erataGeneral

Data General Corporation, Westbor

achusetts 01580

Customer Documentation

User’s Reference for the
DG/UX™ System

093-701054-03

AV ii ON®°

PRODUCT LINE

User’s Reference for the DG/UX™
System

093-701054-03

For the latest enhancements, cautions, documentation changes, and
other information on this product, please see the Release Notice
(085-series) supplied with the software.

Ordering No. 093-701054

Copyright © Data General Corporation, 1990, 1991, 1992

Unpublished—all rights reserved under the copyright laws of the United States
Printed in the United States of America

Revision 03, February 1992

Licensed material—property of copyright holder(s)

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION
CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS
ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in a1l cases determine whether any such changes have been
made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND CONDITIONS
GOVERNING THE LICENSING OF THIRD PARTY SCFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY. RESPONSE-TIME PERFORMANCE. SUITABILITY FOR USE
OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT,
EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF
SUCH DAMAGES.

All software is made available solely pursuant to the terms and conditions of the applicable license agreement which
governs its use.

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights ir Tochnicai Data and Computer Software clause at [FAR] 52.227-7013
(May 1987).

DATA GENERAL CORPORATION

4400 Computer Drive

Westhoro, MA 01580

AViiON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000,
PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General Corporation. CEO Connection,
CEO Connection/LAN, DASHER/One, DASHER/286, DASHER/286-12c, DASHER/286-12j, DASHER/386,
DASHER/286-16c, DASHER/386-25, DASHER/386-25k, DASHER/386sx, DASHER/386SX-16, DASHER/386SX-
20, DASHER/486-25, DASHER/LN. DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400,
ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/3506, ECLIPSE MV/5000, ECLIPSE MV/5500,
ECLIPSE MV/5600, ECLIPSE MV/7800, ECLIPSE MV /9390, ECLIPSE MV/9500, ECLIPSE MV/9600,
ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/30000,
ECLIPSE MV/40000, Intellibook, microECLIPSE, microMV, MV/UX, PC Liaison, RASS, SPARE MAIL, TEO,
TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of Data General Corporation.

IBM is a U.S. registered trademark of International Business Machines Corporation.
UNIX is a U.S. registerea trademark of American Telephone & ‘Telegraph Company.
NF'S 1s a trademark of Sun Microsystems, Inc.
Portions of this material have been previously copyrighted by:

American Telephcnz & Telegraph Company, 1989, 1990

Regents of the University of California, 1980, 1983, 1985

Sceptre Corporation, 1988, 1990

Sun Microsystems, Inc, 1988

UNIX System Laboratories, Inc., 1991
The Network Information Service (NIE) was formerly known 2s Sun Yellow Page<. The functionality of the two
remains the same; only the name haz chenged. The name Yellow Pages is a szgistered trademark in the United
Kingdom of British Telecommunications plc and may not be used without permission.
LEGAL NOTICE TO USERS: Yellow Pages is a registered trademark in the United Kingdon of British
Telecommunicaiions plc, and may aiso be a trademark of various telephor.e companies around the world. Sun will
be revising future versions of software and documentation to remove references to Yellow Pages.

User’s Reference for the DG/UX System
093-701054-03

Revision History: ffective widh:
Original Release — February 1990 DG/UX 4.20
Revision 1 - June 1990 - DG/UX 4.3
Revision 2 — June 1991 DG/UX 5.4

Revision 3 — February 1992 DG/UX 5.4.1

Preface

This User’s Reference for the DG/UX™ System describes the commands that constitute the
basic software running on Data General AViiON® computers.

This manual is part of a five-volume reference set. The other manuals are the Sysrem
Manager's Reference for the DG/UX System and the three-volume Frogrammer’s Reference for
the DG/UX System. These manuals contain in printed (typeset) form the online entries
released with the DG/UX System in fusr/catman for access by the man command.

A more complete discussion of the user’s environment is contained in Using the DG/UX
System and Using the DG/UX Editors. Other related manuals are listed under “Related
Manuals” at the end of this manual.

Man Pages

For historical reasons, each entry is called a “manual page” or “man page,” though an entry
may occupy more than one physical page and may contain more than one entry. If the man
page contains more than one entry, it is alphabetized under its ‘“primary”’ name; for example,
the rm manual page describes the rm and rmdir commands.

Manual pages are assigned to classes ranging from 0 through § for easy cross-reference. The
class number appears in parentheses following the rame; for exampie, in rm(1) the (1}
indicates that rm is a cominanda. Some classes are subdivided with letters; for examplz, (IM)
indicates a command manual page that is in the Systemn Manager’s Reference.

A command followed by a (1) or (1G) usually means that it is described in this manual.
(Class 1 commands appropriate for use by programmers are located in the Programmer’s
Reference.) A man page name with a (1IM), (4M), (7), or (8) following it ineans that the entry
is in the System Manager’s Reference. Names with (2) or (3x). (4), (5) [except editread(5)], or
(6F) are in the Programmer’s Reference. Occasionally, DG/UX man pages refer to other.
products’ man pages, which are not part of the DG/UX documentation; these are so noted.

Manual Organization
The User’s Reference has two chapters containing man pages in ciasses {1) and (5):

Chapter 1: Commands (1)

The entries in Chapter 1 describe programs intended to be invoked directly by the user or by
command language procedures, as opposed io subroutines, which are called by the user’s
programs. Commands generally reside in thc directories /usr/bin (for binary programs) and
/usr/sbin. In addition, soine commands reside in /sbin. These directories are searched
automatically by the command interpretar called the shell. Also, DG/UX systems often have
a directory called /usr/lbin, containing local conunands.

093-701054 Licensed material—property of copyright holder(s)

3

Preface

Chapter 1 begins with an intro(1) entry. The remaining entries are alphabetized.

Chapter 2: Miscellaneous Features (5)
This chapter contains the editread(5) manual page. Editread is a command-line editor
available in the Bourne and C shells and certain other programs.

Appendix A: Contents and Permuted Index Man Pages
These manual pages contain information extracted from the DG/UX man pages in all five
reference volumes.

Man Page Format

Each mar page has at least some of the following sections:

NAME gives the primary name (and secondary names, as the case may be) and
) briefly states its purpose.

SYNOPSIS summarizes the usage of the program being described.

DESCRIPTION discusses how to use these commands.

EXAMPLES gives examples of usage, where appropriate.

FILES contains the file names that are referenced by the program.

EXIT CODES discusses values set when the command terminates. The value set is
available in the shell environment variable “?” (see sh(1)).

DIAGNOSTICS discusses the error messages that may be produced. Messages that are
intended to be self-explanatory are not listed.

SEE ALSO offers pointers to related information.
NOTES gives information that may be helpful under the particular circumstances
described.

Some man pages may contain other heads such as ENVIRONMENT and CAVEATS.

Man Page Notation Conventions

This manual uses certain symbols and styles of type to indicate different meanings in man
pages. Those symbel and typeface conventicns are defined in the following list. You should
familiarize yourself with these conventions before reading the manual.

The description of convention meanings uses the terms ‘“‘command line,” “format line,” and
“syntax line.” A command line is an example of a command string that you should type
verbatim; it is preceded by a system prompt. A format line shows how to structure a
command; it shows the variables that must be supplied and the available options. A syntax
line is a fragment of program code that shows how to use a particular routine; some syntax
lines contain variables.

v Licensed material—property of copyrigat holderis) 093-701054

Convention

Preface

Meaning

boldface

constant
width/
monospace

italic

[optional]

choicel |choice2

023-701C54

This font is used for section heads and subsecticn heads. It is
also used to distinguish input from output in examples where the
two are intermixed.

In command formais and code syntax: This typeface indicates text
(including punctuation) that you type verbatim from your
keyboard.

In text: This typeface is used for examples, code samples,
pathnames, and the names of commands, files, directories, and
manual pages.

In all contexts: The following characters, which have special
meanings explained below, do not have special meaning but simply
represent themselves when they appear in constant-width font: <
> {1 { 3} |. In constant-width font they are are 1/0
redirection operators, brackets, braces, and the pipe symbol.

In format lines: This font represents variables for which you
supply values; for example, the names of your directories and files,
your username and password, and possible arguments to
commands.

In format lines: Regular-font brackets surround an optional
argument. Don’t type the brackets; they only set off what is
optional. These brackets should not be confused with constarnt-
width brackets.

In format lines: The vertical bar indicates a choice between
choicel and choice2.

In format lines and syntax lines: You can repeat the preceding
argument as many times as desired.

In format lines: These regular-font braces surround either two or
niore chicices o syntax eements hat are repeatable as a group.

In command lines and other examples: Angle brackets distinguish
a command sequence or a keysiroke (such as <Ctri-D>, <Esc>,
and <3dw>) from surrounding text. Note that these angle
brackets are in regular type and that you do not type them; there
are, however, constant-width versions of these symbols that you
do iype.

In command lines and other examples: These symbols represent
the system command prompt symbols used for the Bourne and
Korn shells, the C shell, and the superuser, respectively. Note
that your system might use different symbols for the command
prompts.

Licensed material--proparty of copyright holder(s) v

Preface

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please feel
free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form (United States
only) or contact your local Data General sales representative. A list of related documents
appears at the end of this manual with the TIPS order form.

For a complete list of AViiON® and DG/UX™ manuals, see the Guide to AViiON® and
DG/UX™ System Documentation (069-701085). The on-line version of this manual found in
/usr/release/doc_guide contains the most current list.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, free
telephone assistance is available with your hardware warranty and with most Data General
software service options. If you are within the United States or Canada, contact the Data
General Customer Support Center (CSC) by calling 1-800-DG-HELPS. Lines are open from
8:00 a.m. to 5:00 p.m., your time, Monday through Friday. The center will put you in touch
with a member of Data General’s telephone assistance staff who can answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General sales
representative for the appropriate telephone numbes.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users, the North
Ainerican Data General Users Gronp (NADGUG). In addition to making valuable contacts,
members receive FOCUS monthly magazine, a conference discount, access to the Software
Library and Electronic Bulletin Board, an annual Member Directory, Regional and Special
Interest Groups, and much more. For more information about membership in the North
American Data General Users Group, call 1-800-932-6663 or 1-508-443-3330.

End of Preface

vi Licensed material—property of copyright holder(s) 093-7C1054

Contents

Chapter 1 — User Commands and Application Programs

13110 o1 (1) PR PPUTPRNt ettt e 13
T (of0) 111 T PP PT PR 1-5
AIPGT) ettt et et aans 1-9
APTOPOS(1) ettt ettt aas 1-10
UL ettt ettt ettt ettt ettt et e e eneeans 1-11
Y 0 T S 1-14
atrm(1) .evveiiiiii e e e e 115
02141 1S () PP PP P PPN 1-16
DASENAME(1) +.uernniiiiiiiieiii ettt ettt ettt et e e et et et e e e b e ea e eaaeeaas 1-17
D(L) vttt ettt e e s 1-18
L0 111 () PPN 1-20
berk_diff(1) ..covvveiiiiiniiiiii e ettt e et ea bt et e e e aaaaes 1-21
berk_diff3(1)cocevuveennnnn. e et ot et et e e et e ene st e eaean taeraneanaan 1-24
{3 T T T PP 1-26
03301 () T PP URPPP TR 1-29
(o1 [) OO PP TOTU PP 1-34
CALENAAT(1) eeneeniiiii ettt ettt ettt e et e e et et e et e et ea e e e eans 1-35
Lo 11) USSP 1-36
o1 5] 1 {1 T 1-38
CALZEES(T) . eruerneenie ettt et ettt e e et et et eet e s era e e aan s s e eatae e caera e ne s ea s taeanaerens 1-43
Lo [) PPN 1-44
10314 o) PPN 1-45
chgtinfo(1) ..oceeriinieiiiiii e e eteer teaeetees eeeenaeraetieee et ea et etaans 1-46
chkey(l) ..coovevniiiniiinniennns e e e e e e ee eeeeeeeeeraeen et aaae 1-47
CRIMOA(T) eeiiiiiie ettt et et et e et e et e et e aa e et e ebaeanasenneas 1-48
CHOWII(1) einiinii i e e ettt es eei e eea e e e 1551
clear(1) .ooiirieiiiie e TP et e e 1-52
CMP(L) coreiii e e e 1453
COL(L) it e re e ereeree e e i-54
o703 111531 T OO IPTPPI 1-55
COMIPTESS(1) cenenneinein ettt et et et e et et et e s it e et e ceeneaeeiecareanes e e 1-56
4751 0§ PO PP 1-58
(01 [0 T TP PTPRPRt 1-59
CPIO(L) wuineeiiiiiiiiii e et eeaeteeee e eaee et e e e aaanns 1-60
03 €03 111 o1 () PN 1-65
135 5 01 TP 1-67
(o 11 I ORI 1-69
Loy) LT () PPN 1-97
o1) T TP PPTPPPPPPIN 1-99
111 1 I PP PP PPPITRR 1-100
[0 11) PPN 1-104
LG T PP 1-106
41T) PPN 1-109
AAL) ettt ettt ettt ettt ettt e et et et e ere et et e ereenreare e 1-112

093-701054 Licenced meaterial—property of copyright holder(s) vil

Contents

............................. 1-114
QEDOEK(L) vorvsorssorssrsssrssrss s e
QErOIHI) rmerssmss s o
e e
Q) oo e
QL) v s S
QUCTPUL) wrvvsvvrs s s s B
G =
QIPUIA(L) ..o s)
v o
GOWBLORA(L) .vvvsvrssvsssirssirss s =
dpost(1) B!
du(1) B
S e
S e
SUIL) ovsvessmes s e
CBIEDLL) ovvsnesoss s e
S e
EVL) e e
SUGSEIL) ovvvsmvssmes s —
ORL) Joorsessoes e L
GIPI(L) vvesvvssvs s %
o i
ACHOR(L) romvrssrss s s s s e
fOB(1) rrrssmrs s e
MBIP(L) rvessvrsvssssss s e
filo(l) vt 116
QL) sevrsmressnessmss s e
fIDZE(L) ovvrsrersrrsssssmns s o
L) soosrnrrsmrssins s I
e o
s S o
AP(LC) omvrsmmrsmns s s s
gencat(1) "
B orsors s s
O o
gettxt(1) e
R e
BIEP(L) rovorsrssoes s e
BIOUPSCL) orvrsressmrssmesmn s e
e S s
HOPUL) o svrrers s v
BOSHA(LE) rsevvrssmrssmnssmsssmns s e
hostname(1C) o
e o
() rrermesers s s 2
T 208
L o b
idi_tools(1) 1218
JOI(L) o ovessorsos s o
KDAPIPEL) vvvsmvssmesmss st e
KDUSEI(L) vvvsvvrsvrsnssnss s 2
KEYOBIL) wrsvvrsvesns s s s 22
S| [PSP

' i 093-701054
Viii Licensed material—property of copyright holder(s)

Contents

KSB(1) ettt et e e e e e e e 1-228
| T) TN 1-256
3 1T 1 T g P PS 1-257
T N £ () N 1-258
31T PRSP 1-259
EaTeF T () RPN 1-260
10ZEET(1) eieiiiiimie e e e e e e e e b e 1-262
007431 1) TP UU U RSN 1-263
10ZNAME(L) oeviviiiii i e 1-266
D0 it e e e e 1-267
IPQ(L) ettt ettt ettt ettt 1272
110) () PN 1-273
IPFIN(T) o e e e e e 1-275
IPSTAL(1) ceeniiiie it e e e 1-276
Iptermprinter(1)oooiiiiiiiiiiii i e 1-278
IS(L) +eveeeeee et ettt ettt ettt n et et e et et et e sttt b et s s enene 1-279
MACKIA(T) -eeteniineiie ettt e e e e e et 1-283
10 V1L) T PP UUUR U 1-284
MATIAHAS(1) +eevnniiiineiii et e e e s 1-290
MAIIX(1) cenniiiiieii et e e e e e 1-291
10171 45 (1 () TIPSR 1-304
MATI(L) ootunniiiiiiee e ettt e ettt e e e ettt e e ettt e e eetba e e e en b e e eeten et enb s e e eaaa e e s bat e e 1-305
1101 04) ROt 1-308
13 T) Tt 1-309
1111 €0 51 o () PPN 1-310
1110 €1 1010 () P PIIUPRIRPR: 1-311
1170) €=) TRt 1-313
IE(L) ooiiiniii i e e e et eaa e 1-317
111117 (8 1) TR OO PIPIRPPR: 1-318
DAWK(L) oeneiiiiei e e a e aas cerr. 1-319
1T (o) 3111) T Rt 1-324
11274 o) PN 1-327
1T () U 1-328
11 o7 () IR 1-329
DII(L) ettt ettt ettt et e et et et et et et et enseteneereetereetenteres 1331
NONUP(L) .eeieiiiiiiiiiii e eerreeeie e 1-333
10015014 (1) TP PPt 1-334
Lo) T Ot 1-336
OA(L) +eve et eee e ettt ettt ettt ettt ettt ettt e ettt et ea et a e 1339
o3 1 1 O Ot 1-341
PACK(L) weieineiieii it e e et e e e e e aaas 1-342
PASSWA(L) eeniiiiiieii it a et e e e 1344
LT L () U PR 1-345
103 SO UT U LU PPN 1-347
PREINFO(L) 1oeriiiiiiiiii e e 1-350
11454 131) T PN 1-352
PREPArAM(L) ...eiiiiiiiiiiiiii i e e s e e e e eaaes 1-354
PREPIOLO(1) weenriiiiiiiiiiiiii e e 1-355
PREIIANS(1) Looiiniiiiiiiiiii i e e a e e e e e e e 1-356
POSEAAISY(L) ..oeeiiiiiiii it e e e 1-358
POSEAMA(T) 1euiiiniiiiiiii it e e aaas 1-359
POSHO(L) eereieeieiireiie ettt ettt e r e e e b e e b e e a e e e e e raans 1-360
POSTIMA(]) cevveiiiiiiiiii it e e e e e e e e s e e e e aaas 1-363

