its NIS database set up. The host must be

reachable. The default domain name on the machine intended to be the NIS

slave server must be set to the same domain name as the default domain

name on the machine named as the master. Also, an entry for daemon must

exist in the /etc/passwd files of both slave and master, and that entry must

precede any other entries having the same user ID. sysadm creates

/ete/passwd; make sure the order of the entries in your password file has

not been altered. Note the example shown in the section above. You are not

prompted for a list of other servers, but you do have the opportunity to

choose whether or not the procedure quits at the first non-fatal error.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

NIS administration

Edit the original files in accordance with the preceding section “Altering an

NIS client’s files to use NIS services” to insure that processes on the slave

NIS server use the NIS services, rather than the local ASCII files. (That is,

make sure the NIS slave server is also an NIS client.)

After ypinit sets up the the NIS database, type /usr/etc/ypserv to begin

providing NIS services. Also, edit the /ete/nfs.params file to set

ypserv_START to ypserv START=SERVER. On subsequent reboots,

NIS starts automatically from /usr/sbin/init.d/rc.ypserv.

How to set up an NIS client

To set up an NIS client, edit the local files as described above in “Altering

an NIS client’s files to use NIS services.” If /usr/etc/ypbind is not running

already, start it. With the ASCII databases of /ete abbreviated and

/usr/etc/ypbind running, the processes on the machine are clients of the

NIS services. At this point, an NIS server must be available; processes hang

if an NIS server is unavailable while ypbind is running. Note the possible

modifications to the client’s /etc database as discussed above in the earlier

section “Altering an NIS client’s files to use NIS services.” Because some

files may be missing or specially altered, it is not always obvious how the

ASCII databases are being used. The escape conventions used within those

files to force the inclusion or exclusion of data from the NIS databases are

found in the following man pages: passwd, hosts.equiv, and group. In

particular, note that changing passwords in /etc/passwd (by editing the

file, or by running passwd) only affects the local client’s environment.

Change the NIS password database by running yppasswd.

Modifying NIS maps after installation

Databases served by NIS should always be modified on the master server.

Databases expected to change most frequently, like /etc/passwd, may be

changed by first editing the ASCII file, changing the directory to /etc/yp,

and running make.

Non-standard maps (that is, maps specific to the applications of a

particular vendor or site, but not part of Data General’s release), or maps

that are expected to change rarely, or maps for which no ASCII form exists

(for example, files that didn’t exist before you installed NIS) may be

modified manually. The general procedure is to use makedbm with the -u

option to disassemble the maps into a form that can be modified using

standard tools (such as awk, sed, or vi). Then build a new version again

using makedbm. This may be done manually in two ways:

e The output of makedbm can be redirected to a temporary file that can

be modified and fed back into makedbm, or

e The output of makedbm can be processed within a pipeline that feeds

directly into makedbm. This procedure is appropriate if the

disassembled map can be updated by modifying it with awk, sed, or

appending with the cat command.

Licensed Material - Property of Data General Corporation 4.5

NIS administration

Suppose you want to create a non-standard NIS map called mymap. You

want it to comprise key-value pairs in which the keys are strings such as al,

bl, el, and so on (“I” stands for left) and the values are ar,br, cr (“r” stands

for right). Either of two procedures may be used when you create new

maps. One uses an existing ASCII file as input; the other uses standard

input.

For example, suppose the ASCII file /etc/yp/mymap.asc has been created

with an editor or a shell script on the machine ypmaster and

home_domain is the subdirectory where the map is located. You can

create the NIS map for this file by typing the following commands:

ypmaster% cd /etc/yp .!

ypmaster’ makedbm mymap.asc home domain/mymap

At this point you realize the map should include another key-value pair (dl,

dr). Modify the map by first modifying the ASCII file; modifications made to

the dbm files will be lost. Make the modification by:

1. Using the ed(1) command to go the directory /etc/yp.

2. Using vi(1), or another editor, to edit the ASCII file mymap.asc.

3. Using makedbm(1M) to update the map as follows:

ypmasters makedbm mymap.asc home domain/mymap .!

When no original ASCII file exists, create the NIS map from the keyboard.

(This example assumes the machine name is ypmaster, and the default

domain is home _ domain):

ypmaster% cd /etc/yp .|

ypmasters makedbm - home domain/mymap _ .!

al ar

bl br

eler

<ctr1-D>

When you need to modify that map, you can use makedbm -u to undo a

dbm map and to create a temporary ASCII intermediate file, which can be

edited using standard tools. For example, you can type the following:

ypmaster% cd/etc/yp

ypmastert makedbm -u home domain/mymap > mymap.temp .!

At this point you can modify “mymap.temp.” The following commands

create a new version of the database:

ypmastert’ makedbm mymap.temp home domain/mymap .

ypmaster$ rm mymap.temp |

Unless you add non-standard maps to the database or change the set of NIS

servers after the system is up and running, the preceding tasks can be

accomplished with the ypinit and /etc/yp/Makefile commands. Whether

you use the Makefile in /etc/yp or some other procedure, the goal is the

same: a new pair of well-formed dbm files must reside in the domain

directory on the master NIS server.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

NIS administration

Propagating NIS maps

To propagate a map means to move it from place to place—in general, to

copy it from the master NIS server to all slave NIS servers. Initially, ypinit

copies all the maps from the master to a particular slave server, as

described earlier in the section “How to set up a slave NIS server.” After a

slave NIS server has been initialized, updated maps are transferred from

the master server by ypxfr. The ypxfr program runs on the slave, but is

told to do so by the master. You can run ypxfr in three different ways:

periodically using cron; with ypserv; or interactively. Examples of each

method follow.

Running ypxfr with cron

Maps change at different rates; for instance, protocols.byname may not

change for months at a time, but passwd.byname may change several

times daily in a large organization. You can set up entries in a crontab file

to periodically run ypxfr at a rate appropriate for any map in your NIS

database. ypxfr contacts the master server and transfers the map only if

the master’s copy is more recent than the local copy.

To avoid having a crontab entry for each map, you can group several maps

with approximately the same change characteristics in a shell script and

run the shell script from a crontab file. Instead of directly editing the

crontab file, you must edit a copy of the file and use the crontab

command to give the new crontab file to the cron daemon.

Suggested groupings, mnemonically named, can be found in /usr/etc/yp:

ypxfr _lperhour, ypxfr lperday, and ypxfr 2perday. If these rates of

change are inappropriate for your environment, you can easily modify or

replace these shell scripts.

These same shell scripts should be run at each NIS slave server in the

domain. Alter the exact time of execution from one server to another to

prevent slowing the master. If you want the map transferred from a server

other than the master, use the ypxfr’s -h option within the shell scripts.

Use the -s option to transfer maps from another domain. Finally, maps

having unique change characteristics can be checked and transferred by

invoking ypxfr within the system crontab file,

/usr/spool/cron/crontabs/root.

Running ypxfr with ypserv

The ypxfr program also gets invoked by ypserv, responding to a transfer

map request. That request is made as an RPC call from yppush. yppush is

run on the master NIS server. It tells the NIS map ypserver to generate a

list of NIS servers in your domain. To each of the named NIS servers, it

sends a transfer map request. ypserv makes a copy of ypxfr, invokes it

with the -C flag, and passes it the information it needs to identify the map

and to return a summary status to the initiating process yppush.

Licensed Material - Property of Data General Corporation 4-7

Making new NIS maps after installation

In the cases just discussed, ypxfr’s transfer attempts and their results can

be captured in a log file. If /ete/yp/ypxfr.log exists, results are appended to

it. The log file is not limited. To turn off logging remove the log file.

Running ypxfr as a command

Typically, you run ypxfr as a command only in exceptional situations. For

example, you would run ypxfr as a command when setting up a temporary

NIS server to create a test environment, or when quickly making an idle

NIS server consistent with the other servers.

Making new NIS maps after installation

Adding a new NIS map entails copying the map’s dbm files to the domain

directory on each of the NIS servers in the domain. This process is

described above in “Propagation of an NIS map.” This section describes only

how to get the proper files in place on both the master and the slaves so the

propagation is successful.

After deciding which NIS server is the master of the map, modify

/etc/yp/Makefile on the master server to simplify the rebuilding of the

map. While specific modifications are too varied to describe here, in general

an ASCII file is filtered through awk, sed, and/or grep to make it suitable

for input to makedbm. Consult the existing Makefile as a source for

programming examples. You should use the mechanisms already in place in

/etc/yp/Makefile when deciding how to create dependencies that make

will recognize; specifically, the use of “.time” files tells you when the

Makefile was last run for the map.

To get an initial copy of the map, each server must execute the ypxfr

command with the -h<master> option (see ypxfr(1M) for more

information). If the map is available from some NIS servers but not all,

unpredictable behavior from client programs results. The map must be

globally available before clients begin to access it.

How to add a new NIS server to the original set

To add a new NIS slave server, start by modifying maps on the master NIS

server. If the new server is a host that has not been an NIS server before,

you must add the host’s name to the map ypservers in the default domain.

The sequence for adding a server named ypslave to domain_name is as

follows:

ypmaster# cd /etc/yp/domain name .!

ypmaster# makedbm -u ypservers > /tmp/temp file

ypmaster# vi/tmp/temp file

ypmaster# makedbm /tmp/temp file ypservers |

ypmaster# rm /tmp/temp file J

Licensed Material - Property of Data General Corporation 093-701049-04

How to change the master server

Running the makedbm command with the -u option undoes the

ypservers dbm file; that is, it converts it from dbm format so you can add

the new hostname to the temporary file temp_file. Then, running the

makedbm command with temp file as the input file and ypservers as

the output map converts ypservers back into dbm format.

You can set up the new slave NIS server’s databases by copying the

databases from NIS master server ypmaster. To do this, log in remotely to

the new NIS slave and run the ypinit command as shown below:

ypslave# cd /etc/yp

ypslave# ypinit -s ypmaster |

(To become a slave, the system first needs to be running as aclient: that is

when the domainname is set.) To verify that the ypservers file is correct

(since no ASCII file for ypservers exists), type the following:

ypslave# cd /etc/yp/domain name

ypslave# makedbm -u ypservers .,!

IMPORTANT If a hostname is not in ypservers it is not informed of

updates to the NIS map files.

Then complete the steps described above in the section “How to set up a

slave NIS server.” |

How to change the master server

093-701049-04

To change a map’s master server, first build the map at the new master.

Because the old NIS master’s name occurs in a key-value pair in the

existing map, it is not sufficient to use an existing copy at the new master

or to send a copy there with ypxfr. The key must be reassociated with the

new master’s name. If the map has an ASCII source file, it should be

present in its current version at the new master. Remake the NIS map

(called “tech.writers” below) locally with the following sequence:

newmaster# cd /etc/yp .!

newmaster# make tech.writers |

The /etc/yp/Makefile must be set up correctly for this command sequence

to work. If it isn’t, do it now. Also, this is a good time to return to the old

master (if it will remain an NIS server) and edit /etc/yp/Makefile so that

“tech.writers” is no longer created there—that is, comment out the section

of the oldmaster’s /etc/yp/Makefile that created “tech.writers.”

If the map exists only as a dbm database, you can recreate it on the new ©

master by disassembling an existing copy (one from any NIS server will do)

and running the disassembled version through makedbm. For example,

you can type the following:

newmaster# cd /etc/yp .<|

newmaster# ypcat -k tech.writers |makedbm - mydomain/tech.writers .!

Licensed Material - Property of Data General Corporation 4.9

Troubleshooting an NIS client

After making the map on the new master, you must send a new copy of the

map to the other (slave) NIS servers. Do not use yppush: the other slaves

would request new copies from the old master rather than from the new

one.

A typical method (you may discover others) is to become superuser on the

old master server and type the following:

oldmaster# ypxfr -h newmaster tech.writers |

Now you have a new copy on the old master and may run yppush. The

remaining slave servers continue to recognize the old master as the current

master, and they attempt to retrieve the current version of the map from

the old master. When they do so, they get the new map, which names the

new master as the current master.

If this method fails, a cumbersome but effective alternative exists. As

superuser, execute the preceding command on each NIS server machine.

While this procedures works, it should be considered last. If you are

changing the master for all the maps in a domain, you may want to use the

command ypinit -s newmaster on each server instead.

Troubleshooting an NIS client

4-10

This troubleshooting section has two parts—problems seen on an NIS

client, and those seen on an NIS server. Because all hosts running NIS are

NIS clients, the troubleshooting section for clients applies to hosts that are

NIS servers and the NIS master as well.

Before trying to solve a problem with an NIS client, you should be familiar

with the information presented in the section “How the NIS network

service works” in Chapter 3.

NIS client problems: commands that hang

The most common problem at an NIS client node is for a command to hang

and generate console messages similar to the following:

yp: server not responding for domain <wigwam>. Still trying

Some commands hang even though the system as a whole seems fine and

you can run new commands without difficulty.

The preceding message indicates that ypbind on the local machine is

unable to communicate with ypserv in the domain wigwam. This often

happens when machines that run ypserv have crashed. It may also occur if

the network or the NIS server machine is so overloaded that ypserv cannot

respond to your ypbind within the time-out period. Under these

circumstances, all other NIS client nodes on your network exhibit the same

or similar problems. The condition is usually temporary, and the messages

usually disappear when the NIS server machine reboots and ypser’v is able

to respond or when the load on the NIS server nodes and/or the network

decreases.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Troubleshooting an NIS client

In the following circumstances, however, the problem is likely to persist.

The NIS client has not set, or has incorrectly set, domainname.

Clients must use a domain name that the NIS servers recognize. First,

issue the command domainname to determine the current domain

name setting, and compare it with the domain name in

/ete/nfs.params and that used on the NIS servers. If the domain name

is set incorrectly, issue the command:

domainname good _ domain name _ .,|

to correct it. If it also is incorrect in the /etc/nfs.params file, become

superuser on the client machine in question and supply the

domainname_ARG line with the correct domain name, thus ensuring

the domain name will be correctly set each time the machine boots.

If your domain name is correct, make sure your local network has at

least one NIS server machine. You can automatically bind only to a

ypserv process on your local network, not on another accessible

network. There must be at least one NIS server for your machine’s

domain running on your local network. Two or more NIS servers will

improve availability and response characteristics for NIS services.

If your local network has an NIS server, make sure it is up and

running. Check other machines on your local net. If several client

machines have problems simultaneously, a server problem is likely.

Find a client machine that is behaving normally and run the ypwhich

command. If ypwhich does not return an answer, kill it and type the

following on the NIS server machine:

ps-ef | grep yp <

and look for ypserv and ypbind processes. If the server’s ypbind

daemon is not running, start it by typing the following:

ypbind .!

If a ypserv process is running, type ypwhich on the NIS server

machine. If ypwhich returns no answer, ypserv has probably hung

and should be restarted. Kill the existing ypserv process (you must be

logged in as root) and start ypserv. Use the ps command to find the pid

number of the bad ypserv process. If, for example, the pid number of

the bad ypserv process is 10145, start ypserv by typing the following:

kill -9 10145 |!

ypserv .|

If ps shows no ypserv process running, start one.

Licensed Material - Property of Data General Corporation 4.1 1

Troubleshooting an NIS client

4-12

NIS client problems: NIS service is unavailable

When other machines on the network appear to be functioning properly but

the NIS service becomes unavailable on your machine, various aberrations

occur. Some commands appear to operate correctly while others terminate,

displaying an error message about the unavailability of NIS; some

commands limp along in a backup-strategy mode particular to the program

involved; and some commands or daemons crash with obscure messages or

no message at all. Messages similar to the following may appear:

my machines ypcat hosts .|

ypcat: can’t bind to NIS server for domain <wigwam>.

Reason: can’t communicate with ypbind.

my machines ypwhich hosts J

ypwhich: can’t find hosts

When such atypical events occur, you might investigate further by typing

the command:

my machine% Is-l .]

in a directory containing files owned by many users, including users not in

the local machine’s /etc/passwd file ((udd/remote_host, for example). If

the Is -1 commands displays file owners not in the local machine’s

/etc/passwd file as numbers rather than names, this also signifies that the

NIS service is not functioning.

These undesirable events usually indicate that your ypbind process is not

running. Type ps -ef to check; if you do not find it, start it by typing the

following:

my machine# ypbind .!

Subsequently, NIS problems should disappear.

NIS client problems: ypbind crashes

If ypbind crashes almost immediately each time it is started, you should

suspect a problem in some other part of the system. First check that the

portmap daemon is running by typing the following:

my machines ps-a | grep portmap J

If it is not running, reboot.

If portmap itself will not stay up or if it behaves strangely, look for more

fundamental problems: check the network software.

You may be able to access the portmap on your machine from a machine

that is operating normally. From such a machine, type the following:

Licensed Material - Property of Data General Corporation 093-701049-04

Troubleshooting an NIS client

host_machine# rpcinfo -p my_machine .!

If your portmap is fine, the output should look similar to the following:

program vers proto port

100000 2 tep 111
100000 2 udp 111
100004 2 upd 829

100004 2 tep 830

100004 1 udp 829
100004 1 tcp 830
100007 2 tcp 1024

100007 2 udp 1027
100007 1 tcp 1024
100007 1 upd 1027
100005 1 udp 898
100005 1 tep 900

100003 2 udp 2049
100026 1 udp 1032
150001 1 udp 1033
100017 1 tcp 1030

100001 1 udp 1034
100001 2 udp 1034

100001 3 udp 1034
100002 1 udp 1035
100002 2 udp 1035
100012 1 udp 1036

100008 1 udp 1037
100024 1 udp 785

100024 1 tep 787
100021 1 udp 790
100021 3 udp 793
100021 2 tep 796

On your machine, the port numbers

represent the ypbind process:

100007 2 tcp 1024

100007 2 udp 1027

100007 1 tcp 1024

100007 1 upd 1027

portmapper

portmapper

ypserv

ypserv

ypserv

ypserv

ypbind

ypbind

ypbind

ypbind

mountd

mountd

nfs

bootparam

penfsd

rexd

rstatd

rstatd

rstatd

rusersd

rusersd

sprayd

walld

status

status

nlockmgr

nlockmgr

nlockmgr

may be different. Four entries

ypbind

ypbind

ypbind

ypbind

If these four entries are missing, ypbind has been unable to register its

services: reboot the machine. If these entries are present but altered

whenever you restart ypbind, reboot the system, even if the portmap is

up. If this situation persists after rebooting, call for help.

Licensed Material - Property of Data General Corporation 4-13

Troubleshooting an NIS server

NIS client problems: ypwhich is inconsistent

The command ypwhich tells you which machines are the NIS server and

master. When you use ypwhich several times at the same client node, it is

normal for the answer to vary; the NIS server changes. Often an NIS server

machine gets its own NIS services from another NIS server on the net. The

binding of NIS client to NIS server changes periodically on a busy net and

when the NIS servers themselves are busy. Whenever possible, the system

stabilizes at a point where all clients get acceptable response time from the

NIS servers.

Troubleshooting an NIS server

4-14

This section discusses problems stemming from different versions of an NIS

map and those that occur when ypserv crashes. Before attempting to solve

NIS server problems, you should familiarize yourself with the material

presented in the section “How the NIS network service works” in Chapter 3.

Different versions of an NIS map

Because NIS works by propagating maps among servers, you sometimes

find different versions of a map on the network servers. This variance is

normal if transient, abnormal otherwise.

Most commonly, normal update is prevented when an NIS server or router

between NIS server and masterds down during a map transfer attempt.

(Normal update is described in the section “Propagation of an NIS Map,”

above). When all NIS servers and the routers between them are up and

running, the transfer of maps by ypxfr should succeed.

If a particular slave server has problems updating, log in to that server and

run ypxfr interactively. If ypxfr fails it indicates why, and you then can fix

the problem. If ypxfr succeeds but you suspect it has been failing

intermittently, create a log file to enable the logging of messages by typing

the following:

ypslave# cd /etc/yp J

ypslave# touch ypxfr.log

This procedures saves all output from ypxfr. The output is similar to what

ypxfr creates when run interactively, with the exception that each line in

the log file is time stamped. (Don’t worry if the time stamps appear out of

order—the time stamp tells you when ypxfr completes its work. If copies of

ypxfr are run simultaneously but their work take differing amounts of

time, they may write their summary status line to the log files in an order

different from that in which they were invoked.) Any pattern of

intermittent failure shows up in the log. When you have fixed the problem,

turn off logging by removing the log file. (If you forget to remove it, it grows

without limit.)

Licensed Material - Property of Data General Corporation 093-701049-04

Troubleshooting an NIS server

While still logged in to the problematic NIS slave server, inspect the system

crontab file, /usr/spool/cron/crontabs/root , and the ypxfr* shell scripts

it invokes. Typos in these files cause propagation problems, as do failures to

refer to a shell script within /var/spool/cron/crontabs/root, or failures to

reference a map within any shell script.

Also, make sure that the NIS slave server is in the map ypservers within

the domain. If it’s not, it continues to function as a server, but yppush

won't inform it of a new copy of a map.

If the source of the problem is elusive, you can work around it using rep(1)

or ftp(1) to copy a recent version from any healthy NIS server. You may not

be able to do this as root, but you can probably do it as daemon. For

instance, transfer map busted as follows:

ypslave# chmod go+w /etc/yp/mydomain .|

ypslave# sudaemon .,|

$ rep ypmaster:/etc/yp/mydomain/busted.* /etc/yp/mydomain\ |

$ “D
ypslave# chown root /etc/yp/mydomain/busted.* .<!

ypslave# chmod go-w /etc/yp/mydomain ,|

The * character has been escaped in the command line to expand it on

ypmaster instead of locally on ypslave. Because the map files should be

owned by root, you must change ownership of them after the transfer.

Obviously, doing the rep as root is preferable.

ypserv crashes

When the ypserv process crashes almost immediately and won’t stay up

despite repeated activations, the troubleshooting process is virtually

identical to that described in the section “ypbind Crashes,” above. Check

for the portmap daemon by typing the following:

ypservers ps -ef | grep portmap

Reboot the server if you do not find the daemon. If you locate it, type the

following:

ypserver# rpcinfo -p hostname ,|

Output similar to the following should appear:

program vers proto port

100000 2 tcp 111 portmapper

100000 2 udp 111 portmapper

100004 2 upd 829 ypserv

100004 2 tcp 830 ypserv

100004 1 udp 829 ypserv

100004 1 tep 830 ypserv

100007 2 tcp 1024 ypbind

100007 2 udp 1027 ypbind

100007 1 tcp 1024 ypbind

093-701049-04 Licensed Material - Property of Data General Corporation 4-1 5

How security is affected by NIS

100007 1 upd 1027 ypbind

100005 1 udp 898 mountd

100005 1 tep 900 mountd

100003 2 udp 2049 nfs

100026 1 udp 1032 bootparam

150001 1 udp 1033 penfsd

100017 1 tcp 1030 rexd

100001 1 udp 1034 rstatd

100001 2 udp 1034 rstatd

100001 3 udp 1034 rstatd

100002 1 udp 1035 rusersd

100002 2 udp 1035 rusersd

100012 1 udp 1036 sprayd

100008 1 udp 1037 walld

100024 1 udp 785 status

100024 1 tcp . 787 status

100021 1 udp 790 nlockmgr

100021 3 udp 793 nlockmgr

100021 2 tep 796 nlockmgr

Naturally, the port numbers will be different on your machine. The four

entries representing the ypserv process are as follows:

100004 2 upd 829 ypserv

100004 2 tcp 830 ypserv

100004 1 udp 829 ypserv

100004 1 tcp 830 ypserv

If these entries are absent, ypserv has been unable to register its services:

reboot the machine. If these entries are present but they are altered

whenever you restart /usr/etc/ypserv, reboot the machine. If the problem

persists after reboot, call for help.

How security is affected by NIS

4-16

Security on a system running NIS depends on how NIS consults the

administrative files on which its maps are based. Local files on the host

(passwd, group, aliases, for instance) are consulted first, followed by the

maps in the NIS domain. For example, the system checks the /etc/aliases

file for mail aliases, then checks the mail.aliases NIS map.

The remaining files on which NIS maps are based are global files:

/etc/hosts , /etc/networks, /etc/ethers, /etc/services, /etc/netmasks,

/ete/protocols, and /etc/netgroup. The information in these files is

network-wide data and is accessed only from NIS, with the exception of

/etc/hosts when the /etc/svcorder file specifies a non-default

name/address resolution order; see svcorder(4). When booting, however,

each machine requires an entry in /etc/hosts for itself. In summary for this

set of files, if NIS is running global files are checked only in the NIS maps;

a file on your local machine is not consulted.

Licensed Material - Property of Data General Corporation 093-701049-04

Adding a new user to the NIS database

Special NIS password change

When you change your password with the passwd command, you change

the explicit entry in your machine’s local /etc/passwd file. If your password

is not provided explicitly, but rather is pulled in from NIS with a + entry,

the passwd command displays the following error message:

Not in passwd file.

To change your password in the NIS password file, you must use the

yppasswd command. To enable this service, you must start up the daemon

yppasswdd on the machine serving as the master for the NIS password

file.

Netgroups: network-wide groups of machines

and users

NIS uses the /etc/netgroup file on the master NIS server for permission

checking during remote mount, login, remote login, and remote shell. It

uses /etc/netgroup to generate three NIS maps in the

letc/yp/domainname directory: netgroup, netgroup.byuser, and

netgroup.byhost . The NIS map netgroup contains the basic information

in /etc/netgroup. The two other NIS maps contain a more specific form of

the information to accelerate the lookup of netgroups given the host or

user.

The programs that consult these NIS maps are login, mountd, rlogin,

and remsh. login consults them for user classifications if it encounters

netgroup names in /etc/passwd. mountd consults them for machine

classifications if it encounters netgroup names in /etc/exports. rlogin

and remsh consult the netgroup map for both machine and user

classifications if they encounter netgroup names in the /etc/hosts.equiv

or /.rhosts file.

Adding a new user to the NIS database

In most cases, the easiest way to add a new user to the NIS database is to

use the sysadm usermgmt command. For more information about

sysadm and usermgmt, see Managing the DG/UXTM System.

Following are some points to remember when adding a new user:

e Local and NIS user passwords should be the same.

e The local user and administrator should determine which shell to use,

the home directory, full name, and which groups the user belongs to.

e The NIS master administrator should determine the new userid to

avoid conflicts with another user in the same NIS domain.

093-701049-04 Licensed Material ~ Property of Data General Corporation 4.4 7

If you do not use NIS

e The new user must be added to the local /ete/group and to the NIS

group map.

You can add a new user manually by including an entry to the password file

and by creating a home directory on the new user’s machine.

To add a new user to the NIS servers’ maps, first update the passwd file.

As root on the master NIS server machine, edit the master NIS server’s

/etc/passwd file.

On the master NIS server, add a new line to the password file with the

vipw command; vipw brings the password file into the vi editor,

preventing others from editing it until you are done. Type the following:

/etc/vipw .|

The following example illustrates an entry in the password file for new user

clement :

clement: 3u0mRdrJ4tEVs:1947:101:clement: /udd/myserver/clement: /bin

/csh

After you have updated the password file and created a password for the

new user, be sure to update the NIS maps by changing your directory to

/etc/yp and running the make command:

ed /etc/yp .!

make passwd .

In a network running NIS, the fields in the yppasswd map appear the

same as in the passwd(4) map; refer to the yppasswd man page.

If you do not use NIS

If, after using NIS, you want to disable it, change ypserv_START to ””

(NULL) from CLIENT, MASTER, or SERVER and set domainname ARG

to ”“” (NULL) in the file /etc/nfs.params. If ypserv on the master is

disabled, you can no longer update any of the NIS maps.

End of Chapter

4.18 Licensed Material - Property of Data General Corporation 093-701049-04

An rpcgen programming guide

The details of programming applications to use remote procedure calls

(RPC) can be complicated and tedious. Perhaps most complicated is the

writing of the External Data Representation (XDR) routines necessary to

convert procedure arguments and results into their network format and

vice versa.

The rpegen(1) command exists to help programmers write RPC

applications simply and directly. rpegen does most of the tedious work,

allowing programmers to debug the main features of their application,

instead of requiring them to spend most of their time debugging their

network interface code.

What is rpcgen?

093-701049-04

rpcgen is a compiler. It accepts a remote program interface definition

written in RPC Language, which is similar to C (see “Defining the RPC

language” later in this chapter). It produces a C language output that

includes stub versions of the client routines, a server skeleton, XDR filter

routines for both parameters and results, and a header file that contains

common definitions. The client stubs interface with the RPC library and

effectively hide the network from their callers. The server stub similarly

hides the network from the server procedures that are to be invoked by

remote clients. Output files from rpegen can be compiled and linked in the

usual way. The developer writes server procedures—in any language that

observes the 880pen Object Compatibility Standard (OCS) calling

conventions—and links them with the server skeleton produced by rpegen

to get an executable server program. To use a remote program, a

programmer writes an ordinary main program that makes local procedure

calls to the client stubs produced by rpegen. Linking this program with

rpcgen’s stubs creates an executable program. (At present, the main

program must be written in C.) rpegen options can be used to suppress

stub generation and to specify the transport to be used by the server stub.

As with all compilers, rpegen reduces development time that would

otherwise be spent coding and debugging low-level routines. All compilers,

including rpegen, do this at a small cost in efficiency and flexibility.

However, many compilers allow escape hatches for programmers to mix

low-level code with high-level code. rpegen is no exception. In

speed-critical applications, hand-written routines can be linked with the

rpegen output without any difficulty. Also, you may proceed by using

rpcgen output as a starting point, and then rewrite it as necessary. (If you

need a discussion of RPC programming without rpegen, see Chapter 6).

Licensed Material - Property of Data General Corporation 5]

Converting local procedures to remote procedures

Converting local procedures to remote procedures

Assume an application that runs on a single machine, one which we want to

convert to run over the network. Here we will demonstrate such a

conversion in a simple example program that prints a message to the

console.

/*

* printmsg.c: print a message on the console

*/

#include <stdio.h>

Main(argc, argv)

int argc;

char *argv[]J;

char *message;

if (arge < 2) {

fprintf(stderr, “usage: %s <message>\n”, argv[0]);

exit(1);

}
message = argv[1];

if (!printmessage(message)) {

fprintf(stderr, "%s: couldn’t print your message\n”,

argv[0]);
exit(1);

}
printf(”Message Delivered!\n”);

exit(0);

}

/*

* Print a message to the console.

* Return a Boolean data type indicating whether the

* message was actually printed.

*/

printmessage(msg)

char *msg;

{
FILE *f;

f = fopen(”/dev/console”, “w”);

if (f == NULL) {

return (0);

}
fprintf(f, “%s\n”, msg);

fclose(f);

return(1);

}

And then, of course:

example$ cc printmsg.c -o printmsg J

examples printmsg “Hello, there.” J

Message delivered!

example%

Licensed Material - Property of Data General Corporation 093-701049-04.

093-701049-04

Converting local procedures to remote procedures

If printmessage() were turnedginto a remote procedure, then it could be

called from anywhere in the network. To make a procedure remote, it’s

necessary to figure out what the types are for all procedure inputs and

outputs. In this case, we have a procedure printmessage() that takes a

string as input and returns an integer as output. Knowing this, we can

write a protocol specification in RPC language that describes the remote

version of printmessage(). Here is the protocol:

/*

* msg.x: Remote message printing protocol

*

rogram MESSAGEPROG {
version MESSAGEVERS {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 99;

Remote procedures are part of remote programs, so we actually declared an

entire remote program that contains the single procedure

PRINTMESSAGE. This procedure was declared to be in version 1 of the

remote program. No null procedure (procedure 0) is necessary because

rpcegen generates it automatically.

Notice that declarations, such as MESSAGEPROG and MESSAGEVERS

are in uppercase letters. Though not required, this is a good convention to

use.

The argument type is string and not char * because a char * in C is

ambiguous. Programmers usually intend it to mean a null-terminated

string of characters, but it could also represent a pointer to a single

character or a pointer to an array of characters. In RPC language, a

null-terminated string is unambiguously called a Qstring.

