¢vData General

Customer Documentation

Programmer’s Reference for the
DG/UX™ System (Volume 1)

AV i i ON°

PRODUCT LINE

Programmer’s Reference for the
DG/UX™ System (Volume 1)

093-701055-02

For the latest enhancements, cautions, documentation changes, and
other information on this product, please see the Release Notice
(085-series) supplied with the software.

Ordering No. 093-701055

Copyright © Data General Corporation, 1990, 1991

Unpublished—all rights reserved under the copyright laws of the United States
Printed in the United States of America

Revision 02, June 1991

Licensed material—property of copyright holder(s)

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION
CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS
ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases determine whether any such changes have been
made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC EARDWARE PRODUCTS AND THE
LICENSING OfF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND CONDITIONS
GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATENENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE
OR PERFOTRMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQL/ENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED 70 THIS ODCCUMENT OR THE INFORMATION CONTAINED IN IT,
EVEN IF DGC HAS BEEN ADVISED, KNEW. OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF
SUCH DAMAGES.

All software is made availabls solc~y pursuant to the terms and conditions of th2 applicable license agreement which
governs its use.

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [FAR] 52.227-7015
(May 1987).

DATA GENERAL CORPORATION

4400 Computer Drive

Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV /8000,
PRESENT, and TRENDVIZW are U.S. registered trademarks of Data General Cerperation. CEO Connection,
CEO Connection/LAN, DASJER/One, DASHER/286, DASHER/386, DASHER/LN, DATA GENERAL/Cne,
DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV /2000, ECLIPSE MV/2500, ECLIPSE MV/7800,
ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE }MV/2(000, ECLIPSE MV/40000,
microECLIPSE, mcrom MV/UX, PC Liaison, RASS, SPARE MAIL, TEO, TBO/BD TEO/Electronics,
TURBO/4, UNITE. and XO"’lAC are trademarks of Data General Corpounon

IBM is a U.S. registercd trademark of International Business Machines Corperation.

UNIX is 2 U.S. registered trademark of American Telephone & Telegraph Company.

NFS is a trademark of Sun Microsystems, Inc.

Portions of this text are rgrinted from IEEE Std 1003.1-1988, Portable Operating System Interface for Cornputer
Environments, copyright © 1938 by the Institute of Electrical and Electronics Engineers, Inc., with the permission of
the IEEE Standards Department. To purchase IEEE Standards, call 800/678-"EEF.

Portions of this material have becn previously coprrighted by: Regents of th Jniversity of California, 198C

The Network Information Scrvice (NIS) was forme:ly inown as Sun Yellow Pages. The functionality of the two
remains th same; only the name has changed. The name Yellow Pages js a regstered trademark in the United
Kingdom of British Teiecommunications plc and may not be used without permission.

LEGAY. MOTICE TO USERS: Yellow Pagesis a registered trademark in the United Kingdon of British
Telecommunications pic, and may also be a trademark of varicus telephon: comipavies around the world. Sun will
be revising future versions of software and documentation to remove references to Yellow Pages.

Programmer’s Reference for the DG/UX System (Volume 1)

093-701055-02
© Revision History: Effective with:
Original Release - February 1990 DG/UX 4.20
Revision 1 - June 1990 DG/UX 4.30

Revision 2 = June 1991 DG/UX 54

Preface

This is Volume 1 of the Programmer'’s Reference for the DG/UX™" System. The Programmer’s
Reference describes the programming features of the DG/UX system. It contains individual
manual pages that describe commands, system calls, subroutines, file formats, and other
useful topics, such as the ASCII table shown on ascii(5). L

This manual is part of a five-volume reference set. The other manuals are the System
Manager’s Reference for the DG/UX System and the User’s Reference for the DG/UX System.
These manuals contain in printed (typeset) form the online entries released with the DG/UX
System in /usr/catman for access by the man command.

The Programmer’s Reference provides neither a general overview of the DG/UX system nor
details of the implementation of the system. For more details about some of the most often
used programming tools, see Programmer’s Guide: ANSI C and Programming Suppor: Tools, .
Programmer’s Guide: System Services and Application Packaging Tools, and the Data General
supplements to these two manuals. Other related manuals are listed under “Related
Manuals” at the end of this manual.

Man Pages

For historical reasons, each entry is called a “manual page” or “man page,” though an entry
may occupy more than one physical page and may contain mor? than one entry. If the man
page contains more than ope ertry, it is alphabetized under its “primary” name; for example,
the uname manual page describes the uname and nename files.