093-701G54 Licansed material—property of copyright holder(s) IX

Contents

0L 0] (011) PP PT PR RROPPPRt 1-366
o104 o) o 1111 (1) T PSP 1-367
POSITEVETSE(1) wouniiiniiiiiiitii ittt et ettt ettt e it e et e e et e et e e b e et e e aa e eateeraaeenas 1-370
POSEEEK{T) oottt e et e e e e et e eaa e aas 1-371
103 { 6 1) TP OP PO UPPRPRRRt 1-372
PIBEENV(L) coeiiniiiiii ettt ettt et et e e it e et e et e e b et e aa e ea e aaas 1-375
103611150 PP 1-376
11 PP P P UP PP UPPPPRRR 1-378
101 [) T PPN 1-381
176311) TP PP PPT PP PPPPPON 1-382
reelexchange_intro(1)ocoeviiiiiiiiiiii e 1-384
TEMSH(TC) . oiitiiiiii e 1-398
0331 (od =) (0 PO U PR TPPRPRt 1-400
(S S 1) O PP PP PPPPPPON 1-402
9007411 1 L O TP 1-403
1911 1 RSP PTPPRTPPPN 1-405
g 100005 1) PP PP PPOPPN 1-407
411010 () TP PPPPIN 1-409
TUPHINE(LC) ooeeniiiiii et ettt et ettt e e e st eaean e eaaees 1-410
41 IS o L PPN 1-411
TWAII(IC) Lot ettt et et e e e e eea 1-412
01 1o (L PPN 1-413
T 1) PPN 1-414
CF: Y (1) TSP R PR PPTPI 1-415
10 1 011 1) TP 1-420
SAIE(L) weevniiei ettt et e a e aa e 1421
SEA(L) iiiiiii e 1-423
1 1) P PSP PPPRPRRPPPRR 1-426
SHI(L) vttt ettt ettt e ettt e et ettt e et e et e et e et et e e eaenn 1-439
YT o T) PP PPPPPN 1-441
0] ¢ {0 TP PP PPPPRN 1-442
01 | [) TP PPIPN 1-446
SPHNE(1G) -oivvvviiniiiiiiiiiii T PPN 1-448
SPIE(L) +.voveeeeveeeeeeseteeeete e eee e et et es e et e e et es et a et e e et et e et et ete et en et et ee et enneeeananarens 1-449
STCIEXT(1) wuieuninniei ettt e e et e e e et e e e e et s et en s e e ee et eba e e eaneaneeneeneaneaneaneeens 1-450
1 41 { () I OO P PP PPR PP PPPPPR 1-451
133 0031 -) T TP 1-452
11 1T 1) TP PP P PP 1-454
SEEY(L) v et ettt et ettt ettt ettt e e s 1-456
1T) TP TP PP PPPPIN 1-463
B 1 T T PPN 1-465
LE:1 01) PP PP PRSPPI 1-466
1T T () PPN 1-469
BREI(L) +.vvveeeeeteeeieeesseeeeteseeteeteee e et et ereee et eae et ensete et ens et e s s e et et eneeae e ete et ensereeaenners 1-471
12:14 0) TP PPPTPPPPPR: 1-472
1101 E0) BN) PPN 1-476
111 (8 T PPN 1477
115 11 L O TP PTN 1-478
1459111 035 1 1113 (1 1) TP PP 1-484
110 (O TP 1-485
15110 [0 PP PPPPPPORN 1-487
197111 1) P 1-490
1815110 {1) T PP 1-491

X Licensed material—property of copyright holder(s) 093-701054

Contents

1135 0 1) SR 1-492
1151070 [) TP PP PPTRPRR 1-493
120110 1 16) T TP PPP RPN 1-494
190701 11) PPN 1-495
11 07111 () S 1-496
EE(L) ettt ettt ettt ettt ettt ettt en et n et 1-499
1847V [) PN 1-501
18 0 (T 1T () P TP 1-502
19 111 () PP PPRPPTN 1-503
121117 1) T T TPIRRN 1-504
125 T PPN 1-505
18 101 T PP UPOPPPPPOPPROPR 1-506
111 (G T TP PPPRTPPTRR 1-507
UIMASK (1) 1ot en ettt ettt et et ettt ettt e e e e 1-508
(1T IEN 01 1< () T TP 1-509
10101 o[PPN 1-510
1111110 () TP URPPRN 1-511
USAZE(L) +eneiniiniin ettt et ettt ettt et e et et e e s e b st e e s e aat s 1-512
111173 o1 (1 1) TR PR 1-513
LT3 LT o e LT) I TN ... 1-516
T 711 0) PPN 1-517
1110171 1 1) RPN 1-519
LRI {1) PO 1-521
o1 00) 11) TP PPPPPPRN 1-523
12 L0 5 T TR 1-525
L 11T () PPN 1-532
Lo) PSP PPPPN 1-533
WRALIS(1) oeeniiniiii i e 1-534
1115 (o 1]) OO R PP PRI 1-535
WHICH(L) ien ittt et e et e s e aaa e 1-536
WHO() ceniint ittt ettt e e e a e 1-537
1 111) T PPN 1-539
>) g0) T PR 1-541
2 L2 1{ 1) TP PPRIPPRR 1-543
YPMALCR(1) ceeiiiiiiiiiiiii et 1-544
YPPASSWA(L) .oeeiiiiiiii it et e 1-545
YPWHICH(T) .ot et et 1-546

Chapter 2 — Miscellaneous Features

e 13 2 Te () TP 22
115 3 111 JT PR PPN 29
Index

Related Documents

093-701054 Licensed material-—property of copyright holder(s) XIi

Tables

Table
1-1 Manual Pages for TCP/IP and ONC/NFS User Commandsccccccciineninnnnns 1-2

b 4] Licensed material—property of copyright holder(s) 093-701054

Chapter 1

User Commands and Application
Programs

This chapter contains reference entries documenting DG/UX, TCP/IP, and ONC/NFS user
commands and application programs. These pages are also supplied on the product release
tape and can be accessed online via the man command.

The first entry, intro(1), is an introduction that provides an overview of the DG/UX
commands and application programs. It describes how the commands are categorized and
explains the categories and the kinds of user needs represented in the categories. The
remaining entries are in alphabetical order.

The following DG/UX man pages are new for Revision 03:

chgrp(1)
exstr(1)
fmtmsg(1)
ide(1)
strchg(1)

In addition, the TCP/IP and ONC/NFS man pages for user commands have been added to
this manual. Table 1-1 summarizes the TCP/IP and ONC/NFS user commands.

093-701054 Licensed material—property of copyright holder(s) 1 ‘1

User Commands and Application Programs

Table 1-1 Manual Pages for TCP/IP and ONC/NFS User Commands
Product Command Description
bftp(1C) Run the Background File Transfer Program.
ftp(1C) Run the File Transfer Protocol program.
hostid(1C) Set or print identifier of current host system.
hostname(1C) Set or print name of current host system.
rep(1C) Copy files between hosts.
TCP/IP remsh(1C) Execute a command on a remote host.
rlogin(1C) Log in to another host on the network.
ruptime(1C) Show host status of local machines.
rwho(1C) Show who is logged in to hosts on local network.
telnet(1C) Log in to another host on the network.
tftp(1C) Run the Trivial File Transfer Program.
chkey(1) Change your encryption key.
domainname(1) Set or display name of current NIS domain.
keylogin(1) Decrypt and store secret key.
on(1C) Execute command remotely but with local environment.
rpcgen(1) An RPC protocol compiler
ONC/NFES rup(1C) Show host status of local machines (RPC version).
rusers(1C) Show who is logged in to local machines (RPC version).
rwall(1C) Write to all users over a network.
ypcat(1) Print values in an NIS database.
ypmatch(1) Print value of one or more keys from NIS map.
yppasswd(1) Change your network password in NIS.
ypwhich(1) Display which host is NIS server or map master.
1 '2 Licensed material—property of copyright holder(s)

093-701054

intro(1)

NAME

DG/UX 5.4.1 intro(1)

intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.

Command Syntax
Unless otherwise noted, commands described in this section accept options and other
arguments according to the following syntax:

name [option(s)] [cmdarg(s)]

name

option

noargletter
argletter
optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter <>optarg
where <> is optional white space.

A single letter representing an option without an argument.
A single letter representing an option requiring an argument.
Argument (character string) satisfying preceding argletter.

Path name (or other command argument) nor beginning with - or, -
by itself indicating the standard input.

Command Syntax Standard: Rules

All new commands will follow the syntax rules below. Because existing commands
have been developed at various times by various people, some commands will not fol-
low the rules below. Getopts(1l) should be used by all shell procedures to parse
positional parameters and to check for legal options. Getopts(1) supports Rules
3-10 below. The command itself must enforce the other rules.

093-701054

1.

AN I

&

<

10.
11.
12.

Command names (name above) must be between two and nine charac-
ters long. ’

Command names must include only lower-case letters and digits.
Option names (option above) must be one character long.

All options must be preceded by “-”.

6_9

Options with no arguments may be grouped after a single

The first option-argument (oprarg above) following an option must be
preceded by white space.

Option-arguments cannot be optional.

Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (e.g., —o
XXX,2,yyor -o "xxx z yy").

All options must precede operands (cmdarg above) on the command
line.

“—=""may be used to indicate the end of the options.
The order of the options relative to one another should not matter.

The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they
appear.

Licensed material—property of copyright holder(s) 1 '3

intro(1)

DG/UX 5.4.1 intro(1)

13. “-” preceded and followed by white space should only be used to mean
standard input.

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by the
system and giving the cause for termination, and (in the case of normal termination)
one supplied by the program (see wait(2) and exit(2)). The former byte is 0 for
normal termination; the latter is customarily 0 for successful execution and non-zero
to indicate troubles such as erroneous parameters, bad or inaccessible data, or other
inability to cope with the task at hand. It is called variously "exit code," "exit status,"
or "return code," and is described only where special conventions are involved.

SEE ALSO

NOTES

getopts(l), exit(2), wait(2), getopt(3C).

Many commands do not adhere to the aforementioned syntax.

Some commands produce unexpected results when processing files containing null
characters. These commands often treat text input lines as strings and therefore
become confused upon encountering a null character (the string terminator) within a
line.

Licensed material—property of copyright holder(s) 093-701054

acctcom(1) DG/UX 5.4.1 acctcom(1)

NAME
acctcom — search and print process accounting file(s)

SYNOPSIS
acctcom [[options] [file]] ...

where:

options One or more of the options listed below under Options
file The name of an input file

DESCRIPTION

Acctcom reads file, the standard input, or /usr/adm/pacct, in the form described
by acct(4) and writes selected records to the standard output. Each record
represents the execution of one process. The output shows:

command name
user

ttyname

start time

end time

real (sec)

cpu (sec)

mean size(K)

It can optionally show:

f (the fork/exec flag: 1 for fork without exec)
stat (the system exit status)

hog factor

Kcore min

CPU factor

characters transferred

blocks read (total blocks read and written)

The command name is prepended with a # if it was executed with super-user
privileges. If a process is not associated with a known terminal, a ? is printed in the
TTYNAME field.

If no files are specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using & in the shell), /usr/adm/pacct is read;
otherwise, the standard input is read.

If any file arguments are given, they are read left to right. Each file is normally read
in chronological order by process completion time. The file /usr/adm/pacct is
usually the current file to be examined; a busy system may need several such files of
which all but the current file are found in /usr/adm/pacct?.

Options

-a Show some average statistics about the processes selected. The statistics
will be printed after the output records.

-b Read backwards, showing latest commands first. This option has no
effect when the standard input is read.

-f Print the fork/exec flag and system exit status columns in the output.
The numeric output for this option will be in octal.

-h Instead of mean memory size, show the fraction of total available CPU

time consumed by the process during its execution. This "hog factor" is

093-701054 Licensed material—property of copyright holder(s) 1 '5

acctcom(1)

-V
-1 line

—u user

—g group
—-s time

—-e time
-S time

-E time
—n pattern
-o ofile
~H factor

-0 sec
-C sec

-q

-I chars

EXAMPLES

1-6

$ acctcom

DG/UX 5.4.1 acctcom(1)

computed as total CPU time divided by elapsed time.
Print columns containing the I/0 counts in the output.
Instead of memory size, show total kcore-minutes.
Show mean core size (the default).

Show CPU factor (user time/(system-time + user-time).
Show separate system and user CPU times.

Exclude column headings from the output.

Show only processes belonging to terminal /dev/line.

Show only processes belonging to user, specified by: a user ID, a login
name that is then converted to a user ID, a #, which designates only
those processes executed with superuser privileges, or ?, which desig-
nates only those processes associated with unknown user IDs.

Show only processes belonging to group, which can be either the group
ID or group name.

Select processes existing at or after time, given in the format
hr[:min | :sec]].

Select processes existing at or before time .
Select processes starting at or after fime .

Select processes ending at or before time. Using the same time for both
-S and -E shows the processes that existed at time.

Show only commands matching pattern that may be a regular expression
as in ed(1) except that + means one or more occurrences.

Copy selected process records in the input data format to ofile; supress
standard output printing.

Show only processes that exceed factor, where factor is the "hog factor”
as explained in option ~-h above.

Show only processes with CPU system time exceeding sec seconds.

Show only processes with total CPU time, system plus user, exceeding
sec seconds.

Do not print any output records, just print the average statistics as with
the -a option.

Show only processes transferring more characters than the cut-off
number given by chars.

This example will process and display the process accounting file. The output shows
the following information for all processes executed since clearing the accounting log

file:

command name

user

ttyname
start time

Licensed material—property of copyright holder(s) 093-701054

acctcom(1) DG/UX 5.4.1 acctcom(1)

end time
real (sec)
cpu (sec)
mean size(K)

$ acctcom -q

cmds=2590 Real=147.66 CPU=1.30 USER=0.88 SYS=0.42 CHAR=54262.10
BLK=536.25 USR/TOT=0.68 HOG=0.01

$

This example will process and display the process accounting file in summary form.

$ acctcom -u intern -b

COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE(K)
sh intern ttyl2 15:22:09 15:22:09 0.09 0.04 38.50
mail intern ttyl2 15:19:16 15:19:25 9.75 0.37 76.00
who intern ttyl2 15:19:09 15:19:10 1.13 0.30 52.40
ps intern ttyl2 15:19:03 15:19:05 2.32 0.52 137.46
mail intern ttyl2 15:18:28 15:18:59 31.92 0.28 79.64
vi intern ttyl2 15:13:05 15:17:58 293.84 35.89 157.32
acctcom intern ttyl2 15:12:51 15:13:01 10.67 7.04 129.75
cp intern ttyl2 15:06:16 15:06:16 0.59 0.08 42.50
more intern ttyl2 15:01:29 15:04:07 158.00 5.11 79.84
acctcom intern ttyl2 15:01:30 15:03:57 147.60 15.31 88.12
vi intern ttyl2 14:53:35 14:53:46 11.32 0.88 269.64
$

This example will process and display the process accounting file for user "intern" and
display them in reverse order.

$ acctcom -n vi

COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE(K)
vi intern ttyl2 15:39:48 15:41:57 129.44 3.13 263.67
vi clark ttyqo0 15:44:38 15:46:15 97.28 3.85 253.67
vi intern ttyl2 16:04:27 16:04:55 28.04 1.33 157.83
vi haal tty21l 16:31:40 16:32:35 55.62 1.52 272.32
vi harrise tty07 09:01:37 09:01:55 18.69 0.87 241.84
vi root tty07 09:02:10 09:02:22 12.34 0.59 330.31
vi haal tty21 13:20:38 13:21:50 72.52 1.73 262.47
vi mcadams ttyO00 13:45:37 13:45:44 7.80 0.88 174.05
vi clark ttyql 14:08:27 14:09:10 43.46 4.73 147.92
$

This example will process and display the process accounting file displaying all
occurrences of the pattern "vi". This will report on all users that have executed vi.

093-701054 Licensed material—property of copyright holder(s) 1 '7

acctcom(1) DG/UX 5.4.1 acctcom(1)

FILES
/etc/passwd
/usr/adm/pacct
/usr/adm/pacct?
/etc/group

SEE ALSO
ps(1), su(l), acct(2), acct(4), utmp(4), acct(IM), acctems(IM),
acctcon(1M), acctmerg(IM), acctprc(IM), acctsh(1M), fwtmp(1M),
runacct(1M).

BUGS
Acctcom reports only on processes that have terminated; use ps(1) for active
processes.

1 '8 Licensed material—property of copyright holder(s) 093-701054

alpq(1) DG/UX 5.4.1 alpq(1)

NAME
alpg — query the ALP STREAMS module

SYNOPSIS
alpgq
DESCRIPTION
The alpg command takes no arguments or options. It presents, on its standard out-

put, a list of the functions currently registered with the alp STREAMS module. Infor-
mation on building and using these functions is contained in the manual entry alp(7).

The output list contains entries like the following:

1 Ucase (Upper to lower case converter)

The first field is a sequence number. The second field is the function’s name (by
which it may be accessed), and the third field is the function’s explanation string,
enclosed in parentheses.

SEE ALSO
kbdcomp(1M), kbdload(1M), alp(7), att_kbd(7).

NOTES
The alpg command works by pushing the alp STREAMS module querying it via
ioct1(2) and then popping it immediately; its standard input (normally the user’s tty)
must thus be a STREAM.