There are two more things to write. First, there is the remote procedure

itself. Here’s the definition of a remote procedure to implement the

PRINTMESSAGE procedure we declared above:

Licensed Material - Property of Data General Corporation 5-3

Converting local procedures to remote procedures

/*

* msg_proc.c: implementation of the remote procedure

* "printmessage”

*/

#include <stdio.h>

#include <rpc/rpc.h> /* always needed */

#include "msg.h” /* need this too: msg.h will be */

/* generated by rpcgen */

/*

* Remote version of "printmessage”

*/

int *

printmessage_1(msqg)

char **msg;

{

static int result; /* must be static! */

FILE *f;

f = fopen(”/dev/console”, "w");

if (f == NULL) {

result = 0;

return (&result);

}
fprintf(f, "ts\n”, *msg);

fclose(f);

result = 1;

return (&result);

}

Notice here that the declaration of the remote procedure printmessage_1()

differs from that of the local procedure printmessage() in three ways:

1. It takes a pointer to a string instead of a string itself. This is true of all

remote procedures. They always take pointers to their arguments

rather than the arguments themselves.

2. It returns a pointer-to an integer instead of an integer itself. This is also

true of remote procedures. They always return a pointer to their

results.

3. Ithas an _1 appended to its name. In general, all remote procedures

called by rpegen are named by the following rule: The name in the

program definition (here PRINTMESSAGE) is converted to all

lowercase letters, an underscore (_) is appended to it, and the version

number (1) is appended).

The final task is to declare the main client program that will call the

remote procedure. The program is as follows:

5-4 Licensed Material - Property of Data General Corporation 093-701049-04

Converting local procedures to remote procedures

/*

* rprintmsg.c: remote version of "printmsg.c”

*/

#include <stdio.h>

#include <rpc/rpc.h> /* always needed */

#include "msg.h” /* need this too: msg.h will */

/* be generated by rpcgen */

Main(arge, argv)

int argc;

char *argv[];

CLIENT *cl;

int *result;

char *server;

char *message;

if (arge < 3) {

fprintf(stderr, "usage: %s host message\n”, argv[0]);

exit(1);

/*

* Save values of command line arguments

*/

server = argv[{1];

message = argv[2]; /*

* Create client “handle” used for calling

MESSAGEPROG on the server designated

on the command line. We tell the RPC package

to use the "tcp” protocol when contacting

the server.+ + + FF
cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, “tcp”);

if (cl == NULL) {

/*

* Couldn’t establish connection with server.

* Print error message and die.

*/

clnt_pcreateerror(server) ;

exit(1);

093-701049-04 Licensed Material - Property of Data General Corporation 5-5

Converting local procedures to remote procedures

/*

* Call the remote procedure "printmessage” on the server

*/

result = printmessage 1(&message, cl);

if (result == NULL) {

/*

* An error occurred while calling the server.

* Print error message and die.

*/

clnt_perror(cl, server);

exit(1);

}

/*

* Okay, we successfully called the remote procedure.

* /

if (*result == 0) {

/*

* Server was unable to print our message.

* Print error message and die.

*/

@

fprintf(stderr, "%s: %s couldn’t print your

message\n”, argv[0], server);

exit(1);

}
/*

* The message got printed on the server’s console

*/

printf(”"Message delivered to %s!\n”, server);

}

There are two things to note here:

1. First, a client “handle” is created using the RPC library routine

clnt_create(). This client handle will be passed to the stub routines

that call the remote procedure.

2. The remote procedure printmessage_1() is called approximately the

same way as it is declared in msg _proc.c, except for the inserted client

handle as the second argument.

Here’s how to put all of the pieces together:

example’ rpcgen msg.x

examples’ ccrprintmsg.c msg clnt.c -orprintmsg J

example’ cc Msg proc.c msg Svc.c -o msg server .!

5-6 Licensed Material - Property of Data General Corporation 093-701049-04

Generating XDR routines

Two programs were compiled here: The client program rprintmsg and the

server program msg server. Before doing this though, rpegen was used to

fill in the missing pieces.

Here is what rpegen did with the msg.x input file:

1. It created a header file called msg.h that contained #define’s for

MESSAGEPROG, MESSAGEVERS and PRINTMESSAGE for use in

the other modules.

2. It created client stub routines in the msg _clnt.c file. In this case there

is only one, the printmessage _1() that was referred to from the

printmsg client program. The name of the output file for client stub

routines is always formed in this way: if the name of the input file is

FOO.x , the client stubs output file is called FOO_clnt.c.

3. It created the server program that calls printmessage 1 (in

msg proc.c. This server program is named msg_sve.c. The rule for

naming the server output file is similar to the previous one: For an

input file called FOO.x, the output server file is named FOO sve.c.

Now we can try the program. First, copy the server to a remote machine

and run it. For this example, the machine is called mike. Server processes

are run in the background, because they never exit.

mikes msg server & .|

Then on our local machine called ray we can print a message on mike’s

console, as shown below:

rays rprintmsg mike “Hello, mike.” J

The message will get printed to mike’s console. You can use this program to

print a message on anybody’s console (including your own) if you are able to

copy the server to their machine and run it.

Generating XDR routines

The previous example demonstrated the automatic generation of client and

server RPC code. rpegen may also be used to generate XDR routines, that

is, the routines necessary to convert local data structures into network

format and vice versa. This example presents a complete RPC service—a

remote directory listing service, which uses rpegen not only to generate

stub routines, but also to generate the XDR routines. Here is the protocol

description file:

093-701049-04 Licensed Material - Property of Data General Corporation 5-7

Generating XDR routines

5-8

/*

* dir.x: Remote directory listing protocol

/ const MAXNAMELEN = 255; / maximum length of a directory

/* entry */

typedef string namet ype<MAXNAMELEN>; /* adirectory entry */
typedef struct namenode *namelist; /* alink in the listing */

/*

* A node in the directory listing

* /

struct namenode {

nametype name; /* name of directory entry */

namelist next; /* next entry */

};

/*

* The result of a READDIR operation.

*/ union readdir res switch (int errno) {

case 0:

namelist list; /* no error: return directory listing */

default:

void; /* error occurred: nothing else toreturn */

};

/*

* The directory program definition

*/

program DIRPROG {

version DIRVERS {

readdir res

READDIR(nametype) = 1;

}el;

} = 76;

IMPORTANT _ Types (like readdir res in the example above) can be

defined using the struct, union and enum keywords, but those keywords

should not be used in subsequent declarations of variables of those

types. For example, if you define a union foo, you should declare using

only foo and not union foo. In fact, rpegen compiles RPC unions into C

structures, and it is an error to declare them using the “union” keyword.

Running rpegen on dir.x creates four output files. Three are the same as

before: header file, client stub routines, and server skeleton. The fourth is

the XDR routines necessary for converting the data types we declared into

XDR format and vice versa. These are output in the file dir _xdr.c.

Here is the implementation of the READDIR procedure.

/*

* dir _proc.c: remote readdir implementation

*/

#include <rpc/rpc.h>

#include <sys/dir.h>

#include "dir.h”

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Generating XDR routines

extern int errno;

extern char *malloc();

extern char *strdup();

readdir res *

readdir_ 1(dirname)

nametype *dirname;

{
DIR *dirp;

struct direct *d;

namelist nl;

namelist *nlp;

static readdir_res res; /* must be static! */

/*

* Open directory

*/

dirp = opendir(*dirname) ;

if (dirp == NULL) {

res.errno = errno;

return (&res);

}

/*

* Free previous result

*/

xdr_ free(xdr_readdir_res, &res);

/*

* Collect directory entries.

* Memory allocated here will be freed by xdr free

* next time readdir_1 is called

*/

nlp = &res.readdir res _u.list;

while (d = readdir(dirp)) {

nl = *nlp = (namenode *) malloc(sizeof(namenode));

nl->name = strdup(d->d_name);

nlp = &nl->next;

} *nlp = NULL;

/*

* Return the result

* /

res.errno = 0;

closedir(dirp);

return (&res); }

Finally, there is the client side program to call the server as shown below:

/*

* rls.c: Remote directory listing client

* /

#include <stdio.h>

#include <rpc/rpc.h> /* always need this */

#include "dir.h” /* will be generated by rpcgen */

extern int errno;

Licensed Material - Property of Data General Corporation 5-9

Generating XDR routines

main(argc, argv)

int argc;

char *argv[];

CLIENT *cl;

char *server;

char *dir;

readdir res *result;

namelist nl;

if (arge != 3) {

fprintf(stderr, "usage: %s host directory\n”,

argv[0]);

exit(1);

}
/*

* Remember what our command line arguments refer to

*/

server = argv[1];

dir = argv[2];

/*

* Create client “handle” used for calling MESSAGEPROG

* on the server designated on the command line. We

* tell the RPC package to use the "tcp” protocol when

* contacting the server.

*/

cl = clnt_create(server, DIRPROG, DIRVERS, “tcp”);

if (cl == NULL) {

/*

* Couldn’t establish connection with server.

* Print error message and die.

*/

clnt_pcreateerror(server);

exit(1);

}

/*

* Call the remote procedure readdir on the server

* /

result = readdir 1(&dir, cl);

if (result == NULL) {

/*

* An error occurred while calling the server.

* Print error message and die.

*/

clnt_perror(cl, server);

exit(1);

}
/*

* Okay, we successfully called the remote procedure.

*/

if (result->errno != 0) {

5-1] 0 Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Generating XDR routines

/*

* A remote system error occurred.

* Print error message and die.

*/

errno = result-—>errno;

perror(dir);

exit(1);

}

/*

* Successfully got a directory listing.

* Print it out.

*/

for (nl = result->readdir_res_u.list; nl != NULL;

nl = nl->next) {

printf£("%s\n", nl->name);

}
exit(0);

At this point, we are ready to compile and run the programs. The following

example shows how to run rpcegen and the C compiler. It also starts the

server program.

rayt rpcgen dirx .

rays ccris.c dir clnt.c dir xdr.c -orls .

rays ec dir sve.c dir _proc.c dir_xdr.c -o dir_sve J

rays dir svc & .

mikes rls ray /usr/pub

ascil

eqnchar

greek

kbd

marg8

tabclr

tabs

tabs4

mike%

A final note about rpcgen: The client program and the server procedure

can be tested together as a single program by simply linking them with

each other rather than with the client and server stubs. The procedure calls

will be executed as ordinary local procedure calls, and the program can be

debugged with a local debugger such as sdb. When the program is working,

the client program can be linked to the client stub produced by rpegen, and

the server procedures can be linked to the server stub produced by rpcgen.

Licensed Material - Property of Data General Corporation 5-1 1

The C preprocessor

IMPORTANT If you test the client program and the server procedure

together as a single program, you may want to comment out calls to

RPC library routines, and have client-side routines call server routines

directly.

The C preprocessor

The C preprocessor is run on all input files before they are compiled, so all

the preprocessor directives are legal within a file ending in .x. Four symbols

may be defined, depending upon which output file is getting generated.

Table 5-1 lists the symbols.

Table 5-1 Symbols for the C preprocessor

Symbol Usage

RPC_HDR For header-file output

RPC_XDR For XDR routine output

RPC_SVC For server-skeleton output

RPC_CLNT For client stub output

Also, rpegen does a little preprocessing of its own. Any line that begins

with a percent sign is passed directly into the output file, without any

interpretation of the line. Here is a simple example that demonstrates the

preprocessing features.

/*

* time.x: Remote time protocol

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET(void) = 1;

} = 1;

} = 44;

#ifdef RPC svc

sint *

$timeget 1()

%{
% static int thetime;

%

% thetime = time(0);

% return (&thetime) ;

%}
#endif

The % feature is not generally recommended, because there is no guarantee

that the compiler will place the output where you intend.

5-1 2 Licensed Material - Property of Data General Corporation 093-701049-04

Some rpcgen programming notes

Some rpcgen programming notes

093-701049-04

This section provides some helpful hints for programming with rpcgen.

These hints include information on how to change the default time-out on

RPC calls, handle broadcast RPC on the server, and pass information to

server procedures.

Changing the default time-out on RPC calls

RPC sets a default time-out of 25 seconds for RPC calls when clnt_create(Q)

is used. This time-out may be changed using clnt_control(. Here is a

small code fragment to demonstrate use of clnt_control(:

struct timeval tv;

CLIENT *cl;

cl = clnt_create(”somehost”, SOMEPROG, SOMEVERS, "tcp”);

if (cl == NULL) {

exit(1);

}
tv.tv_sec = 60; /* change timeout to 1 minute */

tv.tv_usec = 0;

clnt_control(cl, CLSET TIMEOUT, &tv);

Handling broadcasts on the server side

When a procedure is known to be called via broadcast RPC, it is usually

wise for the server to not reply unless it can provide some useful

information to the client. This prevents the network from getting flooded by

useless replies.

To prevent the server from replying, a remote procedure can return NULL

as its result, and the server code generated by rpcgen will detect this and

not send out a reply.

Here is an example of a procedure that replies only if it thinks it is an NFS

server:

void *

reply if_nfsserver()

{
char notnull; /* just here so we can use its address */

if (access(”/etc/exports”, F_OK) < 0) {

return (NULL); /* prevent RPC from replying */

}

/*

* return non-null pointer so RPC will send out a reply

*/

return ((void *)¬null);

Licensed Material - Property of Data General Corporation 5-1 3

Defining the RPC language

Note that if the procedure returns type void, it must return a non-NULL

pointer if it wants RPC to reply for it.

Passing information to server procedures

Server procedures will often want to know more about an RPC call than

just its arguments. For example, getting authentication information is

important to procedures that want to implement some level of security. This

extra information is actually supplied to the server procedure as a second

argument. Here is an example to demonstrate its use. What we’ve done

here is rewrite the previous printmessage_1() procedure to allow only root

users to print a message to the console.

int *

printmessage_ l1(msg, rq)

char **msg;

struct svc req *rq;

static in result; /* Must be static */

FILE *f;

struct suthunix_parms *aup;

aup = (struct authunix_parms *)rq->rq_clntcred;

if (aup->aup_uid != 0) {

result = 0;

return (&result);

}

/*

* Same code as before.

*/

Defining the RPC language

5-14

RPC language is an extension of XDR language. The only extension is the

addition of the program type. For a complete description of the XDR

language syntax, see Chapter 9 “External Data Representation Standard:

Protocol Specification.” For a description of the RPC extensions to the XDR

language, see Chapter 7 “Remote Procedure Calls: Protocol Specification.”

Because XDR language is so close to C, if you know C you know most of

XDR. We describe here the syntax of the RPC language, providing a few

examples along the way. We also show how the various RPC and XDR type

definitions get compiled into C type definitions in the output header file.

RPC definitions

An RPC language file consists of a series of definitions as shown below:

definition-list:

definition ";"

definition ”;” definition-list

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Defining the RPC language

It recognizes the following six types of definitions:

definition:

enum-definition

struct-definition

union-definition

typedef-definition

const-definition

program-—definition

XDR structures

An XDR struct is declared similar to its C counterpart. It looks like the

following:

struct-definition:

“struct” struct-ident "{"”

declaration-list
"yr"

declaration-list:

declaration ";"

declaration ";" declaration-list

As an example, here is an XDR structure to a two-dimensional coordinate,

and the C structure that it gets compiled into in the output header file:

struct coord { struct coord {

int x; --> int x;

int y; int y;

}; };
typedef struct coord coord;

The output is similar to the input, except that there is an added typedef

at the end of the output. This allows you to use coord instead of struct

coord when declaring items.

XDR unions

XDR unions are discriminated unions that look quite different from C

unions. They are more analogous to Pascal variant records than they are to

C unions. They look like the following:

union-definition:

“union” union-ident "switch” ”(” declaration ")” "{"

case-list
“yr

case-list:

"case" value ":" declaration ";"

"default” ”":" declaration ";”"”

"case" value ":” declaration ";”" case-list

Here is an example of a type that might be returned as the result of a read

data operation. If there is no error, return a block of data. Otherwise, don’t

return anything.

Licensed Material - Property of Data General Corporation 5-1 5

Defining the RPC language

union read result switch (int errno) {

case 0:

Opaque data[1024];

default:

void;

};

It gets compiled into the following:

struct read result {

int errno;

union {

char data[1024];

} read_result_u;

};
typedef struct read_result read _ result;

Notice that the union component of the output struct has the name as the

type name, except for the trailing _u.

Enumerations

XDR enumerations have the same syntax as C enumerations.

enum—-definition:

“enum” enum-ident "{”

enum-value-list
“yn

enum-value-list:

enum-value

enum-value ”,” enum-value-list

enum-value:

enum-value-ident

enum—-value-ident ”“"=" value

Here is a short example of an XDR enumeration and the C enumeration

that it gets compiled into.

enum colortype { enum colortype {

RED = 0, RED = 0,

GREEN = 1, -—> GREEN = 1,

BLUE = 2 BLUE = 2,

}; };
typedef enum colortype colortype;

XDR typedef

XDR typedefs have the same syntax as C typedefs as shown below:

typedef-definition:

"typedef” declaration

Here is an example that defines an fname _type used for declaring

filename strings that have a maximum length of 255 characters.

typedef string fname_type<255>; --> typedef char *fname_type;

5-1 6 Licensed Material - Property of Data General Corporation 093-701049-04

093-~-701049-04

Defining the RPC language

XDR constants

XDR constants are symbolic constants that may be used whenever an

integer constant is used (for example, in array size specifications).

const-definition:

“const” const-ident "=" integer

For example, the following defines a constant DOZEN equal to 12:

const DOZEN = 12; --> #define DOZEN 12

RPC programs

RPC programs are declared using the following syntax:

program—definition:

“program” program-ident "{"

version-list

"yy" "=" value

version-list:

version ";"

version ";" version-list

version:

“version” version-ident "{”

procedure-list

“}" "=" value

procedure-list:

procedure ";”"”

procedure ";" procedure-list

procedure:

type-ident procedure-ident ”"(” type-ident ”")” "=" value

For example, here is the time protocol:

/*

* time.x: Get or set the time. Time is represented as number

* of seconds since 0:00, January 1, 1970.

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET(void) = 1;

void TIMESET(unsigned) = 2;

} = 1;

} = 44;

This file compiles into #defines in the output header file:

#define TIMEPROG 44

#define TIMEVERS 1

#define TIMEGET 1

#define TIMESET 2

Licensed Material - Property of Data General Corporation 5-1 7

Defining the RPC language

XDR declarations

In XDR, there are only four kinds of declarations, shown below:

declaration:

simple-declaration

fixed-array-declaration

variable-array-—declaration

pointer-declaration

Kach type of declaration is discussed below.

1. Simple declarations are just like simple C declarations.

simple-declaration:

type-ident variable-ident

Example:

colortype color; --> colortype color;

2. Fixed-length array declarations are just like C array declarations:

fixed-array-—declaration:

type-ident variable-ident "[” value "]”

Example:

colortype palette[8]; --> colortype palette[8];

8. Variable-length array declarations have no explicit syntax in C, so XDR

invents its own using angle brackets.

variable-array-declaration:

type-ident variable-ident "<” value ">”

type-ident variable-ident "<" ">"

The maximum size is specified between the angle brackets. The size

may be omitted, indicating that the array may be of any size.

int heights<12>; /* at most 12 items */

int widths<>; /* any number of items */

Because variable-length arrays have no explicit syntax in C, these

declarations are actually compiled into structs. For example, the

heights declaration gets compiled into the following struct:

struct { |

u_int heights len; /* # of items in array */

int *heights val; /* pointer to array */

} heights;

Note that the number of items in the array is stored in the len

component, and the pointer to the array is stored in the val

component. The first part of each of these component’s names is the

same as the name of the declared XDR variable.

4. Pointer declarations are made in XDR exactly as they are in C. You

can’t really send pointers over the network, but you can use XDR

pointers for sending recursive data types such as lists and trees. The

type is actually called optional-data, not pointer, in XDR language.

5.18 Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Defining the RPC language

pointer-declaration:

type-ident "*” variable-ident

Example:

listitem *next; --> listitem *next;

Special cases

There are a few exceptions to the rules described above.

Booleans

Strings

C has no built-in Boolean type. However, the RPC library does have

a Boolean type called bool t that is either TRUE or FALSE.

Variables or expressions declared as type bool in XDR language

are compiled into bool_t in the output header file.

Example:

bool married; --> bool t married;

C has no built-in string type, but instead uses the null-terminated

char * convention. In XDR language, strings are declared using

the string keyword and are compiled into char * in the output

header file. The maximum size contained in the angle brackets

specifies the maximum number of characters allowed in the strings

(not counting the NULL character). The maximum size may be left

off, indicating a string of arbitrary length.

Examples:

string name<32>; --> char *name;

string longname<>; --> char *longname;

Opaque data

Voids

Opaque data is used in RPC and XDR to describe untyped data;

that is, sequences of arbitrary bytes. It may be declared as either a

fixed- or variable-length array.

Examples:

opaque diskblock[512]; --> char diskblock[512];

opaque filedata<1024>; --> struct {

u_int filedata_ len;

char *filedata_val;

} filedata;

In a void declaration, the variable is not named. The declaration is

just void and nothing else. Void declarations can occur in only two

places: union definitions and program definitions (as the argument

or result of a remote procedure).

End of Chapter

Licensed Material - Property of Data General Corporation 5-1 9

Remote Procedure Call protocol

programming guide

This chapter assumes that you have a working knowledge of network

theory. It is intended for programmers who wish to write network

applications using remote procedure calls (RPC) (explained below), and who

want to understand the RPC mechanisms usually hidden by the rpegen(1)

protocol compiler. rpegen is described in detail in the previous chapter, “An

rpegen Programming Guide.”

IMPORTANT Before you attempt to write a network application or

convert an existing non-network application to run over the network,

you should understand the material in this chapter. However, for most

applications, you can circumvent the need to cope with the details

presented here by using rpegen. The “Generating XDR routines”

section of the previous chapter contains the complete source for a

working RPC service—a remote directory listing-service that uses

rpegen to generate XDR routines as well as client and server stubs.

What are RPCs? Simply put, they are the high-level communications model

used in the operating system. RPC presumes the existence of low-level

networking mechanisms (such as TCP/IP and UDP/IP), and upon them it

implements a logical client-to-server communications system designed

specifically for the support of network applications. With RPC, the client

makes a procedure call to send a data packet to the server. When the packet

arrives, the server calls a dispatch routine, performs whatever service is

requested, sends back the reply, and the procedure call returns to the client.

Layers of RPC

093-701049-04

The RPC interface, is, in a sense, divided into three layers. (For a complete

specification of the routines in the RPC Library, see the rpc(3N) manual

page.) The layers are described below.

RPC’s highest layer

The highest layer is totally transparent to the operating system, machine,

and network upon which it is run. Think of this level as a way of using

RPC, rather than as a part of RPC proper. Programmers who write RPC

routines should make this layer available to others by way of a simple C

front-end interface that entirely hides the networking.

To illustrate, at this level a program can simply make a call to rnusers(), a

C routine that returns the number of users on a remote machine. Users are

not explicitly aware of using RPC—they simply call a procedure, just as they

would call malloc().

Licensed Material - Property of Data General Corporation 6-1

The RPC paradigm

RPC’s intermediate layer

The intermediate layer is RPC proper. Here, users don’t need to consider

details about sockets, the DG/UX system, or other low-level implementation

mechanisms. They simply make RPC calls to routines on other machines.

The selling point here is simplicity. The intermediate-layer routines are

used for most applications.

RPC calls are made with the system routines registerrpc(), callrpcQ, and

sve_run(). The first two of these are the most fundamental: registerrpc()

obtains a unique system-wide procedure-identification number, and

callrpe() actually executes an RPC. At the intermediate level, a call to

rnusers() is implemented by way of these two routines.

Because of its inflexibility (simplicity), the intermediate layer is,

unfortunately, rarely used in serious programming. It does not allow

time-out specifications or the choice of transport. It allows no DG/UX

system process control or flexibility in case of errors. It doesn’t support

multiple kinds of call authentication. The programmer rarely needs all

these kinds of control, but one or two are often necessary.

RPC’s lowest layer

The lowest layer does allow these details to be controlled by the

programmer, so it is often necessary. Programs written at this level are also

most efficient, but this is rarely a real issue—since RPC clients and servers

rarely generate heavy network loads.

Although this chapter discusses only the interface to C, RPCs can be made

from any language. Even though this chapter discusses RPC when it is

used to communicate between processes on different machines, it works

just as well for communication between different processes on the same

machine.

The RPC paradigm

This section shows how RPCs are used to communicate across a network.

Figure 6-1 shows how messages travel from one machine to another across

a network. The arrows indicate the path of the message from the client

program on Machine A to the server program on Machine B and back.

The dotted line separates Machine A from Machine B. The dashed lines

indicate part of the respective machines that are not on the path of the

message from the client program to the server program.

6-2 Licensed Material - Property of Data General Corporation 093-701049-04

Figure 6-1

Programming in the high and intermediate layers of RPC

Client ! Service |

Program , Daemon |

|

calirpe ! | Machine B

Function '

: Invoke

| Service

Machine A . Call
Service

Service

executes

return

Request

|

|

|

|

|

|

|

|

|

|

|

|

|

|

: Completed

|
Le return .

reply

Program

Continues

Network communication with the remote procedure call

Programming in the high and intermediate layers of RPC

093-701049-04

This section discusses how to program in the highest and the intermediate

layers of RPC.

Highest layer

Imagine youre writing a program that needs to know how many users are

logged in to aremote machine. You can do this by calling the RPC library

routine rnusers() as illustrated below:

Licensed Material - Property of Data General Corporation 6-3

Programming in the high and intermediate layers of RPC

6-4

Table 6-1

#include <stdio.h>

main(argce, argv)

int argc;

char **argv;

{
int num;

if (arge != 2) {

fprintf(stderr, "usage: rnusers hostname\n”);

exit(1);

}
if ((num = rnusers(argv[1])) < 0) {

fprintf(stderr, "error: rnusers\n”);

exit(-1);

}
printf(”"%d users on %s\n”, num, argv[1]);

exit(0);

}

RPC library routines such as rnusers() are in the RPC services library

librpesvc.a. Thus, the program above should be compiled with the

following command:

% cc program.c -lIrpesve .!

The rnusers() routine,like the other RPC library routines, is documented

in the manual pages. See the intro(3R) manual page for an explanation of

the documentation strategy for these services and their RPC protocols.

Table 6-1 lists some of the RPC service library routines available to the C

programmer:

RPC service library routines

Routine Description

rusers Returns information about users on remote machine.

rwall Writes to specified remote machines.

yppasswd Updates user password in Network Information Service.

Other RPC services—for example ether(), mount(), rquota(), and

spray()—are not available to the C programmer as library routines. They

do, however, have RPC program numbers so they can be invoked with

callrpc(), as discussed in the next section, “Intermediate layer.” The RPC

services have rpegen(1) protocol description files that can be compiled.

(The rpegen protocol compiler radically simplifies the process of developing

network applications. See Chapter 5, “An rpegen Programming Guide,” for

detailed information about rpegen and rpcegen protocol description files.)

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Programming in the high and intermediate layers of RPC

Intermediate layer

The simplest interface, which explicitly makes RPC calls, uses the functions

eallrpc() and registerrpe() With this method, the number of remote users

can be gotten as follows.

#include <stdio.h>

#include <rpc/rpc.h>

#include <utmp.h>

#include <rpcsvc/rusers.h>

Main(argc, argv)

int argc;

char **argv;

unsigned long nusers;

int stat;

if (arge != 2) {

fprintf(stderr, "usage: nusers hostname\n”);

exit(-1);

}
if (stat = callrpc(argv[{1],

RUSERSPROG, RUSERSVERS, RUSERSPROC_ NUM,

xdr_ void, 0, xdr_u_long, &nusers) != 0) {

clnt_perrno(stat) ;

exit(1);

}
printf(”"%td users on %s\n”, nusers, argv[1]);

exit(0);

}

Each RPC procedure is uniquely defined by a program number, version

number, and procedure number. The program number specifies a group of

related remote procedures, each of which has a different procedure number.

Kach program also has a version number, so when a minor change is made

to a remote service (adding a new procedure, for example), a new program

number doesn’t have to be assigned. When you want to call a procedure to

find the number of remote users, you look up the appropriate program,

version, and procedure numbers in a manual, just as you look up the name

of amemory allocator when you want to allocate memory.

The simplest way of making RPCs is with the RPC library routine

callrpc(). It has eight parameters. The first is the name of the remote

server machine. The next three parameters are the program, version, and

procedure numbers—together they identify the procedure to be called. The

fifth and sixth parameters are an XDR filter and an argument to be

encoded and passed to the remote procedure. The final two parameters are

an XDR filter for decoding the results returned by the remote procedure

and a pointer to the place where the procedure’s results are to be stored.

Multiple arguments and results are handled by embedding them in

structures. If callrpe() completes successfully, it returns zero; otherwise, it

returns a nonzero value. The return codes (of type cast into an integer) are

found in rpe/cint.h.

Licensed Material - Property of Data General Corporation 6-5

Programming in the high and intermediate layers of RPC

Because data types may be represented differently on different machines,

callrpc() needs both the type of the RPC argument, as well as a pointer to

the argument itself (and similarly for the result). For

RUSERSPROC NUM, the return value is an unsigned long, so callrpcQ

has xdr_u_long() as its first return parameter, which says that the result

is of type unsigned long and &nusers as its second return parameter,

which is a pointer to where the long result will be placed. Because

RUSERSPROC_NUM takes no argument, the argument parameter of

eallrpc() is xdr_void(.

If callrpe() gets no answer after trying several times to deliver a message,

it returns with an error code. The delivery mechanism is UDP, which

stands for User Datagram Protocol. Methods for adjusting the number of

retries or for using a different protocol require you to use the lower layer of

the RPC library, discussed later in this chapter. The remote-server

procedure corresponding to the above might look like the following:

char *

nuser(indata)

char *indata;

{
unsigned long nusers;

/*

* Code here to compute the number of users

* and place result in variable nusers.

*/

return((char *)&nusers);

}

The procedure takes one argument, which is a pointer to the input of the

RPC (ignored in our example), and it returns a pointer to the result. In both

versions of C running on AViiON® systems, character pointers are the

generic pointers, so both the input argument and the return value are cast

to char *.

Normally, a server registers all of the RPC calls it plans to handle and then

goes into an infinite loop, waiting to service requests. In the following

example, there is only a single procedure to register, so the main body of the

server would look like this:

6-6 Licensed Material - Property of Data General Corporation 093-701049-04

Programming in the high and intermediate layers of RPC

#include <stdio.h>

#include <rpc/rpc.h>

#include <utmp.h>

#include <rpcsvc/rusers.h>

char *nuser();

main()

{
registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_ NUM,

nuser, xdr_void, xdr_u_long);

svc_run(); /* Never returns */

fprintf(stderr, "Error: svc_run returned!\n”);

exit(1);

The registerrpe() routine registers a C procedure as corresponding to a

given RPC procedure number. The first three parameters, RUSERPROG,

RUSERSVERS, and RUSERSPROC_NUM are the program, version, and

procedure numbers of the remote procedure to be registered; nuser() is the

name of the local procedure that implements the remote procedure; and

xdr_void() and xdr_u_long() are the XDR filters for the remote

procedure’s arguments and results, respectively. (Multiple arguments or

multiple results are passed as structures.)

Only the UDP transport mechanism can use registerrpc(); thus, it is

always safe in conjunction with calls generated by callrpc(.

CAUTION The UDP transport mechanism can deal only with arguments and results

less than 8 Kbytes in length.

After registering the local procedure, the server program’s main procedure

calls sve_run(), the RPC library’s remote procedure dispatcher. It is this

function that calls the remote procedures in response to RPC call messages.

Note that the dispatcher takes care of decoding remote procedure

arguments and encoding results, using the XDR filters specified when the

remote procedure was registered.

Assigning program numbers

Program numbers are assigned in groups of 0x20000000 , according to the

following chart:

0x0 through Ox1lfffffff Defined by Sun Microsystems,Inc.

0x20000000 through Ox3fffffff Defined by customer

0x40000000 through Ox5fffffff Used temporarily by vendors

0x60000000 through Ox7fffffff Reserved

0x80000000 through Ox9fffffff Reserved

0xa0000000 through Oxbfffffff Reserved

0xc0000000 through Oxdfffffff Reserved

Oxe0000000 through Oxffffffff Reserved

093-701049-04 Licensed Material - Property of Data General Corporation 6-7

Programming in the high and intermediate layers of RPC

Table 6-2

Sun Microsystems, Inc., administers the first group of numbers, which

should be identical for all RPC users. The second group of numbers is

reserved for specific customer applications. The third group is used

temporarily for applications that generate program numbers dynamically.

The final groups are reserved by Sun Microsystems, Inc., for future use;

they should not be used.