Manual pages are assigned to classes ranging from 0 through 8 for easy cross-reference. The

class number appears in parentheses following the name; for example, in accept(IM) the “1”
indicates that accept is a command, and the *M” indicates that the man page is in the Sysrem
Manager’s Reference. - L

A command followed by a (1) or (1G) usually means that it is described in the User’s
Reference. (Class 1 commands appropriate for use by programmers are located in the
Programmer’s Reference.) A man page name with a (IM), (4M), {7), or (8) following it means
that the entry is in the System Manager’s Reference. Names with (2) or (3x), (4), (5) [except
editread(5)], or (6F) are in the Programmer’s Reference. Occasionally, DG/UX man pages
refer to other products’ man pages, which are not part of the DG/UX documentation; these
are so noted. : ‘ _))

083-701055 Licensed material—property of copyright holder(s) ' i

Preface

Manual Organization

Volume 1 contains two chapters:

Chapter 1: Commands (1)
This chapter describes commands that support C and other programming languages.

Chapter 2: System Calls (2) This chapter describes the access to services provided by the
DG/UX kemel, including the C language interface and a description of returned error codes.

Volume 2 contains one chapter:

Chapter 3: Subroutines and Libraries (3) This chapter describes the available subroutines
and subroutine libraries. Their binary versions reside in various system libraries in the
directories /lib and Zusr/lib. See intro(3) for descriptions of these libraries and the files in
which they are stored. Although these man pages are alphabetized together, each has a letter
associated with the number 3 indicating the pertinent library:

3C C Programming Language Libraries

3E ELF Library Routines

3G General Library Routines

3M Mathematical Library Routines

3N Networking Support Utilities

3S Standard I/O Library Routines

3X Specialized Libraries

Volume 3 contains three chapters and one appendix:

Chapter 4: File Formats (4) This chapter documents the structure of particular kinds of files;
for example, the format of the output of the link editor is given ir a.out(4). Excluded are
files used by only one command (for example, the assembler’s intermediate files). In general,
the C language structures corresponding to these formats can be found in the directories
/usr/include and /usr/include/sys.

Chapter 5: Miscellaneous Features (5) This chapter contains a variety of facilities. Included
are descriptions of character sets, macro packages, and other things.

Chapter 6: Communications Protocols (6) This chapter contains a description of the
unix_jpc communications facility.

Appendix A: Contents and Permuted Index Man Pages

These manual pages contain information extracted from the DG/UX man pages in all five
reference volumes.

v Licensed material—property of copyright holder(s) 093-701055

Pretace

Man Page Format

Each man page has at least some of the following sections:

NAME gives the primary name (and secondary names, as the case may be) and
briefly states its purpose.

SYNOPSIS summarizes the usage of the program being described.

DESCRIPTION discusses how to use these commands.

EXAMPLES gives examples of usage, where appropriate.

FILES contains the file names that are referenced by the program.

EXIT CODES discusses values set when the command terminates. The value set is
available in the shell environment variable “?” (see sh(1)).

DIAGNOSTICS discusses the errcr messages that may be produced. Messages that-are
intended to be seli-explanatory are not listed.

SEE ALSO offers pointers to related information.

NOTES gives information that may be helpful under the particular circumstances
described.

Some man pages may contain other heads such as ENVIRONMENT and CAVEATS.

Man Page Notation Conventions

This manual uses certain symbols and styles of type to indicate different meanings in man
pages. Those symbol and typeface conventions are defined in the following list. You should
familiarize yourself with these conventions before reading the manual.

The description of convention meanings uses the terms “command line,” “format line,” and
“syntax line.” A command line is an example of a command string that you should type
verbatim; it is preceded by a system prompt. A format line shows how to structure a
command; it shows the variables that must be supplied and the available options. A syntax
line is a fragment of program code that shows how to use a particular routine; some syntax
lines contain variables. :

093.701055 Uicensed materiai—property of copyright holder(s) v

Preface

Convention Meaning

beidface This font is used for section heads and subsection heads. It is
also used to distinguish input from output in examples where the
two are intermixed.

constant In command formats and code syntax: This typeface indicates text
width/ (including punctuation) that you type verbatim from your
monospace keyboard.

In text: This typeface is used for examples, code samples,
pathnames, and the names of commands, files, directories, and
manual pages.