093-701054 Licensed material—property of copyright holder(s) 1 '9

apropos(1) DG/UX 5.4.1 apropos(1)

NAME

apropos - locate commands by keyword lookup

SYNOPSIS

apropos keyword ...

where:

keyword A word for which to search, from the NAME section of an entry

DESCRIPTION

apropos shows which entries of the reference manual contain instances of any of the
given keywords in their titles. The NAME line of each matching entry is printed to
the standard output. Each word is considered separately and the case of letters is
ignored. Words which are part of other words are considered; thus, when looking for
“compile”, apropos will find all instances of *‘compiler” also.

If an apropos output line starts with filename (section[x]), where section is a digit
and x is a lowercase letter, you can enter the following command to get the documen-
tation for it:

man section filename

EXAMPLES

FILES

To display the title lines of all manual entries related to passwords:
apropos password
To find out what editors are available on the DG/UX System:
apropos editor
To locate and then display an entry discussing formatted printing subroutines:
apropos formatted
and then

man 3 printf

/usr/catman/?_man/whatis)
Table of contents data bases

SEE ALSO

NOTES

1-10

man(1), whatis(1).

apropos is actually just the —k option to the man(1) command.

Licensed material—property of copyright holder(s) 093-701054

at(1) DG/UX 5.4.1 at(1)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at [-f script] [-m] time [date] [+ increment]
at -1 [job ...]
at -r job ...
batch

where:

script The name of a file containing commands
time h, hh, hkhmm, h:m, h:mm, hh:m, or hkh:mm, where h is hours and m is

minutes. A 24-hour clock is assumed, unless am or pm is appended to
time. If zulu is appended to fime, it means Greenwich Mean Time
(GMT). time can also take on the values: noon, midnight, and now.
at now responds with the error message too late; use now with the
increment argument, such as at now + 1 minute.

date Either a month name followed by a day number (and possibly a year
number preceded by a comma) or a day of the week. (Both the month
name and the day of the week may be spelled out or abbreviated to three
characters.) Two special “days”, today and tomorrow are recognized.
The default is today if the given hour is greater than the current hour,
tomorrow if it is less. If the given month is less than the current month
(and no year is given), next year is assumed.

increment A number suffixed by one of the following: minutes, hours, days,
weeks, months, or years. (The singular form is also accepted.) If
next precedes increment, it means ‘+ 1°.

job A job name or number

DESCRIPTION
At and batch read commands from standard input to be executed at a later time.
at allows you to specify when the commands should be executed, while jobs queued
with batch will execute when system load level permits.

Standard output and standard error output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory, umask, and
ulimit are retained when the commands are executed. Open file descriptors, traps,
and priority are lost.

at and batch write the job number and schedule time to standard error. Both com-

mands read from standard input. sh(1) provides different ways of specifying stan-

dard input. Within your commands, it may be useful to redirect standard output.
Options

-f script Read commands to be executed from the named script file.

-1 [job] Report all jobs scheduled for the invoking user, or just the jobs specified.

-m Send mail to the user after the job has been completed, indicating that the
job is finished, even if the job produces no output. Mail is sent only if the
job has not already generated a mail message.

-r job Remove specified jobs previously scheduled using at.

Access Permissions
Users are permitted to use at if their name appears in the file
/etc/cron.d/at.allow. If that file does not exist, the file
/etc/cron.d/at.deny is checked to determine whether the user should be denied

093-701054 Licensed material—property of copyright holder(s) 1 "1 1

at(1)

DG/UX 5.4.1 at(1)

access to at. If neither file exists, only root is allowed to submit a job. If only
at.deny exists and is empty, global usage is permitted. The allow/deny files consist
of one user name per line. These files can only be modified by the privileged user.

Date Format

If the DATEMSK environment variable is set, at uses its value as the pathname of a
template file containing format strings. These format strings determine the valid time
and date values instead of the values described above. The strings consist of field
descriptors and text characters and provide a richer set of allowable date formats in
different languages by appropriate settings of the environment variable LANG or
LC_TIME (see environ(5)).

For the allowable list of field descriptors, see getdate(3C). This list is a subset of
the descriptors allowed by calendar(l) that are listed on the date(l) manual page.

The formats described above for the fime and date arguments, the special names
noon, midnight, now, next, today, tomorrow, and the increment argument are
not recognized when DATEMSK is set.

Removing and Listing Jobs

at -r removes jobs previously scheduled by at or batch. The job number is the
number returned to you previously by the at or batch command. You can also get
job numbers by typing at -1. You can remove only your own jobs unless you are
the privileged user.

EXAMPLES

1-12

Valid commands include:

at 08l15am Jan 24
at 8:15am Jan 24
at now + 1 day
at now next day
at 5 pm Friday

This sequence can be used at a terminal:

batch

sort filename > outfile
Ctrl-D (hold down CTRL and press ‘d’)

This sequence, which shows redirecting standard error to a pipe, is useful in a shell
procedure (the sequence of output redirection specifications is significant):

batch <<!

sort filename 2>s1 > outfile | mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by includ-
ing code similar to the following within the shell file:

echo "sh shellfile" | at 1900 thursday next week

The following example shows the possible contents of a template file AT.TEMPL in
/etc/cron.d.

%I %p, the %est of %$B of the year %Y run the following job
%I %p, the %end of %B of the year %Y run the following job
%I %p, the %erd of $B of the year %Y run the following job
%I %p, the %eth of %$B of the year %Y run the following job
$d/%m/%y
$H:$M: %S

Licensed material—property of copyright holder(s) 093-701054

at(1) DG/UX 5.4.1 at(1)

$1:%M%p

The following are examples of valid invocations if the environment variable DATEMSK
is set to /etc/cron.d/AT.TEMPL.

at 2 PM, the 3rd of July of the year 2000 run the following job

at 3/4/99
at 10:30:30
at 2:30PM
FILES
/etc/cron.d main cron directory
/etc/cron.d/at.allow list of allowed users
/etc/cron.d/at.deny list of denied users
/etc/cron.d/queuedefs scheduling information
/var/spool/cron/atjobs spool area
DIAGNOSTICS
at can detect syntax errors and times out of range.
SEE ALSO

atg(1l), atrm(l), calendar(l), crontab(l), date(l), environ(5), kill(1),
mail(l), nice(1), ps(1), sh(1), sort(l).

cron(1M) in the System Manager’s Reference for the DG/UX System.
getdate(3C) in the Programmer’s Reference for the DG/UX System.

093-701054 Licensed material—property of copyright holder(s) 1 - 1 3

atq(1) DG/UX 5.4.1 atq(1)

NAME
atq - display the jobs queued to run at specified times
SYNOPSIS
atq [—c¢][-n] [username ...]
where:
username A valid user name
DESCRIPTION

Atq displays the current user’s queue of jobs submitted with at to be run at a later
date. If invoked by the privileged user, atq will display all jobs in the queue.

If no options are given, the jobs are displayed in chronological order of execution.

When a privileged user invokes atgq without specifying username, the entire queue is
displayed; when a username is specified, only those jobs belonging to the named user
are displayed.

Options
-c Display the queued jobs in the order they were created (that is, the time that
the at command was given).

-n Display only the total number of jobs currently in the queue.
FILES

/var/spool/cron spool area
SEE ALSO

at(l), atrm(1).
cron(1M) in the System Manager’s Reference for the DG/UX System.

1 '1 4 Licensed material—property of copyright holder(s) 093-701054

atrm(1) DG/UX 5.4.1 atrm(1)

NAME
atrm - remove jobs spooled by at or batch
SYNOPSIS
atrm [—afi Jarg ...
where:
arg A user name or job number
DESCRIPTION

Atrm removes delayed-execution jobs that were created with the at(1) command, but
not yet executed. To display the list of these jobs and associated job numbers, use

atq(1).
Atrm removes each job-number you specify, and/or all jobs belonging to the user you
specify, provided that you own the indicated jobs.

Jobs belonging to other users can only be removed by the privileged user.

Options
-a All. Remove all unexecuted jobs that were created by the current user. If
invoked by the privileged user, the entire queue will be flushed.
-f Force. Suppress all information regarding the removal of the specified jobs.
-i Interactive. Ask whether a job should be removed. If you respond with a y,
the job will be removed.
FILES
/var/spool/cron spool area
SEE ALSO

at(1), atq(l).
cron(1M) in the System Manager’s Reference for the DG/UX System.

093-701054 Licensed material—property of copyright holder(s) 1 "1 5

banner(1) DG/UX 5.4.1 banner(1)

NAME

banner - make posters
SYNOPSIS

banner strings
DESCRIPTION

Banner prints its arguments (each up to 10 characters long) in large letters on the
standard output.

EXAMPLES
$ banner hello world

This example prints on the screen "hello world" in large letters on two lines.
$ banner "hi world"

This example prints on the screen "hi world" in large letters on one line.

SEE ALSO
echo(1), printf(1).

1 - 1 6 Licensed material—property of copyright holder(s) 093-701054

basename(1) DG/UX 5.4.1 basename(1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string | suffix |
dirname string
DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from
string, and prints the result on the standard output. It is normally used inside substi-

tution marks (™ ~) within shell procedures. The suffix is a pattern as defined on the
ed(1) manual page.

dirname delivers all but the last level of the path name in string.
EXAMPLES
The following example, invoked with the argument /home/sms/personal/mail

sets the environment variable NAME to the file named mail and the environment
variable MYMAILPATH to the string /home/sms/personal.

NAME="basename $HOME/personal/mail”
MYMAILPATH="dirname S$HOME/personal/mail”

This shell procedure, invoked with the argument /usr/src/bin/cat.c, compiles
the named file and moves the output to cat in the current directory:

cc §1
mv a.out ~“basename $1 .c

~

SEE ALSO
ed(1), sh(l).

093-701054 Licensed material—property of copyright holder(s) 1 '1 7

be(1) DG/UX 5.4.1 be(1)
NAME
bc — arbitrary-precision arithmetic language
SYNOPSIS
bec[-c][-1]]file...]
DESCRIPTION
Bc is an interactive processor for a language that resembles C but provides essentially
unlimited precision arithmetic. It takes input from any files given, then reads the
standard input. The -1 argument stands for the name of an arbitrary precision math
library. The syntax for bc programs is as follows; L. means letters a-z, E means
expression, and S means statement.
Comments Enclosed in /* and /.
Names Simple variables: L
Array elements: L [E]
The words ibase, obase, and scale
Other operands
Arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators + - % / % ~ (% isremainder; = is power)
++ ——(prefix and postfix; apply to names)
= (K= >= I= < >
= =+ = =x =/ =% ="
Statements E
{S;..;S}
if(E)S
while (E) S
for(E;E;E)S
null statement
break
quit
Function definitions
define L (L,...,L){
autoL, ..., L
S;...S
return (E)
}
Functions in -1 math library
s(x) Sine
c(x) Cosine
e(x) Exponential
1(x) Log
a(x) Arctangent’
j(n,x) Bessel function
All function arguments are passed by value.
1 '1 8 Licensed material—property of copyright holder(s) 093-701054

be(1) DG/UX 5.4.1 be(1)

The value of a statement that is an expression is printed unless the main operator is
an assignment. Either semicolons or new-lines may separate statements. Assignment
to scale influences the number of digits to be retained on arithmetic operations in the
manner of dc(1). Assignments to ibase or obase set the input and output number
radix respectively.

A number is an unbroken string of the digits 0-9 and possibly, extended digits, for
radices greater than 10. Extended digits, e.g. A-F in base 16, must be specified as
capital letters only.

You can use the same letter as an array, a function, and a simple variable simultane-
ously. All variables are global to the program. "Auto" variables are pushed down
during function calls. When using arrays as function arguments or defining them as
automatic variables, you must place empty square brackets after the array name.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the —-c
(compile only) option is present. In this case, the dc input is sent to the standard
output instead. bc is terminated by Ctrl-D ("d).

EXAMPLES
$ be
scale=5 <NL>
12567/234 <NL>
53.70512
$

This example divides 12567 by 234 and prints the result with a precision of 5 decimal
places.

FILES
/usr/lib/1lib.b Mathematical library
/usr/bin/dc Desk calculator

SEE ALSO
dc(1).

NOTES
&& and | | are not implemented in the DG/UX System.
A for statement must have all three expressions.
Quit is interpreted when read, not when executed.

093-701054 Licensed material—property of copyright holder(s) 1 '1 9

bdiff(1) DG/UX 5.4.1 bdiff(1)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n | [-s]

DESCRIPTION
Bdiff is used in a manner analogous to diff to find which lines in file] and file2
must be changed to bring the files into agreement. Its purpose is to allow processing
of files too large for diff. If filel (file2) is -, the standard input is read.

Options
n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value for
n. This is useful in those cases in which 3500-line segments are too large for
diff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible diagnostic messages from
diff, which bdiff calls.

Input and Output
bdiff ignores lines common to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff on corresponding segments. If both
optional arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account
for the segmenting of the files (that is, to make it look as if the files had been pro-
cessed whole). Note that because of the segmenting of the files, bdiff does not
necessarily find a smallest sufficient set of file differences.

FILES

DIAGNOSTICS
Use help for explanations.

SEE ALSO
diff(1), help(l)

1 '20 Licensed material—property of copyright holder(s) 093-701054

berk_diff(1) DG/UX 5.4.1 berk_diff(1)

NAME
berk_diff - Berkeley differential file and directory comparator

SYNOPSIS
berk diff [-1 [-x][=s] [—cefhn | [-biwt | [—Sname] dirl dir2
berk diff [—cefhn 1 [-biwt] filel file2
berk_diff [-Dstring | [-biw | filel file2

DESCRIPTION
If both arguments are directories, berk_diff sorts the contents of the directories by
name, and then runs the regular file berk_diff algorithm (described below) on text
files which are different. Binary files which differ, common subdirectories, and files
which appear in only one directory are listed. Options when comparing directories
are:

-1 long output format; each text file berk_diff is piped through pr(1) to
paginate it, other differences are remembered and summarized after all text
file differences are reported.

-r causes application of berk_diff recursively to common subdirectories
encountered.
-s causes berk_diff to report files which are the same, which are otherwise

not mentioned.

—Sname
starts a directory berk_diff in the middle beginning with file name.

When run on regular files, and when comparing text files which differ during directory
comparison, berk_diff tells what lines must be changed in the files to bring them
into agreement. Except in rare circumstances, berk_diff finds a smallest sufficient
set of file differences. If neither filel nor file2 is a directory, then either may be given
as ‘~’, in which case the standard input is used. If filel is a directory, then a file in
that directory whose file-name is the same as the file-name of file2 is used (and vice
versa).

There are several options for output format; the default output format contains lines
of these forms:

nl an3,n4
nl,n2 dn3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers after the
letters pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one
may ascertain equally how to convert file2 into filel. As in ed, identical pairs where
nl = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged
by ‘<’, then all the lines that are affected in the second file flagged by ‘>’.

Except for -b, -w, -i or -t which may be given with any of the others, the fol-
lowing options are mutually exclusive:

-e produces a script of a, c and d commands for the editor ed, which will
recreate file2 from filel. In connection with —e, the following shell pro-
gram may help maintain multiple versions of a file. Only an ancestral file
($1) and a chain of version-to-version ed scripts ($2,%3,...) made by
berk_diff need be on hand. A ‘latest version’ appears on the standard
output.

093-701054 Licensed material—property of copyright holder(s) 1 '21

berk_diff(1)

-h

—Dstring

-W

FILES

DG/UX 5.4.1 berk_diff(1)

(shift; cat $*; echo “1,%$p”) | ed - $1

Extra commands are added to the output when comparing directories with
-e, so that the result is a sh(1) script for converting text files which are
common to the two directories from their state in dirl to their state in dir2.

produces a script similar to that of —e, not useful with ed, and in the
opposite order.

produces a script similar to that of —e, but in the opposite order and with
a count of changed lines on each insert or delete command. This is the
form used by rcsdiff(1).

produces a berk_diff with lines of context. The default is to present 3 lines
of context and may be changed, e.g to 10, by —c10. With -c the output
format is modified slightly: the output beginning with identification of the
files involved and their creation dates and then each change is separated by
a line with a dozen *’s. The lines removed from file] are marked with ‘- ’;
those added to file2 are marked ‘+ ’. Lines which are changed from one file
to the other are marked in both files with with ‘! °.

Changes which lie within context lines of each other are grouped together
on output. (This is a change from the previous “berk_diff -c”” but the
resulting output is usually much easier to interpret.)

does a fast, half-hearted job. It works only when changed stretches are
short and well separated, but does work on files of unlimited length.

causes berk_diff to create a merged version of filel and file2 on the stan-
dard output, with C preprocessor controls included so that a compilation of
the result without defining string is equivalent to compiling filel, while
defining string will yield file2.

causes trailing blanks (spaces and tabs) to be ignored, and other strings of
blanks to compare equal.

is similar to —b but causes whitespace (blanks and tabs) to be totally
ignored. E.g., “if (a == b)” will compare equal to “if(a==b)”.

ignores the case of letters. E.g., “A” will compare equal to “a”.

will expand tabs in output lines. Normal or -c output adds character(s) to
the front of each line which may misalign the indentation of the original

source lines and make the output listing difficult to interpret. This option
will preserve the original source’s indentation.

el

/usr/lib/diffh for -h
/biny/diff for directory diffs

/bin/pr
DIAGNOSTICS

Exit status is 0 for no differences, 1 for some, 2 for trouble.

SEE ALSO

berk_diff3(1l), cc(l), cmp(1l), comm(l), diff(1l), diff3(1l), ed(l).