To add an application to the first range and have Sun Microsystems, Inc.

define a number for it, send a request by network mail to rpe@sun or write

to:

RPC Administrator

Sun Microsystems, Inc.

2550 Garcia Ave.

Mountain View, CA 94043

Please include a .x file describing your protocol that can be compiled by

rpegen. You will be given a unique program number in return.

The RPC program numbers and protocol specifications of standard RPC

services can be found in the include files in /usr/include/rpesve. These

services, however, constitute only a small subset of those that have been

registered. The complete list of registered programs, as of the time when

this manual was printed, is provided in Table 6-2.

RPC registered programs

RPC Number Program Description

100000 PMAPPROG portmapper

100001 RSTATPROG remote stats

100002 RUSERSPROG remote users

100003 NFSPROG NFS

100004 YPPROG Network Information Service

100005 MOUNTPROG mount daemon

100006 DBXPROG remote dbx

100007 YPBINDPROG yp binder

100008 WALLPROG shutdown msg

100009 YPPASSWDPROG yppasswd server

100010 ETHERSTATPROG ether stats

100011 RQUOTAPROG disk quotas

100012 SPRAYPROG spray packets

100013 IBM3270PROG 3270 mapper

100014 IBMRJEPROG RJE mapper

Continued

Licensed Material - Property of Data General Corporation 093-701049-04

Programming in the high and intermediate layers of RPC

Table 6-2 RPC registered programs

RPC Number Program Description

100015 SELNSVCPROG selection service

100016 RDATABASEPROG remote database access

100017 REXECPROG remote execution

100018 ALICEPROG Alice Office Automation

100019 SCHEDPROG scheduling service

100020 LOCKPROG local lock manager

100021 NETLOCKPROG network lock manager

100022 X25PROG x.25 inr protocol

100023 STATMON1PROG status monitor 1

100024 STATMON2PROG status monitor 2

100025 SELNLIBPROG selection library

100026 BOOTPARAMPROG boot parameters service

100027 MAZEPROG mazewars game

100028 YPUPDATEPROG yp update

100029 KEYSERVEPROG key server

100030 SECURECMDPROG secure login

100031 NETFWDIPROG nfs net forwarder init

100032 NETFWDTPROG nfs net forwarder trans

100033 SUNLINKMAP_PROG sunlink MAP

100034 NETMONPROG network monitor

100035 DBASEPROG lightweight database

100036 PWDAUTHPROG password authorization

100037 TFSPROG translucent file svc

100038 NSEPROG nse server

100039 NSE_ACTIVATE_PROG nse activate daemon

150001 PCNFSDPROG pc passwd authorization

200000 PYRAMIDLOCKINGPROG Pyramid-locking

200001 PYRAMIDSYS5 Pyramid-sys5

200002 CADDS_IMAGE CV cadds_image

300001 ADT_RFLOCKPROG ADT file locking

093-701049-04 Licensed Material - Property of Data General Corporation 6-9

Programming in the high and intermediate layers of RPC

6-10

Passing arbitrary data types

In the previous example, the RPC call passes a single unsigned long. RPC

can handle arbitrary data structures, regardless of different machines’ byte

orders or structure layout conventions, by always converting them to a

network standard called external data representation (XDR) before sending

them over the wire. The process of converting from a particular machine

representation to XDR format is called serializing, and the reverse process

is called deserializing. The type field parameters of callrpeQ and

registerrpc() can be a built-in procedure, such as xdr_u_long() in the

previous example, or a user-supplied one. XDR has the built-in type

routines shown below (see xdr(3N)).

xdr_int() xdr_u_int() xdr_enum()

xdr_long() xdr_u_long() xdr_bool()

xdr_short() xdr_u_short() xdr_wrapstring()

xdr_char() xdr_u_char()

Note that the routine xdr_string() exists but cannot be used with callrpcQ

and registerrpc(), which pass only two parameters to their XDR routines.

xdr_wrapstring() has only two parameters, and is thus okay. It calls

xdr_string().

An example of a user-defined type routine using callrpc(, is as follows.

First, you could send the following structure:

struct simple {

int a;

short b;

} simple;

Second, you would call callrpe(as follows:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,

xdr_ simple, &simple ...);

Last, you could write xdr_simple(), as follows:

#include <rpc/rpc.h>

xdr_simple(xdrsp, simplep)

XDR *xdrsp;

struct simple *simplep;

{
if (!xdr_int(xdrsp, &simplep->a))

return (0);

if (!xdr_short(xdrsp, &simplep->b))

return (0);

return (1);

}

An XDR routine returns nonzero (true in the sense of C) if it completes

successfully, and zero otherwise. We provide a few implementation

examples here. For a complete description of XDR, see Chapter 8 “External

Data Representation Standard: DG Technical Notes.”

Licensed Material - Property of Data General Corporation 093~701049-04.

093-701049-04

Programming in the high and intermediate layers of RPC

In addition to the built-in primitives, there are also the prefabricated

building blocks listed below (see xdr(8N)):

xdr_array() xdr_bytes() xdr_reference()

xdr_vector() xdr_union() xdr_ pointer ()

xdr_string() xdr_opaque()

To send a variable array of integers, you might package them up as a

structure like the following:

struct varintarr {

int *data;

int arrlnth;

} arr;

Then make an RPC call such as this one:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,

xdr varintarr, &arr...);

with xdr_varintarr() defined like so:

xdr_ varintarr(xdrsp, arrp)

XDR *xdrsp;

struct varintarr *arrp;

return (xdr_array(xdrsp, &arrp->data, &arrp->arrlinth,

MAXLEN, sizeof(int), xdr_int));

This routine takes as parameters the XDR handle, a pointer to the array, a

pointer to the size of the array, the maximum allowable array size, the size

of each array element, and an XDR routine for handling each array

element.

If you know the size of the array in advance, you can use xdr vector(,

which serializes fixed-length arrays. This routine can be used like the

following:

int intarr[SIZE];

xdr_intarr(xdrsp, intarr)

XDR *xdrsp; —

int intarr[];

int i;

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int),

xdr_int));

Licensed Material - Property of Data General Corporation 6-1 1

Programming in the lowest layer of RPC

XDR always converts quantities to 4-byte multiples when serializing. Thus,

if either of the examples above involved characters instead of integers, each

character would occupy 32 bits. That is the reason for the XDR routine

xdr_bytes(), which is like xdr_array() except that it packs characters;

xdr_bytes() has four parameters, similar to the first four parameters of

xdr _array(). For null-terminated strings, there is also the xdr_string()

routine, which is the same as xdr_bytes() without the length parameter.

On serializing, it gets the string length from strlen(, and on de-serializing

it creates a null-terminated string.

Here is a final example that calls the previously written xdr_simple() as

well as the built-in functions xdr_string() and xdr_reference(), which

chases pointers:

struct finalexample {

char *string;

struct simple *simplep;

} finalexample;

xdr finalexample(xdrsp, finalp)

XDR *xdrsp;

struct finalexample *finalp;

{

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))

return (0);

if (!xdr_reference(xdrsp, &finalp->simplep,

sizeof(struct simple), xdr_simple);

return (0);

return (1);

}

Note that we could as easily call xdr_simple() here instead of

xdr_ reference().

Programming in the lowest layer of RPC

In the examples given so far, RPC has automatically taken care of many

details for you. In this section, we'll show you how you can change the

defaults by using lower layers of the RPC library. It is assumed that you are

familiar with sockets and the system calls for dealing with them. If you are

not familiar with the socket interface, see Programming with TCP/IP on

the DG/UXTM System.

6-12 Licensed Material - Property of Data General Corporation 093-701049-04

Programming in the lowest layer of RPC

There are several occasions when you may need to use lower layers of RPC.

First, you may need to use TCP, because the higher layer uses UDP, which

restricts RPC calls to 8 Kbytes of data. Using TCP permits calls to send

long streams of data. For an example, see the section called “Using TCP”

later in this chapter. Second, you may want to allocate and free memory

while serializing or de-serializing with XDR routines. There is no call at the

higher level to let you free memory explicitly. For more explanation, see the

upcoming section called “Memory allocation with XDR.” Third, you may

need to perform authentication on either the client or server side, by

supplying credentials or verifying them. See the explanation in

“Authentication with RPC” later in this chapter.

RPC on the server

The server for the nusers() program shown below does the same thing as

the one using registerrpc() above, but it is written using a lower layer of

the RPC package:

#include <stdio.h>

#include <rpc/rpc.h>

#include <utmp.h>

#include <rpcsvc/rusers.h>

main()

{
SVCXPRT *transp;

int nuser();

transp = svcudp create(RPC_ANYSOCK);

if (transp == NULL) {

fprintf(stderr, "can’t create an RPC server\n”);

exit(1);

}
pmap_unset(RUSERSPROG, RUSERSVERS) ;

if (!svc_register(transp, RUSERSPROG, RUSERSVERS,

nuser, IPPROTO_UDP)) {

fprintf(stderr, "can’t register RUSER service\n”);

exit(1);

}

svc_run(); /* Never returns */

fprintf(stderr, “should never reach this point\n”);

}
nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

093-701049-04 Licensed Material - Property of Data General Corporation 6-1 3

Programming in the lowest layer of RPC

6-14

unsigned long nusers;

switch (rqstp->rq_proc) {

case NULLPROC:

if (!svc_sendreply(transp, xdr void, 0))

fprintf(stderr, "can’t reply to RPC

call\n”);

return;

case RUSERSPROC_NUM:

/*

* Code here to compute the number of users

* and assign it to the variable nusers

*/

if (!svc_sendreply(transp, xdr_u_long, &nusers))

fprintf(stderr, "can’t reply to RPC

call\n”);

return;

default:

svcerr noproc(transp);

return;

}

}

First, the server gets a transport handle, which is used for receiving and

replying to RPC messages. registerrpc() uses svcudp create() to get a

UDP handle. If you require a more reliable protocol, call svetep_create()

instead. If the argument to svcudp_create() is RPC_ANYSOCK, the RPC

library creates a socket on which to receive and reply to RPC calls.

Otherwise, svcudp_create() expects its argument to be a valid socket

number. If you specify your own socket, it can be bound or unbound. If it is

bound to a port by the user, the port numbers of svcudp_create() and

clnttcp_create() (the low-level client routine) must match.

If the user specifies the RPC_ANYSOCK argument, the RPC library

routines will open sockets. Otherwise they will expect the user to do so. The

routines svcudp_create() and clntudp create() will cause the RPC

library routines to run the bind system call on their socket if it is not

bound already.

A service may choose to register its port number with the local port mapper

service. This is done by specifying a non-zero protocol number in

svc_register(). Incidentally, clients can discover the server’s port number

by consulting the port mapper on their server’s machine. This can be done

automatically by specifying a zero port number in clntudp_create() or

elnttcp_create().

After you create an SVCXPRT, the next step is to call pmap_unset() so

that if the nusers() server crashed earlier, any previous trace of it is erased

before restarting. More precisely, pmap_unset() erases the entry for

RUSERSPROG from the port mapper’s tables.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Programming in the lowest layer of RPC

Finally, we associate the program number for nusers() with the procedure

nuser(). The final argument to svc_register() is normally the protocol

being used, which, in this case, is IPPROTO UDP. Notice that, unlike

registerrpc(), there are no XDR routines involved in the registration

process. Also, registration is done on the program, rather than procedure

level.

The user routine nuser() must call and dispatch the appropriate XDR

routines based on the procedure number. Note that two things are handled

by nuser() that registerrpc() handles automatically. The first is that the

procedure NULLPROC (currently zero) returns with no results. This can be

used as a simple test for detecting whether a remote program is running.

Second, there is a check for invalid procedure numbers. If one is detected,

svcerr_noproc() is called to handle the error.

The user service routine serializes the results and returns them to the RPC

caller via svc_sendreply(). Its first parameter is the SVCXPRT handle, the

second is the XDR routine, and the third is a pointer to the data to be

returned. Not illustrated above is the way a server handles an RPC

program that receives data. As an example, we can add a procedure

RUSERSPROC_BOOL , which has an argument nusers() and returns

TRUE or FALSE depending on whether there are nusers logged in. It would

look like this:

case RUSERSPROC_BOOL: {

int bool;

unsigned nuserquery;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {

svcerr decode(transp) ;

return;

}
/*

* Code to set nusers = number of users

*/

if (nuserquery == nusers)

bool = TRUE;

else

bool = FALSE;

if (!svc_sendreply(transp, xdr_bool, &bool)) {

fprintf(stderr, "can’t reply to RPC call\n”);

return (1);

}
return;

The relevant routine is sve_getargs() which takes an SVCXPRT handle,

the XDR routine, and a pointer to where the input is to be placed as

arguments.

Licensed Material - Property of Data General Corporation 6-1 5

Programming in the lowest layer of RPC

6-16

Memory allocation with XDR

XDR routines not only handle input and output, they also handle memory

allocation. This is why the second parameter of xdr_array() is a pointer to

an array, rather than the array itself. If it is NULL, then xdr_array(Q

allocates space for the array and returns a pointer to it, putting the size of

the array in the third argument. As an example, consider the following

XDR routine, xdr_chararr1(), which deals with a fixed array of bytes with

length SIZE.

xdr_chararrl(xdrsp, chararr)

XDR *xdrsp;

char chararr[];

{
char *p;

int len;

p = chararr;

len = SIZE; return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

If space has already been allocated in chararr(, it can be called from a

server like this:

char chararr[SIZE];

svc_getargs(transp, xdr_chararrl, chararr);

If you want XDR to do the allocation, you would have to rewrite this routine

in the following way:

xdr_chararr2(xdrsp, chararrp)

XDR *xdrsp;

char **chararrp;

{
int len;

len = SIZE;

return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

Then the RPC call might look like this:

char *arrptr;

arrptr = NULL;

svc _getargs(transp, xdr_chararr2, &arrptr);

/*

* Use the result here

*/

svc freeargs(transp, xdr_chararr2, &arrptr);

Note that, after being used, the character array can be freed with

sve_freeargs(). svc _freeargs() will not attempt to free any memory if the

variable indicating it is NULL. For example, in the routine

xdr finalexample(), given in the section “Passing arbitrary data types”

earlier in this chapter, if finalp->string were NULL, then it would not be

freed. The same is true for finalp->simplep.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Programming in the lowest layer of RPC

To summarize, each XDR routine is responsible for serializing,

deserializing, and freeing memory. When an XDR routine is called from

callrpe(), the serializing part is used. When called from svc_getargs(), the

deserializer is used. And when called from svc_freeargs(), the memory

deallocator is used. When building simple examples like those in this

section, a user doesn’t have to worry about the three modes. See Chapter 8,

“External Data Representation: DG Technical Notes,” for examples of more

sophisticated XDR routines that determine which of the three modes they

are in and adjust their behavior accordingly.

RPC on the client

When you use callrpe() you have no control over the RPC delivery

mechanism or the socket used to transport the data. To illustrate the layer

of RPC that lets you adjust these parameters, consider the following code to

call the nusers service:

Licensed Material - Property of Data General Corporation 6-1 7

Programming in the lowest layer of RPC

#include <stdio.h>

#include <rpc/rpc.h>

#include <utmp.h>

#include <rpcsvc/rusers.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netdb.h>

Main(arge, argv)

int argc;

char **argv;

struct hostent *hp;

struct timeval pertry timeout, total timeout;

struct sockaddr_in server_addr;

int sock = RPC_ANYSOCK;

register CLIENT *client;

enum clnt_stat clnt_stat;

unsigned long nusers;

if (arge != 2) {

fprintf(stderr, "usage: nusers hostname\n”);

exit(-1);

}
if ((hp = gethostbyname(argv[1])) == NULL) {

fprintf(stderr, "can’t get addr for %s\n”,argv[1]);

exit(-1);

}
pertry timeout.tv_sec = 3;

pertry timeout.tv_usec = 0;

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,

hp->h_length) ;

server _addr.sin_ family = AF_INET;

server _addr.sin_port = 0;

if ((client = clntudp_create(&server_addr,

RUSERSVERS, pertry timeout, &sock))

RUSERSPROG,

== NULL) {

clnt_pcreateerror(”clntudp create”);

exit(-1);

}

total timeout.tv_sec = 20;

total timeout.tv_usec = 0;

clnt_stat = clnt_call(client, RUSERSPROC_NUM,

0, xdr_u_long, &nusers, total timeout);

if (clnt_stat != RPC SUCCESS) {

clnt_perror(client, “rpc”);

exit(-1);

}
clnt destroy(client);

close(sock);

exit(0);

The low-level version of callrpc() is clnt_callQ, which takes a CLIENT

pointer rather than a hostname. The parameters to clnt_call() are a

CLIENT pointer, the procedure number, the XDR routine for serializing the

argument, a pointer to the argument, the XDR routine for deserializing the

return value, a pointer to where the return value will be placed, and the

time (in seconds) to wait for a reply.

6-1 8 Licensed Material - Property of Data General Corporation

Other RPC features

The CLIENT pointer is encoded with the transport mechanism. callrpce()

uses UDP, thus it calls clntudp_create() to get a CLIENT pointer. To get

TCP (Transmission Control Protocol), you would use elnttep_create(..

The parameters to clntudp_create() are the server address, the program

number, the version number, a time-out value (between tries), and a pointer

to a socket. The final argument to clnt_call(Q is the total time to wait for a

response. Thus, the number of tries is the clnt_callQ time-out divided by

the clntudp _create() time-out.

Note that the clnt_destroy() call always deallocates the space associated

with the CLIENT handle. If the socket associated with the CLIENT handle

was opened by the RPC library, clnt_destroy() closes the socket. However,

if the socket was opened by the user, it stays open. This makes it possible,

in cases where there are multiple client handles using the same socket, to

destroy one handle without closing the socket that other handles are using.

To make a stream connection, the call to clntudp_create() is replaced with

a call to cInttcp_create(), as shown below.

clnttcp create(&server_ addr, prognum, versnum, &sock,

inputsize, outputsize);

There is no time-out argument; instead, the receive and send buffer sizes

must be specified. When the clnttcp_create() call is made, a TCP

connection is established. All RPC calls using that CLIENT handle would

use this connection. The server side of an RPC call using TCP has

svcudp create() replaced by svctcp_create().

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

The last two arguments to svctcp_create() are send and receive sizes

respectively. If zero is specified for either of these, the system chooses a

reasonable default.

Other RPC features

093-701049-04

This section discusses some other aspects of RPC that are occasionally

useful.

Using select on the server

Suppose a process is processing RPC requests while performing some other

activity. If the other activity involves periodically updating a data structure,

the process can set an alarm signal before calling svc_run(). But if the

other activity involves waiting for a file descriptor, the svc_run() call won’t

work. The code for svc_run() is as follows:

Licensed Material - Property of Data General Corporation 6-1 9

Other RPC features

void

Ssvc_run()

t
fd_set readfds;

int dtbsz = getdtablesize();

for (77) {
readfds = svc fds;

Switch (select(dtbsz, &readfds, NULL,NULL,NULL)) {

case -1:

if (errno == EINTR)

continue;

perror(”select”);

return;

case 0:

break;

default:

svc_getreqset(&readfds);

}

}

You can bypass sve_run() and call sve_getreqset() yourself. All you need

to know are the file descriptors of the socket(s) associated with the

programs you are waiting for. Thus you can have your own select() that

waits on both the RPC socket, and your own descriptors. Note that

sve_fds() is a bit mask of all the file descriptors that RPC is using for

services. It can change every time any RPC library routine is called,

because descriptors are constantly being opened and closed, for example for

TCP connections.

Broadcast RPC

The port mapper is a daemon that converts RPC program numbers into

DARPA protocol port numbers; see the portmap(1M) man page. You can’t

do broadcast RPC without the port mapper. Here are the main differences

between broadcast RPC and regular RPC calls:

1. Regular RPC expects one answer, whereas broadcast RPC expects many

answers (one or more answers from each responding machine).

2. Broadcast RPC can be supported only by packet-oriented

(connectionless) transport protocols like UDP/IP.

3. The implementation of broadcast RPC treats all unsuccessful responses

as garbage by filtering them out. Thus, if there is a version mismatch

between the broadcaster and a remote service, the user of broadcast

RPC never knows.

4. All broadcast messages are sent to the portmap port. Thus, only

services that register themselves with their port mapper are accessible

via the broadcast RPC mechanism.

5. Broadcast requests are limited in size to the MTU (Maximum Transfer

Unit) of the local network. For Ethernet, the MTU is 1500 bytes.

6-20 Licensed Material - Property of Data General Corporation 093-701049-04

Other RPC features

Broadcast RPC interface

Broadcast RPC can be used as follows:

#include <rpc/pmap clnt.h>

enum clnt_stat clnt_stat;

clnt_stat = clnt_broadcast(prognum, versnum, procnum,

inproc, in, outproc, out, eachresult)

u_long prognum; /* program number */

u_long versnum; /* version number */

u_long procnum; /* procedure number */

xdrproc t inproc; /* xdr routine for args */

caddr tin; /* pointer toargs */

xdrproc t outproc; /* xdr routine for results */

caddr tout; /* pointer to results */

bool t (*eachresult)();/* call with each result gotten */

The procedure eachresult() is called each time a valid result is obtained. It

returns a Boolean response that indicates whether or not the user wants

more responses.

bool t done;

done = eachresult(resultsp, raddr)

caddr_t resultsp;

struct sockaddr in *raddr; /* Addr ofresponding machine */

If done is TRUE, then broadcasting stops and clnt_broadcast() returns

successfully. Otherwise, the routine waits for another response. The request

is rebroadcast after a few seconds of waiting. If no responses come back, the

routine returns with RPC_TIMEDODT .

Batching in RPC

The RPC architecture is designed so that clients send a call message and

wait for servers to reply that the call has succeeded. This implies that

clients do not compute while servers are processing a call. This is inefficient

if the client does not want or need an acknowledgement for every message

sent. RPC batch facilities allow you to continue computing while waiting for

a response.

093-701049-04 Licensed Material - Property of Data General Corporation 6-21

Other RPC features

6-22

RPC messages can be placed in a pipeline of calls to a desired server; this is

called batching. Batching assumes that: 1) each RPC call in the pipeline

requires no response from the server, and the server does not send a

response message; and 2) the pipeline of calls is transported on a reliable

byte stream transport such as TCP/IP. Because the server does not respond

to every call, the client can generate new calls in parallel with the server

executing previous calls. Furthermore, the TCP/IP implementation can

buffer up many call messages, and send them to the server in one write()

system call. This overlapped execution greatly decreases the interprocess

communication overhead of the client and server processes, and the total

elapsed time of a series of calls.

Because the batched calls are buffered, the client should eventually doa

nonbatched call in order to flush the pipeline.

A contrived example of batching follows. Assume a string-rendering service

(such as a window system) has two similar calls: one renders a string and

returns void results, while the other renders a string and remains silent.

The service (using the TCP/IP transport) may look like the following.

#include <stdio.h>

#include <rpc/rpc.h>

void windowdispatch();

main()

{
SVCXPRT *transp;

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

if (transp == NULL) {

fprintf(stderr, "can’t create an RPC server\n”);

exit(1);

}
pmap_ unset(WINDOWPROG, WINDOWVERS) ;

if (!svc_register(transp, WINDOWPROG, WINDOWVERS,

windowdispatch, IPPROTO_TCP)) {

fprintf(stderr, "can’t register WINDOW service\n”);

exit(1);

}

svc_run(); /* Neverreturns */

fprintf(stderr, "should never reach this point\n”);

void windowdispatch(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

char *s = NULL;

switch (rqstp->rq_proc) {

case NULLPROC:

if (!svce_sendreply(transp, xdr_ void, 0))

fprintf(stderr, "can’t reply to RPC

call\n”);

return;

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Other RPC features

case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, “can’t decode arguments\n”);
/*

* Tell caller he screwed up

*/

svcerr decode(transp) ;

break;

}
/*

* Code here to render the string s

* /

if (!svc_sendreply(transp, xdr_ void, NULL))

fprintf(stderr, "can’t reply to RPC

call\n”);

break;

case RENDERSTRING BATCHED:

if (!svc_getargs(transp, xdr_ wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n”);
/*

* We are silent in the face of protocol

* errors

x /

break;

}
/*

* Code here to render string s, but send no reply!

*/

break;

default:

svcerr noproc(transp);

return;

}
/*

* Now free string allocated while decoding arguments

*/

svc_freeargs(transp, xdr_wrapstring, &s);

Of course the service could have one procedure that takes the string and a

Boolean test to indicate whether or not the procedure should respond.

For a client to take advantage of batching, the client must perform RPC

calls on a TCP-based transport, and the actual calls must have the

following attributes: 1) the result’s XDR routine must be zero (NULL), and

2) the RPC call’s time-out must be zero.

The following is an example of a client that uses batching to render a

number of strings; the batching is flushed when the client gets a null string

(EOF).

Licensed Material - Property of Data General Corporation 6-23

Other RPC features

#include <stdio.h>

#include <rpc/rpc.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netdb.h>

Main(arge, argv)

int argc;

char **argv;

struct hostent *hp;

struct timeval pertry timeout, total_timeout;

struct sockaddr_in server_addr;

int sock = RPC_ANYSOCK;

register CLIENT *client;

enum clnt_stat clnt_stat;

char buf[1000], *s = buf;

if (({client = clnttcp create(&server_addr,

WINDOWPROG, WINDOWVERS, &sock, 0, 0)) == NULL) {

perror(”clnttcp create”);

exit(-1);

}
total timeout.tv_sec = 0;

total timeout.tv_usec = 0;

while (scanf("%s”, s) != EOF) {

clnt_ stat = clnt_call(client, RENDERSTRING_BATCHED,

xdr_wrapstring, &s, NULL, NULL,

total timeout) ;

if (clnt_stat != RPC SUCCESS) {

clnt_perror(client, “batched rpc”);

exit(-1);

}

/* Now flush the pipeline */

total timeout.tv_sec = 20;

clnt_ stat = clnt_call(client, NULLPROC, xdr_void, NULL,

xdr_ void, NULL, total_timeout) ;

if (clnt_stat != RPC SUCCESS) {

clnt_perror(client, "rpc”);

exit(-1);

}
clnt_destroy(client) ;

exit(0);

Because the server sends no message, the clients cannot be notified of any

of the failures that may occur. Therefore, clients are on their own when it

comes to handling errors.

6-24 Licensed Material - Property of Data General Corporation 093-701049-04

Other RPC features

Authentication with RPC

In the examples presented so far, the caller never identified itself to the

server, and the server never required an ID from the caller. Clearly, some

network services, such as a network file system, require stronger security

than what has been presented so far.

In reality, every RPC call is authenticated by the RPC package on the

server; and similarly, the RPC client package generates and sends

authentication parameters. Just as different transports (TCP/IP or UDP/IP)

can be used when creating RPC clients and servers, different forms of

authentication can be associated with RPC clients; the default

authentication type used as a default is type none.

The authentication subsystem of the RPC package is open-ended. That is,

numerous types of authentication are easy to support.

UNIX authentication

This section discusses how UNIX authentication is handled from both client

and server sides.

UNIX Authentication on the Client

The caller can create a new RPC client handle like the following.

clnt = clntudp create(address, prognum, versnum,

wait, sockp)

After the handle is created, the appropriate transport instance defaults the

associated authentication handle to be the following.

clnt->cl_auth = authnone_create();

The RPC client can choose to use UNIX style authentication by setting

clnt->cl_auth after creating the RPC client handle like this:

clnt->cl_auth = authunix_create default();

This causes each RPC call associated with clnt to carry with it the

following authentication credentials structure:

/*

* UNIX style credentials.

* /

struct authunix_parms {

u_long aup_time; /* credentials creation time */

char *aup machname; /* host name where client is */

int aup_ uid; /* chent’s UNIX effective uid */

int aup gid; /* chent’s current group id */

u_int up _len; /* element length of aup_gids */

int *aup gids; /* array of groups user isin */ };

093-701049-04 Licensed Material - Property of Data General Corporation 6-25

Other RPC features

6-26

These fields are set by authunix_create_default() by invoking the

appropriate system calls. Because the RPC user created this new style of

authentication, the user is responsible for destroying it with the following:

auth _destroy(clnt->cl_ auth);

This should be done in all cases, to conserve memory.

UNIX Authentication on the Server

Service implementors have a more difficult time dealing with

authentication issues, because the RPC package passes to the service

dispatch routine a request that has an arbitrary authentication style

associated with it. Consider the following fields of a request handle passed

to a service dispatch routine.

/*

* An RPC Service request

* /

struct svc _ req {

u_long rq prog; /* service program number */

u_long rq_vers; /* service protocol versnum */

u_long rq proc; /* desired procedure number */

struct opaque auth rq cred; /* raw credentials from wire */

caddr t rq_clntcred; /* credentials (read only) */

};

The rq_cred is mostly opaque, except for one field of interest:

/*

* Authentication info. Mostly opaque to the programmer.

*/

struct opaque auth {

enum t oa flavor; /* style of credentials */

caddr_ t oa_base; /* address of more auth stuff */

u_int oa_length; /* not to exceed MAX AUTH BYTES */};

The RPC package guarantees the following to the service dispatch routine:

1. The request’s rq_cred is well formed. Thus the service implementor

may inspect the request’s rq_cred.oa_flavor to determine which style

of authentication the caller used. The service implementor may also

wish to inspect the other fields of rq_cred if the style is not one of the

styles supported by the RPC package.

2. The request’s rq_clntcred field is either NULL or points to a well

formed structure that corresponds to a supported style of

authentication credentials. Remember that only the UNIX system style

is currently supported, so (currently) rq_clntcred could be cast to a

pointer to an authunix_parms structure. If rq_clntcred is NULL, the

service implementor may wish to inspect the other (opaque) fields of

rq_cred in case the service knows about a new type of authentication

that the RPC package does not know about.

Licensed Material - Property of Data General Corporation 093~701049-04

093-701049-04

Other RPC features

Our remote user’s service example can be extended so that it computes

results for all users except UID 16:

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{
struct authunix parms *unix_cred;

int uid;

unsigned long nusers;

/*

* we don’t care about authentication for null proc

*/

if (rqstp->rq_ proc == NULLPROC) {

if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "can’t reply to RPC

call\n”);

return (1);

}
return;

}
/*

* now get the uid

*/

switch (rqstp->rq_cred.oa_ flavor) {

case AUTH UNIX:

unix cred =

(struct authunix parms *)rqstp->rq_clntcred;

uid = unix _cred->aup_uid;

break;

case AUTH NULL:

default:

svcerr weakauth(transp) ;

return;

}
switch (rqstp->rq_proc) {

case RUSERSPROC_ NUM:

/*

* make sure caller is allowed to call this proc

*/

if (uid == 16) {

svcerr systemerr(transp) ;

return;

Licensed Material - Property of Data General Corporation 6-27

Other RPC features

6-28

/*

* Code here to compute the number of users

* and assign it to the variable nusers

*/

if (!svc_sendreply(transp, xdr_u_long, &nusers)) {

fprintf(stderr, "can’t reply to RPC

call\n”);

return (1);

}
return;

default:

svcerr_ noproc(transp) ;

return;

}

}

A few things should be noted here. First, it is customary not to check the

authentication parameters associated with the NULLPROC (procedure

number zero). Second, if the authentication parameter’s type is not suitable

for your service, you should call svcerr weakauth(). And finally, the

service protocol itself should return status for access denied; in the case of

our example, the protocol does not have such a status, so we call the service

primitive svcerr_systemerr() instead.

The last point underscores the relationship between the RPC

authentication package and the services; RPC deals only with

authentication and not with individual services’ access control. The

services themselves must implement their own access control policies and

reflect these policies as return statuses in their protocols.

Using inetd

An RPC server can be started from inetd. The only difference from the

usual code is that the service creation routine should be called in the

following form because inet passes a socket as file descriptor 0.

transp = svcudp create(0); /* For UDP */

transp = svctcp create(0,0,0); /* For listener TCP sockets */

transp = svcfd_create(0,0,0); /* For connected TCP sockets */

Also, because the program will already be registered by inetd,

svc_register() should be called with the final flag as zero.

svc _register(transp, PROGNUM, VERSNUM, service, 0);

Remember that if you want to exit from the server process and return

control to inet, you need to explicitly exit, because svc_run() never

returns.