In all contexts: The following characters, which have special
meanings explained below, do not have special meaning but simply
represent themselves when they appear in constant-width font: <
> [1 {) |. In constant-width font they are are /'O
redirection operators, brackets, braces, and the pipe symbol.

iralic In format lines: This font represents variables for which you
supply values; for example, the names of your directories and
files, your username and passwerd, and possible arguments to
commands.

[oprional] In format lines: Regular-font brackets surround an optional
argument. Don’t type the brackets; they only set off what is
optional. These brackets should not be confused with constant-
width brackets.

choicel|choice2 In format lines: The vertical bar indicates a choice between
choicel and choice2.

In format lines and syntax lines: You can 'repeat the preceding
argument as many times as desired.

{ } In format lines: These regular-font braces surround either two or
more choices or syntax elements that are repeatable as a group.

<> In command lines and other examples: Angle brackets distinguish
a command sequence or a keystroke (such as <Ctrl-D>, <Esc>,
and <3dw>) from surrounding text. Note that these angle
brackets are in regular type and that you do not type them; there
are, however, constant-width versions of these symbols that you

do type.

$, 8, # In command lines and other examples: These symbols represent
the system command prompt symbols used for the Bourne and
Korn shells, the C shell, and the superuser, respectively. Note
that your system might use different symbols for the command
prompts.

vi Licensed material—property of copyright hoider(s) 083-701055

Pretace

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please feel
free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form (United States
only) or contact your local Data General sales representative. A list of related documents
appears at the end of this manual with the TIPS order form.

For a complete list of AViON® and DG/UX™ manuals, see the Guide to AViiON® and
DG/UX™ System Documentation (069-701085). The on-line version of this manual found in
/usr/release/doc_guide contains the most current list.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, free
telephone assistance is available with your hardware warranty and with most Data General
software service options. If you are within the United States or Canada, contact the Data
General Service Center by calling 1-800-DG-HELPS. Lines are open from 8:00 a.m. to 5:00
p.m., your time, Monday through Friday. The center will put you in touch with a2 member of
Data General’s telephone assistance staff who can answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General sales
representative for the appropriate telephone number.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users, the North
American Data General Users Group (NADGUG). In addition to making valuable contacts,
members receive FOCUS monthly magazine, a conference discount, access to the Software
Library and Electronic Bulletin Board, an annual Member Directory, Regional and Special
Interest Groups, and much more. For more information about membership in the North
American Data General Users Group, call 1-800-877-4787 or 1-512-345-5316.