NOTES

Editing scripts produced under the —e or —f option are naive about creating lines
consisting of a single “.”.

1-22

Licensed material—property of copyright holder(s) 093-701054

berk_diff(1) DG/UX 5.4.1 berk_diff(1)

093-701054

When comparing directories with the -b, -w or -i options specified, berk diff
first compares the files ala cmp, and then decides to run the berk_diff algorithm if
they are not equal. This may cause a small amount of spurious output if the files then
turn out to be identical because the only differences are insignificant blank string or
case differences.

Licensed material—property of copyright holder(s) 1 "23

berk_diff3() DG/UX 5.4.1 berk_diff3()

NAME

berk_diff3 - Berkeley 3-way differential file comparison
SYNOPSIS

berk_diff3 [-exEX3 | filel file2 file3
DESCRIPTION

Berk_diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

all three files differ
=1 filel is different
file2 is different
file3 is different

The type of change suffered in converting a given range of a given file to some other
is indicated in one of these ways:

I
I
I
{
o

I
I
98]

f :nl a Text is to be appended after line number n/ in file f, where f =1, 2,
or 3.

f :nl,n2 c Text is to be changed in the range line nl to line n2. If nl = n2, the
range may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indication. When
the contents of two files are identical, the contents of the lower-numbered file is
suppressed.

Under the —e option, berk_diff3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.e. the changes that nor-
mally would be flagged ==== and 3. Option -x (-3) produces a script to incor-
porate only changes flagged ==== (====3). The following command will apply the
resulting script to ‘file1’.

(cat script; echo “1,$p”) | ed - filel

The -E and -X are similar to —e and -x, respectively, but treat overlapping changes
(i.e., changes that would be flagged with ==== in the normal listing) differently. The
overlapping lines from both files will be inserted by the edit script, bracketed by
"<<<<<<"and ">>>>>>" lines.

For example, suppose lines 7-8 are changed in both filel and file2. Applying the edit
script generated by the command

berk_diff3 -E filel file2 file3
to filel results in the file:

lines 1-6

of filel

<< << filel
lines 7-8

of filel

of file3
>>>>>>> filed
rest of filel

1 '24 Licensed material—property of copyright holder(s) 093-701054

berk_diff3() DG/UX 5.4.1 berk_diff3()

The -E option is used by rcsmerge(1) to insure that overlapping changes in the
merged files are preserved and brought to someone’s attention.

FILES

/usr/lib/berk diff3

SEE ALSO
berk_diff(1l), rcsmerge(1).

NOTES
Text lines that consist of a single *.” will defeat -e.

093-701054 Licensed material—property of copyright holder(s) 1 "25

bfs(1)

NAME

DG/UX 5.4.1 bfs(1)

bfs - big file scanner

SYNOPSIS

bfs [-]| name

DESCRIPTION

1-26

The bfs command is like ed(1), but it is read-only and processes much larger files.
Files can be up to 1024K bytes and 32K lines, with up to 512 characters, including
newline. Bfs is usually more efficient than ed for scanning a file, since the file is
not copied to a buffer. It is most useful for identifying sections of a large file where
csplit(1) can divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written
with the w command. The optional - suppresses printing of sizes. Input is
prompted with « if you type P and a newline as in ed. Turn prompting off again by
inputting another P and newline. Note that messages are given in response to errors
if prompting is turned on.

All address expressions described under ed are supported. In addition, regular
expressions may be surrounded with two symbols besides / and ?: > indicates
downward search without wrap-around, and < indicates upward search without wrap-
around. For mark names, only the letters a through z may be used, and all 26
marks are remembered.

The e, g, v, k, p, 4, w, =, ! and null commands operate as described under
ed. Commands such as -——, +++-, +++=, -12, and +4p are accepted. Note that
1,10p and 1,10 will both print the first ten lines. The f command prints only the
name of the file being scanned; there is no remembered file name. The w command
is independent of output diversion, truncation, or crunching (see the xo, xt and xc
commands, below). The following additional commands are available:

xf file
Further commands are taken from the named file. When an end-of-file is

reached, an interrupt signal is received, or an error occurs, reading resumes
with the file containing the xf. The xf commands may be nested to a depth of

10.
xn List the marks currently in use (marks are set by the k command).
xo [file]

Further output from the p and null commands is diverted to the named file,
which, if necessary, is created mode 666. If file is missing, output is diverted to
the standard output. Note that each diversion truncates or creates the file.

: label
This positions a label in a command file. The label is terminated by newline,
and blanks between the : and the start of the label are ignored. This com-
mand also inserts comments into a command file, since labels need not be refer-
enced.

(., .)xblregular expression/label
A jump (either upward or downward) is made to label if the command succeeds.
It fails if: Either address is not between 1 and $.
The second address is less than the first, or
The regular expression does not match at least one line in the specified range,

including the first and last lines.

Licensed material—property of copyright holder(s) 093-701054

bfs(1)

093-701054

DG/UX 5.4.1 bfs(1)

On success, . is set to the line matched and a jump is made to label. If the
command fails, the jump is not made and the next statement is executed. This
command is the only one that does not issue an error message on bad addresses,
so you can use it to test whether addresses are bad before other commands are
executed. Note that the command

xb/~/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other than a ter-
minal. If it is read from a pipe, only a downward jump is possible.

xt number

Output from the p and null commands is truncated to at most number charac-
ters. The initial number is 255.

xv[digit][spaces][value]

The variable name is the specified digir following the xv. The commands
xv5100 or xv5 100 both assign the value 100 to the variable 5. The com-
mand xv61,100p assigns the value 1,100p to the variable 6. To reference a
variable, put a % in front of the variable name. For example, using the above
assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line containing a
match. To escape the special meaning of %, a \ must precede it.

g/".*\%[cds]l/p

could be used to match and list lines containing printf of characters, decimal
integers, or strings.

Another feature of the xv command is that the first line of output from a
DG/UX system command can be stored into a variable. The only requirement
is that the first character of value be !. For example:

.w junk

xv5tcat junk
'rm junk

lecho "%5"
xv6lexpr %6 + 1

would put the current line into variable 5, print it, and increment the variable 6
by one. To escape the special meaning of ! as the first character of value, pre-
cede it with a \.

xv7\!date

stores the value !'date into variable 7.

Licensed material—property of copyright holder(s) 1 '27

bfs(1) DG/UX 5.4.1 bfs(1)

xbz label

xbn label
These two commands will test the last saved return code from the execution of a
DG/UX system command (!command) or nonzero value, respectively, to the
specified label. The two examples below search for the next five lines containing
the string size.

xv55

1

/size/

xv5lexpr %5 - 1

'if 0%5 != 0 exit 2

xbn 1

xv45

: 1

/size/

xvédlexpr %4 - 1
1if 0%4 = 0 exit 2
xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crunched; if swirch is 0
it is not. Without an argument, xc reverses switch. Initially switch is set for no
crunching. Crunched output has strings of tabs and blanks reduced to one
blank and blank lines suppressed.

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error mes-
sages when prompting is on.
SEE ALSO
csplit(l), ed(l).
regcemp(3X) in the Programmer’s Reference for the DG/UX System

1 '28 Licensed material—property of copyright holder(s) 093-701054

bftp(1C) TCP/IP 5.4.1 bftp(1C)

NAME
bftp — Background File Transfer Program

SYNOPSIS
bftp

DESCRIPTION
bftp is the user interface to the Background File Transfer Program (BFTP). bftp
may be used to submit a request to have a file transferred at some time in the future
via the standard internet File Transfer Protocol (FTP), which is described in RFC-
959.

BFTP makes use of third party FTP, so the source and the destination hosts do not
have to be operational at the time the request is submitted. At least one of the hosts
must correctly support the PASV command of the FTP protocol. Transfers are
scheduled locally via the system batch processor, at.

For more information on BFTP see Using TCP/IP on the DG/UX™ System, Managing
TCP/IP on the DG/UX™ System, and RFC-1068 (BFTP).

Bftp Standard Transfer Commands
ddir directory_name
Sets the destination directory. If ddir is not set and dfile is not a com-
plete pathname, dfile will be relative to the user’s home directory on the
destination host.

dfile destination-filename
Sets the destination filename. Can be a full or a relative pathname. If ddir
is not set and dfile is not a complete pathname, the pathname will be rela-
tive to $HOME on the destination host.

dhost destination-hostname user password
Sets the destination host, user, and password. If the destination user does
not have a password, the password argument is not required.

prompt
Prompts you for all commonly-used parameters. This combines shost,
sdir, sfile, dhost, ddir, dfile, dhost, ddir, dfile, set type,
and set copy | move | delete.

sdir directory_name
Sets the source directory. If sdir is not set and sfile is not a complete
pathname, sfile will be relative to the user’s home directory on the source
host.

sfile file_name
Sets the source filename. Can be a full or a relative pathname. If sdir is
not set and sfile is not a complete pathname, the pathname will be relative
to $HOME on the source host.

shost hostname/number user password
Sets the source host, user and password. If the source user does not have a
password, the password argument is not required.

submit
Submits the current request for background FTP transfer. bftp will prompt
for the StartTime, ReturnMailbox, and RequestKeyword.

transfer
Perform the current request in the foreground.

093-701054 Licensed material—property of copyright holder(s) 1 "29

bftp(1C) TCP/IP 5.4.1 bftp(1C)

Bftp Information Commands
? List the legal options.

explain
Displays a short explanation of how to use BFTP.

help [command] Prints local help information. If a command is supplied as an
argument, prints information only on that command.

status
Lists the transfers that are currently submitted and provides a summary of
each transfer. Use the find command for more detailed information on a
transfer.

verify
Makes the connections necessary to conduct the current transfer, using the
specified parameters. Does not make the transfer, but checks the parame-
ters.

show Displays the current parameter values.

Bftp Transfer Control Commands
cancel
Prevents the specified transfer from taking place. Unlike the find com-
mand, cancel also works after the transfer has begun. This command
requires that the source host be running DG/UX 4.30 or higher. To check
the version you are running, invoke the verify command with verbose set
to true.

clear Returns all parameters to their default values.

find Finds and displays the parameters for a transfer request and a log summariz-
ing transfer activity. bftp will prompt for the (optional) RequestID and the
RequestKeyword. Once a request has been located and displayed, it can be
changed and resubmitted, or canceled.

hold Suspends a transfer that is currently active (Running and not between
retries). This may be used to ease congestion on a slow data link between the
two hosts. This command requires that the source host be running DG/UX
4.30 or higher. To check the version you are running, invoke the verify
command with verbose set to true.

quit Returns all parameters to their default values and exits the BFTP program.

unhold
Restarts a transfer that has been suspended by the hold command. This
command requires that the source host be running DG/UX 4.30 or higher.
To check the version you are running, invoke the verify command with
verbose set to true.

Bftp Request Commands
request delete name
Deletes request file bftp—save.name.

request list
Lists all request files.

request load name
Reads bftp-save.name in as the current request.

request store name
Saves the current request in a file named bftp-save.name. Currently,

1 '30 Licensed material—property of copyright holder(s) 093-701054

bftp(1C) TCP/IP 5.4.1 bftp(1C)

name can consist of numbers and letters only.

Bftp Set Commands
set account account-name
Sets the account for logging in to the source and destination hosts. Many
hosts do not require this.

set append true |false
Sets to true or false the request to append transferred file to destination files.
If the destination file does not exist, the file is created. The default is false.

set copy
Source file will be copied to the destination filename. Copy is the default.

set delete
Source file will be deleted. Note that when delete is set, no connection is
made to the destination host, so only source parameters are required.

set mailbox mailbox-name
Sets the mailbox where BFTP transfer results are returned. The mailbox
should be in standard internet format, for example: farah@doc. The default
is username(@host.

set mode stream | block | compress
Sets the FTP transfer mode to stream, block, or compress. The default mode
is stream.

set move
When set move is specified, the source file will be deleted after it has been
copied.

set multiple true| false
Sets to true or false the request to transfer multiple files. To use wildcards in
sourcefile names (for example, datafile*), multiple must be set to true.
The default is false.

set port sourcen | destinationn
Sets the port for the source or destination system of FTP connection. The
default is 21 for both source and destination.

set structure file| record | page
Sets the FTP structure to file, record, or page. The default is file.

set time StartTime retry-interval maximum-retries
Sets the start time, the starting retry interval, and the maximum number of
tries for a transfer. The default time is now, the default retry interval is 15
minutes, and the default number of tries is 5. Each time that a transfer is
retried following a failure, the retry interval is doubled, up to a maximum of 4
hours. You must press the New Line key after StartTime because StartTime
may contain spaces. BFTP prompts you for the retry-interval and maximum
number of tries.

set type image | ascii |ebcdic | local
Sets the FTP type and format and byte size parameters. Note that a normal
text file is usually ascii, and binary file is often the same as an image file.
The default is ascii and nonprint.

The representation type may be one of network ASCII, EBCDIC, image, or

local byte size with a specified byte size (for PDP-10’s and PDP-20’s mostly).
The network ASCII and EBCDIC types have a further subtype which

093-701054 Licensed material—property of copyright holder(s) 1 '31

bftp(1C) TCP/IP 5.4.1 bftp(1C)

specifies whether vertical format control (NEWLINE characters, form feeds,
etc.) are to be passed through (nonprint), provided in TELNET format, or
provided in ASA carriage control format.

set unique true| false
Sets to true or false the request to use the STOU command. If the STOU
command is supported by the destination host, the file will be stored into a
file having a unique filename. The default is false.

set verbose true| false
Sets to true or false the request to display full FTP conversations for the ver-—
ify and transfer commands. The default is false. Transfers run by the
submit command always run as if verbose is true.

Special Editing Characters

{return> Accept current command/field.

<{escape> Complete current command/field, or display default.
{space> Complete and delimit current command/field.
<{delete> Erase last character.

<control-L> Refresh screen.
<control-R> Refresh line.
<control-U> Erase line.
<control-w> FErase current token.

FILES
bftp creates a number of files that are used to keep track of requests that are in pro-
gress:
bftpl23456789.atjob
bftp123456789. cmd
bftpl23456789.1ist
bftpl23456789.msg
bftpl23456789. req
bftp_saved_info

The files that are saved via the request save command are as follows:
bftp-save.request-name

bftp usually stores its files in the home directory of the user who is logged on. To
have bftp store these files in another directory, use the system setenv command to
set $BFTPDIR, for example

setenv BFTPDIR ~/var/spool/bftp/yourname

/etc/bftp.conf, sets the maximum number of simultaneous transfers controlled by
this host. This can be used to limit network congestion. No file, or a file containing
the value 0 means no limit.

/usr/bin/fts (File Transfer Service) is the program that actually coordinates the
transfer. It should only be invoked via BFTP.

SEE ALSO
at(1), cron(1M), crontab(1IM), ftp(1C), £tpd(1IM).

NOTES
Some hosts do not correctly support the FTP PASV command. This may cause a
Malformed PASV reply or a Connection refused error.

1 '32 Licensed material—property of copyright holder(s) 093-701054

bftp(1C) TCP/IP 5.4.1 bftp(1C)

Transfers from a DG/UX 4.20 source host may not always complete, depending on
the mode, structure, and type selected.

093-701054 Licensed material—property of copyright holder(s) 1 '33

cail(1) DG/UX 5.4.1 cal(1)

NAME
cal - print calendar

SWNOPSIS
cal [[month | year |}

where:
month An integer from 1 to 12
year An integer from 1 to 9999

I¥ESCRIPTION
Cal prints a calendar for the specified year. If you also give a month, a calendar just
for that month is printed. If you give neither, a calendar for the present month is

printed.
Note that cal 85 refers to 0085, not 1985.
EXAMPLES
$ cal
June 1991
S MTu WTh F S

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

Cal with no arguments prints the current month.

s cal 9 1752
September 1752
S MTu WTh F S
1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

The example above shows the transition from the Julian calendar to the Gregorian
calendar.

SEE ALSO
calendar(l).

NOTES
The year is always considered to start in January, even though this is historically

naive.

The transition from Julian to Gregorian is computed as being in September 1752,
when the British Empire, including the American colonies, converted. Various coun-
tries switched in October 1582, February 1918, or at other times.

1-34 Licensed material—property of copyright holder(s) 093-701054

calendar(1) DG/UX 5.4.1 calendar(1)

NAME

calendar - reminder service
SYNOPSIS

calendar [- |
DESCRIPTION

calendar consults the file calendar in the current directory and prints out lines
that contain today’s or tomorrow’s date anywhere in the line. Most reasonable
month-day dates such as Aug. 24, august 24, 8/24, etc., are recognized, but not
24 August or 24/8. On weekends “tomorrow” extends through Monday. calen-
dar can be invoked regularly by using the crontab(l) or at(1) commands.

When an argument is present, calendar does its job for every user who has a file
calendar in his or her login directory and sends them any positive results by
mail(l). Normally this is done daily by facilities in the UNIX operating system (see
cron(1M)).

If the environment variable DATEMSK is set, calendar will use its value as the full
path name of a template file containing format strings. The strings consist of field
descriptors and text characters and are used to provide a richer set of allowable date
formats in different languages by appropriate settings of the environment variable
LANG or LC_TIME (see environ(5)). (See date(1) for the allowable list of field
descriptors.)

EXAMPLES
The following example shows the possible contents of a template:

%$B %eth of the year %Y
%B represents the full month name, %e the day of month and %Y the year (4 digits).

If DATEMSK is set to this template, the following calendar file content would be
valid:

March 7th of the year 1989 < Reminder>

FILES
/usr/lib/calprog program used to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/calx

SEE ALSO

at(l), date(l), crontab(l), mail(l).

cron(1M), environ(5) in the System Manager’s Reference for the DG/UX System.
NOTES

Appropriate lines beginning with white space will not be printed.