The format of entries in /etc/inetd.conf for RPC services is in one of the

following two forms:

p_name/version dgram rpc/udp wait/nowait user server args

p_name/version stream rpc/tcp wait/nowait user server args

Licensed Material - Property of Data General Corporation 093-701049-04

Other RPC features

where p_ name is the symbolic name of the program as it appears in rpe(5).

server is the program implementing the server,and program and version

are the program and version numbers of the service. For more information,

see inetd.conf(4).

If the same program handles multiple versions, the version number can be

a range, as in the following.

rstatd/1-2 dgram rpc/udp wait root /usr/etc/rpc.rstatd

More examples that use RPC features

This section presents three examples that use RPC features. These

examples show how to use versions, TCP, and callback procedures.

Using versions

By convention, the first version number of program PROG is

PROGVERS ORIG, and the most recent version is PROGVERS. Suppose

there is a new version of the user program that returns an unsigned short

rather than along. If we name this version RUSERSVERS SHORT, then a

server that wants to support both versions would do a double register.

Double registers can be done as in the following.

if (!svc_register(transp, RUSERSPROG, RUSERSVERS ORIG,

nuser, IPPROTO TCP)) {

fprintf(stderr, "can’t register RUSER service\n”);

exit(1);

}
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ SHORT,

nuser, IPPROTO TCP)) {

fprintf(stderr, "can’t register RUSER service\n”);

exit(1);

}

Both versions can be handled by the same C procedure, as shown below:

093-701049-04 Licensed Material - Property of Data General Corporation 6-29

Other RPC features

6-30

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

unsigned long nusers;

unsigned short nusers2;

Switch (rqstp->rq_ proc) {

case NULLPROC:

if (!svc_sendreply(transp, xdr_ void, 0)) {

fprintf(stderr, "can’t reply to RPC

call\n”);

return (1);

}
return;

case RUSERSPROC_ NUM:

/*

* Code here to compute the number of users

* and assign it to the variable nusers

*/

nusers2 = nusers;

switch (rqstp->rq_ vers) {

case RUSERSVERS_ORIG:

if (!svc_sendreply(transp, xdr_u_long,

&nusers)) {

fprintf£(stderr,”can’t reply to RPC call\n”);

}
break;

case RUSERSVERS_ SHORT:

if (!svc_sendreply(transp, xdr_u_short,

&nusers2)) {

fprintf(stderr,”can’t reply to RPC call\n”);

}
break;

}
default:

svcerr noproc(transp);

return;

Using TCP

This section contains an example of RPC that use TCP. The example is

divided into three parts. The first part shows the XDR routine, the second

part shows the sender routines, and the third part shows the receiving

routines.

The initiator of the RPC snd call takes its standard input and sends it to

the server rev, which prints it to standard output. The RPC call uses TCP.

This example also illustrates an XDR procedure that behaves differently on

serialization than on deserialization.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Other RPC features

/*

* The xdr routine:

* on decode, read from wire, write onto fp

* on encode, read from fp, write onto wire

*/

#include <stdio.h>

#include <rpc/rpc.h>

xdr_rep(xdrs, fp)

XDR *xdrs;

BUFSIZ,

FILE *fp;

{
unsigned long size;

char buf[BUFSIZ], *p;

if (xdrs->x_op == XDR_FREE)/* nothing to free */

return 1;

while (1) {

if (xdrs->x_op == XDR_ENCODE) {

if ((size = fread(buf, sizeof(char),

fp)) == 0 && ferror(fp)) {

fprintf(stderr, "can’t fread\n”);

return (1);

}

}
p = buf;

if (!xdr_bytes(xdrs, &p, &size, BUFSIZ))

return 0;

if (size == 0)

return 1;

if (xdrs->x_op == XDR_DECODE) {

if (fwrite(buf, sizeof(char), size,

fp) != size) {

fprintf(stderr, "can’t fwrite\n”);

return (1);

}

}

}

}

The sender routines are as follows:

/*

* The sender routines

*/

#include <stdio.h>

#include <netdb.h>

#include <rpc/rpc.h>

#include <sys/socket.h>

#include <sys/time.h>

Main(argce, argv)

int argc;

char **argv;

int xdr rep();

int err;

Licensed Material - Property of Data General Corporation 6-31

Other RPC features

6-32

if (arge < 2) {

fprintf(stderr, "usage: %s servername\n”,

exit(-1);

}
if ((err = callrpctcp(argv[1], RCPPROG, RCPPROC,

RCPVERS, xdr_rcp, stdin, xdr_ void, 0) != 0)) {

clnt_perrno(err) ;

fprintf(stderr, "can’t make RPC call\n”);

exit(1);

}
exit(0);

}

callrpctcp(host, prognum, procnum, versnum,

inproc, in, outproc, out)

char *host, *in, *out;

xdrproc_t inproc, outproc;

struct sockaddr_in server addr;

int socket = RPC_ANYSOCK;

enum clnt_stat clnt_stat;

struct hostent *hp;

register CLIENT *client;

struct timeval total_timeout;

if ((hp = gethostbyname(host)) == NULL) {

argv[9]);

fprintf(stderr, "can’t get addr for '%s’\n”, host);

return (-1);

}
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,

hp->h_length) ;

server _addr.sin_ family = AF_INET;

server addr.sin_port = 0;

if ((client = clnttcp create(&server addr,

versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) {

perror(”rpctcp create”);

return (-1);

}
total timeout.tv_sec = 20;

total timeout.tv_usec = 0;

clnt stat = clnt_call(client, procnum,

inproc, in, outproc, out, total_timeout) ;

clnt_destroy(client);

return (int)clnt_stat;

The receiving routines are follows:

Licensed Material - Property of Data General Corporation 093-701049-04

Other RPC features

/*

* The receiving routines

*/

#include <stdio.h>

#include <rpc/rpc.h>

main()

{
register SVCXPRT *transp;

int rep _service(), xdr_rcp();

if ((transp = svctcp_create(RPC_ANYSOCK,

BUFSIZ, BUFSIZ)) == NULL) {

fprintf("svctcp create: error\n”);

exit(1);

} pmap unset(RCPPROG, RCPVERS) ;

if (!svc_register(transp,

RCPPROG, RCPVERS, rcp service, IPPROTO TCP)) {

fprintf(stderr, "svc_register: error\n”);

exit(1);

}

svc_run(); /* neverreturns */

fprintf(stderr, "“svc_run should never return\n”);

} xrep_service(rqstp, transp)

register struct svc_ req *rqstp;

register SVCXPRT *transp;

{
switch (rqstp->rq_proc) {

case NULLPROC:

if (svc_sendreply(transp, xdr_void, 0) == 0) {

fprintf(stderr, "err: rcp service”);

return (1);

}
return;

case RCPPROC FP:

if (!sve_getargs(transp, xdr_rcep, stdout)) {

svcerr decode(transp) ;

return;

}
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "can’t reply\n”);

return;

}
return (0);

default:

svcerr noproc(transp);

return;

}

}

093-701049-04 Licensed Material - Property of Data General Corporation 6-33

Other RPC features

6-34

Using callback procedures

Occasionally, it is useful to have a server become a client and then make

the RPC call back to its client process. An example is remote debugging, in

which the client is a window system program, and the server is a debugger

running on the remote machine. Most of the time, the user clicks a mouse

button at the debugging window, which converts this to a debugger

command, and then makes an RPC call to the server (where the debugger is

actually running), telling it to execute that command. However, when the

debugger hits a breakpoint, the roles are reversed, and the debugger wants

to make an RPC call to the window program so that it can inform the user

that a breakpoint has been reached.

In order to do an RPC callback, you need a program number to make the

RPC call on. Because this will be a dynamically generated program number,

it should be in the transient range 0x40000000 through Ox5fffffff. The

routine gettransient() returns a valid program number in the transient

range and registers it with the port mapper. It talks to only the port

mapper running on the same machine as the gettransient() routine itself.

The call to pmap _set() is a test and set operation, in that it indivisibly

tests whether a program number has already been registered and, if it has

not, reserves it. On return, the sockp argument will contain a socket that

can be used as the argument to an svcudp _create() or svctcp_create()

call. The following example shows how to do an RPC callback.

Licensed Material - Property of Data General Corporation 093-701049-04

Other RPC features

#include <stdio.h>

#include <rpc/rpc.h>

#include <sys/socket.h>

gettransient(proto, vers, sockp)

int proto, vers, *sockp;

{
static int prognum = 0x40000000;

int s, len, socktype;

struct sockaddr in addr;

switch(proto) {

case IPPROTO_ UDP:

socktype = SOCK_DGRAM;

break;

case IPPROTO TCP:

socktype

break;

default:

fprintf(stderr, "unknown protocol type\n”);

return 0;

SOCK STREAM;

}
if (*sockp == RPC_ANYSOCK) {

if ((s = socket(AF_INET, socktype, 0)) < 0) {

perror(”socket”);

return (0);

}
*sockp = s;

}
else

s = *sockp;

addr.sin_addr.s_ addr = 0;

addr.sin family = AF INET;

addr.sin_port = 0;

len = sizeof(addr);

/*

* may be already bound, so don’t check for error

*/

bind(s, &addr, len);

if (getsockname(s, &addr, &len)< 0) {

perror(”getsockname’”);

return (0);

}
while (!pmap_ set(prognum++, vers, proto,

ntohs(addr.sin port))) continue;

return (prognum-1);

IMPORTANT The call to ntohs() is necessary to ensure that the port

number in addr.sin_port, which is in network byte order, is passed in

host byte order (as pmap set() expects). See the byteorder(3N)

manual page for more details on the conversion of network addresses

from network-to-host byte order.

093-701049-04 Licensed Material - Property of Data General Corporation 6-35

Other RPC features

The following pair of programs illustrates how to use the gettransient()

routine. The client makes an RPC call to the server, passing it a transient

program number. Then the client waits to receive a callback from the server

at that program number. The server registers the program

KXAMPLEPROG s0 that it can receive the RPC call informing it of the

callback program number. Then at some random time (on receiving an

ALRM signal in this example), it sends an RPC callback, using the program

number it received earlier.

/*

* client

x/

#include <stdio.h>

#include <rpc/rpc.h>

int callback();

char hostname[256];

main()

{
int x, ans, Ss;

SVCXPRT *xprt;

gethostname(hostname, sizeof(hostname));

s = RPC ANYSOCK;

x = gettransient(IPPROTO UDP, 1, &s);

fprintf(stderr, "client gets prognum %d\n”, x);

if ((xprt = svcudp create(s)) == NULL) {

fprintf(stderr, "rpc_server: svcudp _create\n”);

exit(1);

}
/* protocol is 0 - gettransient does registering

*/

(void)svc_register(xprt, x, 1, callback, 0);

ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_ CALLBACK, xdr_ int, &x, xdr void, 0);

if ((enum clnt_stat) ans != RPC_SUCCESS) {

fprintf(stderr, "call: "”);

clnt_perrno(ans) ;

fprintf(stderr, ”\n”);

}

svc _ run();

fprintf(stderr, "Error: svc_run shouldn’t return\n”);

}

callback(rqstp, transp)

register struct svc _ req *rqstp;

register SVCXPRT *transp;

switch (rqstp->rq_proc) {

case 0:

if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err:

exampleprog\n”);

return (1);

}
return (0);

case 1:

6-36 Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Other RPC features

if (!svc_getargs(transp, xdr void, 0)) {

svcerr decode(transp) ;

return (1);

}
fprintf(stderr, “client got callback\n”);

if (!svc_sendreply(transp, xdr void, 0)) {

fprintf(stderr, "err: exampleprog”);

return (1);

}

}

}

/*

* server

*/

#include <stdio.h>

#include <rpc/rpc.h>

#include <sys/signal.h>

char

char

*getnewprog();

hostname[256];

int docallback({);

int pnum; /* program number for callback routine */

main()

{
gethostname(hostname, sizeof(hostname));

- registerrpc(EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);

fprintf(stderr, "server going into svc_run\n”);

signal(SIGALRM, docallback);

alarm(10);

svc_run();

fprintf(stderr, "Error: svc_run shouldn’t return\n”);

}

char * getnewprog(pnump)

char *pnump; {

pnum = *(int *)pnump;

return NULL;

}

docallback()

{

int ans;

ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,

xdr_ void, 0);

if (ans != 0) {

fprintf(stderr, "server: ");

clnt_perrno(ans);

fprintf(stderr, "\n");

}

}

End of Chapter

Licensed Material - Property of Data General Corporation 6-37

Remote Procedure Calls:

protocol specification

IMPORTANT This chapter specifies a protocol that Data General

and other companies are using. It has been designated RFC1050 by the

ARPA Network Information Center.

Introduction

093-701049-04

This chapter specifies a message protocol used in implementing the Remote

Procedure Call (RPC) package. The message protocol is specified with the

External Data Representation (XDR) language. See Chapter 9, “External

Data Representation Standard: Protocol Specification” for the details. Here,

we assume that the reader is familiar with XDR and do not attempt to

justify it or its uses. For further information on RPCs, refer to the paper by

Birrell and Nelson cited at the end of this chapter.

Defining terms

This chapter discusses servers, services, programs, procedures, clients, and

versions. A server is a piece of software in which network services are

implemented. A network service is a collection of one or more remote

programs. A remote program implements one or more remote procedures;

the procedures, their parameters, and results are documented in the

specific program’s protocol specification (see the section “Portmapper

program protocol,” later in this chapter, for an example). Network clients

are pieces of software that initiate RPCs to services. A server may support

more than one version of a remote program in order to be forward

compatible with changing protocols.

A network file service may be composed of two programs. One program may

deal with high-level applications such as file system access control and

locking. The other may deal with low-level file I/O and have procedures like

“read” and “write.” A client machine of the network file service would call

the procedures associated with the two programs of the service on behalf of

some user on the client machine.

The RPC model

The RPC model is similar to the local procedure call (LPC) model. In the

local case, the caller places arguments to a procedure in some well-specified

location (such as a result register). It then transfers control to the

procedure and eventually regains control. At that point, the results of the

procedure are extracted from the well-specified location, and the caller

continues execution.

Licensed Material - Property of Data General Corporation 7-1

Introduction

7-2

The RPC is similar, in that one thread of control logically winds through

two processes—one 1s the caller’s process, the other is a server’s process.

That is, the caller process sends a call message to the server process and

waits (blocks) for a reply message. The call message contains the

procedure’s parameters, among other things. The reply message contains

the procedure’s results, among other things. After the reply message has

been received, the results of the procedure are extracted, and the caller’s

execution is resumed.

On the server side, a process is dormant while awaiting the arrival of a call

message. When one arrives, the server process extracts the procedure’s

parameters, computes the results, sends a reply message, and then waits

for the next call message.

Note that in this model, only one of the two processes is active at any given

time. However, this model is given only as an example. The RPC protocol

makes no restrictions on the concurrency model implemented, and others

are possible. For example, RPC calls might be asynchronous, so that the

client may do useful work while waiting for the reply from the server.

Another possibility is to have the server create a task to process an

incoming request, so that the server can be free to receive other requests.

Transports and semantics

The RPC protocol is independent of transport protocols. That is, RPC does

not care how a message is passed from one process to another. The protocol

deals with only specification and interpretation of messages.

It is important to point out that RPC does not try to implement any kind of

reliability and that the application must be aware of the type of transport

protocol underneath RPC. If the application knows it is running on top of a

reliable transport such as TCP/IP, then most of the work is already done.

On the other hand, if the application is running on top of an unreliable

transport such as UDP/IP, the application must implement its own

retransmission and time-out policy because the RPC layer does not provide

this service.

Because of transport independence, the RPC protocol does not attach

specific semantics to the remote procedures or their execution. Semantics

can be inferred from (but should be explicitly specified by) the underlying

transport protocol. For example, consider RPC running on top of an

unreliable transport such as UDP/IP. If an application re-transmits RPC

messages after short time-outs, the only thing it can infer if it receives no

reply is that the procedure was executed zero or more times. If it does

receive a reply, then it can infer that the procedure was executed at least

once.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Introduction

A server may wish to remember previously granted requests from a client

and not regrant them in order to insure some degree of idempotency

semantics. A server can do this by taking advantage of the transaction ID

that is packaged with every RPC request. The main use of this transaction

ID is by the client RPC layer in matching replies to requests. However, a

client application may choose to re-use its previous transaction ID when

re-transmitting a request. The server application, knowing this fact, may

choose to remember this ID after granting a request and not regrant

requests with the same ID in order to achieve some degree of idempotency.

The server is not allowed to examine this ID in any other way except as a

test for equality.

On the other hand, if using a reliable transport such as TCP/IP, the

application can infer from a reply message that the procedure was executed

exactly once; but if it receives no reply message, it cannot assume the

remote procedure was not executed. Note that even if a connection-oriented

protocol like TCP is used, an application still needs time-outs and

reconnection to handle server crashes.

There are other possibilities for transports besides datagram- or

connection-oriented protocols. For example, a request-reply protocol such as

the Versatile Message Transaction Protocol (VMTP) is perhaps the most

natural transport for RPC. (The VMTP is discussed in a paper by Cheriton,

cited at the end of this chapter.)

IMPORTANT RPC is currently implemented on top of both TCP/IP

and UDP/IP transports.

Binding and rendezvous independence

The act of binding a client to a service is not part of the specification. This

important and necessary function is left up to some higher-level software.

(The software may use RPC itself—see the upcoming section called

“Portmapper program protocol,” later in this chapter).

Implementors should think of the RPC protocol as the jump-subroutine

(JSR) instruction of a network; the loader (binder) makes JSR useful, and

the loader itself uses JSR to accomplish its task. Likewise, the network

makes RPC useful, using RPC to accomplish this task.

Authentication in RPC

The RPC protocol provides the fields necessary for a client to identify itself

to a service and vice versa. Security and access control mechanisms can be

built on top of the message authentication. Several different authentication

protocols can be supported. A field in the RPC header indicates which

protocol is being used. More information on specific authentication

protocols can be found in the upcoming section called “Authentication

protocols.”

Licensed Material - Property of Data General Corporation 7-3

RPC protocol requirements

RPC protocol requirements

7-4

The RPC protocol must provide for the following:

1. Unique specification of a procedure to be called.

2. Provisions for matching response messages to request messages.

3. Provisions for authenticating the caller to service and vice versa.

Besides these requirements, features that detect the following are worth

supporting because of protocol roll-over errors, implementation bugs, user

error, and network administration:

. RPC protocol mismatches.

. Remote program protocol version mismatches.

1

2

3. Protocol errors (such as misspecification of a procedure’s parameters).

4, Reasons why remote authentication fail.

5 . Any other reasons why the desired procedure does not get called.

Programs and procedures

The RPC call message has three unsigned fields: remote program number,

remote program version number, and remote procedure number. The three

fields uniquely identify the procedure to be called. Program numbers are

administered by some central authority (such as Sun Microsystems, Inc).

Once an implementor has a program number, he/she can implement his/her

remote program; the first implementation would most likely have the

version number 1. Because most new protocols evolve into better, stable,

and mature protocols, a version field of the call message identifies which

version of the protocol the caller is using. Version numbers make it possible

for old and new protocols to communicate through the same server process.

The procedure number identifies the procedure to be called. These numbers

are documented in the specific program’s protocol specification. For

example, a file service’s protocol specification may state that its procedure

number 5 is read, and procedure number 12 is write.

Just as remote program protocols may change over several versions, the

actual RPC message protocol can also change. Therefore, the call message

also contains the RPC version number (which is always 2, for the version of

RPC described here).

The reply message to a request message has enough information to

distinguish the following error conditions:

1. The remote implementation of RPC does speak Protocol Version 2. The

lowest and highest supported RPC version numbers are returned.

2. The remote program is not available on the remote system.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

RPC protocol requirements

3. The remote program does not support the requested version number.

The lowest and highest supported remote program version numbers are

returned.

4. The requested procedure number does not exist. (This is usually a

caller-side protocol or programming error.)

5. The parameters to the remote procedure appear to be garbage from the

server’s point of view. (Again, this is usually caused by a disagreement

about the protocol between client and service.)

Authentication fields

Provisions for authentication of caller to service and vice versa are provided

as a part of the RPC protocol. The call message has two authentication

fields: the credentials and verifier. The reply message has one

authentication field, the response verifier. The RPC protocol specification

defines all three fields to be the following opaque type:

enum auth flavor {

AUTH NULL

AUTH UNIX

AUTH SHORT

AUTH DES

/* and more to be defined */

~ ~ ~ ~iow ud WN Fe ©
};

struct opaque auth {

auth flavor flavor;

opaque body<400>; };

An opaque_auth structure is an auth flavor enumeration followed by bytes

that are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the

authentication fields is specified by individual, independent authentication

protocol specifications. (See “Authentication protocols,” later in this chapter,

for definitions of the various authentication protocols.)

If authentication parameters are rejected, the response message contains

information stating why.

Program number assignment

Program numbers are given out in groups of 0x20000000 hexadecimal

(decimal 536870912) as shown in the following chart:

Licensed Material - Property of Data General Corporation 7-5

RPC protocol requirements

Table 7-1 Program number assignments

Program numbers Description

0 1fffff£f£ Defined by Sun Microsystems, Inc.

20000000 —- 3f£f£ffff£f Defined by customer

40000000 — 5ff£f£f£L£ Temporary

60000000 7£LLLLLL Reserved

80000000 9ff£fffLL£ Reserved

a0000000 —- bfffffff Reserved

c0000000 —- dfffffff Reserved

e0000000 ffffffff Reserved

The first group is a range of numbers administered by Sun Microsystems,

Inc., and should be identical for all sites. The second range is reserved for

specific customer applications. The third group is used temporarily for

applications that generate program numbers dynamically. The final groups

are reserved by Sun Microsystems, Inc., for future use, and should not be

used.

Other uses of the RPC protocol

The intended use of this protocol is for calling remote procedures. That is,

each call message is matched with a response message. However, the

protocol itself is a message-passing protocol with which other (non-RPC)

protocols can be implemented. Data General currently uses the RPC

message protocol for the following two (non-RPC) protocols: batching (or

pipelining) and broadcast RPC. These two protocols are discussed but not

defined below.

Batching

Batching allows a client to send an arbitrarily large sequence of call

messages to a server; batching typically uses reliable byte stream protocols

(like TCP/IP) for its transport. In the case of batching, the client never

waits for a reply from the server, and the server does not send replies to

batch requests. A sequence of batch calls is usually terminated by a

legitimate RPC in order to flush the pipeline (with positive

acknowledgement).

Licensed Material - Property of Data General Corporation 093-701049-04

The RPC message protocol

Broadcast RPC

In broadcast RPC-based protocols, the client sends a broadcast packet to

the network and waits for numerous replies. Broadcast RPC uses

unreliable, packet-based protocols (ike UDP/IP) as its transports. Servers

that support broadcast protocols respond only when the request is

successfully processed, and they are silent in the face of errors. Broadcast

RPC uses the Port Mapper RPC service to achieve its semantics. See the

upcoming section called “Portmapper program protocol,” for more

information.

The RPC message protocol

This section defines the RPC message protocol in the XDR data description

language. The message is defined in a top-down style.

enum msg type {

CALL = 0,

REPLY = 1

};

/*

* A reply to a call message can take on two forms:

* The message was either accepted or rejected.

*/

enum reply stat {

MSG ACCEPTED

MSG DENIED

0,

1

/*

* Given that a call message was accepted, the following is the

* status of an attempt to call a remote procedure.

*/

enum accept stat {

SUCCESS 0, /* RPC executed successfully */

PROG UNAVAIL = 1, /* remote hasnt exported program* /

PROG MISMATCH = 2, /* remote cant support procedure# */

PROC_UNAVAIL = 3, /* program cant support procedure * /

GARBAGE ARGS = 4 /* procedure can’t decode params */

};

/*

* Reasons why a call message was rejected:

*/

enum reject stat {

RPC_MISMATCH = 0, /* RPC version number != 2*/

AUTH ERROR = 1 /* remote cant authenticate caller */

};

/*

* Why authentication failed:

*/

enum auth_stat {

093-701049-04 Licensed Material - Property of Data General Corporation 7-7

The RPC message protocol

7-8

+ £+ £ ££ & FE FF FH HF HF HF

AUTH_BADCRED =
AUTH _REJECTEDCRED

AUTH_BADVERF

AUTH_REJECTEDVERF

AUTH TOOWEAK

/* bad credentials * /

/* client must begin new session */

/* bad verifier */

/* verifier expired or replayed */

/* rejected for security reasons * /

~

t Wl Ol & WD Fe 7

~

~

The RPC message:

All messages start with a transaction identifier, xid,

followed by a two-armed discriminated union. The union’s

discriminant is a msg_ type which switches to one of the two

types of the message. The xid of a REPLY message always

matches that of the initiating CALL message. NB: The xid

field is used only for clients matching reply messages with

call messages or for servers detecting retransmissions; the

service side cannot treat this ID as any type of sequence

number.

struct rpc _ msg {

+ + £ + + F F F OF
*

*/

unsigned int xid;

union switch (msg _type mtype) {

case CALL:

call_ body cbody;

case REPLY:

reply body rbody;

} body;

Body of an RPC request call:

In version 2 of the RPC protocol specification, rpcvers must

be equal to 2. The fields prog, vers, and proc specify the

remote program, its version number, and the’ procedure within

the remote program to be called. Following these fields

are two authentication parameters: cred (authentication

credentials) and verf (authentication verifier). The two

authentication parameters are followed by the parameters to the

remote procedure, which are specified by the specific program

protocol.

struct call body {

bi

/*

*

*

*/

unsigned int rpcvers; /* must be equal to two (2) */

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque auth cred;

opaque auth verf;

/* procedure-specific parameters start here */

Body of a reply to an RPC request:

The call message was either accepted or rejected.

union reply _ body switch (reply stat stat) {

case MSG ACCEPTED:

accepted reply areply;

case MSG DENIED:

Licensed Material - Property of Data General Corporation 093-701049-04

The RPC message protocol

rejected reply rreply;

} reply;

TM~TM +

Reply to an RPC request that was accepted by the server:

there could be an error even though the request was accepted.

The first field is an authentication verifier that the server

generates in order to validate itself to the caller. It is

followed by a union of which the discriminant is an enum

accept_stat. The SUCCESS arm of the union is protocol-

specific. The PROG_UNAVAIL, PROC_UNAVAIL, and

GARBAGE ARGP arms of the union are void. The

PROG_MISMATCH arm specifies the lowest and highest

version numbers of the remote program supported by the

server.+ + FF F FF F F F OF
oe ~

struct accepted reply {

opaque auth verf; °

union switch (accept stat stat) {

case SUCCESS:

opaque results[0];

/* procedure-specific results start here */

case PROG MISMATCH:

struct {

unsigned int low;

unsigned int high;

} mismatch_info;

default:

/*

* Void. Cases include PROG_UNAVAIL,

* PROC_UNAVAIL, and GARBAGE ARGS.

*/

void;

} reply data;

~~ m=

Reply to an RPC request that was rejected by the server:

The request can be rejected for two reasons: either the

server is not running a compatible version of the RPC

protocol (RPC_MISMATCH), or the server refuses to

authenticate the caller (AUTH_ERROR). In case of an RPC

version mismatch, the server returns the lowest and highest

supported RPC version numbers. In case of refused

authentication, failure status is returned.+ + F + F F F F
*/

union rejected_reply switch (reject stat stat) {

case RPC MISMATCH:

struct {

unsigned int low;

unsigned int high;

} mismatch_info;

case AUTH ERROR:

auth stat stat; };

093-701049-04 Licensed Material - Property of Data General Corporation 7-9

Authentication protocols

Authentication protocols

7-10

As previously stated, authentication parameters are opaque, but

open-ended to the rest of the RPC protocol. This section defines some types

(or flavors) of authentication supported by Data General. Customers can

invent new authentication types, using the same rules for number

assignment of types as there are for program number assignment.

Null authentication

Often, calls are made in which the caller is unknown or the server doesn’t

need to know who the caller is. In such cases, the value of the type (the

discriminant of the opaque_auth’s union) of the RPC message’s

credentials, verifier, and response verifier is AUTH NULL. The bytes of the

opaque_auth’s body are undefined. We recommend that the opaque length

be zero.

UNIX authentication

The caller of a remote procedure may wish to identify himself as he is

identified on a UNIX system. The value of the credential’s discriminant of

an RPC call message is AUTH UNIX. The bytes of the credential’s opaque

body encode the following structure:

struct auth_unix {

unsigned int stamp;

string machinename<255>;

unsigned int uid;

unsigned int gid;

unsigned int gids<10>;

};

The stamp is an arbitrary ID that the caller machine may generate. The

machinename is the name of the caller’s machine. The wid is the caller’s

effective user ID. The gid is the caller’s effective group ID. The gids is a

counted array of groups that contain the caller as a member. The verifier

accompanying the credentials should be of AUTH NULL (see “Null

authentication” above).

The value of the discriminant of the response verifier received in the reply

message from the server may be AUTH NULL or AUTH SHORT. In the

case of AUTH SHORT, the bytes of the response verifier’s string encode an

opaque structure. This new opaque structure may now be passed to the

server instead of the original AUTH_UNIX flavor credentials. The server

keeps a cache that maps shorthand opaque structures (passed back by way

of an AUTH SHORT style response verifier) to the original credentials of

the caller. The caller can save network bandwidth and server CPU cycles by

using the new credentials.

The server may flush the shorthand opaque structure at any time. If this

happens, the RPC message will be rejected due to an authentication error.

The reason for the failure will be AUTH REJECTEDCRED. At this point,

the caller may wish to try the original AUTH UNIX style of credentials.

Licensed Material - Property of Data General Corporation 093-701049-04

Record-marking standard

Record-marking standard

When RPC messages are passed on top of a byte stream protocol (such as

TCP/IP), it is necessary, or at least desirable, to delimit one message from

another in order to detect and possibly recover from user protocol errors.

This is called record marking (RM). Data General uses this RM TCP/IP

transport for passing RPC messages on TCP streams. One RPC message

fits into one RM record.

A record is composed of one or more record fragments. A record fragment is

a 4-byte header followed by 0 to (2**31) - 1 bytes of fragment data. The

bytes encode an unsigned binary number; as with XDR integers, the byte

order is from highest to lowest. The number encodes two values—a Boolean

value that indicates whether the fragment is the last fragment of the record

(bit value 1 implies the fragment is the last fragment), and a 31-bit

unsigned binary value, which is the length, in bytes, of the fragment’s data.

The Boolean value is the highest-order bit of the header; the length is the

31 low-order bits. (Note that this record specification is not in XDR

standard form.)

RPC language

093-701049-04

RPC language is an extension of XDR language. It is used to describe the

procedures that operate on XDR data-types. This section provides a sample

program described in the RPC language, a specification for the RPC

language, syntax notes.

An example service described in the RPC

language

Here is an example of the specification of a simple ping program.

/*

* Simple ping program

*/

program PING PROG {

/* Latest and greatest version */

version PING_VERS_ PINGBACK {

void

PINGPROC NULL(void) = 0;

/*

* Ping the caller, return the round-trip time

* (in microseconds). Returns -1 if the operation

* timed out.

*/

int

PINGPROC_PINGBACK (void) = 1;

} = 2;

/*

* Original version

*/

Licensed Material - Property of Data General Corporation 7-1 1

RPC language

7-12

version PING VERS ORIG {

void

PINGPROC NULL(void) = 0;

ye dl;

}e 1;

const PING VERS = 2; /* latest version * /

The first version described is PING_VERS_ PINGBACK with two

procedures, PINGPROC_ NULL and PINGPROC_PINGBACK.

PINGPROC_NULL takes no arguments and returns no results, but it is

useful for computing round-trip times from the client to the server and back

again. By convention, procedure 0 of any RPC protocol should have the

same semantics, and never requires any kind of authentication. The second

procedure is used for the client to have the server do a reverse ping

operation back to the client, and it returns the amount of time (in

microseconds) that the operation used. The next version,

PING_VERS_ ORIG, is the original version of the protocol and does not

contain the PINGPROC_PINGBACK procedure. It is useful for

compatibility with old client programs; as this program matures, it may be

dropped from the protocol entirely.

RPC language specification

RPC language is identical to XDR language, except for the added definition

of a program-def described below.

program—def:

“program” identifier "{"

version-def

version-def *

"y" "=" constant ";"”

version-def:

"version” identifier "{”

procedure-def

procedure-def *

"yy" "=" constant "3"

procedure-—def:

type-specifier identifier "(" type-specifier ")”

"=" constant "37"

Syntax notes

Some additional notes on RPC syntax are as follows:

1. The following key words are added and cannot be used as identifiers:

program and version.