End of Preface

093-701055 Licensed material—property of copyright hoider(s) Vil

Contents

Chapter 1 — Commands

IDPO(1) veveeenrnnrrecessenneenerenreeneeesecenteseeeaseieresssssssssssseseessesteresseessessrsessaentasaneeasssansssess 12
AAMIN(1) .covererrneeereriniiiriiiiirieieteteeietiieraeiteetettetntttieeeestestttestesassistsstesssssssssassssssnnesns 14
% { () OO PN 1-8
BS(1) tiereiienniianiireniiiiieiiiitiiiiieireteeatettatetsaseseranstrretesantiseesnrionteterasstiserrrsranisennrnns 1-10
BSA(1) ceeeseeeneerrrrnnneniorerissesiesiecsretteristterietttttttaattttetttstettttetaretettttettttttttttttttetarnses 112
At_AUIP(1) wevvrerriimnmmiiiiiriiiiiieenter et reteeeseeeeeeeteeseseeseeeeeesaneeeeeaeseseeeeeetiesseeannnes 1-13
CB(1) cereeiiiiieitieiii ittt ssa e e s et e st e e e e s e s s e s ab e e s et e anaaara b b s e e 1-15
CC(1) wereeiiiimnuirietniiirttiiieiieiierni et eesetsertetateeseeannasaastraseeeeeeatnesassssesesesanrarsrantansranes 1-16
CAC(1) teiiiiiimniiintiiititiiii ittt eeee e ert et st e st eesta e aa e ses e e s s s e aa s esessaranaraaaaeseraes 1-22
CHOW(L) ceeeereniiiieiiriituiiiiriettttereeesteeieersesernerassrsrssssssietennssessassorossersssmreenesssennes 1-24
CI(1) eeveeerrienniietninirtniiiiietiieitiseaeeeatr ettt raneeerenaaesssnrasaesranaasssansssineseernrarsrsrasrinannens 1-26
[e PN L) U 1-29
1324 (6 USROS UN 1-3}
CKINT(1) toeirrneennereneiienieiiuiiieteeteaettnertttucesreeretecermmssseseesasesiesssensesrrsssssssessssssssenesnns 1-33
(333 25 o1) TN 1-35
CRKEYWA(1) weureeneniiiinniiiiiiiirutieeteeinenntittieeritiietetisetensarsesseessssessssrsssssssssnseessnssnans 1-38
CKPAH(1) ceerenieiiieeiiiiiiiiiiiiiiiiiiie ettt s e e e e s e e s s b e e e e aas s s 140
CKIANZE(1) ceereereieiiiiiieiiiiiiiiiiiiei st rnri et et e e et are s e s e e s e e e e s s s e e aasaba s e e e e se e aabb e nanrnnes 142
(3331 {) TR ORI T UUURPPURRE 144
CKIME(L) curveeiereeeieeereisesesensesseesseseessessaeseesassessssesesassesessesasssensesesarsesensesesessessanes 146
CRUIA(I) ceerrenneernnneirenneieriieienictuettnetreastareseeremesteeisiisessesessssssssssssssasssnssasssssssssnsnns 148
CKYOITI(1) teevnunrrrnneeerrnneieieeiieienstentesestaseresseressssisiisisssarsssssssasssseserarssssssssessessnsssas 1-50
CO(1) tiiriiiiiuiineierinnierneiettriierertenertnceatraaransernseiseeeananns eereereesesreriisittatrieaterssresenenns 1-52
COL2ELE(1) tevrrirnniierniernneieeenenearascensessseastossesssrronessstteersectrssssesssarescsesassssssserassssssonns 1-56
COMDB(1) tirennirrrneeereeunneiieeiititniieeneteusitaneranecersarsessissssessrsssssssrssssassrsnsassssssssssansssnns 1-57
CPP(1) coerreuiiiiiiitecireeee ettt ettt e e e et et e a e s e a s s s an asssssstasssrransnasasanes 1-58
EPTS(1) ciiiieiiiiiiii ettt eee e s ettt et aer et e e s st e s et e se st et aansaesaaraaesnaas 1-61
CSCOPE(1) cevruireunuiiirnuiicieieerntusieesseassesssesessssarassessssssassssansssossssssnnssannsasssssssasnnnanans 1-62
CLAZS(1) .evevnieuriiierenieiieieenretetieeeseernseanseseessersaersssssssseesesssssssasssnseressnenssssssanasenassans 1-67
CU(1) ceereriniiinniietiiirteecettaiietteettaeteessteaesareesenessesaessassssssassessnssansssssasessssssannssnnssnes 1-69
CITACE(1) ceurieienimniinereaninisienciascsssesasesonsossesseresssessosssesssssssassssssassnsonssssasasassanssenssrens 1-70
CXTEE(1) wvereeerverrerreserrsseeseessessossssessssessssssssssssssesssesessesssssessesnsassssessessestesseseesasannnes 1-74
ADX(1) ceeeeenerrmnnmmueiiinietiitteitesenetessceraescaresssssssessssssssssssssssssasansansassnasssssssasssasannnes 1-76
AEMA(1) cvevereerererirerreueniseesesescssesseessessessessensesesesssasnssesaseasasessessmsesentetessssserassananas 1-83
QES(1) ceeereererrmnnmuuiiiiiiciirinninieresessesesesesesieresnssesssssssssssssssnsssnsssnnsassnssssssssssssssssnananne 1-86
b 23») L) U UUUEU RPN PP 1-87
{571) USRI POPPPPPON RN 1-88
(316 | U ORI TR PP USRS, 1-101
12 12 11 6 3 T U OUU U UUUUUR PO EURRR PSR UR PN 1-107
IPCITD(1) cevennniiieniiiieiiiiiiiiiiiieiitensseusireasesrasssssssersssssssessnsssssnnsansaseenessssestesssssanses 1-108
PCS(L) corrniieimtiiiiiiiiieititteereeaeesansessansessassreriseessesssseseesesannssssesrntteeseseneatanasesnnnns 1-109
o1) OO UR PP PPN 1-112
| Le LT3 {0) UL UUIRRRPRRRRR PPN 1-116
IAA(L) cereetr et res e et re s ee e s e e a e st s e s e e a s et et e s e 1-119