Your calendar must be public information for you to get reminder service.
calendar’s extended idea of “tomorrow” does not account for holidays.

093-701054 Licensed material—property of copyright holder(s) 1 ‘35

cat(1) DG/UX 5.4.1 cat(1)

NAME
cat - concatenate and type files to standard output

SYNOPSIS
cat [u][-s][-v[-t][-e]][-lfile]...

where:

file Name of file being typed

DESCRIPTION
Cat reads each file (from left to right) and writes it on the standard output. If no
input file is given, or if the argument is -, cat reads from standard input.

When the standard input is the keyboard and the standard output is the screen, cat
prints back each line as you enter it (the new-line character and all other special char-
acters cannot be escaped). cat does not interpret characters.

Using cat >filel is a good way to create short files quickly. Type ~d (Ctrl-D) to
end input to the file.

Options are:

-u Unbuffered output. The output is buffered unless you give this option.
-s Be silent about non-existent files; no error message is given.
-v Visible printing of nonprinting characters, except tabs (Ctrl-I), new lines

(Ctrl-J), and form feeds (Ctrl-L). Control characters are printed ~X
(representing Ctrl-X); the DEL character (octal 0177) is printed ~?. Non-
ASCII characters (with the high bit set) are printed as M-x, where x is the
character specified by the seven low-order bits.

-t Print each tab as ~I, but only if the —v option is also present. Otherwise, it
is ignored.
-e Print a $ character at the end of each line (prior to the newline), but only if

the -v option is also present. Otherwise, it is ignored.

International Features
cat can read and write files containing characters from supplementary code sets.

NOTE: When invoked with the —v option, cat considers all characters from sup-
plementary code sets to be printable.

EXAMPLES
cat file

prints the file on the screen.

cat filel file2 > file3

concatenates the first two files and places the result on the third.

$ cat filel
The
quick
brown
fox

$ cat file2
jumped
over
the

1 "36 Licensed material—property of copyright holder(s) 093-701054

cat(1) DG/UX 5.4.1 cat(1)
lazy
dog.
$ cat filel file2 > file3
$ cat file3
The
quick
brown
fox
jumped
over
the
lazy
dog.
The above example shows the concatenation of two different files into one file.
SEE ALSO
cp(1), head(l), more(1), pg(1), pr(1), tail(l).
NOTE
Sh(1) creates and/or opens the files for the output of the cat command before
reading the files for its input. Therefore, command formats such as
cat filel file2 > filel
cause the original data in file] to be lost; take care when using the shell special char-
acters to specify files for cat to use.
093-701054 Licensed material—property of copyright holder(s) 1 '37

catexstr(1) DG/UX 5.4.1 catexstr(1)

NAME
catexstr - extract strings from source files, replace with catgets calls.

SYNOPSIS
catexstr [-1lang] [-ccat] [-bbeg| [-eend] file ... > strings
catexstr -r [-llang] [-ccat] [-bbeg] [~eend] file < strings > file.new

DESCRIPTION
The catexstr utility is used to extract strings from source files and replace them
with calls to the X-Open-style message retrieval function or command (see
catgets(1,3C)), and generate a message catalog (.msg file) that contains the mes-
sages. The .msg file can then be translated into other natural languages. The source
files may contain C language source, or source code in other languages, such as shell
scripts.

Catexstr has the following options:

-r Runs pass two of catexstr (replace mode), generating a new version of the
source file on the standard output, and simultaneously generating a message
catalog (.msg file).

-1lang Specifies the source code language of the file(s) being manipulated. The
choices that are recognized are c, sh (shell script), and gen (generic). The
-1 option establishes values to be used as the format of the string and the
name of the catalog to be inserted into the new source file, and the strings
that will be recognized as the beginning and end of comments. These may
be overridden with the other options listed here.

—-ffmt Specifies the format string to be used when creating the modified version of
the source code file. The default formats for various languages are shown
below.

—-ccat Specifies the catalog name used when creating the modified version of the
source code file. This name is inserted into the source code file; it is nor
used as the name of the .msg file to be created.

—-bbeg Specifies the string to be treated as the beginning of a comment.

—eend Specifies the string to be treated as the end of a comment. This may be one
or two bytes long. Nesting of comments is not recognized.

If none of -1, -f, -c, -b, or —e are specified, then -1c is assumed (for compati-
bility with earlier versions of catexstr). If a source code language is specified with
-1, then the default values associated with that language (shown below) are assumed.
These defaults may be overridden with the other options described above. If -1 is
not used, but one of -f, —c, ~b, or —e are, then -1lgen is assumed. The default
values for each of the supported languages are:

Lang Format string catalog comment comment
name begin end

c catgets(%s, %d, %d, "%s") catd /* */

sh ‘catgets %s %d %d "%s™ * # \n

gen catgets %s %d %d "%s" * none \n

The parameters passed to sprintf in conjunction with the format strings are,
respectively:

the catalog name, as specified here or with the -c option;

the message set number;

the message number; and

the message text.

1 '38 Licensed material—property of copyright holder(s) 093-701054

catexstr(1) DG/UX 5.4.1 catexstr(1)

* For languages sh and gen, the default catalog name is the name of the source file
(with any existing extension stripped off), and .cat appended.

In pass one (without the —r option), catexstr extracts a list of strings from the
named source files, with positional information. This list is produced on standard
output in the following format:

file:line:position:length:setnum:msgnum:"string"

file the name of the source file

line line number in the file

position character position in the line

+length length of the original string

setnum null

msgnum null

string the extracted, modified text string, surrounded by double
quotes.

Normally you would redirect this output into a file (the "message list file", shown as
strings on the command line above). Then you would edit this file as described
below. Then you would use catexstr -r to generate a new version of the source
file, and a message (.msg) file.

Any "%’ characters in the source file that are not part of a "% %" pair will be
translated into "%nn$" sequences in the message list file, where the "nn" numbers
enumerate the uses of ’%’ in the message. For example, the message

"File %s has %d blocks."
would become

"File %18s has %2$d blocks."
This allows the human translator to modify the order of the %’ tokens in the mes-
sage to accommodate the syntax requirements of the target natural language, while
still accommodating the order of the parameters to the printf call. If the message-has
only one occurrence of %, then this modification is not really necessary, but it is
done anyway.

Next, examine this list and determine which messages can be translated and subse-
quently retrieved by catgets. Modify this message list file by deleting lines that
can’t be translated. In particular, text associated with ’#include "filename™ lines must
be deleted, and ’#define foo "bar" lines must be scrutinized.

If you wish to specify the set number(s) and message number(s) to use (see gen-
cat(1)), you may do so by inserting these numbers into the fifth (setnum) and sixth
(msgnum) fields in the message list file. If you do not specify the set number to use
for a particular message, set number one is used, unless some other set has been
specified for an earlier message, in which case that set number is used. If you do not
specify any message numbers, the messages are numbered sequentially, starting with
number one. If any message is explicitly numbered, that number is used for that mes-
sage, and automatic numbering resumes from that number.

You are free to modify the text of the message in the message list file in any other
way that you consider appropriate. For example, you might use this occasion to clar-
ify an ambiguous English sentence. Make sure that the text is enclosed in double
quotes (). Do not modify any of the first four fields on these lines, even if you
change the length of the message.

The message list file should nor be translated into any other natural language. The file
to translate into other languages is the message file (.msg file) that will be produced by
the second pass of catexstr.

093-701054 Licensed material—property of copyright holder(s) 1 ‘39

catexstr(1) DG/UX 5.4.1 catexstr(1)

Note, however that you must not make any modifications to the source file between
running the first and second passes of catexstr.

After editing the message list file, use this modified message list file as input to
catexstr -r file. You should provide the same set of options (except -r) to this
second pass of catexstr that you gave to the first pass. The second pass of
catexstr will produce a new version of the original source file, in which the mes-
sages have been replaced by calls to the message retrieval function or command cat-
gets. At the same time, a message file that is of the correct format to be used as
input to gencat is generated, with the name file . msg.

If you are manipulating C source code, then once the new version of the .c file has
been created, you must edit it to include a declaration for the catalog descriptor vari-
able (normally catd) as type nl_catd. This variable is used in the calls to cat-
gets (see catgets(3C)). Usually, you would declare one catd variable and use it
throughout the program. Also, you must add a call to catopen. Generally this is at
the top of the main routine (see catopen(3C)). You may also wish to add a call to
catclose. The program must also call setlocale (see setlocale(3QC)) if it does
not do so already. This will probably entail inclusion of locale.h.

The catexstr program cannot correctly replace strings in all instances. For exam-
ple, a static character string initialization cannot be replaced by a call to catexstr.
A second example is an escape sequence which should not be translated. In some
cases the C code may require modification so that strings can be extracted and
replaced by calls to the message retrieval function.

Shell Scripts

Shell scripts present a variety of challenges. Here are a few pointers in dealing with
them.

Before running the first pass of catexstr, examine the shell script for back-quote (‘)
characters within double-quoted strings (strings enclosed in double-quote marks (")).
Such occurrences will not be handled correctly by catexstr, and must be modified
either before or after running catexstr.

Also look for strings that should be translated, that are not enclosed in double
quotes. This includes strings enclosed in single quotes (*).

Similarly, look for strings that must be passed as a single argument to a command,
rather than being broken into separate arguments (words) by the shell. Such cases
can be handled by assigning the value of the string to a temporary shell variable, and
then using the shell variable in the call to the command. For example,

log_error "This must be one argument, not seven."
becomes

msg = "This must be one argument, not seven."

log_error "$msg"
which ends up looking something like:

msg = ‘catexstr mycat.cat 1 15\

"This must be one argument, not seven.
log_error "$msg"

"

After running the first pass of catexstr, search the message list file for any
occurrence of a back-quote character. Any such occurrence, as mentioned above,
must be changed. This may be done by either modifying the original source and re-
running the first pass of catexstr, or by modifying the new source file after running
the second pass of catexstr.

Licensed material—property of copyright holder(s) 093-701054

catexstr(1) DG/UX 5.4.1 catexstr(1)

After running both passes of catexstr, edit the new source file and examine each
call to catgets, to make sure that it makes sense. One particular optimization that
can frequently be made is, for example, to change

echo ‘catgets mycat.cat 1 16 "Hello, world.™
to

catgets mycat.cat 1 16 "Hello, world."

EXAMPLES
The following examples show uses of catexstr to convert a C program.

Assume that the file hw.c contains:

main()
{

printf("This is an example\n");

printf("Hello world!\n");

printf("This is the %s string (number %d4)\n", "third", 3):
}

catexstr hw.c > hw.strings produces the following output in the file
hw.strings:

hw.c:3:8:20:::"This is an example\n"
hw.c:4:8:14:::"Hello world!\n"

hw.c:5:8:35:::"This is the %1$s string (number %2$d)\n"
hw.c:5:47:5:::"third"

The file hw.strings can be edited as described above.

The catexstr utility can now be invoked with the -r option to replace the strings
in the source file by calls to the message retrieval function catgets().

catexstr -r hw.c <hw.strings >hw.new.c produces the following output (the
indentation has been modified to fit on this manual page):

#include <nl_types.h>

main()

{

printf(catgets(catd, 1, 1, "This is an example\n"));
printf(catgets(catd, 1, 2, "Hello world!\n"));

printf(catgets(catd, 1, 3, "This is the %1$s string (number %2$d)\n"), \
catgets(catd, 1, 4, "third"), 3);

}

This new source file must be edited to include a declaration of catd (as type
nl_catd), a call to catopen, and possibly calls to setlocale and catclose. You
may also wish to break the long line:

#include <nl_types.h>
#include <locale.h>
static nl_catd catd;

main()
{
(void) setlocale (LC_ALL, "");
catd = catopen ("hw.cat", 0);
printf(catgets(catd, 1, 1, "This is an example\n"));
printf(catgets(catd, 1, 2, "Hello world!\n"));
printf(catgets(catd, 1, 3, "This is the %1$s string (number %2$d)\n"),

093-701054 Licensed material—property of copyright holder(s) 1 '41

catexstr(1) DG/UX 5.4.1 catexstr(1)

catgets(catd, 1, 4, "third"), 3):
catclose (catd);

}

The catexstr -r command above also produces a message file, hw.msg:

$quote
$set 1
1 "This is an example\n"

2 "Hello world!\n"

3 "This is the %1$s string (number %2$d)\n"
4 "third"

This message file may be replicated and translated into other natural languages.
The following command is used to compile the message catalog:
rm hw.cat; gencat hw.cat hw.msg

The resulting message catalog (hw.cat) must be installed in the appropriate direc-
tory. Normally, this would be a subdirectory of /usr/lib/nls/msg.

Multiple Source Files
Programs that consist of more than one source file should be handled as follows.
First, catexstr is called with all the source files as arguments:

catexstr fool.c foo2.c > foo.strings
Second, the message list file (foo.strings) is edited as described above.

Third, catexstr -r is called once for each source file, to create new source files
and message (.msg) files:

catexstr -r fool.c < foo.strings > fool.new.c
catexstr -r foo2.c < foo.strings > foo2.new.c

Fourth, gencat is called to compile the message catalog:

rm —-f foo.cat
gencat foo.cat fool.msg foo2.msg

FILES
/usr/lib/nls/msg/locale/catalog.cat files created by gencat(l)

ENVIRONMENT VARIABLES

NLSPATH specification of directory containing the locale-specific message catalog
directories.
LANG locale name.
DIAGNOSTICS

The error messages produced by catexstr are intended to be self-explanatory.
They indicate errors in the command line or format errors encountered within the
input file.

SEE ALSO
catgets(l), gencat(l),
catopen(3C), catclose(3C), catgets(3C), printf(3S), setlocale(3C) in the
Programmer’s Reference for the DG/UX System .
environ(5) in the System Manager’s Reference for the DG/UX System.
exstr(l) — AT&T-style message facility.

1 '42 Licensed material—property of copyright holder(s) 093-701054

catgets(1) DG/UX 5.4.1 catgets(1)

NAME

catgets — print message from message catalog

SYNOPSIS

catgets catalogname setnumber messagenumber defaultmessage

where:

catalogname 1Is the name of the compiled message catalog (e.g. perror.cat).

setnumber Is the number of the message set within the message catalog.

messagenumber Is the number of the message within the set.

defaultmessage 1Is the default string to use if the message catlog is not available, or
the specified message is missing. This string must be a single argu-
ment to catgets, which means that if it contains any space(s), it
must be quoted.

DESCRIPTION

The catgets command performs a function very similar to the catgets(3C) sub-
routine — it extracts a message from an X/Open-style message catalog. The message
catalog to use is selected on the basis of the caralogname argument, and the values of
the NLSPATH and LANG environment variables (see catopen(3C)). The desig-
nated string is printed to catgets’s standard output. If the designated catalog is not
available, or does not contain the message specified by setnumber and mes-
sagenumber, then the defaultmessage string is printed.

EXAMPLES

catgets lp.shl.cat 1 7 "Enter name of lp device:"

This command attempts to retrieve message number 7 from set number 1 in message
catalog lIp.shl.cat, in the directory specified by the NLSPATH and LANG environ-
ment variables. If that is successful, that message is printed; otherwise Enter name
of 1p device: is printed.

FILES

/usr/lib/nls/msg/$LANG/catalogname Default location of message catalog.
SEE ALSO

gencat(1),

catopen(3C), catgets(3C), setlocale(3C),

environ(5).

093-701054

gettxt(l) — AT&T-style message facility.

Licensed material—property of copyright holder(s) 1 '43

cd(1) DG/UX 5.4.1 cd(1)

NAME
cd - change working directory

SYNOPSIS
cd [directory |

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as the new
working directory (also $home in csh). If directory specifies a complete path start-
ing with /, ., or . ., directory becomes the new working directory. If neither case
applies, cd tries to find the designated directory relative to one of the paths specified
by the CDPATH shell variable (cdpath in csh). $CDPATH has the same syntax as,
and similar semantics to, the PATH shell variable (path in csh). Cd must have
execute (search) permission in directory .
Because a new process is created to execute each non-built-in command, cd would
be ineffective if it were written as a normal command; therefore, it is a built-in com-
mand for both the Bourne shell and the C shell.

EXAMPLES
$ pwd
/usr/userl
$ cd work_dir
$ pwd
/usr/userl/work_dir
$
The above example changes your current directory to the directory named "work_dir."
"Work_dir" is located below the directory /usr/userl. The string, "..", can be sub-
stituted to indicate the directory above the current directory. This string can be
repeated on the same command line to go up several levels.

SEE ALSO
pwd(1l), sh(1), csh(1).
chdir(2) in the Programmer’s Reference for the DG/UX System (Volume 1).

1 "44 Licensed material—property of copyright holder(s) 093-701054

chgrp(1) DG/UX 5.4.1 chgrp(1)

NAME

chgrp - change the group ownership of a file
SYNOPSIS

chgrp [-R] [~h] group file .
DESCRIPTION

chgrp changes the group ID of the files given as arguments to group. The group may
be either a decimal group ID or a group name found in the group ID file,

/etc/group.
You must be the owner of the file, or be the super-user to use this command.
Valid options to chgrp are:

-R Recursive. chgrp descends through the directory, and any subdirectories,
setting the specified group ID as it proceeds. When symbolic links are
encountered, they are traversed.

-h If the file is a symbolic link, change the group of the symbolic link. Without
this option, the group of the file referenced by the symbolic link is changed.

EXAMPLES
$ chgrp 1009 chapter

If you own a file chapter, the new group will be the group named by the numeric
group ID 1009. 1009 must be a valid group ID listed in the /etc/group file.