2. Aversion name and version number cannot occur more than once

within the scope of a program definition.

3. A procedure name and procedure number cannot occur more than once

within the scope of a version definition.

Licensed Material - Property of Data General Corporation 093-701049-04

Portmapper program protocol

4. Program identifiers are in the same name space as constant and type

identifiers.

5. Only unsigned constants can be assigned to programs, versions, and

procedures.

Portmapper program protocol

093-701049-04

The portmapper program maps RPC program and version numbers to

transport-specific port numbers. This program makes dynamic binding of

remote programs possible.

Dynamic binding is desirable because the range of reserved port numbers is

very small, and the number of potential remote programs is very large. By

running only the portmapper on a reserved port, the port numbers of other

remote programs can be ascertained by querying the portmapper.

The portmapper also aids in broadcast RPC. A given RPC program will

usually have different port number bindings on different machines, so there

is no way to directly broadcast to all of these programs. The portmapper,

however, does have a fixed port number. So, to broadcast to a given

program, the client actually sends its message to the portmapper located at

the broadcast address. Kach portmapper that picks up the broadcast then

calls the local service specified by the client. When the portmapper gets the

reply from the local service, it sends the reply back to the client.

Portmapper protocol specification (in RPC

language)

This section shows how to use the portmapper program in RPC language.

const PMAP PORT = 111; /* portmapper port number */

/*

* A mapping of (program, version, protocol) to port number

* /

struct mapping {

unsigned int prog;

unsigned int vers;

unsigned int prot;

unsigned int port;

o

}3

/*

* Supported values for the “prot” field

*/

const IPPROTO_ TCP

const IPPROTO UDP

/*

* A list of mappings

*/

struct *pmaplist {

Mapping map;

6; /* protocol number for TCP/IP */

17; /* protocol number for UDP/IP */

Licensed Material - Property of Data General Corporation 7-1 3

Portmapper program protocol

pmaplist next;

/*

* Arguments to callit

*/

struct call args {

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque args<>;

‘3

/*

* Results of callit

*/

struct call result {

unsigned int port;

Opaque res<>;

};

/*

* Portmapper procedures

*/

program PMAP PROG {

version PMAP VERS {

void

PMAPPROC_NULL(void) = 0;

bool

PMAPPROC_SET(mapping) = 1;

bool

PMAPPROC_UNSET (mapping) = 2;

unsigned int

PMAPPROC_GETPORT (mapping) = 3;

pmaplist

PMAPPROC_DUMP(void) = 4;

call result

PMAPPROC CALLIT(call_ args) = 5;

} = 2;
} = 100000;

Portmapper operation

The portmapper program currently supports two protocols: UDP/IP and

TCP/IP. The portmapper is contacted by sending messages to it on assigned

port number 111 on either of these protocols. (This subject is discussed in

“Assigned Numbers,” RFC 923, by Reynolds and Postel, cited at the end of

this chapter.) The following is a description of each of the portmapper

procedures:

PMAPPROC_ NULL

This procedure does no work. By convention, procedure zero of any

protocol takes no parameters and returns no results.

7-14 Licensed Material - Property of Data General Corporation 093-701049-04

a)

Portmapper program protocol

PMAPPROC SET

When a program first becomes available on a machine, it registers itself

with the portmapper program on the same machine. The program

passes its program number prog, version number vers, transport

protocol number prot, and the port port on which it awaits service

request. The procedure returns a Boolean response whose value is

TRUE if the procedure successfully established the mapping, and

FALSE otherwise. The procedure refuses to establish a mapping if one

already exists for the tuple (prog, vers, prot).

PMAPPROC UNSET

When a program becomes unavailable, it should unregister itself with

the portmapper program on the same machine. The parameters and

results have meanings identical to those of PMAPPROC SET. The

protocol and port number fields of the argument are ignored.

PMAPPROC _GETPORT

Given a program number prog, version number vers, and transport

protocol number prot, this procedure returns the port number on which

the program is awaiting call requests. A port value of zeros means the

program has not been registered. The port field of the argument is

ignored.

PMAPPROC_DUMP

This procedure enumerates all entries in the portmapper’s database.

The procedure takes no parameters and returns a list of program,

version, protocol, and port values.

PMAPPROC CALLIT

This procedure allows a caller to call another remote procedure on the

same machine without knowing the remote procedure’s port number. It

is for supporting broadcasts to arbitrary remote programs via the

well-known portmapper’s port. The parameters prog,vers, and proc,

and the bytes of args are the program number,version number,

procedure number, and parameters of the remote procedure. The

procedure returns the remote program’s port number, and the bytes of

results are the results of the remote procedure.

Note the following:

1. This procedure sends a response only if the procedure was successfully

executed and is silent (no response) otherwise..

2. The portmapper communicates with the remote program using UDP/IP

only.

093-701049-04 Licensed Material - Property of Data General Corporation 7-1 5

Papers cited in chapter text

Papers cited in chapter text

Birrell, Andrew D., and Nelson, Bruce Jay. Implementing Remote

Procedure Calls. XEROX CSL-83-7, October 1983.

Cheriton, D. VMTP: Versatile Message Transaction Protocol, Preliminary

Version 0.3. Stanford University, January 1987.

Diffie and Hellman. Net Directions in Cryptography. The Institute of
Electrical and Electronics Engineers, Inc (IEEE) Transactions on

Information Theory IT-22, November 1976.

Harrenstien, K. Time Server, RFC 738. Information Sciences Institute,

October 1977.

National Bureau of Standards. Data Encryption Standard. Federal

Information Processing Standards Publication 46, January 1977.

Reynolds, J., and Postel, J. Assigned Numbers, RFC 923. Information

Sciences Institute, October 1984.

End of Chapter

7=1 6 Licensed Material - Property of Data General Corporation 093-701049-04

External Data Representation: DG

technical notes

093-701049-04

This chapter contains technical notes on Data General’s implementation of

the External Data Representation (XDR) standard, a set of library routines

that allow a C programmer to describe arbitrary data structures in a

machine-independent fashion. For a formal specification of the XDR

standard, see Chapter 9 “External Data Representation Standard: Protocol

Specification.” XDR is the backbone of DG’s Remote Procedure Call (RPC)

package, in the sense that data for RPCs is transmitted using the standard.

XDR library routines should be used to transmit data that is accessed (read

or written) by more than one type of machine. (For complete specification of

the system XDR routines, see the xdr(8N) manual page.)

This chapter contains a short tutorial overview of the XDR library routines,

a guide to accessing currently available XDR streams, and information on

defining new streams and data types. XDR was designed to work across

different languages, operating systems, and machine architectures. Most

users (particularly RPC users) will need only the information in the

“Number filters,” “Floating-point filters,” and “Enumeration filters”

sections. Programmers wishing to implement RPC and XDR on new

machines will be interested in the rest of the chapter, as well as Chapter 9,

“External Data Representation Standard: Protocol Specification,” which

will be their primary reference.

IMPORTANT rpcgen can be used to write XDR routines even in

cases when no RPC calls are being made.

On Data General systems, C programmers that want to use XDR routines

must include the file <rpe/rpe.h>, which contains all the necessary

interfaces to the XDR system. Because the C library libc.a contains all the

XDR routines, compile as normal. For example, you compile program.c as

follows.

examples cc program.c J

Licensed Material - Property of Data General Corporation 8-1

Justification

Justification

Consider the following two programs, writer:

#include <stdio.h>

main() /* writer.c */

{
long i;

for (i = 0; i < 8; itt) {

if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) {

fprintf(stderr, "failed!\n”);

exit(1);

}

}
exit(0);

}

and reader:

#include <stdio.h>

main() /* reader.c */

{
long i, j;

for (j = 0; j < 8; jtt) {
if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {

fprintf(stderr, "failed!\n”);

exit(1);

}
printf("tld ”", 1);

}
printf(”\n"”);

exit(0);

}

The two programs appear to be portable, because they pass lint checking,

and because they exhibit the same behavior when executed on two different

hardware architectures, an AViiON® station and a VAX.

Piping the output of the writer program to the reader program gives

identical results on an AViiON station and a VAX.

aviions writer | reader J

01234567

aviion%

vax% writer | reader J.

01234567

Vax

With the advent of local area networks and Berkeley’s 4.2 BSD release

came the concept of network pipes—a process that produces data on one

machine, and a second process that consumes data on another machine. A

network pipe can be constructed with writer and reader. Here are the

results if the first produces data on an AViiON station, and the second

consumes data on a VAX.

o

Licensed Material - Property of Data General Corporation 093-701049-04

Justification

aviions’ writer | rsh vax reader .

0 16777216 33554432 50331648 67108864 83886080 100663296

117440512

aviion’

Identical results can be obtained by executing writer on the VAX and

reader on the AVION station. These results occur because the byte

ordering of long integers differs between the VAX and the AViiON station,

even though word size is the same. Note that 16777216 is 224—-when 4

bytes are reversed, the 1 winds up in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for

portable data. Programs can be made data-portable by replacing the read(Q)

and write() calls with calls to an XDR library routine xdr_long(, a filter

that recognizes the standard representation of a long integer in its external

form. The revised versions of writer are shown below.

#include <stdio.h>

#include <rpc/rpc.h> /* xdr isa sub-library of rpc */

main() /* writer.c */

{
XDR xdrs;

long i;

xdrstdio create(&xdrs, stdout, XDR_ENCODE) ;

for (1 = 0; i < 8; itt) {

if (!xdr_long(&xdrs, &i)) {

fprintf(stderr, "failed!\n");

exit(1);

}

}
exit(0);

}

and reader :

#include <stdio.h>

#include <rpc/rpc.h> /* xdrisasub-library of rpc */

main() /* reader.c */

{
XDR xdrs;

long i, Jj;

xdrstdio create(&xdrs, stdin, XDR_DECODE);

for (j = 0; j < 8; jt+) {
if (!xdr_long(&xdrs, &i)) {

fprintf(stderr, "failed!\n”);

exit(1);

}
print£(”"%ld ”, i);

}
printf(”\n");

exit(0);

}

The new programs were executed on an AViiON, on a VAX, and from an

AViiON station to a VAX; the results are shown below.

093-701049-04 Licensed Material - Property of Data General Corporation 8.3

A canonical standard

aviion% writer | reader .|

01234567

aviion%

vaxt writer | reader .|

01234567

vax

aviions writer | rsh vax reader .|

01234567

aviion’%

IMPORTANT Arbitrary data structures present portability problems,

particularly with respect to alignment and pointers. Alignment on

word boundaries may cause the size of a structure to vary from machine

to machine. And pointers, which are very convenient to use, have no

meaning outside the machine in which they are defined.

A canonical standard

XDR’s approach to standardizing data representations is canonical. That is,

XDR defines a single byte order (in big-endian style, which orders the most

significant bit first), a single floating-point representation (IEEE), and so

on. Any program running on any machine can use XDR to create portable

data by translating its local representation to the XDR standard

representations; similarly, any program running on any machine can read

portable data by translating the XDR standard representations to its local

equivalents. The single standard completely decouples programs that

create or send portable data from those that use or receive portable data.

The advent of a new machine or a new language has no effect upon the

community of existing portable data creators and users. A new machine

joins this community by being made able to convert the standard

representations and its local representations; the local representations of

other machines are irrelevant. Conversely, to existing programs running on

other machines, the local representations of the new machine are also

irrelevant; such programs can immediately read portable data produced by

the new machine because such data conforms to the canonical standards

that they already understand.

Licensed Material - Property of Data General Corporation 093-701049-04

XDR library

There are strong precedents for XDR’s canonical approach. For

example,TCP/IP, UDP/IP, XNS, Ethernet, and, indeed, all protocols below

layer five of the ISO model, are canonical protocols. The advantage of any

canonical approach is simplicity; in the case of XDR, a single set of

conversion routines is written once and is never touched again. The

canonical approach has a disadvantage, but it is unimportant in real-world

data transfer applications. If, for example, two little-endian machines

(which order the least significant bit first) are transferring integers

according to the XDR standard, then the sending machine converts the

integers from little-endian byte order to big-endian byte order (most

significant bit first). The receiving machine performs the reverse

conversion. Because both machines observe the same byte order, their

conversions are unnecessary. The point, however, is not necessity, but the

difference in cost.

The time spent converting to and from a canonical representation is

insignificant, especially in networking applications. Most of the time

required to prepare a data structure for transfer is not spent in conversion

but in traversing the elements of the data structure. To transmit a tree, for

example, each leaf must be visited and each element in a leaf record must

be copied to a buffer and aligned there; storage for the leaf may have to be

deallocated as well. Similarly, to receive a tree, storage must be allocated

for each leaf, data must be moved from the buffer to the leaf and properly

aligned, and pointers must be constructed to link the leaves together.

Every machine pays the cost of traversing and copying data structures

whether or not conversion is required. In networking applications,

communications overhead—the time required to move the data down

through the sender’s protocol layers, across the network and up through the

receiver’s protocol layers—dwarfs conversion overhead.

XDR library

The XDR library not only solves data portability problems, it also allows

you to write and read arbitrary C constructs in a consistent, specified,

well-documented manner. Thus, it makes sense to use the library even

when the data is not shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of

bytes), structures, unions, and arrays. Using more primitive routines, you

can write your own specific XDR routines to describe arbitrary data

structures, including elements of arrays, arms of unions, or objects pointed

at from other structures. The structures themselves may contain arrays of

arbitrary elements or pointers to other structures.

093-701049-04 Licensed Material - Property of Data General Corporation 8-5

XDR library

8-6

Let’s examine the two programs more closely. There is a family of XDR

stream creation routines in which each member treats the stream of bits

differently. In our example, data is manipulated using standard I/O

routines, so we use xdrstdio_create(). The parameters to XDR stream

creation routines vary according to their function. In our example,

xdrstdio_create() takes a pointer to an XDR structure that it initializes, a

pointer to a file that the input or output is performed on, and the operation.

The operation may be XDR_ENCODEH for serializing in the writer program,

or XDR_DECODE for deserializing in the reader program.

IMPORTANT RPC users never need to create XDR streams; the RPC

system itself creates these streams, which are then passed to the users.

The xdr_long() primitive is characteristic of most XDR library primitives

and all client XDR routines. First, the routine returns FALSE (0) if it fails,

and TRUE (1) if it succeeds. Second, for each data type, xxx, there is an

associated XDR routine of the following form:

xdr_ xxx(xdrs, xp)

XDR *xdrs;

XXX *XDp;

{

}

In our case, xxx is long, and the corresponding XDR routine is a primitive,

xdr long(). The client could also define an arbitrary structure xxx, in

which case the client would also supply the routine

xdr_xxx(), describing each field by calling XDR routines of the appropriate

type. In all cases the first parameter, xdrs, can be treated as an opaque

handle and passed to the primitive routines.

XDR routines are direction-independent; that is, the same routines are

called to serialize or deserialize data. This feature is critical to software

engineering of portable data. The idea is to call the same routine for either

operation—this almost guarantees that serialized data can also be

deserialized. One routine is used by both producer and consumer of

networked data. This is implemented by always passing the address of an

object rather than the object itself—only in the case of deserialization is the

object modified. This feature is not shown in our trivial example, but its

value becomes obvious when nontrivial data structures are passed among

machines. If needed, the user can obtain the direction of the XDR operation.

See the upcoming section called “XDR operation directions” for details.

Let’s look at a slightly more complicated example. Assume that a person’s

gross assets and liabilities are to be exchanged among processes. Also

assume that these values are important enough to warrant their own data

type. You can write your data structure as follows:

struct gnumbers {

long g assets;

long g_ liabilities;

bi

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

XDR library

The corresponding XDR routine describing this structure would be like this:

bool _t/* TRUE ts success, FALSE is failure */

xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{
if (xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_ liabilities))

return(TRUE) ;

return(FALSE) ;

}

Note that the parameter xdrs is never inspected or modified; it is only

passed on to the subcomponent routines. It is imperative to inspect the

return value of each XDR routine call, and to give up immediately and

return FALSE if the subroutine fails.

This example also shows that the type bool_t is declared as an integer for

which the only values are TRUE (1) and FALSE (0). This document uses the

following definitions:

#define bool t int

#define TRUE 1

#define FALSE 0

Keeping these conventions in mind, xdr_gnumbers() can be rewritten as

follows:

xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

return(xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_liabilities));

}

This document uses both coding styles.

XDR library primitives

This section gives a synopsis of each XDR primitive. It starts with basic

data types and moves on to constructed data types. Finally, XDR utilities

are discussed. The interface to these primitives and utilities is defined in

the include file <rpe/xdr.h>, automatically included by <rpe/rpec.h>.

Number filters

The XDR library provides primitives to translate between numbers and

their corresponding external representations. Primitives cover the set of

numbers in the following:

[signed, unsigned] * [short, int, long]

Licensed Material - Property of Data General Corporation 8-7

XDR library

8-8

Specifically, the eight primitives are as follows:

bool t xdr_char(xdrs, cp)

XDR *xdrs;

char *cp;

bool t xdr_u_char(xdrs, ucp)

XDR *xdrs;

unsigned char *ucp;

bool t xdr_int(xdrs, ip)

XDR *xdrs;

int *ip;

bool t xdr_u_int(xdrs, up)

XDR *xdrs;

unsigned *up;

bool _t xdr_long(xdrs, lip)

XDR *xdrs;

long *lip;

bool t xdr_u_long(xdrs, lup)

XDR *xdrs;

u_long *lup;

bool t xdr_short(xdrs, sip)

XDR *xdrs;

short *sip;

bool t xdr_u_short(xdrs, sup)

XDR *xdrs;

u_short *sup;

The first parameter shown above, xdrs, is an XDR stream handle. The

second parameter, is the address of the number that provides data to the

stream or receives data from it. All routines return TRUE if they complete

successfully, and FALSE otherwise.

Floating-point filters

The XDR library also provides primitive routines for C’s floating-point

types, as shown below:

bool t xdr_ float(xdrs, fp)

XDR *xdrs;

float *fp;

bool t xdr_double(xdrs, dp)

XDR *xdrs;

double *dp;

The first parameter, xdrs, is an XDR stream handle. The second

parameter, fp or dp, is the address of the floating-point number that

provides data to the stream or receives data from it. Both routines return

TRUE if they complete successfully, and FALSE otherwise.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

XDR library

IMPORTANT Because the numbefs are represented in IEEE

floating-point style, routines may fail when decoding a valid IEEE

representation into a machine-specific representation, or vice versa.

Enumeration filters

The XDR library provides a primitive for generic enumerations. The

primitive assumes that a C enum has the same representation inside the

machine as a C integer. The Boolean type is an important instance of the

enum. The external representation of a Boolean type is always TRUE (1) or

FALSE (0).The primitive for the enum is as follows:

#define bool t int

#define FALSE 0

#define TRUE 1

#define enum_t int

bool t xdr_enum(xdrs, ep)

XDR *xdrs;

enum_t *ep;

bool t xdr_bool(xdrs, bp)

XDR *xdrs;

bool t *bp;

The second parameters ep and bp are addresses of the associated type that

provides data to, or receives data from, the stream xdrs.

No data

Occasionally, an XDR routine must be supplied to the RPC system, even

when no data is passed or required. The library provides such a routine, as

shown below:

bool_t xdr_void(); /* always returns TRUE */

Constructed data type filters

Constructed or compound data type primitives require more parameters

and perform more complicated functions then the primitives discussed

above. This section includes primitives for strings, arrays, opaque data,

unions, and pointers to structures.

Constructed data type primitives may use memory management. In many

cases, memory is allocated when deserializing data with XDR_DECODE.

Therefore, the XDR package must provide means to deallocate memory.

This is done by an XDR operation, XDR_FREE. To review, the three XDR

directional operations are XDR_KNCODE, XDR_DECODE, and

XDR_ FREE.

Licensed Material - Property of Data General Corporation 8-9

XDR library

8-10

Strings

In C, a string is defined as a sequence of bytes terminated by a null byte,

which is not considered when calculating string length. However, when a

string is passed or manipulated, a pointer to it is employed. Therefore, the

XDR library defines a string to be achar * and not a sequence of

characters. The external representation of a string is drastically different

from its internal representation. Externally, strings are represented as

sequences of ASCII characters, while internally, they are represented with

character pointers. Conversion between the two representations is

accomplished with the routine xdr_string(), as shown below:

bool t xdr_string(xdrs, sp, maxlength)

XDR *xdrs;

char **sp;

u_int maxlength;

The first parameter, xdrs, 1s the XDR stream handle. The second

parameter, sp, is a pointer to a string (type char **). The third parameter,

maxlength, specifies the maximum number of bytes allowed during

encoding or decoding. Its value is usually specified by a protocol. For

example, a protocol specification may say that a filename may be no longer

than 255 characters.

The routine returns FALSE if the number of characters exceeds

maxlength, and TRUE if it doesn’t.

IMPORTANT Keep m&xlength small. If it is too big you can run out

of memory, because xdr_string() will call malloc(for space.

The behavior of xdr_string() is similar to the behavior of other routines

discussed in this section. The direction XDR_ENCODE is easiest to

understand. The parameter sp points to a string of a certain length; if the

string does not exceed maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First, the length of the

incoming string is determined; it must not exceed maxlength. Next, sp is

dereferenced; if the value is NULL, then a string of the appropriate length

is allocated, and *sp is set to this string. If the original value of *sp is

non-null, then the XDR package assumes that a target area has been

allocated, which can hold strings no longer than maxlength. In either case,

the string is decoded into the target area. The routine then appends a null

character to the string.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If

the string is not NULL, it is freed and *sp is set to NULL. In this

operation, xdr_string() ignores the maxlength parameter.

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

XDR library

Byte arrays

Often, variable-length arrays of bytes are preferable to strings. Byte arrays

differ from strings in the following three ways: 1) the length of the array

(the byte count) is explicitly located in an unsigned integer, 2) the byte

sequence is not terminated by a null character, and 8) the external

representation of the bytes is the same as their internal representation.

The primitive xdr_bytes() converts between the internal and external

representations of byte arrays, as shown below:

bool t xdr_ bytes(xdrs, bpp, lp, maxlength)

XDR *xdrs;

char **bpp;

u_int *lp;

u_int maxlength;

The usage of the first, second, and fourth parameters are identical to the

first, second, and third parameters of xdr_string() respectively. The length

of the byte area is obtained by dereferencing 1p when serializing; *1p is set

to the byte length when deserializing.

Arrays

The XDR library package provides a primitive for handling arrays of

arbitrary elements. The xdr_bytes() routine treats a subset of generic

arrays, in which the size of array elements is known to be 1, and the

external description of each element is built-in. The generic array primitive,

xdr_array(), requires parameters identical to those of xdr_bytes() plus

two more: the size of array elements, and an XDR routine to handle each of

the elements. The xdr_array() routine is called to encode or decode each

element of the array, as shown below:

bool t

xdr_array(xdrs, ap, lp, maxlength, elementsiz, xdr_element)

XDR *xdrs;

char **ap;

u_int *lp;

u_int maxlength;

u_int elementsiz;

bool t (*xdr_element)();

The parameter ap is the address of the pointer to the array. If *ap is NULL

when the array is being deserialized, XDR allocates an array of the

appropriate size and sets *ap to that array. The element count of the array

is obtained from *1p when the array is serialized; *1p is set to the array

length when the array is deserialized. The parameter maxlength is the

maximum number of elements that the array is allowed to have;

elementsiz is the byte size of each element of the array (the C function

sizeof() can be used to obtain this value). The xdr_element() routine is

called to serialize, deserialize, or free each element of the array.

Before we define more constructed data types, we will present three

examples.

Licensed Material - Property of Data General Corporation 8-1 1

XDR library

Example A

A user on a networked machine can be identified by (a) the machine name,

such as krypton (see the gethostname manual page), (b) the user’s UID

(see the geteuid manual page), and (c) the group numbers to which the

user belongs (see the getgroups manual page.) A structure with this

information and its associated XDR routine could be coded as shown below:

struct netuser {

char *nu_machinename;

int nu_uid;

u_int nu _glen;

int *nu_gids;

};

#define NLEN 255 /* machine names < 256 chars */

#define NGRPS 20 /* user can't bein > 20 groups */

bool t

xdr_netuser(xdrs, nup)

XDR *xdrs;

struct netuser *nup;

{
return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&

xdr_int(xdrs, &nup->nu_uid) &&

xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen,

NGRPS, sizeof (int), xdr_int));

Example B

A party of network users could be implemented as an array of a netuser

structure. The declaration and its associated XDR routines are shown

below:

struct party {

u_int p len;

struct netuser *p nusers;

};

#define PLEN 500 /* max number of users in a party */

bool t xdr_party(xdrs, pp)

XDR *xdrs;

struct party *pp;

{
return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,

sizeof (struct netuser), xdr_netuser));

Example C

The well-known parameters to main, argc, and argv can be combined into

a structure. An array of these structures can make up a history of

commands. The declarations and XDR routines might look like the

following:

8-1 2 Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

XDR library

struct cmd {

u_int c_argc;

char **c_ argv;

};

#define ALEN 1000 #£=/* args cannot be> 1000 chars */

#define NARGC 100 /* commands cannot have > 100 args */

struct history {

u_int h_ len;

struct cmd *h_cmds;

}; ,

#define NCMDS 75 /* history is no more than 75 commands * /

bool t xdr wrap string(xdrs, sp)

XDR *xdrs;

char **sp;

{
return(xdr_ string(xdrs, sp, ALEN));

}

bool t xdr_cmd(xdrs, cp)

XDR *xdrs;

struct cmd *cp;

return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,

sizeof (char *), xdr_wrap string));

}
bool t xdr_history(xdrs, hp)

XDR *xdrs;

struct history *hp;

return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

sizeof (struct cmd), xdr_cmd));

}

The most confusing part of this example is that the routine

xdr wrap string() is needed to package the xdr_string() routine,

because the implementation of xdr_array() passes only two parameters to

the array element description routine; xdr_wrap_string() supplies the

third parameter to xdr_string().

By now the recursive nature of the XDR library should be obvious. Let’s

continue with more constructed data types.

Opaque data

In some protocols, handles are passed from server to client. The client

passes the handle back to the server at some later time. Handles are never

inspected by clients; they are obtained and submitted. That is to say,

handles are opaque. The xdr_opaque() primitive is used for describing

fixed-sized opaque bytes.

bool t xdr_opaque(xdrs, p, len)

XDR *xdrs;

char *p;

u_int len;

Licensed Material - Property of Data General Corporation 8-1 3

XDR library

8-14

The parameter p is the location of the bytes; len is the number of bytes in

the opaque object. By definition, the actual data contained in the opaque

object is not machine-portable.

Fixed-sized arrays

The XDR library provides a primitive, xdr_vector(), for fixed-length

arrays. This primitive can be used as shown below:

#define NLEN 255 /* machine names must be < 256 chars */

#define NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser {

char *nu_machinename;

int nu_uid;

int nu_gids[NGRPS];

};

bool t xdr_netuser(xdrs, nup)

XDR *xdrs;

struct netuser *nup;

{
int i;

if (txdr_string(xdrs, &nup->nu_machinename, NLEN))

return(FALSE);

if (txdr_int(xdrs, &nup->nu_uid))

return(FALSE);

if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int),

xdr_ int)) {

return(FALSE) ;

} return(TRUE) ;

}

Discriminated unions

The XDR library supports discriminated unions. A discriminated union is a

C union and an enum _t value that selects an arm of the union.

Discriminated unions can be used as shown below:

struct xdr_ discrim {

enum _t value;

bool t (*proc)();

yi

bool t xdr_union(xdrs, dscmp, unp, arms, defaultarm)

XDR *xdrs;

enum _t *dscmp;

char *unp;

struct xdr discrim *arms;

bool t (*defaultarm)(); /* may equal NULL */

Licensed Material - Property of Data General Corporation 093~701049-04

Example A

093-701049-04

XDR library

First, the routine translates the discriminant of the union located at

*dscmp. The discriminant is always an enum_t. Next, the union located at

*unp is translated. The parameter arms is a pointer to an array of

xdr_discrim structures. Kach structure contains an ordered pair of

“[value, proc]’. If the union’s discriminant is equal to the associated value,

then the proc is called to translate the union. The end of the xdr_discrim

structure array is denoted by a routine of value NULL(O). Ifthe

discriminant is not found in the arms array, then the default arm procedure

is called if it is non-null; otherwise the routine returns FALSE .

Suppose the type of a union may be an integer, a character pointer (a

string), or a gnumbers structure. Also, assume the union and its current

type are declared in a structure. The declaration is as follows:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {

enum utype utype; /* the union’s discriminant * /

union {

int ival;

char *pval;

struct gnumbers gn;

} uval;

}3

The following constructs and XDR procedure (de)serialize the discriminated

union, as shown below:

struct xdr_discrim u_tag arms[4] = {

{ INTEGER, xdr_int },

{ GNUMBERS, xdr_gnumbers }

{ STRING, xdr_wrap string },

{ _dontcare_, NULL }

/* always terminate arms with a NULL xdr_ proc */ }

bool t xdr_u_tag(xdrs, utp)

XDR *xdrs;

struct u_tag *utp;

return(xdr_union(xdrs, &utp->utype, &utp->uval,

u_tag_ arms, NULL));

The routine xdr_gnumbers() was presented in a previous section called

“The XDR library.” The routine xdr_wrap_string() was presented in

example C. The default arm parameter to xdr_union() (the previous

parameter) is NULL in this example. Therefore the value of the union’s

discriminant may legally take on only values listed in the u_tag_arms

array. This example also demonstrates that the elements of the arm’s array

do not need to be sorted.

Licensed Material - Property of Data General Corporation 8-1 5

XDR library

Example B

8-16

It is worth pointing out that the values of the discriminant may be sparse,

though in this example they are not. It is always good practice to assign

explicit integer values to each element of the discriminant’s type. This

practice both documents the external representation of the discriminant

and guarantees that different C compilers emit identical discriminant

values.

Pointers

In C it is often convenient to put pointers to another structure within a

structure. The xdr_reference() primitive makes it easy to serialize,

deserialize, and free these referenced structures.

bool t xdr_reference(xdrs, pp, ssize, proc)

XDR *xdrs;

char **pp;

u_int ssize;

bool t (*proc)();

Parameter pp is the address of the pointer to the structure; parameter

ssize is the size in bytes of the structure (use the C function sizeof() to

obtain this value); and proc is the XDR routine that describes the

structure. When decoding data, storage is allocated if **ppis NULL.

There is no need for a primitive xdr_struct() to describe structures within

structures, because pointers are always sufficient.

Suppose there is a structure containing a person’s name and a pointer toa

gnumbers structure containing the person’s gross assets and liabilities. The

construct is as follows:

struct pgn {

char *name;

struct gnumbers *gnp;

di

The corresponding XDR routine for this structure is as follows:

bool t

xdr_pgn(xdrs, pp)

XDR *xdrs;

struct pgn *pp;

{
if (xdr_string(xdrs, &pp->name, NLEN) &&

xdr_reference(xdrs, &pp->gnp,

sizeof(struct gnumbers), xdr_gnumbers))

return(TRUE) ;

return(FALSE) ;

}

Licensed Material - Property of Data General Corporation 093-701049-04

CAUTION

CAUTION

093-701049-04

XDR library

Pointer semantics and XDR

In many applications, C programmers attach double meaning to the values

of a pointer. Typically, the value NULL (or zero) means data is not needed,

yet some application-specific interpretation applies. In essence, the C

programmer is encoding a discriminated union efficiently by overloading

the interpretation of the value of a pointer. For instance, in Example B, a

NULL pointer value for gnp could indicate that the person’s assets and

liabilities are unknown. That is, the pointer value encodes two things:

Whether or not the data is known; and if it is known, where it is located in

memory. Linked lists are an extreme example of the use of

application-specific pointer interpretation.

The primitive xdr_reference()cannot and does not attach any special

meaning to a null-value pointer during serialization. That is, passing an

address of a pointer for which the value is NULL to xdr_reference()

when serializing data will most likely cause a memory fault and, on the

DG/UX system, a core dump.

The routine xdr_pointer() correctly handles NULL pointers. For more

information about its use, see the upcoming section called “Linked lists.”

Non-filter primitives

XDR streams can be manipulated with the primitives discussed in this

section. The primitives are as follows:

u_int xdr_getpos(xdrs)

XDR *xdrs;

bool t xdr_setpos(xdrs, pos)

XDR *xdrs;

u_int pos;

xdr_destroy(xdrs)

XDR *xdrs;

The routine xdr_getpos() returns an unsigned integer that describes the

current position in the data stream.

In some XDR streams, the returned value of xdr_getpos() is meaningless;

the routine returns a —1 in this case (though -1 should be a legitimate

value).

The routine xdr_setpos() sets a stream position to pos.

In some XDR streams, setting a position is impossible; in such cases,

xdr_setpos() will return FALSE . This routine will also fail if the

requested position is out-of-bounds. The definition of bounds varies from

stream to stream.

Licensed Material - Property of Data General Corporation 8-1 7

XDR library

8-18

The xdr_destroy() primitive destroys the XDR stream. Usage of the

stream after calling this routine is undefined.

XDR operation directions

At times you may wish to optimize XDR routines by taking advantage of

the direction of the operation XDR_ENCODE, XDR_DECODE, or XDR_FREE.

The value xdrs—>x_op always contains the direction of the XDR operation.

Programmers are not encouraged to take advantage of this information.

Therefore, no example is presented here. However, an example in the

upcoming section called “Linked lists” demonstrates the usefulness of the

xdrs—>x_op field.

XDR stream access

An XDR stream is obtained by calling the appropriate creation routine.

These creation routines take arguments that are tailored to the specific

properties of the stream.

Streams currently exist for (de)serialization of data to or from standard I/O

FILE streams, TCP/IP connections and DG/UX files, and memory.

Standard i/o streams

XDR streams can be interfaced to standard I/O using the

xdrstdio create() routine, as shown below:

#include <stdio.h>

#include <rpc/rpc.h> /* xdr streams part of rpc */

void xdrstdio_create(xdrs, fp, x_op)

XDR *xdrs;

FILE *fp;

enum xdr_ op X_op;

The routine xdrstdio_create() initializes an XDR stream pointed to by

xdrs. The XDR stream interfaces to the standard I/O library. Parameter fp

is an open file, and x_op is an XDR direction.

Memory streams

Memory streams allow the streaming of data into or out of a specified area

of memory. The routine xdrmem_create() initializes an XDR stream in

local memory, as shown below:

#include <rpc/rpc.h>

void xdrmem_create(xdrs, addr, len, x_op)

XDR *xdrs;

char *addr;

u_int len;

enum xdr_ op xX_op;

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

XDR library

The memory is pointed to by parameter addr; parameter len is the length

in bytes of the memory. The parameter sxdrs and x_op are identical to the

corresponding parameters of xdrstdio_create(). Currently, the UDP/IP

implementation of RPC uses xdrmem_create(). Complete call or result

messages are built into memory before calling the sendto() system routine.

Record (TCP/IP) streams

A record stream is an XDR stream built on top of a record-marking

standard that is built on top of the DG/UX file or 4.2 BSD connection

interface. A record stream might look like the following:

#include <rpc/rpc.h> /* xdr streams part ofrpc */

xdrrec_create(xdrs,

sendsize, recvsize, iohandle, readproc, writeproc)

XDR *xdrs;

u_int sendsize, recvsize;

char *iohandle;

int (*readproc)(), (*writeproc)();

The routine xdrrec_create() provides an XDR stream interface that

allows for a bi-directional, arbitrarily long sequence of records. The

contents of the records are meant to be data in XDR form. The stream’s

primary use is for interfacing RPC to TCP connections. However, it can be

used to stream data into or out of normal DG/UX files.

The parameter xdrs is similar to the corresponding parameter described

above. The stream does its own data buffering similar to that of standard

I/O. The parameters sendsize and recvsize determine the size, in bytes,

of the output and input buffers, respectively; if their values are zero (0),

then predetermined defaults are used. When a buffer needs to be filled or

flushed, the routine readproc() or writeproc() is called, respectively. The

usage and behavior of these routines are similar to the DG/UX system calls

read and write. However, the first parameter to each of these routines is

the opaque parameter iohandle. The other two parameters (buf and nbytes)

and the results (byte count) are identical to the system routines. If xxx is

readproc() or writeproc(), then it has the following form:

/*

* returns the actual number of bytes transferred.

* -l is an error

*/

int

xxx(iohandle, buf, len)

char *iohandle;

char *buf;

int nbytes;

The XDR stream provides means for delimiting records in the byte stream.

The implementation details of delimiting records in a stream are discussed

in the upcoming section called “Advanced topics.” The primitives that are

specific to record streams are as follows:

Licensed Material - Property of Data General Corporation 8-1 9

XDR library

8-20

bool t xdrrec_endofrecord(xdrs, flushnow)

XDR *xdrs;

bool t flushnow;

bool _t xdrrec_skiprecord(xdrs)

XDR *xdrs;

bool t xdrrec_eof(xdrs)

XDR *xdrs;

The routine xdrrec_endofrecord() causes the current outgoing data to

be marked as a record. If the parameter flushnow is TRUE, then the

stream’s writeproc will be called; otherwise, writeproc will be called

when the output buffer has been filled.

The routine xdrrec_skiprecord() causes an input stream’s position to be

moved past the current record boundary and onto the beginning of the next

record in the stream.

If there is no more data in the stream’s input buffer, then the routine

xdrrec_ eof() returns TRUE. That is not to say that there is no more data

in the underlying file descriptor.

XDR stream implementation

This section provides the abstract data types needed to implement new
instances of XDR streams.

The XDR object

The following structure defines the interface to an XDR stream:

enum xdr op { XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2 };

typedef struct {

enum xdr op x_op; /* operation; fast added param */

struct xdr_ops {

bool t (*x_getlong)(); /* get long from stream */

bool t (*x_putlong)(); /* put long to stream */

bool t (*x_getbytes)(); /* get bytes from stream */

bool t (*x_putbytes)(); /* put bytes to stream */

u_int (*x getpostn)(); /* return stream offset */

bool t (*x_setpostn)(); /* reposition offset */

caddr t (*x_inline)(); /* ptr to buffered data */

VOID (*x destroy)(); /* free private area */

} *x_ops;

caddr t x public; /* users’ data */

caddr t x private; /* pointer to private data */

caddr t x base; /* private for position info */

int x handy; /* extra private word */

} XDR;

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

XDR library

The x_op field is the current operation being performed on the stream. This

field is important to the XDR primitives but should not affect a stream’s

implementation. That is, a stream’s implementation should not depend on

this value. The fields x_private, x_base, and x_handy are private to the

particular stream’s implementation. The field x_ public is for the XDR

client and should never be used by the XDR stream implementations or the

XDR primitives. x_getpostn(Q), x_setpostn(), and x _destroy() are

macros for accessing operations. The operation x_inline() takes two

parameters:an XDR *, and an unsigned integer, which is a byte count. The

routine returns a pointer to a piece of the stream’s internal buffer. The

caller can then use the buffer segment for any purpose. From the stream’s

point of view, the bytes in the buffer segment have been consumed or put.

The routine may return NULL if it cannot return a buffer segment of the

requested size. (Use of the resulting buffer is not data-portable. Users are

discouraged from using this feature.)

The operations x_getbytes() and x_putbytes(blindly get and put

sequences of bytes from or to the underlying stream; they return TRUE if

they are successful, and FALSE otherwise. The routines have identical

parameters (replace xxx):

bool t xxxbytes(xdrs, buf, bytecount)

XDR *xdrs;

char *buf;

u_int bytecount;

The operations x_getlong() and x_putlong() receive and put long

numbers from and to the data stream. It is the responsibility of these

routines to translate the numbers between the machine representation and

the (standard) external representation. The primitives htonl(Q) and ntohlQ

can be helpful in accomplishing this. The higher-level XDR implementation

assumes that signed and unsigned long integers contain the same number

of bits, and that nonnegative integers have the same bit representations as

unsigned integers. The routines return TRUE if they succeed, and FALSE

otherwise. They have identical parameters, as shown below:

bool t xxxlong(xdrs, lp)

XDR *xdrs;

long *lp;

Implementors of new XDR streams must make an XDR structure (with new

operation routines) available to clients, using some kind of create routine.

Advanced topics

This section describes techniques for passing data structures that are not

covered in the preceding sections. Such structures include linked lists (of

arbitrary lengths). Unlike the simpler examples covered in the earlier

sections, the following examples are written using both the XDR C library

routines and the XDR data description language. See Chapter 9, “External

Data Representation Standard: Protocol Specification,” for a detailed

description of this language.

Licensed Material - Property of Data General Corporation 8-21

XDR library

8-22

Linked lists

The last example in the earlier section called “Pointers” presented a C data

structure and its associated XDR routines for a individual’s gross assets

and liabilities. The example is duplicated below:

struct gnumbers {

long g_assets;

long g_ liabilities;

};

bool_t xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{
if (xdr_long(xdrs, &(gp->g_assets)))

return(xdr_long(xdrs, &(gp->g_liabilities)));

return(FALSE) ;

}

Now assume that we wish to implement a linked list of such information. A

data structure could be constructed as follows:

struct gnumbers node {

struct gnumbers gn_numbers;

struct gnumbers node *gn_next;

};

typedef struct gnumbers node *gnumbers list;

The head of the linked list can be thought of as the data object; that is, the

head is not merely a convenient shorthand for a structure. Similarly the

gn_next field is used to indicate whether or not the object has terminated.

Unfortunately, if the object continues, the gn_next field is also the address

of where it continues. The link addresses carry no useful information when

the object is serialized.

The XDR data description of this linked list is described by the recursive

declaration of gnumbers_ list, as shown below:

struct gnumbers {

int g_ assets;

int g_ liabilities;

hi

struct gnumbers node {

gnumbers gn_numbers;

gnumbers node *gn_next;

de

In this description, the Boolean response indicates whether there is more

data following it. If the Boolean response is FALSHK, then it is the last data

field of the structure. If it is TRUE, then it is followed by a gnumbers

structure and (recursively) by agnumbers_ list. Note that the C

declaration has no boolean data type explicitly declared in it (though the

gn_next field implicitly carries the information), while the XDR data

description has no pointer explicitly declared in it.

Licensed Material - Property of Data General Corporation 093-701049-04

XDR library

Hints for writing the XDR routines for a gnumbers_list follow easily from

the XDR description above. Note how the primitive xdr_pointer() is used

to implement the XDR union above.

bool_t xdr_gnumbers node(xdrs, gn)

XDR *xdrs;

gnumbers node *gn;

return(xdr_gnumbers(xdrs, &gn->gn_numbers) &&

xdr_gnumbers list(xdrs, &gp->gn_next));

}

bool t xdr_gnumbers list(xdrs, gnp)

XDR *xdrs;

gnumbers list *gnp;

{ |

return(xdr_pointer(xdrs, gnp,

sizeof(struct gnumbers node),

xdr_gnumbers_ node));

}

The unfortunate side effect of using XDR on a list with these routines is

that the C stack grows linearly with respect to the number of nodes in the

list. This is due to the recursion. The following routine collapses the above

two mutually recursive routine into a single, non-recursive one.

bool t xdr_gnumbers list(xdrs, gnp)

XDR *xdrs;

gnumbers list *gnp;

{
bool _t more data;

gnumbers list *nextp;

for (77) {
more data = (*gnp != NULL);

if (!xdr_bool(xdrs, &more data)) {

return(FALSE) ;

}

if (! more data) {

break;

}
if (xdrs->x_op == XDR_FREE) {

nextp = &(*gnp)->gn_next;

}
if (!xdr_reference(xdrs, gnp,

sizeof(struct gnumbers_node), xdr_gnumbers))

{
return(FALSE) ;

}
gnp = (xdrs->x_op == XDR_ FREE) ?

nextp : &(*gnp)->gn_next;

}
*gnp = NULL;

return(TRUE);

}

093-701049-04 Licensed Material - Property of Data General Corporation 8-23

XDR library

8-24

The first task is to find out whether or not there is more data, so that this

Boolean information can be serialized. Notice that this statement is

unnecessary in the XDR_DECODE case, since the value of more_data is not

known until we deserialize it in the next statement.

The next statement is the more data field of the XDR union. Then if there

is no more data, we set this last pointer to NULL to indicate the end of the

list, and return TRUE because we are done. Note that setting the pointer to

NULL is only important in the XDR_DECODE case, since it is already NULL

in the XDR_ENCODE and XDR_FREE cases.

Next, if the direction is XDR_FREE, the value of nextp is set to indicate the

location of the next pointer in the list. We do this now because we need to

dereference gnp to find the location of the next item in the list, and after

the next statement the storage pointed to by gnp will be freed and will no

longer be valid. We can’t do this for all directions though, because in the

XDR_DECODE direction the value of gnp won’t be set until the next

statement.

Next, we use XDR on the data in the node using the primitive

xdr_reference().The xdr_reference() routine is like xdr_pointer(),

which we used before, but it does not send over the Boolean response

indicating whether there is more data. We use it instead of xdr_pointer()

because we have already used XDR on this information ourselves. Notice

that the XDR routine passed is not the same type as an element in the list.

The routine passed is xdr_gnumbers(), for using XDR on gnumbers, but

each element in the list is actually of type gnumbers_node. We don’t pass

xdr_ gnumbers_ node() because it is recursive, and instead use

xdr_gnumbers(), which uses XDR on all of the non-recursive part. Note

that this trick will work only if the gn_numbers field is the first item in

each element, so that their addresses are identical when passed to

xdr reference().

Finally, we update gnp to point to the next item in the list. If the direction

is XDR_FREE, we set it to the previously saved value, otherwise we can

dereference gnp to get the proper value. Though harder to understand

than there cursive version, this non-recursive routine is far less likely to

use all of the available memory. It will also run more efficiently, because a

lot of procedure call overhead has been removed. Most lists are small

though (in the hundreds of items or less), and the recursive version should

be sufficient for them.

End of Chapter

Licensed Material - Property of Data General Corporation 093-701049-04

External Data Representation
Standard: protocol specification

IMPORTANT This chapter specifies a protocol that Data General

and other companies are using. It has been designated RFC1014 by the

ARPA Network Information Center.

Introduction

093-701049-04

External Data Representation (XDR) is a standard for describing and

encoding data. It is useful for transferring data between different computer

architectures, and has been used to communicate data between such

diverse machines as the AViiON® station, VAX, IBM-PC, and Cray. XDR

fits into the International Organization for Standardization (ISO)

presentation layer and is roughly analogous in purpose to X.409, ISO

Abstract Syntax Notation. The major difference between these two is that

XDR uses implicit typing, while X.409 uses explicit typing.

XDR uses a language to describe data formats. The language can be used

only to describe data; it is not a programming language. This language

allows you to describe intricate data formats in a concise manner. The

alternative of using graphical representations (itself an informal language)

quickly becomes incomprehensible when faced with complexity. The XDR

language itself is similar to the C language (see The C Programming

Language by Kernighan and Ritchie, cited at the end of this chapter).

Protocols such as RPC (remote procedure call) and NFS (Network File

System) use XDR to describe the format of their data.

The XDR standard makes the following assumption: that bytes (or octets)

are portable, where a byte is defined to be 8 bits of data. A given hardware

device should encode the bytes onto the various media in such a way that

other hardware devices may decode the bytes without loss of meaning. For

example, the Ethernet standard suggests that bytes be encoded in

“little-endian” style (see On Holy Wars and a Plea for Peace by Danny

Cohen, cited at the end of this chapter), or least significant bit first.

Basic block size

The representation of all items requires a multiple of four bytes (or 32 bits)

of data. The bytes are numbered 0 through n-1. The bytes are read or

written to some byte stream such that byte m always precedes byte m+1. If

the n bytes needed to contain the data are not a multiple of 4, then the n

bytes are followed by enough (0 to 3) residual 0 bytes, r, to make the total

byte count a multiple of 4.

Licensed Material - Property of Data General Corporation 9-1

XDR data types

Figure 9-1 illustrates the basic block size. It is in the familiar graphic box

notation for illustration and comparison. Each box (delimited by a plus

sign at each of the four corners and bars and dashes) depicts a byte.

Ellipses (...) between boxes show zero or more additional bytes where

required.

byte 0 byte 1 byte n-1 0 0

at r bytes >< —— n bytes ————_ >

~ n +r (where (n + r) mod 4 = 0) >>

Figure 9-1 Basic block layout

XDR data types

9-2

Figure 9-2

Kach of the sections that follow describes a data type defined in the XDR

standard, shows how it is declared in the language, and includes a graphic

illustration of its encoding.

For each data type in the language, we show a general paradigm

declaration. Note that angle brackets (< and >) denote variable-length

sequences of data, and square brackets ([and]) denote fixed-length

sequences of data. n, m, and r denote integers. For the full language

specification and more formal definitions of terms such as identifier and

declaration, refer to the upcoming section called “XDR language

specification.”

For some data types, more specific examples are included. A more extensive

example of a data description is in the upcoming section called “A sample

XDR data description.”

XDR signed integers

An XDR signed integer is a 32-bit datum that encodes an integer in the

range [-2147483648,2147483647]. The integer is represented in two’s

complement notation. The most and least significant bytes are 0 and 3,

respectively. Figure 9-2 illustrates how signed integers are declared.

(MSB) : (LSB)

byte 0 byte 1 byte 2 byte 3

~< 32 bits >>

Byte layout for signed integer declaration

Licensed Material - Property of Data General Corporation 093~701049-04

Figure 9-3

093-701049-04

XDR data types

XDR unsigned integers

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative

integer in the range [0,4294967295]. It is represented by an unsigned

binary number whose most and least significant bytes are 0 and 38,

respectively. Figure 9-3 illustrates how unsigned integers are declared.

(MSB) (LSB)

byte O byte 1 byte 2 byte 3

~< 32 bits >

Byte layout for unsigned integer declaration

Enumerations

Knumerations have the same representation as signed integers.

Knumerations are handy for describing subsets of the integers.

Enumerated data is declared as follows:

enum { name-identifier = constant, ... } identifier;

For example, the three colors red, yellow, and blue could be described by the

following enumerated type:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode as an enum any other integer than those that have

been given assignments in the enum declaration.

Boolean data types

Boolean data types are important enough and occur frequently enough to

warrant their own explicit type in the standard. Boolean data types are

declared as follows:

bool identifier;

This is equivalent to the following:

enum { FALSE = 0, TRUE = 1 } identifier;

Hyper integers and unsigned hyper integers

The standard also defines 64-bit (8-byte) numbers called hyper integers and

unsigned hyper integers. Their representations are the obvious extensions

of integers and unsigned integers defined above. They are represented in

two’s complement notation. The most and least significant bytes are 0 and

7, respectively. Figure 9-4 illustrates how hyper integers and unsigned

hyper integers are declared.

Licensed Material - Property of Data General Corporation 9.3

XDR data types

(MSB) (LSB)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

<— 64 bits _

Figure 9-4 Byte layout for signed and unsigned hyper integers

Floating-point data types

The standard defines the floating-point data type “float” (32 bits or 4 bytes).

The encoding used is the IEEE standard for normalized single-precision

floating-point numbers (see the IEEE Standard for Binary Floating-Point

Arithmetic, cited at the end of this chapter.) The following three fields

describe the single-precision floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and negative

numbers respectively. One bit.

E: The exponent of the number, base 2. Eight bits are devoted to this field.

The exponent is biased by 127.

F: The fractional part of the number’s mantissa, base 2. Twenty-three bits are

devoted to this field.

Therefore, the floating-point number is described as follows:

(-1)**S * 2**(E-Bias) * 1.F

Figure 9-5 illustrates how single-precision floating-point numbers are

declared.

S byte 0 byte 1 byte 2 byte 3

at 8 bits ->|<¢——— 23 bits __

=< 32 bits

Figure 9-5 Byte layout for single-precision floating-point numbers

Just as the most and least significant bytes of a number are 0 and 3, the

most and least significant bits of a single-precision floating-point number

are 0 and 31. The beginning bit (and most significant bit) offsets of S, E,

and F are 0, 1, and 9, respectively. Note that these numbers refer to the

mathematical positions of the bits, and not to their actual physical locations

(which vary from medium to medium).

The IEEE specifications should be consulted concerning the encoding for

signed zero, signed infinity (overflow), and denormalized numbers

(underflow). (This subject is discussed in IEEE Standard for Binary

Floating-Point Arithmetic, cited at the end of this chapter.) According to

IEEE specifications, the “NaN” (not a number) is system-dependent and

should not be used externally.

Licensed Material - Property of Data General Corporation 093-701049-04

XDR data types

Double-precision floating-point data types

The standard defines the encoding for the double-precision floating-point

data type “double” (64 bits or 8 bytes). The encoding used is the IEEE

standard for normalized double-precision floating-point numbers. The

standard encodes the following three fields, which describe the

double-precision floating-point number:

The sign of the number. Values 0 and 1 represent positive and negative

numbers respectively. One bit.

The exponent of the number, base 2. Eleven bits are devoted to this field.

The exponent is biased by 1023.

The fractional part of the number’s mantissa, base 2. Fifty-two bits are

devoted to this field.

Therefore, the floating-point number is described as follows:

(-1)**S * 2**(E-Bias) * 1.F

Figure 9-6 illustrates how double-precision floating-point numbers are

declared.

byte O

E

byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

Figure 9-6

093-701049-04

<— 11 —>« 52 bits >
<_< 64 bits

Byte layout for double-precision floating-point numbers

Just as the most and least significant bytes of a number are 0 and 3, the

most and least significant bits of a double-precision floating-point number

are 0 and 63. The beginning bit (and most significant bit) offsets of S, E,

and F are 0, 1, and 12, respectively. Note that these numbers refer to the

mathematical positions of the bits, and not to their actual physical locations

(which vary from medium to medium).

The IEEE specifications should be consulted concerning the encoding for

signed zero, signed infinity (overflow), and denormalized numbers

(underflow). According to IEEE specifications, the “NaN” (not a number) is

system-dependent and should not be used externally.

Fixed-length opaque data

At times, fixed-length uninterpreted data needs to be passed among

machines. This data is called “opaque” and is declared as follows:

opaque identifier[n];

where the constant n is the (static) number of bytes necessary to contain

the opaque data. If n is not a multiple of four, then the n bytes are followed

by enough (0 to 3) residual 0 bytes, r, to make the total byte count of the

opaque object a multiple of 4.

Licensed Material - Property of Data General Corporation 9.5

XDR data types

Figure 9-7 illustrates how fixed-length opaque data is declared.

1

byte 0 byte 1 byte n-1 0 0

a n bytes >< —_\|_— bytes ———_————_ >

<<

Figure 9-7

n +r (where (n +r) mod 4 = 0) >

Byte layout for fixed-length opaque data

Variable-length opaque data

The standard also provides for variable-length (counted) opaque data,

defined as a sequence of n (numbered 0 through n-1) arbitrary bytes to be

the number n encoded as an unsigned integer (as described below), and

followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+1 of the sequence, and byte

0 of the sequence always follows the sequence’s length (count). Byte n-1 is

followed by enough (0 to 3) residual 0 bytes, r, to make the total byte count

a multiple of 4. Variable-length opaque data is declared in the following

way:

opaque identifier<m>;

or

opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the

sequence may contain. If m is not specified, as in the second declaration, it

is assumed to be (2**32) - 1, the maximum length. The constant m would

normally be found in a protocol specification. For example, a filing protocol

may state that the maximum data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

Figure 9-8 illustrates how variable-length opaque data can be declared.

2 3 4 3

| |
length n byteO | byte 1 | - - |byte n-1 O |--- 0

|

$14 bytes > =n bytes —— >i bytes >

n +r (where (n + r) mod 4 = 0) >><

Figure 9-8 Byte layout for variable-length opaque data

It is an error to encode a length greater than the maximum described in the

specification.

Licensed Material - Property of Data General Corporation 093-701049-04

XDR data types

String

The standard defines a string of n (numbered 0 through n-1) ASCII bytes

to be the number n encoded as an unsigned integer (as described above),

and followed by the n bytes of the string. Byte m of the string always

precedes byte m+1 of the string, and byte 0 of the string always follows the

string’s length. If n is not a multiple of 4, then the n bytes are followed by

enough (0 to 3) residual 0 bytes, r, to make the total byte count a multiple of

4. Counted byte strings are declared as follows:

string object<m>;

or

string object<>;

The constant m denotes an upper bound of the number of bytes that a

string may contain. If m is not specified, as in the second declaration, it is

assumed to be (2**32) - 1, the maximum length. The constant m would

normally be found in a protocol specification. For example, a filing protocol

may state that a filename can be no longer than 255 bytes, as follows:

string filename<255>;

Figure 9-9 illustrates how a string can be declared.

2 3 4 3

length n byteO | byte 1 | - - |byten-1 O f--- 0

Figure 9-9

093~701049-04

EC —_$_—_—————4 bytes > tn bytes >=; bytes >

<_——— ntr (where (n +r) mod 4 = 0)

Byte layout for a string

It is an error to encode a length greater than the maximum described in the

specification.

Fixed-length array

Declarations for fixed-length arrays of homogeneous elements are in the

following form:

type-name identifier[n];

Fixed-length arrays of elements numbered 0 through n-1 are encoded by

individually encoding the elements of the array in their natural order, 0

through n-1. Each element’s size is a multiple of four bytes. Though all

elements are of the same type, the elements may have different sizes. For

example, in a fixed-length array of strings, all elements are of type string,

yet each element may vary in its length.

Licensed Material ~ Property of Data General Corporation 9.7

XDR data types

Figure 9-10 illustrates how fixed-length arrays are declared.

element 0
| | |
element 1 :

| | |
element n-1

n elementsag

Figure 9-10 Byte layout for fixed-length arrays

Variable-length array

Counted arrays provide the ability to encode variable-length arrays of

homogeneous elements. The array is encoded as the element count n (an

unsigned integer) followed by the encoding of each of the array’s elements,

starting with element 0 and progressing through element n-1. The

declaration for variable-length arrays follows this form:

type-name identifier<m>;

or

type-name identifier<>;

The constant m specifies the maximum acceptable element count of an

array; if m is not specified, as in the second declaration, it is assumed to be

(2**32) - 1. Figure 9-11 illustrates how a counted array is declared.

I] |
element 0

bf | bf |
element 1 7 7 element n-1

ee ee

<- 4bytes — yg

Figure 9-11 Byte layout for counted arrays

n elements >

It is an error to encode a value of n that is greater than the maximum

described in the specification.

Structure

Structures are declared as follows:

struct {

component-—declaration-A;

component-—declaration-B;

\&eee

} identifier;

The components of the structure are encoded in the order of their

declaration in the structure. Each component’s size is a multiple of four

bytes, though the components may be different sizes. Figure 9-12

illustrates how structures are declared.

Licensed Material - Property of Data General Corporation 093-701049-04

XDR data types

component B component A TT

Figure 9-12 Components of a structure

Figure 9-13

093-701049-04

Discriminated union

A discriminated union is a type composed of a discriminant followed by a

type selected from a set of prearranged types according to the value of the

discriminant. The type of discriminant is either int, unsigned int, or an

enumerated type, such as bool. The component types are called “arms” of

the union, and are preceded by the value of the discriminant, which implies

their encoding. Discriminated unions are declared as follows:

union switch (discriminant-declaration) {

case discriminant-value-A:

arm-declaration-A;

case discriminant-value-B:

arm-declaration-B;

default: default-declaration;

} identifier;

Kach “case” keyword is followed by a legal value of the discriminant. The

default arm is optional. If it is not specified, then a valid encoding of the

union cannot take on unspecified discriminant values. The size of the

implied arm is always a multiple of four bytes.

The discriminated union is encoded as its discriminant followed by the

encoding of the implied arm. Figure 9-13 illustrates how discriminated

unions are encoded.

oO 1 2 3

It Pot
discriminant implied arm

|

< 4bytes _»,

Layout for encoding a discriminated union

Void

An XDR void is a 0-byte quantity. Voids are useful for describing operations

that take no data as input or no data as output. They are also useful in

unions, where some arms may contain data and others do not. The

declaration is as follows:

void;

Figure 9-14 illustrates how voids are declared.

Licensed Material - Property of Data General Corporation 9.9

XDR data types

— << Obytes

Figure 9-14 Layout for voids

9-10

Constant

The data declaration for a constant follows this form:

const name-identifier = n;

const is used to define a symbolic name for a constant; it does not declare

any data. The symbolic constant may be used anywhere a regular constant

may be used. For example, the following defines a symbolic constant

DOZEN, equal to 12.

const DOZEN = 12;

Typedef data type

Typedef does not declare any data either, but serves to define new

identifiers for declaring data. The syntax is as follows:

typedef declaration;

The new type name is actually the variable name in the declaration part of

the typedef. For example, the following defines a new type called eggbox

using an existing type called egg:

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new

type name would have in the typedef, if it were considered a variable. For

example, the following two declarations are equivalent in declaring the

variable fresheggs:

eggbox fresheggs; egg fresheggs [DOZEN];

When a typedef involves a struct, enum, or union definition, there is

another (preferred) syntax that may be used to define the same type. In

general, a typedef of the following form:

typedef <<struct, union, or enum definition>> identifier;

may be converted to the alternative form by removing the typedef part and

placing the identifier after the struct, union, or enum keyword, instead of at

the end. For example, here are the two ways to define the type bool:

Licensed Material - Property of Data General Corporation 093-701049-04

XDR data types

typedef enum { /* using typedef */

FALSE = 0,

TRUE = 1

} bool;

enum bool { /* preferred alternative */

FALSE = 0,

TRUE = 1

};

This syntax is preferred because you do not have to wait until the end of a

declaration to figure out the name of the new type.

Optional-data

Optional data is one kind of union that occurs so frequently that we give it

a special syntax of its own for declaring it. It is declared as follows:

type-name *identifier;

This is equivalent to the following union:

union switch (bool opted) {

case TRUE:

type-name element;

case FALSE:

void;

} identifier;

It is also equivalent to the following variable-length array declaration, since

the boolean “opted” can be interpreted as the length of the array:

type-name identifier<1>;

Optional data is not so interesting in itself, but it is very useful for

describing recursive data-structures such as linked-lists and trees. For

example, the following defines a type stringlist that encodes lists of

arbitrary length strings:

struct *stringlist {

string item<>;

stringlist next;

};

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {

case TRUE:

struct {

string item<>;

stringlist next;

} element;

case FALSE:

void;

093-701049-04 Licensed Material - Property of Data General Corporation 9-1 1

Areas for future enhancement

or as a variable-length array:

struct stringlist<l> {

string item<>;

stringlist next;

a

All of these declarations obscure the intention of the stringlist type, so the

optional-data declaration is preferred over both of them. The optional-data

type also has a close correlation to how recursive data structures are

represented in high-level languages such as Pascal or C by use of pointers.

In fact, the syntax is the same as that of the C language for pointers.

Areas for future enhancement

The XDR standard lacks representations for bit fields and bitmaps, because

the standard is based on bytes. Also missing are packed (or binary-coded)

decimals.

The intent of the XDR standard was not to describe every possible kind of

data; rather, it only describes the most commonly used data-types of

high-level languages such as Pascal or C so that applications written in

these languages will be able to communicate easily over some medium.

One could imagine extensions to XDR that would let it describe almost any

existing protocol, such as TCP. The minimum necessary for this are support

for different block sizes and byte-orders. The XDR discussed here could

then be considered the 4-byte big-endian member of a larger XDR family.

Major features of the XDR standard

9-12

This section addresses some of the major features of XDR. It explains why

the features are defined as they are.

Why a language for describing data?

There are many advantages in using a data-description language such as

XDR versus using diagrams. Languages are more formal than diagrams

and lead to less ambiguous descriptions of data. Languages are also easier

to understand and allow one to think of other issues instead of the low-level

details of bit-encoding. Also, there is a close analogy between the types of

XDR and a high-level language such as C or Pascal. This makes the

implementation of XDR encoding and decoding modules an easier task.

Finally, the language specification itself is an ASCII string that can be

passed from machine to machine to perform quick data interpretation.

Licensed Material - Property of Data General Corporation 093-701049-04

XDR language specification

Why only one byte-order for an XDR unit?

Supporting two byte-orderings requires a higher level protocol for

determining in which byte-order the data is encoded. Because XDR is not a

protocol, this can’t be done. The advantage of this, though, is that data in
XDR format can be written to a magnetic tape, for example, and any

machine will be able to interpret it, because no higher level protocol is

necessary for determining the byte-order.

Why does XDR use big-endian byte-order?