$ chgrp work *

This command changes the group for all the files you own in the current directory.
The new group will be the group with the group name work. work must be a valid
group name listed in the /etc/group file.

FILES
/etc/group

SEE ALSO
chmod(1), chown(l), groups(l), id(1), logname(1l), 1s(1).
group(4), passwd(4) in the Programmer’s Reference for the DG/UX System.

093-701054 Licensed material—property of copyright holder(s) 1 '45

chgtinfo(1) DG/UX 5.4.1 chgtinfo(1)

NAME
chgtinfo - create a temporary version of a TERMINFO entry

SYNOPSIS
TERMINFO="chgtinfo modifications
export TERMINFO

DESCRIPTION
One of the touted drawbacks of TERMINFO has been that one could not create a tem-
porary modification of a TERMINFO entry. Chgtinfo permits the user to make
such modifications.

The modifications are actual terminfo(4) source statements and are passed on to
tic(1M) for compilation. The new TERMINFO directory tree is printed out so that it
may be assigned to $TERMINFO. Any programs run subsequent to this assignment will
make use of the modified TERMINFO entry instead of the original TERMINFO entry.

EXAMPLE
TERMINFO="chgtinfo xhp, smso=E[3m, smul(@,"
export TERMINFO

This will add the xhp boolean variable, change or add the smso string variable, and
remove the smul string variable from the current TERMINFO entry.

FILES
/usr/tmp/tinfo* Temporary directories and files holding modified TERMINFO
entry

SEE ALSO
sh(1), tic(1M), terminfo(4).

1 '46 Licensed material—property of copyright holder(s) 093-701054

chkey(1) ONC/NFS 5.4.1 chkey(1)

NAME
chkey - change your encryption key

SYNOPSIS
chkey

DESCRIPTION
NOTE: Secure RPC using DES Authentication is an additional feature that must be
purchased separately from the DG/UX ONC/NFS package. You must have this
feature to use this command.

chkey prompts the user for their login password, and uses it to encrypt a new encryp-
tion key for the user to be stored in the publickey(4) database.

SEE ALSO
keylogin(l), keyserv(IM), newkey(1M), publickey(4).

093-701054 Licensed material—property of copyright holder(s) 1 '47

chmod(1) DG/UX 5.4.1 chmod(1)

NAME
chmod - change file mode

SYNOPSIS
chmod [-R | mode file ...
chmod [ugoa [{+ |- |=} rwxlstugo] file ...

DESCRIPTION
chmod changes or assigns the mode of a file. The mode of a file specifies its permis-
sions and other attributes. The mode may be absolute or symbolic.

An absolute mode is specified using octal numbers:
chmod nnnn file ...

where n is a number from 0 to 7. An absolute mode is constructed from the OR of
any of the following modes:

4000 Set user ID on execution.

20#0 Set group ID on execution if # is 7, 5, 3, or 1.
Enable mandatory locking if # is 6, 4, 2, or 0.
This bit is ignored if the file is a directory; it may be set or cleared
only using the symbolic mode.

1000 Turn on sticky bit [(see chmod(2)].

0400 Allow read by owner.

0200 Allow write by owner.

0100 Allow execute (search in directory) by owner.
0070 Allow read, write, and execute (search) by group.
0007 Allow read, write, and execute (search) by others.

A symbolic mode is specified in the following format:
chmod [who | operator [permission(s)] file ...

who is zero or more of the characters u, g, o, and a specifying whose permissions
are to be changed or assigned:

u user’s permissions

g group’s permissions

o others’ permissions

a all permissions (user, group, and other)

If who is omitted, it defaults to a.
operator is one of 4+, —, or =, signifying how permissions are to be changed:

+ Add permissions.
Take away permissions.
= Assign permissions absolutely.

Unlike other symbolic operations, = has an absolute effect in that it resets all other
bits. Omitting permission(s) is useful only with = to take away all permissions.

permission(s) is any compatible combination of the following letters:

r read permission

w write permission

X execute permission
s user or group set-ID
t sticky bit

1 mandatory locking

1 '48 Licensed material—property of copyright holder(s) 093-701054

chmod(1) DG/UX 5.4.1 chmod(1)

u, g, o indicate that permission is to be taken from the current user, group
or other mode respectively.

Permissions to a file may vary depending on your user identification number (UID) or
group identification number (GID). Permissions are described in three sequences
each having three characters:

User Group Other
IrwX IrwX Irwx

This example (user, group, and others all have permission to read, write, and execute
a given file) demonstrates two categories for granting permissions: the access class
and the permissions themselves.

Multiple symbolic modes separated by commas may be given, though no spaces may
intervene between these modes. Operations are performed in the order given. Multi-
ple symbolic letters following a single operator cause the corresponding operations to
be performed simultaneously.

The letter s is only meaningful with u or g, and t only works with u.

Mandatory file and record locking (1) refers to a file’s ability to have its reading or
writing permissions locked while a program is accessing that file. It is not possible to
permit group execution and enable a file to be locked on execution at the same time.
In addition, it is not possible to turn on the set-group-ID bit and enable a file to be
locked on execution at the same time. The following examples, therefore, are invalid
and elicit error messages:

chmod g+x,+1 file
chmod g+s,+1 file

Only the owner of a file or directory (or the super-user) may change that file’s or
directory’s mode. Only the super-user may set the sticky bit on a non-directory file.
If you are not super-user, chmod will mask the sticky-bit but will not return an error.
In order to turn on a file’s set-group-ID bit, your own group ID must correspond to
the file’s and group execution must be set.

The -R option recursively descends through directory arguments, setting the mode
for each file as described above.

EXAMPLES
Deny execute permission to everyone:

chmod a-x file
Allow read permission to everyone:
chmod 444 file
Make a file readable and writable by the group and others:

chmod go+rw file
chmod 066 file

Cause a file to be locked during access:
chmod +1 file
Allow everyone to read, write, and execute the file and turn on the set group-ID.

chmod =rwx,g+s file
chmod 2777 file

093-701054 Licensed material—property of copyright holder(s) 1 '49

chmod(1) DG/UX 5.4.1 chmod(1)

Absolute changes don’t work for the set-group-ID bit of a directory. You must use
g+s or g-s.

SEE ALSO
1s(1).
chmod(2), fentl(2) in the Programmer’s Reference for the DG/UX System (Volume
1).

NOTES
chmod permits you to produce useless modes so long as they are not illegal (e.g.,
making a text file executable). chmod does not check the file type to see if manda-
tory locking is available.

1 '50 Licensed material—property of copyright holder(s) 093-701054

chown(1) DG/UX 5.4.1 chown(1)

NAME

chown - change file owner

SYNOPSIS

chown [-R] [-h] owner file ..

DESCRIPTION

chown changes the owner of the files to owner. The owner may be either a decimal
user ID or a login name found in /etc/passwd file.

If chown is invoked by other than the super-user, the set-user-ID bit of the file mode,
04000, is cleared.

Only the owner of a file (or the super-user) may change the owner of that file.
Valid options to chown are:

-R Recursive. chown descends through the directory, and any subdirectories,
setting the ownership ID as it proceeds. When symbolic links are encoun-
tered, they are traversed.

-h If the file is a symbolic link, change the owner of the symbolic link. Without
this option, the owner of the file referenced by the symbolic link is changed.

EXAMPLES

FILES

$ Is -1 test_file »

—IrW-Iw—Iw— 1 intern other 349 Nov 18 13:26 test_file
$ chown wilson test_file

$ Is -1 test_file

—IW-IW-Iw-— 1 wilson other 349 Nov 18 13:26 test file
$

The original owner of test_file was intern. After the chown command was exe-
cuted, the new owner becomes wilson. Only the current owner of a file or the
superuser can change the owner name.

/etc/passwd

SEE ALSO

093-701054

chgrp(l), chmod(1), id(1), logname(1), 1s(1).
chown(2), passwd(4) in the Programmer’s Reference for the DG/UX. System.

Licensed material—property of copyright holder(s) 1 '51

clear(1) DG/UX 5.4.1 clear(1)

NAME
clear - clear terminal screen
SYNOPSIS
clear
DESCRIPTION
Clear clears your screen if this is possible. It looks in the environment for the ter-
minal type and then in the terminfo database to figure out how to clear the screen.
EXAMPLES
clear
Clears your screen and moves the cursor to the top of the screen.
FILES
/usr/lib/terminfo terminal information data base
SEE ALSO
tput(1)
terminfo(4), environ(5) in the Programmer’s Reference for the DG/UX System .
NOTE

Clear is a shell script that calls tput(1).

1 '52 Licensed material—property of copyright holder(s) 093-701054

cmp(1) DG/UX 5.4.1 cmp(1)

NAME

cmp — compare two files
SYNOPSIS

cmp [-1] [—-s] filel file2
DESCRIPTION

The two files are compared. (If filel is -, the standard input is used.) Under default
options, cmp makes no comment if the files are the same; if they differ, it announces
the byte and line number at which the difference occurred. If one file is an initial
subsequence of the other, that fact is noted.
Options
-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

—-s Print nothing for differing files; return codes only.

DIAGNOSTICS

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inacces-
sible or missing argument.

SEE ALSO
berk_diff(l), comm(l), diff(1).

093-701054 Licensed material—property of copyright holder(s) 1 '53

col(1)

NAME

DG/UX 5.4.1 col(1)

col - filter reverse line-feeds

SYNOPSIS

col [-bfpx |

DESCRIPTION

Col reads from the standard input and writes onto the standard output. It performs
the line overlays implied by reverse line feeds (ASCII code Esc-7), and by forward
and reverse half-line feeds (Esc-9 and Esc-8). Col is particularly useful for filter-
ing multicolumn output made with the .rt command of nroff and output resulting
from the tbl(1) preprocessor.

Options are:

-b No backspacing. If two or more characters are to appear in the same place,
only the last one read will be output.

-f Fine-adjust half-line motions. Although col accepts half-line forward
motions in its input, it outputs them as full-line motions unless you specify
-f. Reverse half-line motions (and all other reverse line motions) are still
ignored.

-x Do not convert white space to tabs on output. Normally col converts blank
areas to tab sequences.

-p Output escape sequences as regular characters. Without this option, col
will ignore any unknown escape sequences found in its input. Don’t use this
option unless you know the textual position of the escape sequences.

Col assumes that the ASCII control characters so (\016) and s1 (\017) start and end
text in an alternate character set. The character set to which each input character
belongs is remembered, and on output s1 and so characters are generated to ensure
that each character is printed in the correct set.

On input, the only control characters accepted are space, backspace, tab, return,
new-line, s1, so, vt (\013), and Esc followed by 7, 8, or 9. The vrT character is
an alternate form of full reverse line-feed, included for compatibility with some earlier
programs of this type. All other non-printing characters are ignored.

SEE ALSO

NOTES

BUGS

1-54

nroff(1l), tbl(1) in the Documenter’s Toolkit. Using the Documenter’s Tool Kit on
the DG/UX System, Documenter’s Tool Kit Technical Summary for the DG/UX Sys-
tem.

The input format accepted by col matches the output produced by nroff with the
-Tlp option. The -T37 option is not implemented in the DG/UX system.

Col cannot back up more than 128 lines.
It allows at most 800 characters, including backspaces, on a line.

Local vertical motions that would result in backing up over the first line of the docu-
ment are ignored. As a result, the first line must not have any superscripts.

Licensed material—property of copyright holder(s) 093-701054

comm(1) DG/UX 5.4.1 comm(1)

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

comm reads filel and file2, which should be ordered in ASCII collating sequence [see
sort(1)], and produces a three-column output: lines only in filel; lines only in file2;
and lines in both files. The filename - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12
prints only the lines common to the two files; comm -23 prints only lines in the first
file but not in the second; comm -123 prints nothing.

SEE ALSO
cmp(1), berk diff(l), diff(1), sort(l), uniq(l).

093-701054 Licensed material—property of copyright holder(s) 1 '55

compress(1) DG/UX 5.4.1 compress(1)

NAME
compress, uncompress, zcat — compress, expand or display expanded files

SYNOPSIS
compress [—cfv | [-b bits | [filename... |

uncompress [—cv | [filename... |
zcat | filename. .. |
DESCRIPTION

compress reduces the size of the named files using adaptive Lempel-Ziv coding.
Whenever possible, each file is replaced by one with a . Z, extension. The ownership
modes, access time and modification time will stay the same. If no files are
specified, the standard input is compressed to the standard output.

The amount of compression obtained depends on the size of the input, the number of
bits per code, and the distribution of common substrings. Typically, text such as
source code or English is reduced by 50-60%. Compression is generally much better
than that achieved by Huffman coding [as used in pack(1)], and takes less time to
compute. The bits parameter specified during compression is encoded within the
compressed file, along with a magic number to ensure that neither decompression of
random data nor recompression of compressed data is subsequently allowed.

Compressed files can be restored to their original form using uncompress.

zcat produces uncompressed output on the standard output, but leaves the
compressed . Z file intact.

Options

-c Write to the standard output; no files are changed. The nondestructive
behavior of zcat is identical to that of ‘uncompress -c’.

-f Force compression, even if the file does not actually shrink, or the
corresponding . Z file already exists. Except when running in the background
(under fusr/bin/sh), if —f is not given, prompt to verify whether an exist-
ing . z file should be overwritten.

-v Verbose. Display the percentage reduction for each file compressed.

=b bits Set the upper limit (in bits) for common substring codes. bits must be
between 9 and 16 (16 is the default). Lowering the number of bits will result
in larger, less compressed files.

FILES
/usr/bin/sh

DIAGNOSTICS
Exit status is normally 0. If the last file was not compressed because it became
larger, the status is 2. If an error occurs, exit status is 1.

Usage: compress [-fve]l [-b maxbits] [filename ...]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow -b.

filename: not in compressed format
The file specified to uncompress has not been compressed.

filename: compressed with xxbits, can only handle yybits
filename was compressed by a program that could deal with more bits than
the compress code on this machine. Recompress the file with smaller bits.

1 '56 Licensed material—property of copyright holder(s) 093-701054

compress(1) DG/UX 5.4.1 compress(1)

filename: already has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try
again.

filename: already exists; do you wish to overwrite (y or n)?
Respond y if you want the output file to be replaced; n if not.

uncompress: corrupt input

A SIGSEGV violation was detected, which usually means that the input file
is corrupted.

Compression: Xxx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)

——- not a regular file: unchanged
When the input file is not a regular file, (such as a directory), it is left unal-
tered.

—— has xx other links: unchanged
The input file has links; it is left unchanged. See 1n(1) for more informa-

tion.
—— file unchanged
No savings are achieved by compression. The input remains
uncompressed.
SEE ALSO
pack(1)
A Technique for High Performance Data Compression, Terry A. Welch, IEEE Com-
puter, vol. 17, no. 6 (June 1984), pp. 8-19.
NOTES

Although compressed files are compatible between machines with large memory,

—b12 should be used for file transfer to architectures with a small process data space
(64KB or less).

compress should be more flexible about the existence of the . z suffix.

093-701054 Licensed material—property of copyright holder(s) 1 '57

cp(1)

NAME

DG/UX 5.4.1 cp(1)

cp - copy files

SYNOPSIS

cp [-i][-p][-x] filel [file2 ...] target

DESCRIPTION

The cp command copies filen to target. filen and target may not have the same
name. (Care must be taken when using sh(1) metacharacters.) If rarget is not a
directory, only one file may be specified before it; if it is a directory, more than one
file may be specified. If target does not exist, cp creates a file named rarger. 1If tar-
get exists and is not a directory, its contents are overwritten. If rarget is a directory,
the file(s) are copied to that directory.

The following options are recognized:

-i cp will prompt for confirmation whenever the copy would overwrite an exist-
ing rarget. A y answer means that the copy should proceed. Any other
answer prevents cp from overwriting targer.

-p- cp will duplicate not only the contents of filen, but also preserves the
modification time and permission modes.

-r If filen is a directory, cp will copy the directory and all its files, including any
subdirectories and their files; rarget must be a directory.

If filen is a directory, target must be a directory in the same physical file system. tar-
get and filen do not have to share the same parent directory.

If filen is a file and rarget is a link to another file with links, the other links remain
and rarget becomes a new file.

If target does not exist, cp creates a new file named target which has the same mode
as filen except that the sticky bit is not set unless the user is a privileged user; the
owner and group of target are those of the user.

If target is a file, its contents are overwritten, but the mode, owner, and group associ-
ated with it are not changed. The last modification time of targer and the last access
time of filen are set to the time the copy was made.

If target is a directory, then for each file named, a new file with the same mode is
created in the target directory; the owner and the group are those of the user making
the copy.

NOTES

A -- permits the user to mark the end of any command line options explicitly, thus
allowing cp to recognize filename arguments that begin witha -. Ifa —-anda -
both appear on the same command line, the second will be interpreted as a filename.

SEE ALSO

1-58

chmod(1), cpio(1), rm(1).

Licensed material—property of copyright holder(s) 093-701054

cpd(1)

NAME

SYNOP

DESCR

DG/UX 5.4.1 cpd(1)

cpd — change or view the allocation limits for a control point directory

SIS
cpd [-b blocks | [-£ file-nodes | dirname ..

IPTION

If no options are given, cpd displays the current allocation and the maximum alloca-
tion of blocks and file nodes for each control point directory named on the command
line. If the -b or —f option is given, the allocation limits of the control point direc-
tory are changed as described below:

-b blocks Set the maximum block allocation to blocks. This is the maximum number
of blocks that can be allocated to this directory and all of its descendants.
Alternatively, you may specify the maximum in bytes instead of blocks.

To do this, append the appropriate suffix to the -b option value: b for
bytes, k for kilobytes (1024 bytes), m for megabytes (1,048,576 bytes), and
g for gigabytes (1,073,741,824 bytes). For example, -b 5m sets a limit of
5 megabytes on the amount of space that can be allocated for the directory
and all its descendants. The letter suffix may be upper or lower case.
Note that the byte size may be rounded down by cpd to be a multiple of
the block size.

~£ file-nodes
Set the file node allocation limit to file-nodes. This is the maximum
number of file nodes that can be allocated to this directory and all of its
descendants. file-nodes may include a "k", "m", or "g" suffix.

In order to change the allocation limits for a CPD, the user must have write permis-
sion in the parent directory (owning the CPD is not sufficient). In the case where the
CPD is the root of a file system, only the superuser can change the limits.

The last component of dirname may not be "." or "..". Use an absolute pathname
instead.

The limits for a CPD may be resized to any value between 0 and the system max-
imum. Note that it is not a requirement that either allocation limit be greater than
the current allocation.

To create a control point directory, use the mkdir(l) command.

DIAGNOSTICS

cpd returns a non-zero status code if any of the dirnames does not exist, is not a

"o on

CPD, is not on a local file system, or has a last component of "." or "..". Otherwise,
0 is returned.

SEE ALSO

093-701054

1s(1), mkdir(1).

Licensed material—property of copyright holder(s) 1 '59

cpio(1) DG/UX 5.4.1 cpio(1)

NAME
cpio — copy file archives in and out

SYNOPSIS
cpio —i[bBecdfkmrsStuvveé] [-C bufsize] [-E file] [-H hdr] [~ file [-M mes-
sage]] [-Q query-file] [-R ID] [pattern ...]
cpio —o[aABcLvV] [-C size] [~H hdr] [-0 file [-M message]] [-Q query-file]
cpio -p[adlimuvvy] [-R ID]] directory

DESCRIPTION
The -i, -o, and -p options select the action to be performed. The following list
describes each of the actions (which are mutually exclusive).

cpio -i (copy in) extracts files from the standard input, which is assumed to be the
product of a previous cpio -o. Only files with names that match patterns are
selected. patterns are regular expressions given in the filename-generating notation of
sh(1). In patterns, meta-characters ?, x, and [...] match the slash (/) character,
and backslash (\) is an escape character. A ! meta-character means not. (For
example, the !abc* pattern would exclude all files that begin with abc.) Multiple
patterns may be specified and if no patterns are specified, the default for patterns is *
(i.e., select all files). Each pattern must be enclosed in double quotes; otherwise, the
name of a file in the current directory might be used. Extracted files are conditionally
created and copied into the current directory tree based on the options described-
below. The permissions of the files will be those of the previous cpio -o. Owner
and group permissions will be the same as the current user unless the current user is
super-user. If this is true, owner and group permissions will be the same as those
resulting from the previous cpio -o. NOTE: If cpio —1i tries to create a file that
already exists and the existing file is the same age or younger (newer), cpio will out-
put a warning message and not replace the file. (The -u option can be used to
overwrite, unconditionally, the existing file.)

cpio -o (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status infor-
mation. Output is padded to a 512-byte boundary by default unless you supply the -B
option (for a 5120-byte block size) or the —C option (for a user-specified block size).
You will acheive an improvement in performance by using a block size that is larger
than the default.

cpio —p (pass) reads the standard input to obtain a list of path names of files that
are conditionally created and copied into the destination directory tree based on the
options described below.

The meanings of the available options are

-a Reset access times of input files after they have been copied. Access times
are not reset for linked files when cpio —pla is specified (mutually exclusive
with -m).

-A Append files to an archive. The -A option requires the -0 option. Valid
only with archives that are files, or that are on floppy diskettes or hard disk
partitions.

-b Reverse the order of the bytes within each word. (Use only with the -i
option.)

-B Input/output is to be blocked 5120 bytes to the record. The default buffer
size is 512 bytes when this and the -C options are not used. If you use the
larger block size, the operation takes far less time. The smaller block size is

1 '60 Licensed material—property of copyright holder(s) 093-701054

cpio(1) DG/UX 5.4.1 cpio(1)

desirable only when you are dumping data that you may need on a system
whose cpio command requires that data be in 512-byte blocks. (You cannot
use the —B option with the pass option; -B is meaningful only with data
directed to or from a character special device, for example, /dev/rmt/0.)

-c Read or write header information in ASCII character form for portability.
The output of cpio —oc complies with the extended cpio format described in
POSIX and XPG3. Always use this option (or the —H option) when the ori-
gin and the destination machines are different types (mutually exclusive with
-H and -6).

~C bufsize
Input/output is to be blocked bufsize bytes to the record, where bufsize is
replaced by a positive integer. The default buffer size is 512 bytes when this
and -B options are not used. (-C does not apply to the pass option; -C is
meaningful only with data directed to or from a character special device, e.g.
/dev/rmt/0.) Some types of tape drives, including models 6577 (QIC-150
150MB 1/4" cartridge) and 6590 (8mm 2GB helical scan) require that bufsize
be a multiple of 512.

-d Directories are to be created as needed.

~E file Specify an input file (file) that contains a list of filenames to be extracted from
the archive (one filename per line).

-f Copy in all files except those in patterns. (See the paragraph on cpio -i for
a description of patterns.)

-H hdr Read or write header information in hdr format. Always use this option or
the —c option when the origin and the destination machines are different
types (mutually exclusive with —c and -6). Valid values for kdr are:
crc or CRC - ASCII header with expanded device numbers and an additional
per-file checksum
ustar or USTAR - IEEE/P1003 Data Interchange Standard header and for-
mat
tar or TAR — tar header and format
odc — ASCII header with small device numbers (the same as -c).
asc - the new "portable” format. This format is produced by the —c option
on some other System V.4 systems.

-1 file Read the contents of file as an input archive. If file is a character special dev-
ice, and the current medium has been completely read, replace the medium
and press RETURN to continue to the next medium. This option is used only
with the -i option.

-~k Attempt to skip corrupted file headers and 1/O errors that may be encoun-
tered. If you want to copy files from a medium that is corrupted or out of
sequence, this option lets you read only those files with good headers. (For
cpio archives that contain other cpio archives, if an error is encountered
cpio may terminate prematurely. cpio will find the next good header,
which may be one for a smaller archive, and terminate when the smaller
archive’s trailer is encountered.) Used only with the —i option.

-1 Whenever possible, link files rather than copying them. (Usable only with the
~p option.)

~-L Follow symbolic links. The default is not to follow symbolic links.

093-701054 Licensed material—property of copyright holder(s) 1 '61

cpio(1)

1-62

-

DG/UX 5.4.1 cpio(1)

Retain previous file modification time. This option is ineffective on direc-
tories that are being copied (mutually exclusive with -a).

—M message

-0 file

Define a message to use when switching media. When you use the -0 or -I
options and specify a character special device, you can use this option to
define the message that is printed when you reach the end of the medium.
One %d can be placed in message to print the sequence number of the next
medium needed to continue.

Direct the output of cpio to file. If file is a character special device and the
current medium is full, replace the medium and type a carriage return to con-
tinue to the next medium. Use only with the -o option.

-Q query-file

-r

-RID

-u

-V

Specify query-file as the file from which to read input from the operator. Nor-
mally, cpio writes operator messages to stderr and reads operator responses
from /dev/tty. This option allows operator input to be read from an alternate
source such as fifo-special file. This is very useful when running cpio from
cron(1M) since cron jobs have no controlling tty. For example,

find /foo -print | cpio -o -Q /tmp/fifo >/dev/rmt/0 2>/dev/console

would backup directory foo to tape /dev/rmt/0. Error messages and operator
queries would be written to the console, and operator input would be read
from the fifo file /tmp/fifo. Running this command from a cron job would
allow you to send cpio output to the console without having to take control
of the console for input. Operator queries from cpio (such as requests for
the next tape) could be answered by echoing responses to /tmp/fifo.

Interactively rename files. If the user types a carriage return alone, the file is
skipped. If the user types a ““.” the original pathname will be retained. (Not
available with cpio -p.)

Reassign ownership and group information for each file to user ID (ID must be
a valid login ID from /etc/passwd). This option is valid only for the
super-user.

Swap bytes within each half word.
Swap halfwords within each word.

Print a table of contents of the input. No files are created (mutually exclusive
with -v).

Copy unconditionally (normally, an older file will not replace a newer file with
the same name).

Verbose: causes a list of file names to be printed. When used with the -t
option, the table of contents looks like the output of an 1s -1 command
[see 1s(1)].

Special Verbose: print a dot for each file read or written. Useful to assure
the user that cpio is working without printing out all file names.

Create symbolic links instead of copying files. (This option can only be used
with the -p option).

Process a UNIX System Sixth Edition archive format file. Use only with the
~i option (mutually exclusive with —c and -H)).

Licensed material—property of copyright holder(s) 093-701054

cpio(1)

DG/UX 5.4.1 cpio(1)

NOTE: cpio assumes four-byte words.

If, when writing to a character device (o) or reading from a character device (-1),
cpio reaches the end of a medium and the -0 and -I options aren’t used, cpio
will print the following message:

If you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character special device
name (/dev/rmt/0 for example) and press RETURN. You may want to continue by
directing cpio to use a different device. For example, if you have two floppy drives
you may want to switch between them so cpio can proceed while you are changing
the floppies. (Simply pressing RETURN causes the cpio process to exit.)

EXAMPLES

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -o, it groups the files so
they can be directed (>) to a single file (. . /newfile). The -c option insures that
the file will be portable to other machines (as would the —H option). Instead of
1s(1), you could use find(1), echo(1l), cat(1), and so on, to pipe a list of names
to cpio. You could direct the output to a device instead of a file.

ls | cpio -oc > ../newfile

cpio -i uses the output file of cpio -o (directed through a pipe with cat in the
example below), extracts those files that match the patterns (memo/al, memo/bx),
creates directories below the current directory as needed (-4 option), and places the
files in the appropriate directories. The —c option is used if the input file was created
with a portable header. If no patterns were given, all files from newfile would be
placed in the directory.

cat newfile | cpio -icd "memo/al" "memo/bx"

cpio -p takes the file names piped to it and copies or links (-1 option) those files to
another directory (newdir in the example below). The -d option says to create
directories as needed. The -m option says retain the modification time. (It is impor-
tant to use the —depth option of f£ind(1) to generate path names for cpio. This
eliminates problems cpio could have trying to create files under read-only direc-
tories.) The destination directory, newdir, must exist.

find . -depth -print | cpio —pdlmv newdir

Note that when you use cpio in conjunction with find, if you use the —L option
with cpio then you must use the —follow option with find and vice versa. Other-
wise there will be undesirable results.

SEE ALSO

ar(1), cat(l), echo(l), £ind(1), 1s(1), tar(1l), ar(4).

NOTES

093-701054

An archive created with the —Hasc option on a Release 4.0 system cannot be read on
System V Release 3.2 systems, or earlier.

System V Releases prior to Release 4.0 do not understand symbolic links. The result
of copying in a symbolic link on an older release will be a regular file that contains
the pathname of the referenced file.

Path names are restricted to 256 characters for the binary (the default) and
-H odc header formats. Otherwise, path names are restricted to 1024 characters.

Licensed material—property of copyright holder(s) 1 '63

cpio(1) DG/UX 5.4.1 cpio(1)

Only the super-user can copy special files.
Blocks are reported in 512-byte quantities.

If a file has 000 permissions, contains more than 0 characters of data, and the user is
not root, the file will not be saved or restored.

1 "64 Licensed material—property of copyright hoider(s) 093-701054

crontab(

NAME

1) DG/UX 5.4.1 crontab(1)

crontab — user crontab file

SYNOPSIS

crontab [file]

crontab —e [username]
crontab -r [username]
crontab -1 [username |

DESCRIPTION

093-701054

crontab copies the specified file, or standard input if no file is specified, into a direc-
tory that holds all users’ crontabs. The -e option edits a copy of the current user’s
crontab file, or creates an empty file to edit if crontab does not exist. When edit-
ing is complete, the file is installed as the user’s crontab file. If a username is
given, the specified user’s crontab file is edited, rather than the current user’s
crontab file; this may only be done by a privileged user. The environment variable
EDITOR determines which editor is invoked with the —e option. The default editor is
ed(1). The -r option removes a user’s crontab from the crontab directory. cron-
tab -1 will list the crontab file for the invoking user. Only a privileged user can
specify a username following the —r or -1 options to remove or list the crontab
file of the specified user.

Users are permitted to use crontab if their names appear in the file
/etc/cron.d/cron.allow. If that file does not exist, the file
/etc/cron.d/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. If
cron.allow does not exist and cron.deny exists but is empty, global usage is per-
mitted. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces
or tabs. The first five are integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0—6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list of
elements separated by commas. An element is either a number or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification of
days may be made by two fields (day of the month and day of the week). If both are
specified as a list of elements, both are adhered to. For example, 0 0 1,15 * 1
would run a command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be set to * (for
example, 0 0 % * 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at the
specified times. A percent character in this field (unless escaped by \) is translated
to a new-line character. Only the first line (up to a % or end of line) of

the command field is executed by the shell. The other lines are made available to the
command as standard input.

Any line beginning with a # is a comment and will be ignored.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file.

Licensed material—property of copyright holder(s) 1 ‘65

crontab(1) DG/UX 5.4.1 crontab(1)

cron supplies a default environment for every shell, defining HOME, LOGNAME,
SHELL (=/bin/sh), and PATH (=:/bin:/usr/bin:/usr/1lbin).

If you do not redirect the standard output and standard error of your commands, any
generated output or errors will be mailed to you.

FILES
/etc/cron.d main cron directory
/var/spool/cron/crontabs spool area
/etc/cron.d/log accounting information
/etc/cron.d/cron.allow list of allowed users
/etc/cron.d/cron.deny list of denied users
SEE ALSO

atqg(l), atrm(1), sh(l), su(l), ed(1).
cron(1M) in the System Manager’s Reference for the DG/UX System.
NOTES
If you inadvertently enter the crontab command with no argument(s), do not

attempt to get out with a Ctrl-D. This will cause all entries in your crontab file to be
removed. Instead, exit with a DEL.

If a privileged user modifies another user’s crontab file, resulting behavior may be
unpredictable. Instead, the privileged user should first su(1) to the other user’s login
before making any changes to the crontab file.

1 '66 Licensed material—property of copyright holder(s) 093-701054

crypt(1) DG/UX 5.4.1 crypt(1)

NAME
crypt — encode/decode
SYNOPSIS
crypt | password |
where:
password A Kkey that selects a particular transformation
DESCRIPTION

Crypt, although documented here, is not distributed outside of the United States in
accordance with Federal Export regulations. International versions of the DG/UX
System do not include encryption mechanisms. crypt reads from the standard
input and writes on the standard output. If no password is given, crypt demands a
key from the terminal and turns off printing while the key is being typed in. crypt
encrypts and decrypts with the same key:

crypt password <clear >cypher

crypt password <cypher | pr
will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in
encryption mode.

The security of encrypted files depends on three factors: the fundamental method
must be hard to solve; direct search of the key space must be infeasible; and "sneak
paths" by which keys or clear text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are
known, but not widely; moreover, they require a lot of work.

The transformation of a key into the internal settings of the machine is deliberately
designed to be expensive, i.e., to take a substantial fraction of a second to compute.
However, if keys are restricted to (say) three lowercase letters, then encrypted files
can be read by expending only a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users
executing ps(1) or a derivative. The choice of keys and key security are the most
vulnerable aspect of crypt.

EXAMPLES
$ cat a_name
Don Ho
$ crypt 24 < a_name > encrypted_name

Crypt is passed a key and a file that contains a name to be encrypted. crypt puts
the encrypted name into the file encrypted_name.

$ crypt 24 < encrypted_name
Don Ho

Crypt decrypts the contents of the encrypted file and displays the decrypted results
on the screen.

FILES
/dev/tty For typed key

093-701054 Licensed material—property of copyright holder(s) 1 '67

crypt(1) DG/UX 5.4.1 crypt(1)

SEE ALSO
ed(1), makekey(1l), stty(1).

NOTES
If output is piped to nroff and the encryption key is not given on the command line,
crypt can leave terminal modes in a strange state (see stty(1)).
If two or more files encrypted with the same key are concatenated and an attempt is
made to decrypt the result, only the contents of the first of the original files will be
decrypted correctly.

1 ‘68 Licensed material—property of copyright hoider(s) 093-701054

csh(1) DG/UX 5.4.1 csh(1)

NAME
csh - invoke a shell (command interpreter) having a C-like syntax

SYNOPSIS
csh [-bcefinstvvxX | [script | [arg ...]

where:
script The pathname of a file containing a C shell script.

arg An argument to the script.

DESCRIPTION
The csh command invokes a C shell, a command interpreter, which was developed
at the University of California at Berkeley. The C shell is both a command line inter-
preter and a programming language, which allows you to compose executable shell
scripts.

The primary attributes of the C shell are job control, history, and aliasing. The C
shell also has predefined variables to prevent accidental file overwrites and log offs,
and to disable filename expansion.

Through the C shell, you can enable editread, an optional command line editor. The
editread history facility is similar to the C shell’s, but its implementation and use are
different. Refer to editread(5) for more information.