XDR uses big-endian byte-order because many architectures, such as the

Motorola 68000 and IBM 370, support the big-endian byte-order.

Why is the XDR unit four bytes wide?

There is a tradeoff in choosing the XDR unit size. Choosing a small size

such as two makes the encoded data small, but causes alignment problems

for machines that aren’t aligned on these boundaries. A large size such as

eight means the data will be aligned on virtually every machine, but causes

the encoded data to grow too big. We chose four as a compromise. Four is

big enough to support most architectures efficiently, except for rare

machines such as the eight-byte aligned Cray. Four is also small enough to

keep the encoded data restricted to a reasonable size.

Why must variable-length data be padded with

zeros?

It is desirable that the same data encode into the same thing on all

machines, so that encoded data can be meaningfully compared or

checksummed. Forcing the padded bytes to be zero ensures this.

Why Is there no explicit data-typing?

Data-typing has a relatively high cost for small advantages. One cost is the

expansion of data due to the inserted type fields. Another is the added cost

of interpreting these type fields and acting accordingly. And most protocols

already know what type they expect, so data-typing supplies only

redundant information. However, one can still get the benefits of

data-typing using XDR. One way is to encode two things: first, a string that

is the XDR data description of the encoded data, and second, then the

encoded data itself. Another way is to assign a value to all the types in

XDR, and then define a universal type that takes this value as its

discriminant, and for each value, describes the corresponding data type.

XDR language specification

This section shows how the XDR language is specified. It discusses

notational conventions, lexical notes, syntax information, and syntax notes.

093-701049-04 Licensed Material - Property of Data General Corporation 9-1 3

XDR language specification

9-14

Notational conventions

This specification uses an extended Backus-Naur Form notation for

describing the XDR language. Here is a brief description of the notation:

1. The characters |, (,), [,], “, and * are special.

2. Terminal symbols are strings of any characters surrounded by double

quotation marks.

Non-terminal symbols are strings of non-special characters.

Alternative items are separated by a vertical bar (|).

Optional items are enclosed in square brackets ([]).

Items are grouped together by enclosing them in parentheses.TO oO e & An asterisk following an item means zero or more occurrences of that

item.

For example, consider the following pattern:

wan "very” (” 1 ” "very”) * [” cold” “and”] “rainy” ("day” |

“night”)

An infinite number of strings match this pattern. A few of them are:

"“a very rainy day”

"a very, very rainy day”

"a very cold and rainy day”

“a very, very, very cold and rainy night”

Lexical notes

When using XDR, note the following:

1. Comments begin with ’/*” and terminate with */.

2. White space serves to separate items and is otherwise ignored.

3. An identifier is a letter followed by an optional sequence of letters,

digits, or an underscore (_). The case of identifiers is not ignored.

4. Aconstant is a sequence of one or more decimal digits, optionally
preceded by a minus-sign (-).

Syntax information

This section presents a formal definition of what you can specify in the XDR

language. This definition uses an extended Backus-Naur Form notation.

For a brief description of the symbols used in the definition, see the section

“Notational conventions” earlier in the chapter.

Licensed Material - Property of Data General Corporation 093-701049-04

XDR language specification

declaration:

type-specifier identifier

type-specifier identifier "[" value ”]”

type-specifier identifier ”"<” [value]

“Opaque” identifier "[”"” value ”]”

“opaque” identifier "<”" [value] ">"

“string” identifier "<” [value] ">"

type-specifier "*” identifier

| “void”

value:

constant

| identifier

type-specifier:

[“unsigned”] “int”

[“unsigned”] “hyper”

"float”

“double”

*bool”

enum—-type-spec

struct-type-spec

union-type-spec

identifier

enum—-type-spec:

“enum” enum—body

enum—body:

“iu

(identifier "=" value)

(”,” identifier "=" value)*

“yr

struct-type-spec:

“struct” struct—body

struct—body:

“fin

(declaration ";")

(declaration ";")*
“yr

union-type-spec:

“union” union-body

union—body:

“switch” "(" declaration ")” "{"

(“case” value ":" declaration ";")

(“case” value ":" declaration ”;”)*

[“default” ”":" declaration ";"]
“yn

constant—def:

“const” identifier "=" constant ";"

type-def:

“typedef” declaration ";"
| “enum” identifier enum-body ";"

| “struct” identifier struct-body ";”

093-701049-04 Licensed Material - Property of Data General Corporation

aS

9-15

A sample XDR data description

| “union” identifier union-body ”;"”

definition:

type-def

| constant-def

specification:

definition *

Syntax notes

Some notes on XDR syntax are listed below.

1. The following are keywords and cannot be used as identifiers: bool,

case, const, default, double, enum, float, hyper, opaque, string, struct,

switch, typedef, union, unsigned, and void.

2. Only unsigned constants may be used as size specifications for arrays.

If an identifier is used, it must have been declared previously as an

unsigned constant in a const definition.

3. Constant and type identifiers within the scope of a specification are in

the same name space and must be declared uniquely within this scope.

4. Similarly, variable names must be unique within the scope of struct and

union declarations. Nested struct and union declarations create new

scopes.

5. The discriminant of a union must be of a type that evaluates to an

integer. That is, int, unsigned int, bool, an enumerated type or any

typedefed type that evaluates to one of these is legal. Also, the case

values must be one of the legal values of the discriminant. Finally, a

case value may not be specified more than once within the scope of a

union declaration.

A sample XDR data description

This section contains, as an example, a short XDR data description of a

function called file, which might be used to transfer files from one machine

to another.

const MAXUSERNAME = 32; /* max length of a user name */

const MAXFILELEN = 65535; /* maxlength ofafile */

const MAXNAMELEN = 255; /* max length of a file name */

/*

* Types of files:

*/

enum filekind {

TEXT = 0, /*ascit data */

DATA = 1, /* raw data */

EXEC = 2 /* executable */

};

©

9-1 6 Licensed Material - Property of Data General Corporation 093-701049-04

Table 9-1

093-701049-04

/*

* File information,

*/

per kind of file:

Asample XDR data description

union filetype switch (filekind kind) {

case TEXT:

void;

case DATA:

string creator<MAXNAMELEN>;

case EXEC:

string interpreter<MAXNAMELEN>;/*program interpreter*/ };

/*

* A complete file:

*/

struct file {

string filename<MAXNAMELEN>; /* name of file */

filetype type;

string owner<MAXUSERNAME> ;

opaque data<MAXFILELEN>;

};

/* no extra information /

/* data creator* /

/* info about file */

/* owner of file */

/* file data */

Suppose now that there is a user named “john” who wants to store his LISP

program sillyprog that contains just the data “(quit)”.

Table 9-1 shows how the LISP program would be encoded.

How to encode a LISP program using XDR

Offset Hex Bytes ASCII Description

00 00 00 09 Length of filename = 9

73 69 6c 6c sill Filename characters

79 70 72 6f ypro ... and more characters ...

12 67 00 00 00 g... ... and 3 zero-bytes of fill

16 00 00 00 02 Filekind is EXEC = 2

20 00 00 00 04 Length of interpreter = 4

24 6c 69 73 70 lisp Interpreter characters

28 00 00 00 04 Length of owner = 4

32 6a 6f 68 Ge john Owner characters

36 00 00 00 06 Length of file data = 6

40 28 71 75 69 (qui File data bytes ...

44 ... and 2 zero-bytes of fill74 29 00 00 t)..

Licensed Material - Property of Data General Corporation 9-17

Works cited in text

Works cited in text

Kernigan, Brian W., and Ritchie, Dennis M. The C Programming Language.

Bell Laboratories, Murray Hill, New Jersey, 1978.

Cohen Danny. On Holy Wars and a Plea for Peace. IEEE Computer, October

1981.

IEEE. Standard for Binary Floating-Point Arithmetic ANSI/IEEE

Standard 754-1985. Institute of Electrical and Electronics Engineers,

August 1985.

End of Chapter

9-1 8 Licensed Material - Property of Data General Corporation 093-701049-04

A Using the automounter

You can mount file hierarchies shared through NFS using a different

method: automounting. The automount program lets you mount and

unmount remote directories as needed. Whenever a user on a client

machine that is running the automounter invokes a command that needs to

access a remote file or directory, the file system to which that file or

directory belongs is mounted and remains mounted for as long as it is

required. When a specified amount of time has elapsed without the file

system being accessed, it is automatically unmounted. No mounting occurs

at boot or run-level change time, and the user does not require the

superuser password to mount a directory or use the mount or umount

commands.

Mounting some file hierarchies with automount does not exclude

mounting others with mount. Indeed, a diskless machine must mount / and

/usr during system initialization: the automounter cannot be used to mount

these file hierarchies.

The following subsections explain how the automounter works and how to

set it up.

How the automounter works

093-701049-04

IMPORTANT The material in this section is directed toward system

administrators and programmers. Novice users may find the summary

at the end of this section more helpful.

Unlike mount, the automounter does not consult the file /ete/fstab for a

list of hierarchies to mount. Instead it consults a series of direct or indirect

maps. The names of these maps can be passed to automount from the

command line or from another (master) map.

The automounter mounts everything under the directory /tmp_mnt and

provides a symbolic link from the requested mount point to the actual

mount point under /tmp_mnt. For example, if a user wants to mount the

remote directory sre under /usr/src, the actual mount point is

/tmp_mnt/usr/src. The name /usr/sre becomes a symbolic link to that

location. As with other mounts, a mount done through the automounter on

a non-empty mount point obscures the original contents of the mount point

while the mount is in effect.

The automounter’s actions comprise two stages:

e The initial stage, boot time, when re.nfsserv starts the automounter.

automount must be specified in the entry NFSSERV_DEMONS,

which is located in the file /ete/nfs.params.

Licensed Material - Property of Data General Corporation A-1

How the automounter works

e The mounting stage, when a user tries to access a file or directory on a

remote machine.

At the initial stage, when re.nfsserv invokes automount, it opens a UDP

socket and registers it with the portmap service as an NFS server port. It

then forks off a server daemon that listens for NFS requests on the socket.

The parent process mounts the daemon at its mount points within the file

system, as specified by the maps. Through the mount(2) system call, it

passes the server daemon’s port number and an NFS file handle that is

unique to each mount point.

The arguments to the mount(2) system call vary according to the kind of

file system. For NFS file systems, the call is in the format:

mount ("nfs", "/usr”, &nfs_args);

where &nfs_args contains the network address for the NFS server. By

having the network address in &nfs_args refer to the local process (the

automount daemon), automount in effect deceives the kernel into treating

it as if it were an NFS server. Instead, once the parent process completes its

calls to mount(2) it exits, leaving the daemon to serve its mount points.

In the second stage, when the user requests access to a remote file

hierarchy, the daemon intercepts the kernel NFS request and looks up the

name in the map associated with the directory. Taking the locations

(server:pathname) of the remote file system from the map, the daemon

mounts the remote file system under the directory /tmp_mnt. It answers

the kernel, telling it it is a symbolic link. The kernel sends an NFS

READLINK request, and the automounter returns a symbolic link to the

read mount point under /tmp_mnt.

The behavior of the automounter depends on whether the name is found in

a direct or an indirect map:

e Ifthe name is found in a direct map, the automounter emulates a

symbolic link. It responds as if a symbolic link exists at its mount point.

In response to a GETATTR request, it describes itself as a symbolic link.

When the kernel follows up with a READLINK, it returns a path to the

real mount point for the remote hierarchy in tmp_mnt.

e If, on the other hand, the name is found in an indirect map, the

automounter emulates a directory of symbolic links, describing itself as

a directory. In response to a READLINK request, it returns a path to

the mount point in /tmp_mnt, and a readdir(8) of the automounter’s

mount point returns a list of the entries that are currently mounted.

Whether the map is direct or indirect, if the file hierarchy is already

mounted and the symbolic link has been read recently, the cached symbolic

link is returned immediately. Because the automounter is on the same host,

the response is much faster than a READLINK request to a remote NFS

server. On the other hand, if the file hierarchy is not mounted the mount is

slightly delayed.

Licensed Material - Property of Data General Corporation 093-701049-04

Preparing the maps

Summary

When automount is called from the command line or from re.nfsserv,

automount forks a daemon to serve each mount point in the maps to trick

the kernel into believing the mount has taken place. The daemon lies

dormant until a request is made to access the corresponding file hierarchy.

At that time the daemon does the following:

1. Intercepts the request

2. Mounts the remote file hierarchy.

3. Creates a symbolic link between the requested mount point and the

actual mount point under /tmp_mnt.

4. Passes the symbolic link to the kernel, and steps aside.

5. Unmounts the file hierarchy when a predetermined amount of time has

elapsed since the link was last accessed (generally five minutes) and

resumes its previous position.

Preparing the maps

093-701049-04

A server is indifferent whether the files it shares are accessed through

mount or automount. Therefore, you need not do anything differently on

the server for automount than for mount.

A client, however, requires special files for the automounter. As previously

mentioned, automount does not consult /etc/fstab; instead, it consults the

map file(s) specified on the command line (see “Invoking automount,”

below). All automounter maps are located in the directory /etc. Their

names begin with the prefix auto.

The three types of automount maps are:

e master

e indirect

e direct

Each map type is described below.

The master map

Each line in a master map, by convention called /etc/auto.master, has the

following syntax:

Mount-—point Map { Mount-options]

where:

e mount-point is the full pathname of a directory.

Licensed Material - Property of Data General Corporation A-3

Preparing the maps

e map is the name of the map the automounter must use to locate the

mount points and locations.

e mount-options is a comma-separated list of options that regulates the

mounting of the entries in the map, unless the map entries themselves

list other options.

A line whose first character is a pound sign (#) is treated as a comment:

everything following it until the end of line is ignored. A backslash

character (\) at the end of line splits long lines into shorter ones.

Direct and indirect maps

Lines in direct and indirect maps have the syntax:

key [mount-options] location

where

e key is the pathname of the mount point.

e mount-options are the options you want to apply to the mount.

e location is the location of the resource, specified as server:pathname.

As in the master map, a line whose first character is the pound sign

character (#) is treated as a comment; everything following it until end of

line is ignored. A backslash character (\) at the end of line splits long lines

into shorter ones.

The only formal difference between a direct and an indirect map is that the

key in a direct map is a full pathname, while in an indirect map it is a-

simple filename (without slashes). For example, the following is an entry in

a direct map:

/usr/man -ro,intr goofy: /usr/man

and the following is an entry in an indirect map:

parsley -ro,intr veggies: /usr/greens

As you can see, the key in the sample indirect map requires more

information: Where is the mount point parsley located? You must either

provide that information at the command line or through another map. For

instance, if the line in the second example is part of a map called

/etc/auto.veggies, you must call it as:

automount /veggies /etc/auto.veggies

or specify, in the master map:

/veggies /etc/auto.veggies —-ro,soft,nosuid

In either case, you are associating a mount directory (veggies) with the

entries (parsley, in this case) in the indirect map /etc/auto.veggies. The

result is that the hierarchy /usr/greens from the machine veggies is

mounted on /veggies/parsley when required.

Licensed Material - Property of Data General Corporation 093-701049-04

° Writing a master map

Writing a master map

093-~-701049-04

As previously stated, the syntax for each line in the master map is:

Mount-—point Map [Mount-options]

A typical auto.master file might contain the following entries:

#Mount—point Map Mount-options

/net -hosts

/home /etc/auto.home -rw,intr

/~- /etc/auto.direct ~ro,intr

The automounter recognizes some special mount points and maps,

explained below. |

Mount point /-

In the example above, the mount point /- is a filler that the automounter

takes as a directive not to associate the entries in /etc/auto.direct with

any directory. Rather, the mount points are those provided in the map.

(Remember, in a direct map the key is a full pathname.)

Mount point /home

The mount point /home is the directory under which the entries listed in

/etc/auto.home (an indirect map) are to be mounted. That is, they will be

mounted under /tmp_mnt/home. A symbolic link will be provided between

/fhome/directory and /tmp_mnt/home/directory.

Mount point /net

Finally, the automounter mounts under the directory /net all the entries

under the special map -hosts. This is a built-in map that does not use any

external files except the hosts database /etc/hosts (or hosts.byname NIS

map). Because the automounter does not mount the entries until needed,

the specific order of the entries is unimportant. Once the automount

daemon is in place, the command:

example $ cd /net/gumbo

changes directory to the top of the hierarchy (that is, the root file system) of

the machine gumbo as long as the machine is in the hosts database. The

user may not, however, view the files and directories under /net/gumbo.

This is because the automounter can mount only the shared file systems of

host gumbo, in accordance with the restrictions placed on the sharing.

When the preceding command is issue, the automounter performs the

following tasks:

Licensed Material - Property of Data General Corporation A-5

Writing an indirect map

Writing an

1. pings the null procedure of the server’s mount request to see if it’s

active.

2. Requests the list of shared hierarchies from the server.

3. Sorts the shared list according pathname length to ensure proper

mounting order:

/usr/sre

/export/home

/usr/src/sccs

/export/root/blah

4. Proceeds down the list, mounting all the file systems at mount points in

/tmp_mnt, creating mount points at needed.

5. Returns a symbolic link that points to the top of the recently mounted

hierarchy. Note that the automounter must mount all the file systems

that the server in question advertises for sharing. For example, in the

following request: |

example $ ls /net/gumbo/usr/include

the automounter mounts all of gumbo’s shared file systems, not just /usr.

In addition, the unmounting that occurs automatically after a specified

period takes place from the bottom up. If one of the directories at the top of

the list is busy, the automounter must remount the entire hierarchy and try

again later.

Nevertheless, the -hosts special map provides a convenient way for users

to access directories on many hosts without using rlogin or rsh. (These

remote commands must establish communication through the network each

time they are invoked.) Also, system administrators do not have to modify

individual /etc/fstab files or mount directories manually.

Note that both /net and /home are conventional names. The automounter

creates them if they do not exist.

indirect map

The syntax for an indirect map is:

key [mount-options] location

where key is the name (not the full pathname) of the directory to be used as

mount point. Once the key is obtained by the automounter, it is suffixed to

the mount point associated with it either from the command line or by the

master map that invokes the indirect map.

Consider this entry in the master map presented earlier:

/home -rw, intr /etc/auto.home

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Writing an indirect map

Here /etc/auto.home is the name of the indirect map that will contain the

entries to be mounted under /home.

A typical auto.home map might contain the following:

#key mount-options location

willow willow: /home/willow

cypress | cypress: /home/cypress

poplar poplar: /home/poplar

pine pine: /export/pine

apple apple: /export/home

ivy ivy: /home/ivy

peach -rw,nosuid peach: /export/home

Assume that the preceding map is located on host oak. If user laura has an

entry in the password database specifying her home directory as

/home/willow/laura, whenever she logs into machine oak the

automounter mounts (as /tmp_mnt/home/willow) the directory

/home/willow residing on machine willow. If one of the directories indeed

is laura, she will be in her home directory, which is mounted as read/write

and interruptible.

Suppose, however, that /aura’s home directory is /home/peach/laura.

Whenever she logs into the machine oak, the automounter mounts

/export/home from peach under /tmp_mnt/home/peach. Her home

directory is mounted as read/write, nosuid. Any option in the file entry

overrides all options in the master map or entered on the command line.

Now, assume the following conditions occur:

e User laura’s home directory is listed in the password database as

/home/willow/laura.

e Machine willow shares its home hierarchy with the machines

mentioned in auto.home.

e Acopy of the same auto.home and password databases resides on each

of these machines.

Furthermore, laura now can enter the command:

% cd “brent

and the automounter will mount brent’s home directory for her (if all

permissions apply).

On a network without NIS, all relevant databases (such as /etc/passwd) on

all systems on the network must be changed to accomplish this. If NIS is

running, all relevant databases must be propagated throughout the

network.

Licensed Material - Property of Data General Corporation A-7

Writing a direct map

Writing a direct map

/usr/local \

/usr/man

/usr/games

/usr/spool/news

/usr/frame

The syntax for a direct map is identical to that for an indirect map:

key [mount-options] location

where:

e key is the full pathname of the mount point. (Remember that in an

indirect map this is not a full pathname.)

e mount-options are optional but, if present, override—for the entry in

question—the options of the calling line, if any, or the defaults. (See

“Invoking automount,” below.)

e location is the location of the resource, specified as server:pathname.

Of all the maps, the entries in a direct map most closely resemble, in their

simplest form, what their corresponding entries in /ete/fstab might look

like. An entry that appears in /etc/fstab as:

dancer: /usr/local - /usr/local/tmp nfs - YES ro

appears in a direct map as:

/usr/local/tmp -ro dancer:/usr/local

The following is a typical /etc/auto.direct map:

/bin =ro,soft ivy:/export/local/sun3 \

/share -ro,soft ivy:/export/local/share \

/sxrc -ro,soft ivy: /export/local/srce

-ro,soft oak:/usr/man \

rose:/usr/man \

willow: /usr/man

-ro,soft peach: /usr/games

-ro,soft pine: /usr/games

-ro, soft redwood:/usr/frame2.1 \

balsa: /export/frame

This map has a couple of unusual features, which are addressed in the next

two subsections.

Multiple mounts

Multiple mounts can be hierarchical. When file systems are mounted

hierarchically, each file system is mounted on a subdirectory within another

file system. When the root of the hierarchy is referenced, the automounter

mounts the entire hierarchy. The concept of root here is important. The

symbolic link returned by the automounter to the kernel request is a path

to the mount root. This is the root of the hierarchy that is mounted under

/tmp_mnt. To be accurate, this mount point should be specified as:

parsley / —ro,intr veg: /usr/greens

Licensed Material - Property of Data General Corporation 093-701049-04

/usr/local \

Writing a direct map

In practice, however, it is not specified because in the simple case of a single

mount, it is assumed that the location of the mount point is at the mount

root or “/.” Thus it is preferable to enter:

parsley -ro,intr veg: /usr/greens

The mount point specifications, however, becomes important when

mounting a hierarchy: here the automounter must have a mount point for

each mount within the hierarchy. The example above illustrates multiple,

non-hierarchical mounts under /usr/local when the latter is already

mounted.

The following illustration shows a true hierarchical mounting:

/usr/local \

/ -rw, intr peach:/export/local \

/bin —ro,soft ivy:/export/local/sun3 \

/share -rw,intr willow:/usr/local/share \

/sxrc -ro,intr oak:/home/jones/sre

The mount points in this example are /, /bin, /share, and src. These mount

points are relative to the mount root, not the host’s file system root. The

first entry in the example above has / as its mount point. It is mounted at

the mount root. There is no requirement that the first mount of a hierarchy

be at the mount root. The automounter will execute mkdir commands to

build a path to the first mount point if it is not at the mount root.

IMPORTANT A true hierarchical mount can be problematic if the

server for the root of the hierarchy goes down. Any attempt to unmount

the lower branches will fail, since the unmounting must proceed

through the mount root, which also cannot be unmounted while its

server is down.

Multiple locations

In the example used for a direct map, repeated here:

/bin —-ro,soft ivy:/export/local/sun3 \

/share —ro,soft ivy:/export/local/share \

/sre —-ro,soft ivy:/export/local/sre

/usr/man —-ro,soft oak:/usr/man \

rose:/usr/man \

willow: /usr/man

/usr/games -ro,soft peach: /usr/games

/usr/spool/news —-ro,soft pine: /usr/games

/usr/frame —ro,soft redwood:/usr/framel.3 \

balsa: /export/frame

the mount points /usr/man and /usr/frame list more than one location

(three for the first, two for the second). This means the mounting can be

done from any of the replicated locations. This procedure makes sense only

when you are mounting a hierarchy read-only, since theoretically you want

some control over the locations of files you write or modify.

093-701049-04 Licensed Material - Property of Data General Corporation A-9

Specifying subdirectories

Specifying

A-10

A good example are manual pages. In a large network, more than one

server may export the current set of man pages. It doesn’t matter which

server you mount them from, as long as the server is up and running and

sharing its file systems. In the preceding example, multiple mount locations

are expressed as a list of mount locations in the map entry:

/usr/man ~—ro,soft oak:/usr/man rose:/usr/man willow:/usr/man

This entry also could be expressed as a comma-separated list of servers,

followed by a colon (:) and the pathname (the pathname must be the same

for all replicated servers):

/usr/man —-ro,soft oak,rose,willow:/usr/man

In this example you can mount the man pages from the servers oak, rose or

willow. From this list of servers the automounter first selects those on the

local network and pings these servers. This launches a series of RPC

requests to the null procedure of the mount service in each server. (The list

does not imply any order.) The first server to respond is selected, and an

attempt is made to mount from it.

This redundancy, very useful in an environment where individual servers

may or may not be sharing their file systems, occurs only at mount time.

The automounter performs no status checking of the mounted-from server

after the mount takes place. If the server goes down while the mount is in

effect, the file system becomes unavailable. In this event, one option is to

wait five minutes until the auto-unmount takes place and try again. The

automounter then will choose one of the available servers. A second option

is to use the umount command, inform the automounter of the change in

the mount table (as specified in the section “The mount table,” below), and

retry the mount.

subdirectories

The examples in this section rely on the sample auto.home indirect file

used in the section “Writing an indirect map”:

#key mount-options location

willow willow: /home/willow

cypress cypress: /home/cypress

poplar poplar: /home/poplar

pine pine: /export/pine

apple apple: /export/home

ivy ivy: /home/ivy

peach —-rw,nosuid peach: /export/home

In this example, whenever a user wants to access a home directory in, for

instance, /home/willow, all the directories under it are mounted. An

alternate way to organize an auto.home file is by user name, as in:

#key mount—options location

john willow: /home/willow/john

mary willow: /home/willow/mary

joe willow: /home/willow/joe

Licensed Material - Property of Data General Corporation 093-701049-04

Specifying subdirectories

This example assumes that home directories are of the form /home/user

rather than /home/server/user. If a user now enters the following

command:

% ls “john “mary

the automounter must perform the equivalent of the following actions:

mkdir /tmp mnt/home/john

mount willow:/home/willow/john /tmp_mnt/home/john

ln -s /tmp mnt/home/john /home/john

mkdir /tmp_mnt/home/mary

mount willow:/home/willow/mary /tmp_mnt/home/mary

ln -s /tmp_mnt/home/mary /home/mary

The whole syntax of a line in a direct or indirect mp is:

key [mount-option] server: pathname[:subdirectory]

You have used the form server:pathname to indicate the location. You also

can specify the subdirectory:

#key mount—options location

john willow: /home/willow: john

mary willow: /home/willow:mary

joe willow: /home/willow: joe

In this case john, mary and joe are entries in the subdirectory field. Now

when a user refers to John’s home directory, the automounter mounts

willow:/home/willow. It then places a symbolic link between

/tmp_mnt/home/willow/john and /home/john.

If the user then requests access to mary’s home directory, the automounter

sees that willow:/home/willow is already mounted. It merely returns the

link between /tmp_mnt/home/willow/mary and /home/mary. In other

words, the automounter does only the following:

mkdir /tmp mnt/home/john

mount willow:/home/willow /tmp_mnt/home

ln -s /tmp_mnt/home/john /home/john

In -s /tmp_ mnt/home/mary /home/mary

In general, it is a good idea to provide a subdirectory entry in the location

when different map entries refer to the same mounted file system from the

same server.

Substitutions

A map specifying many subdirectories, for example:

#key mount-options location

john willow: /home/willow: john

mary willow: /home/willow:mary

joe willow: /home/willow: joe

able pine: /export/home:able

baker peach: /export/home: baker

093-701049-04 Licensed Material - Property of Data General Corporation A-1 1

Specifying subdirectories

A-12

may benefit from string substitutions. The ampersand (&) character

substitutes for the key wherever it appears. Substituting the ampersand

character, the preceding map now looks as follows:

#key mount-options location

john willow: /home/willow:&

mary willow: /home/willow:&

joe willow: /home/willow:&

able pine: /export/home: &

baker peach: /export/home: &

[ee.]

If the name of the server is the same as the key itself, for example:

#key mount-options location

willow willow: /home/willow

peach peach: /home/peach

pine pine: /home/pine

oak oak: /home/oak

poplar poplar: /home/poplar

[ee.]

the use of the ampersand results in the following map:

#key mount-options location

willow &: /home/&

peach &:/home/&

pine &:/home/&

oak &:/home/&

poplar &: /home/&

[...]

Note that the preceding entries have the same format. This permits you to

use the asterisk (*) substitute character, reducing the map to:

* &: /home/&

where each ampersand is substituted by the value of any given key. Once

the automounter detects the asterisk it does not continue reading the map.

Thus, the following map is possible:

#key mount-options location

oak &:/export/&

poplar &:/export/&

* &:/home/&

while in the following map, the last two entries are always ignored:

#key mount-options location

* &: /home/&

oak &:/export/&

poplar &:/export/&

Key substitutions may be used in a direct map, as the following example

illustrates:

/usr/man willow,cedar,poplar:/usr/man

9

Licensed Material - Property of Data General Corporation 093-701049-04

093~-701049-04

Specifying subdirectories

can be written as:

/usr/man _willow,cedar,poplar:&

The ampersand substitution uses the entire key string; if the key in a direct

map starts with a slash (/)), the slash is duplicated. As a result, the

automounter interprets the following:

/progs &1,&2,&3:/export/src/progs

as

/progs /progs1,/progs2,/progs3:/export/src/progs

Special characters

Under certain circumstances you may have to mount directories whose

names may confuse the automounter’s map parser. An example might be a

directory called :dk1, which could result in an entry like:

/junk -ro vmsserver:rc0:dk1

The presence of the two colons (:) in the locations field confuses the

automounter’s parser. To avoid this confusion, use a backslash character (\)

to prevent the second colon from being interpreted as a separator:

/junk —ro vmsserver:rc0\:dkl

You also can use double quotes, as in the following example, where they are

used to hide the blank space in the name:

/smile dentist:”"front teeth”/smile

Environment variables

You can use the value of an environmental variable by prefixing its name

with a dollar sign character ($). Braces also may be used to delimit the

name of the variable from appended letters or digits.

The environmental variables can be inherited from the environment or can

be explicitly defined with the -D command line option. For example, if you

want each client to mount client-specific files in the network in a replicated

format, you can create a map specifically for each client according to its

name. Thus, the relevant line for host oak would be:

/mystuff cypress,ivy,balsa:/export/hostfiles/oak

and for willow:

/mystuff cypress,ivy,balsa:/export/hostfiles/willow

This scheme is practical within a small network, but maintaining such

maps over a large network soon becomes infeasible. The solution in this

case is to invoke the automounter with a command line similar to the

following:

Licensed Material - Property of Data General Corporation A-1 3
oO

Invoking automount

automount -D HOST='hostname’

with the following entry in the direct map:

/mystuff cypress,ivy,balsa:/export/hostfiles/$HOST

Now each host locates its own files in the directory mystuff, and the task of

administering and distributing the maps is simplified.

Invoking automount

A-14

Once the maps are written, you should make sure that /ete/fstab contains

no equivalent entries, and that all entries in the maps refer to NFS shared

files.

The syntax to invoke the automounter is:

automount [-mnTv] [-D name=vvalue] [-f master-file] [-M

mount-directory] [-t sub-options [directory map [-mount-options]]

The automount(1M) man page describes all options. The sub-options are

the same as those for a standard NFS mount: bg (background) and fg

(foreground) do not apply.

Given the following set of three maps:

e auto.master

#Mount—point Map Mount-options

/net -hosts

/home /etc/auto.home —rw, intr

/- /etc/auto.direct -ro,intr

e auto.home

#key mount-—options location

willow willow: /home/willow

cypress | cypress: /home/cypress

poplar poplar: /home/poplar

pine pine: /export/pine

apple apple: /export/home

ivy ivy: /home/ivy

peach —-rw,nosuid peach: /export/home

e auto.direct

/usr/local \

/bin -ro,soft ivy:/export/local/sun3 \

/share -ro,soft ivy:/export/local/share \

/src -ro,soft ivy:/export/local/srce

/usr/man -ro,soft oak:/usr/man \

rose:/usr/man \

willow: /usr/man

/usr/games -ro,soft peach:/usr/games

Licensed Material - Property of Data General Corporation 093-701049-04

Invoking automount

/usr/spool/news -ro,soft pine:/usr/spool/news

/usr/frame -ro,soft redwood:/usr/frame2.1 \

balsa: /export/frame

you can invoke the automounter (either from the command line or,

preferably, from re.nfsserv) in one of the following ways:

1. You can specify all arguments to the automounter without reference to

the master map, as in:

automount /net ~-hosts /home /etc/auto.home -rw,intr\

/- /etc/auto.direct -ro,intr

2. You can include the preceding line in the auto.master file, and instruct

the automounter to open this file for instructions:

automount -f /etc/auto.master

3. You can specify more mount points and maps in addition to those

referenced in the master map, as follows:

automount -f /etc/auto.master /src /etc/auto.sre -ro,soft

4. You can nullify one of the entries in the master map. (This procedure is

particularly useful if you use a map that you cannot modify and that

does not meet your machine’s requirements.)

automount -f /usr/lib/auto.master /home -null

5. You can replace one of the entries with your own:

automount -f /usr/lib/auto.master /home /myown/auto.home -rw,intr

In this example, the automounter first mounts all items in the map

/myown/auto.home under the directory /home. Then, when it consults

the master file /usr/lib/auto.master and reaches the line corresponding to

/home, it simply ignores it (because it already has mounted on it).