This man page covers the following csh topics:
— Command Line Options
— Initialization and Termination
— Command Line Words
— Quoting Special Characters
— Predefined Variables
— Built-in Commands
— Filename Completion
— History Substitution
— Aliasing
— Job Control)
— Pipes, Sequential Command Processes, and Command Groups
— Input/Output Redirection
— Variables and Variable Substitution
— Command Substitution
— File Substitution
— Expressions and Operators
— Signal Handling and Status Reporting
— Parsing Order and Execution
— International Features

Command Line Options
-b Force a "break" from option processing. Subsequent command-line arguments
are not interpreted as C shell options. This allows the passing of options to a
script without confusion. The shell does not run a set-user-ID script unless this

093-701054 Licensed material—property of copyright holder(s) 1 "69

csh(1)

-V

DG/UX 5.4.1 csh(1)

option is present.

Reads commands from the first argument (a filename), which must be present.
Any remaining arguments on the command line are placed in the predefined
shell variable argv, which stores the argument list.

Exits if any invoked command terminates abnormally or yields a non-zero exit
status.

Fast start-up; does not search for or execute commands from the .cshrc file
or the .login file (if in a login shell), thus reducing shell start-up time.

Forced interactive; prompts for input from the terminal, even if standard input

does not appear to be a terminal (for example, a special character device). If a
shell’s I/0O devices are terminals, interactive operation is assumed without hav-

ing to set this option.

Parses but does not execute commands. This may aid in syntactic checking of
shell scripts.

Takes commands from standard input.

Takes one line of input to read and execute. You can use a backslash (\) to
escape each terminating new-line so that input can continue on the next line.

Sets the verbose predefined variable, which echoes a command’s input after
history substitution but before command execution. See the section on
Predefined Variables for more about the verbose predefined variable.

Sets the verbose variable before .cshrc is executed.

Sets the echo variable so that commands are echoed immediately before execu-
tion.

Sets the echo variable before .cshrc is executed.

Initialization and Termination
When you log in to the system, a shell executes the commands in these files:

1-70

/etc/login.csh

Executes only during login to the system; is maintained by the system
administrator. Typically contains environment and local shell vari-
ables.

.cshre If it exists in your home directory, executes at login and each time a

shell executes a script or creates a subshell. Typically contains
aliases and local shell variables.

.history If it exists in your home directory, executes at login, reading in a list

of saved history events into the current history list.

.login If it exists in your home directory, executes following execution of

.cshre and only during initial login. Typically contains environment
variables, the umask settings (default permissions assigned to user-
created files), stty settings, and other commands to be executed at
login only.

.logout If it exists in your home directory, executes at logout only.

After you have successfully logged in, an interactive shell will usually begin reading
commands from the terminal, prompting with hostname% (the default) for the ordi-
nary user; hostname# for the superuser.

Licensed material—property of copyright holder(s) 093-701054

csh(1) DG/UX 5.4.1 csh(1)

Command Line Words
The C shell splits input lines into words at blank(s), tab(s), and new-line(s). Regard-
less of surrounding space, the following special characters are also recognized as
words:

space tab new-line Command argument separator.

$ Variable identifier.
« [1 2 {} ~ Filename expansion characters.
<> & ! Redirection symbols.
1o History characters.
| Pipe.
; Command separator.
() Command group.
o Quoting.

Command substitution.

& Background execution.

These words must be quoted (escaped) with a backslash (\) to inhibit their interpreta-
tion as special characters.

Quoting Special Characters
In addition to the backslash (\), you can also use the following characters to inhibit
the interpretation of the special characters listed in the previous section:

‘command Command substitution; see the section on Command
Substitution.

“string’ String characters taken literally.

"string" Allows command substitution and variable substitu-
tion.

Predefined Variables
The predefined variables in this section have special meaning to the shell. Of these,
the shell automatically sets argv, cwd, home, path, prompt, shell and
status. Except for cwd and status, the shell sets these variables only at login.

You can set a variable as an environment variable (variable is exported to subshells) or
a local shell variable (variable is known only to the current shell) using the set and
setenv commands (covered in the section on Built-in Commands). By convention,
environment variables are set in uppercase characters, and local shell variables are set
in lowercase characters. (See the section on Variables and Variable Substitution for
more information on how to set variables.) Display local variables with the built-in
command set. Display environment variables with the printenv(1l) command.

The shell copies the environment variable TERM into term, HOME into home, and
PATH into path and copies these back into the environment when a variable’s value
changes.

Except for those predefined variables that the shell sets automatically, you must set
explicitly all other predefined variables. You set a variable by either declaring it or by

093-701054 Licensed material—property of copyright holder(s) 1 '71

csh{f)

DG/UX 5.4.1 csh(1)

assigning it @ value, whichever is appropriate. The predefined variables follow:

argv

cdpath

cshscript

echo

fignore

filec

histchars

‘history

‘home

ignoreecof

mail

Contains the command line arguments supplied to the current shell.
This variable contains the values for the positional parameters, refer-
enced as $0, $1, $2, and so on, through $9. With argv, you can
reference the first item on the command line with argv[0], the
second item with argv[1], and so on, through argv[9]; you can
reference all arguments with argv[+], and the number of arguments
with #argv.

Change directory path; contains a list of alternate directory path-
names used by commands (such as cd, chdir, and popd) when
searching for subdirectories.

Causes shell scripts that start with a pound sign (#) to be interpreted
by the C shell instead of the Bourne shell. If this option is not set,
only scripts that start with 4! /bin/csh will be interpreted by the
C shell. Setting this option provides compatibility with other imple-
mentations of the C shell, but Bourne shell scripts that start with a
pound sign (except for #! /bin/sh) will probably break.

Contains the full pathname of the current working directory.

Causes each command and its arguments to be echoed just before it
is executed. This is set when the —x command line option is given
(see the —x option in the previous section on Command Line
Oprtions). This option can also be set with the set echo command.

A list of filename suffixes to ignore when attempting filename comple-
tion. Typically the single word ‘. o’.

Enable filename completion, in which case the Ctrl-D character and
the ESC character have special significance when typed in at the end
of a terminal input line:

Identifies a two-character string used as history substitution metachar-
acters. The first character replaces the default history substitution
character, !. The second character replaces the quick substitution
character, ".

Specifies the number of history events (commands issued from the
command line) to be saved in the history list. A large number of
events saved in the history list can exceed available shell memory. If
the history variable is not set to a specific value, only the last exe-
cuted command is saved in the history list.

Specifies the user’s home directory. The filename expansion of ~
refers to the value of the home variable.

If set, makes the shell ignore the end-of-file signal from terminal
input devices. Setting ignoreeof prevents accidental logouts issued
with Ctrl-D.

Defines file location(s) where the shell checks for mail and the inter-
val at which you are notified of the arrival of new mail. The variable
is specified in this form:

set mail = [n] mailfile-path [mailfile-path]

Licensed material—property of copyright holder(s) 093-701054

csh(1)

nobell

noclobber

noglob

nonomatch

notify

path

prompt

093-701054

DG/UX 5.4.1 csh(1)

The optional n value specifies the mail-checking interval in seconds
and is used to override the default, 600 seconds.

If new mail arrives, you are alerted with the message, "You have
new mail." If a command is being executed during the arrival of
mail, the message is postponed until the prompt returns to the the
terminal screen. If multiple mailfile paths are specified, you are
alerted with the message, "New mail in mailfile-path."

Suppress the bell during filename completion when asking the C shell
to extend an ambiguous filename.

Restricts output redirection to ensure that files are not accidentally
destroyed or "clobbered" (described in the section on Input/QOutput
Redirection). It prevents you from overwriting an existing file when
using the redirection symbol (>). Also, it prevents the creation of a
new file when you attempt to append output to a nonexistent file
when using the append output symbol (>>). Instead, error messages
are displayed to alert you to the problem.

If set, inhibits global filename expansion. Filename expansion meta-
characters » ? [] ~ {} are not recognized and are treated as literal
characters instead. Setting noglob in shell scripts is useful after
filenames have been expanded or when filename expansion is not
desired. (Refer to the section on Filename Substitution for more
information on filename expansion and metacharacters.)

If set, inhibits the display of error messages if commands containing
filename expansion fail to locate a matching pattern. Malformed pat-
terns, however, are considered errors for which error messages are
displayed. For example, the command, echo [, returns an error.

If set, the shell notifies you asynchronously of a job’s completion.
The default is to issue a job’s completion message before the prompt
returns to the terminal screen.

Specifies a list of directories that is searched for an executable com-
mand. If this variable is not set, then only full pathnames will exe-
cute. The default search pathis (. /bin fusr/bin); however, the
default varies from system to system. A null word specifies the
current directory. For the superuser the default search path is (/etc
/bin /usr/bin).

A shell command with neither the —c nor the -t options will nor-
mally hash the contents of the directories in the path variable after
reading .cshrc, and each time the path variable is reset. If new
commands are added to these directories while the shell is active,
you may need to use the rehash command to update the command
list.

Defines the string used by an interactive shell as a prompt for your
input. If a ! appears in the prompt string, it will be replaced by the
current history event number (assigned to each command issued from
the command line) unless a preceding \ is given. (Refer to the sec-
tion on History Substitution for more information on the current
event.) The default is % for the normal user, or # for the superuser.

Licensed material—property of copyright holder(s) 1 '73

csh(1)

DG/UX 5.4.1 csh(1)

savehist Specifies the number of events in the history list saved in the .his-
tory file in your home directory when you log out. During shell
startup, the shell reads the contents of .history into the history
list. A large value for savehist slows down the shell during
startup.

shell Specifies the file in which the shell resides. The default is
/bin/csh.

status Contains the status returned by the last command. If a command
terminates abnormally, then 0200 is added to the status. Built-in
commands (those that do not execute as child processes) that fail will
return exit status 1; all other built-in commands set status 0. (See the
status command under Built-in Commands.)

time Controls automatic timing of commands. If set, then any command
requiring more than the specified number of CPU seconds will print a
line when it terminates, giving user, system, and real times and a util-
ization percentage (the ratio of user plus system times to real time).
(See the time command under Built-in Commands.)

verbose Prints the words of each command after history substitution. This is
set by the —v command line option.

Built-in Commands

1-74

C shell built-in commands are executed within the shell. If a built-in command is any
component of a pipeline or a command group (except the last one), then it is exe-
cuted in a subshell.

alias name definition
An alias is an alternate name you can assign to an existing DG/UX system com-
mand. This form of the alias command assigns the specified definition to the
alias name. (See the section on Aliasing for more information.)

bg

bg %job ...
The first form (without an argument) moves the last suspended job to the back-
ground for continued execution. The second form puts the specified job into
the background for continued execution. (Refer to the section on Job Control
for information.)

break
Interrupts a foreach or while loop. break executes the remaining com-
mands on the current line before it transfers control to the instruction following
the end of the loop.

breaksw
Breaks from a switch, resuming after the endsw.

case label:
Specifies a label in a switch statement (discussed in a later paragraph about
switch).

cd

chdir

cd dir

chdir dir

The first and second forms change from the C shell’s working directory to the
user’s home directory. The third and fourth forms change the C shell’s working

Licensed material—property of copyright holder(s) 093-701054

csh(1)

093-701054

DG/UX 5.4.1 csh(1)

directory to a directory named dir. If dir is not found as a subdirectory of the
current directory (and does not begin with /, ./, or ../), then each com-
ponent of the predefined variable cdpath is checked for a subdirectory named
dir. If dir is a shell variable whose value begins with /, then the shell changes to
this directory. The second and fourth forms (the chdir expression) are the
same as the first and third forms, respectively.

continue
Interrupts a while or foreach loop. continue executes the remaining com-
mands on the line before it transfers control to the end statement, which then
sends control back to the top of the loop.

default:
Labels the default case in a switch statement. The default should follow all
case labels.

dirs
Prints the directory stack. The first directory in the stack is the current direc-
tory. With the -1 argument, produce an unabbreviated printout; use of the ~
notation is suppressed. (See also pushd and popd later in this section.)

echo wordlist

echo —-n wordlist
The specified words are written to the shell’s standard output, separated by
spaces, and terminated with a new-line unless the —n option is specified, in
which case the new-line is suppressed.

else
end
endif
endsw
See the upcoming descriptions of foreach, if, switch, and while

eval arg ...
The arguments are read as input to the shell and the resulting command(s) exe-
cuted. This is used usually to execute commands generated as the result of vari-
able or command substitution (see the sections on Variables and Variable Substi-
tution and Command Substitution), because parsing occurs before these substitu-
tions.

exec command
Executes command in place of the current shell.

exit

exit (expr)
Terminates the shell with either the value of the status variable (first form) or
with the value of the specified expr (second form).

fg

fg %job ...
Brings the current job (first form) or a specified job (second form) into the fore-
ground for execution.

foreach name (wordlist)
end
The variable name is set successively to each member of wordlist, and the

sequence of commands between the foreach command and the matching end
command are executed. (Both foreach and end must appear on separate

Licensed material—property of copyright holder(s) 1 '75

csh(1)

1-76

DG/UX 5.4.1 csh(1)

lines.)

glob wordlist
Performs filename expansion on a wordlist. The glob command performs simi-
larly to echo but no \ escapes are recognized. Words are delimited by null
characters in the output.

goto label
Unconditionally transfers control to a routine located in another part of the
script which is identified with the specified label. A colon (:) follows the label
to signify the contents of the routine. Program execution continues after the
specified label.

hashstat
Prints a statistics line indicating the internal hash table’s effectiveness at locating
commands (and avoiding execution of the exec command). Such an execution
is attempted for each component of the path where the hash function indicates a
possible hit, and in each component that does not begin with a /.

historyn
History enables you to recall and re-execute previously issued commands that
are saved in a list. This form of the command lists » most recent items from
the history list. (See the section on History Substitution for more information.)

if (expr) command
If the specified expression evaluates to true, then the single command with argu-
ments is executed. Command must be simple; it cannot be a pipeline, a com-
mand list (separated by semicolons), or a command group (surrounded by
parentheses). Note that I/O redirection occurs even if expr is false and the
command is not executed (this is a bug). (See the later section on Pipes,
Sequential Command Processes, and Command Groups.)

if (expr) then
else if (expr2) then
else

endif
If the specified expr is true, then the commands following then (up to the first
else if) are executed; if expr2 is true, then the commands following the
second then (up to the second else) are executed, and so on. Any number
of else if pairs can be used, but only one else (optional) and one endif
(required) can be used. The words else and endif must appear at the begin-
ning of input lines; the if must appear alone on its input line or after an else.

jobs
Enables you to list the active jobs that you can control through the job control
facility. (Refer to the section on Job Control for more information.)

kill %job
Terminates an active job that is identified by a specific number preceded by a
percent sign (%). (See the section on Job Control for more information.)

limit

limit resource

limit resource maximum-use

Licensed material—property of copyright holder(s) 093-701054

csh(1) DG/UX 5.4.1 csh(1)

limit —h resource maximum-use
Limits resource consumption for each process and each of its forked processes
to no more than maximum-use on the specified resource. If no maximum-use is
given, then the current limit is printed; if no resource is given, then all limita-
tions are given.

-h Use hard limits instead of the current limits. Hard limits impose a ceil-
ing on the values of the current limits. Only the privileged user may
raise the hard limits.

Resource is one of the following;:

cputime Maximum number of CPU-seconds to be used by
each process.

filesize Largest single file that can be created.

datasize Maximum growth of the data and stack for the pro-
cess beyond the end of text.

stacksize Maximum size of the stack for the process.

coredumpsize Size of the largest core dump file that will be
created.

memoryuse Maximum size that a process’ resident set size may
grow to.

descriptors Maximum number of open files that a process may

have at one time.

Maximum-use can be a number (floating point or integer) followed by a scale

factor.

nk (kilobytes); default for all limits other than cputime
and descriptors.

nm (megabytes); an alternative to kilobytes for all limits
other than cputime and descriptors.

n Default cputime limit in seconds.

nm n minutes for cputime.

nh n hours for cputime.

mm:ss Minutes and seconds for cputime.

login

Terminates the current login shell, replacing it with an instance of
/bin/login. This method of logging off is used for compatibility with the
Bourne shell.

logout
Terminates a login shell, which is especially useful if ignoreeof is set.

newgrp
Changes the group identification of the caller; for details, see the newgrp(1)
man page. newgrp executes a new shell so that the previous shell state is lost.

nice
nice + number

nice command
nice + number command

093-701054 Licensed material—property of copyright holder(s) 1 '77

csh(1)

1-78

DG/UX 5.4.1 csh(1)

nice - number command
Executes a process at a lower priority (or a higher priority for superusers only),
which reduces the demand that the process makes on the system. The "nice"
number is the factor (4 by default) that is added to (or subtracted from) your
job’s priority. The higher the nice number, the lower the priority of a process.
The nice priority values range from 0 to 39. The default priority is 20.

The first form sets the nice number for the current shell to 4 (the default),
which means that the nice value would be 24. The second form sets the prior-
ity to 20 + n. The third form runs command at the default nice value. The
fourth form runs command at a priority of 20 + n. The final form (for the
superuser only) runs command at a priority of 20 - number. The maximum
changes to the nice value are: nice + 19 and nice - 20.

This nice command is not the same as the one documented in the nice(1)
manual page. The nice(1) manual page documents the program
/usr/bin/nice.

nohup

nohup command
The first form can be used in shell scripts to ignore hangups for the remainder
of the script. The second form causes the specified command to run with hang-
ups ignored. Command is always run in a subshell. All processes run in the
background (commands appended with &) are effectively run without hangups.

notify

notify %job ...
If set, notifies you immediately when the status of the current job (first form) or
a specified job (second form) changes; normally, notification is presented after a
process has completed just before the prompt reappears on the screen. (See the
notify variable under Predefined Variables.)

onintr

onintr -

onintr label
Controls the action of the shell on interrupts. The first form restores the
default action of the shell, which is to terminate a shell script or to return to the
terminal command input level. The second form, onintr -, causes all inter-
rupts to be ignor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>