Given the auto.master file in the previous example, the first two

commands are equivalent, as long as your network does not have a

distributed auto.master file. This file is available only on networks

running NIS. If your network includes a distributed auto.master file, the

second example must be modified in the following way to make it

equivalent to example 1:

automount -m -f /etc/auto.master

The -m option instructs the automounter not to consult the master file

distributed by NIS. If you don’t run NIS, you do not have to specify the -m

option; the automounter is silent when it does not find a distributed master

file.

You can log in as superuser and type any of the above commands at shell

level to start the automounter. Ideally, however, you should let re.nfsserv.

start the automounter. To do so, modify the /etc/nfs.params file as follows:

093-701049-04 Licensed Material - Property of Data General Corporation A-1 5

The mount table

e Add automount to the entry NFSSERV_DEMONS.

e Modify automount_arg if you want to change the options supplied to

automount.

The temporary mount point

The default name for all mounts is /tmp_mnt. Like the other names, this

name is arbitrary: it can be changed at invocation time by the -M option.

For example:

automount -M /auto ...

causes all mounts to take place under the directory /auto, which the

automounter creates if necessary. Obviously you should not designate a

directory that is in a read-only file system, as the automounter would not

be able perform necessary file modifications.

The mount table

When the automounter mounts or unmounts a file hierarchy, it modifies

/ete/mnttab to reflect the current mounting status. The automounter

maintains an image of /etc/mnttab in memory, and refreshes this image

whenever it performs a mounting or an automatic unmounting. If you use

the umount command to unmount one of the automounted hierarchies (a

directory under /tmp_mnt), you should force the automounter to re-read

the /etc/mnttab file by entering the following command:

$ ps -ef | grep automount | egrep -v grep

This command returns the process ID of the automounter. The

automounter is designed to re-read /etc/mnttab upon receiving a SIGHUP

signal. To send it that signal, enter the following command:

% kill -1 PID

where PID stands for the process ID obtained from the previous ps

command.

- Modifying the maps

A-16

You can modify the automounter maps at any time. Recall, however, that

the automounter consults the master and indirect maps only when it is

invoked. Thus you must reboot the machine for modifications to maps to

become effective.

Licensed Material - Property of Data General Corporation 093-701049-04

Setting up automount in a client-server environment

On the other hand, changes to a direct map take effect when the

automounter next mounts the modified entry. For example, suppose you

modify the file /etc/auto.direct so that the directory /usr/sre is now

mounted from a different server. The new entry takes effect immediately (if

/usr/sre is not currently mounted) when you attempt to access the

directory. If the directory is currently mounted, you can wait until the

auto-unmounting occurs, then access it. If this procedure is not satisfactory,

you can unmount the directory with the umount command, notify

automount that the mount table has changed (see above, “The mount

table”), then access it. The mounting should now be initiated from the new

server.

Setting up automount in a client-server environment

Set up automount in a client-server environment as follows:

1. On the NIS master server, create a direct map file named

/etc/auto.fstab for the clients to use. (See the section “Writing a direct

map’ earlier in this appendix for the syntax of direct map files.)

If mount information already exists in a /etc/fstab file, use the script

below to convert /etc/fstab to a /etc/auto.fstab file.

093-701049-04 Licensed Material - Property of Data General Corporation A-1 7

Setting up automount in a client-server environment

A-18

#!/bin/sh

#

Call this tool fs2direct

#

Copy /etc/fstab to /etc/fstab.tmp

#

Run fs2direct /etc/fstab.tmp > /etc/auto.fstab

#

rm /etc/fstab/tmp

#

Extract the remote file mount lines from /etc/fstab;

(bypass local mount lines of the format /dev/dsk/??)

rearrange the information into automount order;

remove the bg option, which is not used by automount

save the result as /etc/auto.fstab

#

echo “Usage: fs2direct </etc/fstab>” >&2

fi

egrep ““[*#]*:/" $1 | awk ‘BEGIN {FS =" "}
{print $2, “ —"$4," ",S1}! |

sed -e 's/bg,//g' -e 's/,bg//g' -e 's/[*,]bg[*,]/ /g' |

sort

#

End of tool fs2direct

#

IMPORTANT The section “Multiple mounts,” earlier in this chapter,

describes a shorthand notation equivalent to the output of the tool

shown above. You do not need to modify the /etc/auto.fstab file

produced by the tool.

. Enter the directory /etc/yp and type the following command:

make auto.fstab J

. On each NIS client, add the line below to the /etc/auto.master file. (If

the file does not exist, create it.)

/- auto.fstab

This line tells automount that the auto.fstab file is in direct map file

format. (See “Writing a direct map” earlier in this chapter for

information on direct file format.)

. For each line in auto.fstab, remove the corresponding line from

/etc/fstab. To see the relevant lines in /ete/fstab, type:

ypceat autofstab .!

Licensed Material - Property of Data General Corporation 093-701049-04

Error messages

5. Add automount to NFSSERV_DEMONS in the file /etc/nfs.params.

6. Reboot your system.

IMPORTANT You must halt the system and reboot. Taking the

system down to single-user mode and back up to init 3 is not sufficient.

Error messages

093-701049-04

This section explains the error messages generated when the automounter

fails.

e no mount maps specified

The automounter was invoked with no maps to serve, and it cannot find the

NIS auto.master map. This message appears only when the -v option is

not specified. Check the command syntax or restart NIS.

e mapname: Not found

The required map cannot be located. This message appears only when the

-v option is not specified. Check the spelling and pathname of the map

name.

e dir mounipoint must start with ’/

The mountpoint exists but it is not a directory. Check the spelling and

pathname of the mount point.

e hierarchical mountpoint: mountpoint

Automounter will not allow itself to be mounted within an automounted

directory: use another strategy.

e WARNING: mountpoint not empty!

The mountpoint is not an empty directory. This warning appears only when

the -v option is not specified; the previous contents of mountpoint will not

be accessible.

e Can’t mount mountpoint: reason

Automounter cannot mount itself at mountpoint. The reason should be

self-explanatory.

e hostname:file system already mounted on mountpoint

Automounter has been mounted on an already mounted-on mountpoint and

is attempting to mount the same file system there. This occurs if an entry

in /etc/fstab also appears in an automounter map (either by accident or

because the output of mount -p was redirected to fstab). Delete one of the

redundant entries.

e WARNING: hostname-file system already mounted on mountpoint

Licensed Material - Property of Data General Corporation A-1 9

Error messages

A-20

The automounter is mounting itself on top of an existing mount point

(warning only).

e couldn’t create directory: reason

Couldn’t create the specified directory: the reason should be

self-explanatory.

e bad entry in map mapname “map entry”

e map mapname, key map key: bad

The automounter cannot interpret the map entry. Recheck the entry;

perhaps it contains characters that need escaping.

© mapname: yp _err

Error in looking up an entry in an NIS map.

e hostname: exports: rpc_err

Error retrieving share list from hostname, indicating a server or network

problem.

e host hostname not responding

e hostname: filesystem server not responding

e Mount of hostname:-filesystem on mountpoint: reason

These messages appear after the automounter attempted to mount from

hostname but either got no response or failed. This indicates a server or

network problem.

e mountpoint - pathname from hostname: absolute symbolic link

While mounting a hierarchy, the automounter has detected that

mountpoint is an absolute symbolic link Gt begins with “/’). The content of

the link is pathname. This may have undesirable consequences on the

client: the contents of the link may be /usr.

e Cannot create socket for broadcast rpc: rpc_err

e Many cast select problem: rpc_err

e Cannot send broadcast packet: rpc err

e Cannot receive reply to many_cast: rpc_err

These error messages indicate problems attempting to ping servers for a

replicated file system, indicating a network problem.

e tyrmany: servers not responding: reason

No server in a replicated list is responding, indicating a network problem.

e Remount hostname:filesystem on mountpoint: server not responding

Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

Error messages

An attempted remount after unmount failed, indicating a server problem.

e NFS server (pidn\f8@mountpoint) not responding still trying

An NFS request made to the automount daemon with PID n serving

mountpoint has timed out. The automounter may be overloaded or dead. If

the condition persists after several minutes, reboot the client. The

alternative is to exit all processes that use automounted directories (or,

change to a non-automounted directory in the case of a shell), kill the

current automount process, and restart it from the command line. If all else

fails, reboot.

End of Appendix

Licensed Material ~ Property of Data General Corporation A-21

B A sample nfs.params file

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

The file /ete/nfs.params contains default values for the variables you must

set. A sample nfs.params file follows.

/etc/nfs.params

The parameters for nfs/nis must be setup for your particular

system. Two kinds of variables in the /etc/nfs.params file

control the way NFS and NIS will be invoked and initialized

each time you change to an appropriate run level with init.

These variables are either START arguments which determine

the services made available automatically, or _ARG variables

which set the parameters used by the services/demons when

they’re started.

Each variable has a description of its purpose and a

recommended default value. See "Managing ONC/NFS and Its Facilities”

for information specific to each service/demon.

HEAAEEAHEAEEATEAA HEAP EARHEAEHAREHEAEEEAEEAEHEAEHAAHHAAH AAA AAR

REQUIRED NIS VALUES

IF you are using NIS, THEN you MUST set the domainname ARG

There is NO default for this argument

Running NIS with no domainname is an ERROR causing NIS to FAIL.

domainname ARG="”"

You must indicate whether this is a NIS master, server or client.

Masters maintain NIS map sources and supply NIS map info to others.

Servers supply NIS map info to other NIS hosts on demand.

A client consumes NIS services without supplying any.

Set the ypserv_ START to reflect the status of your host.

FH the default valueois: ypserv_START=""

any value other than “MASTER” “SERVER” "CLIENT”

is equivalent to the default, which turns NIS OFF!

IF you are a MASTER, set to: ypserv_START="MASTER”

IF you are a SERVER, set to: ypserv_START=”"SERVER”

IF you are a CLIENT, set to: ypserv_START="CLIENT”

a good default value is: ypserv_START="CLIENT”

ypserv_START=""

KR RR WK

indicate whether this host is passwd master so yppasswdd demon

will start. See the nfs/nis manual for information on yppasswdd.

if this host is master for the NIS passwd map, set yppasswdd_ARG

so that it will update and build the passwd map correctly.

If your NIS passwd file is in /etc then "/etc/passwd -m passwd” will

suffice, however, if you keep your passwd file in say /etc/sre then set it

to "/etc/src/passwd -m SRC_DIR=/etc/sre passwd” (or appropriate value).

IF THIS IS NOT THE yppasswd MASTER, set yppasswdd_ARG to ””

093-701049-04 Licensed Material - Property of Data General Corporation B-1

yppasswdd_ARG=""”

HEBHAAEATAA HATHA ARHAREAHAAHETAHARHAHRABHHBHEEEREAHEAEEAEAAHAAEAHEAHEAE

OPTIONAL NFS VALUES

The verbose FLAG flag indicates whether or not verbose messages

should be displayed from the rc scripts.

the default value is: verbose FLAG="false”

verbose_FLAG="false”

nfsserv starts the demons associated with NFS services

(portmap, rwalld ruserd, mountd, nfsd).

nfsfs mounts remote nfs file systems listed in /etc/fstab

IF you intend to mount remote nfs file systems THEN

nfsserv_START and nfsfs_START must both be true

the default value is: nfsserv_START="true”

any value other than "false” equals the default

nfsserv_START="true”

the default value is: nfsfs_START="true”

any value other than “false” equals the default

nfsfs START="true”

Demons to be started/stopped by rc.nfsserv

choose from: "“mountd nfsd lockd automount”

NFSSERV_DEMONS="mountd nfsd lockd”

number of demons to be started is based on the amount

of network (nfs) traffic.

the nfsds are used when acting as an NFS SERVER

the biods are used when acting as an NFS CLIENT and started by the

dgux init scripts

See the manpage for details.

e

default value is: nfsd_ARG="8”

nfsd_ARG="8”"

remote locking demons

default value is: lockd_ sleep ARG="15”

See the manpage for details.

lockd_sleep_ARG="15”

default value is: lockd ARG="-g ${lockd_sleep ARG:-0}”

lockd_ARG="-g S${lockd_sleep_ ARG:-0}”

default value is: statd_ARG=""

statd_ARG=""”

default value is: mountd_ARG=""

setting this to "-n” disallows mounting only from secure ports

see mountd(1m) for more details.

mountd_ARG=""

default value is: automount _ARG="-m -f /etc/auto.master”

automount_ARG="-m -f /etc/auto.master”

B-2 Licensed Material - Property of Data General Corporation 093-701049-04

093-701049-04

This sample file above sets the variables nfsserv_ START and nfsfs START to

true, allowing the host to mount remote machines.

End of Appendix

Licensed Material - Property of Data General Corporation B-3

Symbols

/etc/auto.fstab file, setting up

automount, A-17

/etc/exports entry, 2-9

/etc/exports file, 2-17

/etc/exports sample file, 1-5

/etc/fstab file, converting to a

/etc/auto.fstab file, A-17

/etc/hosts file, 2-16

/etc/mnttab file, 2-14

/etc/netgroup file, 4-17

/usr/etc/init.d/re.nfsfs file, 2-9

/usr/etc/init.d/re.nfsserv file, 2-9

A

Adding

NIS maps, 4-8

NIS servers, 4-8

users, 4-17

Adding NIS servers

makedbm command, 4-9

ypinit command, 4-9

ypservers map, 4-8

Aliases file, 3-7

Altering NIS client’s files, 4-2

/etc/.rhosts file, 4-3

/etc/aliases file, 4-3

/etc/bootparams file, 4-3

/etc/ethers file, 4-3

/etc/group file, 4-3

/etc/hosts file, 4-3

/etc/hosts.equiv file, 4-3

/etc/netgroup file, 4-3

/etc/netid file, 4-3

/etc/netmasks file, 4-3

/etc/networks file, 4-3

/etc/passwd file, 4-3

/etc/protocols file, 4-3

/etc/rpc file, 4-3

/etc/services file, 4-3

ypbind command, 4-2

Application program, 1-4

Arbitrary data types, 6-10

Architectural incompatibilities, clock

skew, 2-21

Assigning program numbers, 6-7, 7-5

Authentication

RPC, 7-3

RPC fields, 7-5

RPC protocols, 7-10

Authentication in RPC, UNIX

authentication, 7-10

Authentication with RPC, 6-25

Automount, setting up, A-17

automount command, A-1

invoking, A-14

syntax, A-14

Automounter, A-1

calling from command line, A-3

calling from rc.local, A-3

direct map syntax, A-4

direct maps, A-1, A-2, A-3

environment variables, A-13

error messages, A-19

files required for client, A-3

indirect map syntax, A-4

indirect maps, A-1, A-2, A-3

invoking, A-14

location of maps, A-3

master map, A-3

master map syntax, A-3

modifying maps, A-16

mount point /home, A-5

mount point /net, A-5

mount points provided in map, A-5

mount table, A-16

multiple mount points, A-9

multiple mounts, A-8

overview, A-1, A-3

purpose, A-1

special characters, A-13

specifying subdirectories, A-10

string substitutions, A-11

symbolic links, A-1

temporary mount point, A-16

types of maps, A-3

awk command, modifying NIS maps,

4-5

B

Basic block size in XDR, 9-1

Batching in RPC, 6-21, 6-22, 7-6

Binding in RPC, 7-3

Boolean data types, 9-3

Booting the kernel, 2-4

Bootparams file, 3-7

Broadcast RPC, 5-13, 6-20, 7-7

interface, 6-21

portmapper program, 7-13

Byte arrays, 8-11

Byte-order, 9-13

C

Callback procedures in RPC, 6-34

an example, 6-34

Caller process, 1-5

Changing the master server, 4-9

make command, 4-9

makedbm command, 4-10

yppush command, 4-10

Changing your NIS password, 3-11,

4-17

yppasswd command, 4-17

yppasswdd daemon, 4-17

client handle, used by rpcgen, 5-6

Client-server environment, setting up

automount in a, A-17

Clock skew, 2-21

Commands, format conventions, iv

Constructed data type filters, 8-9

Contacting Data General, v

Creating, new slave server, 4-4

Creating a new slave server, ypinit

command, 4-4

Customizing NFS, 2-5

Customizing NIS, 2-6

D

Daemon disruption, 2-20

Data General, contacting, v

Debugging an NIS server, multiple

versions of NIS map, 4-14

Debugging with rpcgen, 5-11

Default NIS files, 3-1

/etc/aliases, 3-1

/etc/bootparams, 3-1

/etc/ethers, 3-1

/etc/group, 3-1

/etc/hosts, 3-1

/ete/netid, 3-1

/etc/networks, 3-1

/etc/passwd, 3-1

/etc/protocols, 3-1

/etc/publickey, 3-1

/etc/rpe, 3-1

/etc/services, 3-1

Deserializing, 6-10

df command, 1-6

sample output from, 1-6

dg mount system call, 2-14

Direct map file, setting up automount,

A-17

Direct maps

syntax, A-8

used by automounter, A-1, A-2, A-3

Discriminated union, 8-14, 9-9

Distributed file system, 1-2

Double-precision floating-point

number, 9-5

E

Enumeration, 9-3

Enumeration filters, 8-9

Error messages

automounter, A-19

mount command, 2-15

Escape conventions, 2-6

Establishing NFS servers, 2-9

exportfs command, 2-9

ethers file, 3-7

exportfs command, 1-7, 2-9

Exporting a file system, 1-7

etc/exports file, 1-7

External Data Representation (XDR),

1-4

XDR, 9-1

F

File sharing, 1-2

File system

data, 1-4

hard-mounted, 1-9

mounting a remote, 1-6

operations, 1-4

Fixed-length array, 9-7

Fixed-length opaque data, 9-5

Fixed-sized arrays, 8-14

Floating point filters, 8-8

Floating point number, 9-4

Format conventions, iv

fs2direct tool, converting /etc/fstab to

/etc/auto.fstab, A-18

G

Group file, 3-3, 3-7

H

Hard-mounted file systems, 1-9

lowest layer, 6-12

Library primitives, 8-7

Linked lists, 8-22

Loading NFS, 2-3

Loading NIS, 2-3

Local file, 1-4

Local root privileges, 2-20

Lowest layer of RPC, 6-12

callrpe routine, 6-17

elnt call, 6-18

make command, 4-5, 4-9

makedbm command, 3-6, 4-5, 4-9, 4-10

A6- dD RGAZOA tam MABRA 9. FAODYK uM? Aa ABh ODOC BpGA, vantine AK

Hard-mounted server, 2-18

Highest layer of RPC, 6-3

Hosts file, 3-3, 3-7

Hyper integer, 9-3

Indirect maps

syntax, A-6

used by automounter, A-1, A-2, A-3

inetd command, starting RPC server,

6-28

Installing NFS, 2-1

Integer, 9-2

Intermediate layer of RPC, 6-5

callrpce routine, 6-5

registerrpc routine, 6-5

Interruptibility, -intr option, 2-19

K

Keys, 3-1

L

Layers of RPC, 6-1

highest layer, 6-1

intermediate layer, 6-5

man command, 1-6

Master map

for automounter, A-3

used by automounter, A-3

Master NIS servers, 3-2

setting up, 2-6

Master server, changing, 4-9

Memory allocation with XDR, 6-16

Memory streams, 8-18

Miscellaneous RPC features, 6-19

Modifying NIS maps

awk command, 4-5

sed command, 4-5

vi editor, 4-5

Modifying NIS maps after installation,

4-5

make command, 4-5

makedbm command, 4-5

mount comment error messages, 2-15

mount point, 1-4

mountd command, 1-8

-intr option, 2-19

mountd server, 1-8

Mounting a file system

example, 2-10

example of remote, 1-6

steps, 2-14

ypbind daemon, 2-14

ypserv daemon, 2-14

Mounting a remote file system, sample,

1-6

Mounting file systems, an example,

2-10

Mounting problems, 2-13

N

Naming conflicts, NIS, 3-9

netgroup file, 1-5, 3-7

Netgroups, 4-17

netid file, 3-8

netmasks file, 3-7

netstat command, 2-20

Network Information Service (NIS), 3-1

customizing, 2-6

data storage, 3-10

default files, 3-1

overview, 3-2

requirements for installing, 2-2

setting up, 2-4

Network programming, 6-1

Network services concept, 1-2

networks file, 3-7

New users, adding, 4-17

NFS

client, 1-2

customizing, 2-5

disk space requirements, 2-2

establishing servers, 2-9

file sharing, 1-2

hints for best use, 1-3, 1-8, 1-9

installing, 2-1, 2-3

maintenance, 2-21

overview, 1-1

planning for, 2-1

programs hanging, 2-18

requirements for installing, 2-2

server crashes, 1-3

servers, 1-2, 3-2

setting up, 2-3

slow response, 2-20

terms, 1-4

troubleshooting, 2-12

NFS client, 1-5

NFS servers, 1-5

nfs.params file, 2-4

example, B-1

nfsclient, 2-11

nfsd daemon, 2-18

nfsserver, 2-11

nfsstat command, 2-20

NIS, 3-1

installing, 2-3

NIS administrative files, 3-7

/etc/aliases, 3-7

/etc/bootparams, 3-7

/etc/ethers, 3-7

/etc/group, 3-7

/etc/hosts, 3-7

/etc/netgroup, 3-7

/etce/netid, 3-8

/etc/netmasks, 3-7

/etc/networks, 3-7

/etc/passwd, 3-7

/etc/protocols, 3-7

/etc/publickey, 3-8

/etc/rpe, 3-8

/etc/services, 3-7

NIS client, 3-2, 3-4

commands hanging, 4-10

obtaining information, 3-11

service unavailable, 4-12

setting up, 2-6, 4-5

troubleshooting, 4-10

ypbind crashes, 4-12

ypwhich inconsistent, 4-14

NIS domain, 3-2, 3-3

NIS maps, 3-1, 3-2, 3-3

adding, 4-8

modifying after installation, 4-5

propagating, 4-7

NIS master, 3-4

NIS naming conflicts, 3-9

NIS overview, 3-2

NIS password, changing, 4-17

NIS permission checking, /etc/netgroup

file, 4-17

NIS server, 3-2, 3-4

adding, 4-8

multiple versions of NIS map, 4-14

propagating information from, 3-11

setting up, 2-7, 4-1, 4-4

troubleshooting, 4-14

ypserv crashes, 4-15

NIS slave, 3-4

NIS terms, 3-2

client, 3-2

domain, 3-2

map, 3-2

master server, 3-2

server, 3-2

Non-filter primitives, 8-17

Null authentication in RPC, 7-10

Number filters, 8-7

O

Opaque data, 8-13

Optional data, 9-11

Overview of NFS, 1-1

Overview of NIS, 3-2

P

Passing information to servers, 5-14

passwd file, 3-3, 3-7

Pointer semantics and XDR, 8-16

Port numbers, 2-13

Portmapper procedures, 7-14

PMAPPROC CALLIT, 7-15

PMAPPROC DUMP, 7-15

PMAPPROC GETPORT, 7-15

PMAPPROC NULL, 7-14

PMAPPROC SET, 7-15

PMAPPROC_UNSET, 7-15

Portmapper program, 2-14, 7-13

example, 7-13

protocol, 7-13

Privileges

local root, 2-20

remote root, 2-20

Program number assignment, 2-13, 6-7,

7-5

Programming in RPC

enum clnt_stat, 6-5

highest layers, 6-3

registerrpc() routine, 6-7

Programming the highest layers of

RPC, rnusers routine, 6-3

Prompt conventions: # and %, 1-6

Propagating NIS maps, 4-7

ypxfr command, 4-7

Protocol numbers, 2-13

protocols file, 3-7

publickey file, 3-8

R

re script links, 2-3, 2-4

rep command, 4-4

Record streams, 8-19

Record-marking in RPC, 7-11

Related documents, iv

Remote file, 1-5

Remote file system, mounting, 1-6

Remote Procedure Call (RPC), 6-1

Remote unmount failures, 2-19

Restarting the portmapper, 2-16

Root privileges, 2-20

RPC

(Remote Procedure Call), 1-5

administration, 6-8

arbitrary data types, 6-10

authentication, 6-25

batching, 6-21

broadcast interface, 6-20, 6-21

built-in routines, 6-10

callback procedures, 6-34

calling side, 6-17

callrpe routine, 6-17

daemons, 2-16

definition, 1-5, 6-1

example of version, 6-29

example using TCP, 6-30

generating XDR routines, 5-7

guarantees, 6-26

highest layer, 6-1, 6-3

interface, 6-1

intermediate layer, 6-2, 6-5

layers, 6-1

lowest layer, 6-2, 6-12

miscellaneous features, 6-19

model, 7-1

null authentication, 7-10

paradigm, 6-2

programming guide, 6-1

programming the highest layers, 6-3

protocol requirements, 7-4

registered programs, 6-8

remote procedure numbers, 7-4

remote program numbers, 7-4

remote program version numbers, 7-4

rpegen, 5-1

select system call, 6-19

semantics, 7-2

server, 6-13

service library routines, 6-4

services, 6-4

transports, 7-2

UNIX authentication, 7-10

versions, 6-29

rpc file, 3-8

RPC language, 7-11

Boolean data types, 5-19

defining, 5-14

example, 7-11

opaque data, 5-19

specification, 7-12

strings, 5-19

voids, 5-19

RPC Message Protocol, 7-7

rpegen, 5-1, 6-1

broadcast RPC, 5-138

C preprocessor, 5-12

constants, 5-17

converting local procedures to remote

procedures, 5-2

debugging with, 5-11

declarations, 5-18

definitions, 5-14

enumerations, 5-16

local procedures, 5-2

other operations, 5-13

programs, 5-17

Protocol Compiler, 5-1

remote procedures, 5-2

RPC Language, 5-14

special cases, 5-19

structures, 5-15

timeout changes, 5-13

typedef, 5-16

unions, 5-15

rpceinfo, 2-13

RPCL, 5-14

S

Sample computing environment, 1-3

Security, affected by NIS, 4-16

sed command, modifying NIS maps, 4-5

select system call, 6-20

server side, 6-19

Serializing, 6-10

Server daemons, 2-9

Server process, 1-5

services file, 3-7

Setting up a slave NIS server, 4-4

rcp command, 4-4

Setting up automount, /etc/auto.fstab

file, A-17

Setting up master NIS servers, 2-6

Setting up NFS, 2-3

editing nfs.params file, 2-6

nfs.params file, B-1

re script links for, 2-3

Setting up NIS, 2-4

nfs.params file, 2-4

re script links, 2-4

Setting up NIS clients, 2-6, 4-5

Setting up NIS servers, 2-7, 4-1

ypinit command, 2-7

showmount command, 1-5

Signals, interrupting an NFS mount,

2-19

Signed integer, 9-2

Slave NIS server, setting up, 4-4

Soft-mounted remote files, 2-13

Soft-mounted server, 2-18

Standard for record-marking in RPC,

7-11

Standard I/O streams, 8-18

Stateless clients, 1-8

Stateless protocols, 2-21

Stateless servers, 1-8

statfs system call, 2-14

Storing data in NIS, 3-10

Strings, 8-10, 9-7

Symbolic links, used with automounter,

A-1

sysadm utilities, 2-3, 4-17

T

Troubleshooting an NIS client, 4-10

command hangs, 4-10

service unavailable, 4-12

ypbind crashes, 4-12

ypwhich is inconsistent, 4-14

Troubleshooting an NIS server, 4-14

ypserv crashes, 4-15

Troubleshooting NFS, 2-12

suggestions, 2-12

Typedef data type, 9-10

U

UDP warning, 6-7

UNIX authentication, 6-25, 7-10

client side, 6-25

server side, 6-26

UNIX execution semantics, 2-20

Unsigned hyper integer, 9-3

Unsigned integer, 9-3

User, 1-5

usermgmt, 4-17

Users, adding, 4-17

V

Variable-length array, 9-8

Variable-length opaque data, 9-6

Version numbers, 2-13

vi editor, modifying NIS maps, 4-5

Void, 9-9

X

XDR

advanced topics, 8-21

arrays, 8-11

basic block size, 9-1

boolean data types, 9-3

byte order, 9-13

canonical standard, 8-4

constant data type, 9-10

data types, 9-2

deserializing, 6-10

discriminated union, 9-9

double-precision floating-point

number, 9-5

enumeration, 9-3

example of data description, 9-16

fixed-length array, 9-7

fixed-length opaque data, 9-5

floating-point number, 9-4

future enhancement, 9-12

generating XDR routines, 5-7

hyper integer, 9-3

integer, 9-2

introduction, 9-1

justification, 8-2

lexical notes, 9-14

linked lists, 8-22

memory allocation, 6-16

memory streams, 8-18

non-filter primitives, 8-17

object, 8-20

operation directions, 8-18

optional data, 9-11

pointer semantics, 8-17

portable data, 8-4

protocol specification, 9-1

record (TCP/IP) streams, 8-19

serializing, 6-10

standard I/O streams, 8-18

stream access, 8-18

stream implementation, 8-20

string, 9-7

structure, 9-8

syntax information, 9-14

system routines, 8-1

unsigned hyper integer, 9-3

unsigned integer, 9-3

variable-length array, 9-8

variable-length data, 9-13

variable-length opaque data, 9-6

XDR (External Data Representation),

1-4

XDR data types, 9-2

Boolean, 9-3

constant, 9-10

discriminated union, 9-9

double-precision floating-point

number, 9-5

enumeration, 9-3

fixed-length array, 9-7

fixed-length opaque data, 9-5

floating-point number, 9-4

hyper integer, 9-3

integer, 9-2

optional data, 9-11

string, 9-7

structure, 9-8

typedef, 9-10

unsigned hyper integer, 9-3

unsigned integer, 9-3

variable-length array, 9-8

variable-length opaque data, 9-6

void, 9-9

XDR language, 9-12

XDR language specification, 9-13

lexical notes, 9-14

notational conventions, 9-14

syntax, 9-14

syntax notes, 9-16

XDR library, 8-5

byte arrays, 8-11

discriminated unions, 8-14

fixed-sized arrays, 8-14

opaque data, 8-13

pointers, 8-16

XDR library primitives, 8-7

constructed data type filters, 8-9

enumeration filters, 8-9

floating-point filters, 8-8

no data, 8-9

number filters, 8-7

strings, 8-10

XDR RFC, 9-1

xdr_array() primitive, 8-11

xdr_bytes() primitive, 8-11

xdr_destroy() primitive, 8-18

xdr_element(), 8-11

xdr_getpos() routine, 8-17

xdr_long() routine, 8-6

xdr_opaque(), 8-13

xdr_reference(), 8-16

xdr_reference() primitive, 8-17

xdr_setpos() routine, 8-17

xdr_string(), 8-10

xdrmem_create() routine, 8-19

xdrrec_endofrecord() routine, 8-20

xdrrec_eof() routine, 8-20

xdrrec_skiprecord() routine, 8-20

xdrstdio_create() routine, 8-6, 8-18

Y

yp_match function, 3-4

ypbind command, 4-2

ypbind daemon, 2-14

ypceat command, 3-6

ypinit command, 2-7, 3-5, 4-2, 4-4, 4-9

ypmake command, 3-6

ypmatch command, 3-6

yppasswd command, 3-11, 4-17

yppasswd daemon, 4-17

yppoll command, 3-6

yppush command, 3-6, 4-10

ypserv command, 3-5

ypserv daemon, 2-14

ypservers map, 4-8

ypset command, 3-6

ypwhich command, 3-6

ypxfr command, 3-6

propagating NIS maps, 4-7