093-701085 Licensed materiai—property of copyright holder(s) IxX

Contents

JEX(L) ceveeererersernnrieciunetnesiiiseeeeseiennaanaeessstesessesestennstaeeasasssttressntaeeesaressssseessraraeaeas 1-120
HOT(L) oeeerereeeeisesineneiiiieiiisseseenarmneessteeeessssssensannssssseseetessesenssssaecesossseesssssassasssssses 1-125
IOPAEI(1) ceeeirieeitiiiiiiiiiiiiiiierratiiiritiereeteesinseseessnsansettatettttnemnnteteeseseessnsansssesenssasans 1-129
11V) YOO 1-130
make(l) .oeeeeereeniiiniiinienieneectannnn cesesssssssensssserneeseresseseasesanaasanes N 1133
MCS(1) cerreeereeecicninsesssicsseneanssannaseseneraseeneenaes tereeserrsietitteensssstennersrerantansnereennrannnse 1-139
IKSIT(L) v.vucuerrmneeseesesssesesssssessssessssneusessssessssncnsssssenssstsenenssncssssssesassansasesasasnsassess 1-141
BI(L) ceveeceeenererereresereressssnestesesssessssmsssnsnsnasns reeerererereeeteae bt eattaese st e e serensate 1143
PTOS(L) ceureeeiueeeresnesueissresessssnnnessneessaesssessasassssessnnaassasasansesssessaessassseesssnessssessnns 1-146
PIS(L) cerrrrrereercreiissiuneesisssnnnnneeneesssesssssnnesensessssnsntetsenssseeensstssssnesssssosssssasnns 1-149
FALEOT(1) cveveeeeecrncessonneeessssssssssssansanesesstnsessssnssssssnssssarasesesssssssssassesssnsssssssssnsnnnsene 1-152
TES(L) ceererrerernennneeeereeoscisosseasssssssssssssssssssssssnsssnnsssensseesesanssessssssssssnesessrsssesssssnses 1-153
TESAIEF(1] .eveeeeereruenrirrntisisissssssisinneeniesseeessssnnsnnssnsssssseneesessssaesssnansesaeessessssssssnnnes 1-155
TCSIATIO(1) ceeeeeereriernisosesssssnsnnnsuesssssssnsssssssnsnsssssennsennesieneraeensessesssssssssessssssssnsssnsnns 1-156
13 0112 4-21 0 | OIS UEUUPPPPPPPRPPPPPO LR PPPPR PO PRI 1-157
TEZEMIP(1) weerrreeritirnrireiiiriseieenneeneeetereeeniitettseaetassseesaesessesssssseessesssnssenssessanenannanns 1-158
37 0) U PO PP S UPRRU 1-159
TIOZ(1) teeoreeeririrnriciinreinesiiseeseresrartaeeesteeesesssasaestesasassnraeesassaneaessatasnensansaaaeasanan 1-160
rmdel(1) S 1-162
scesdiff(1) ...ceeeenennnnnns rereteseseeserariettantiiretesennntenneresannes Ut 1-163
sccstorcs(l) .oeeeennnnnnen. eetseeeettansiitterietitttettrteastenenrarttetaarseteeearansratirierrnseerttineens 1-164
SAD(1) 1uvvveeeeensereeesrrenisssiunssssessssneeeeiessssiesssssnssnnnssesasisasssasessanesiasasassssssnnrasesenares 1-165
SAE-1ATZEL(L) weeverrerriisiiunnrerrrnnneiereieieiiirteeiaaesesaeseenessnnnsnnarrtntesasesestasassnsnannnsnnnananes 1-172
sifilter(1) ..oooeennnereennnes reeeteesesesenaiiittetitititittratttrbeetetaneteetrtreteteeterarattrrteernseentrraaen 1-174
SIZE(1) vverererrerereriseresissesersaasensatessaantat et tet e et e s ae e st ae e st et et seaea et et et e et seaenan 1176
SNO(L) wuvuvurrenecnennmenemesserteessserteressessssssstisiisterssssssssssssssasssessssssasssssssssssanssnnnssnnnnnnns 1-178
SETP(L) cvvvecrererencsernrassesesesesessesesesesssesssesssseesssensentntsttntntatussstatacassstsesenentessasacaen 1179
TSOTT(L) teiieererereererenrorssnnsnsssorsarssssesssssssssssssssssesasssessnnsssasssssssesssesesessrsssssassnssssnsans 1-181
UDZEL(1) ceereeiiiiieeiirniiiieiiiieteentuiiiiiineiensssssesssessernssssestsserssmssnnsessesseeanasnsssssssesesnnasns 1-182
VAI(1) teiiieiiinninnneiieisiieereetttatieiseteeseetreatssssesssanssssiesseessnstnnsssssssnsssnnsssnnassaarans 1-183
VAILOOIS(1) cevvieenriiremnniererueieeceuiieuiieruieieruniiesseessessssecersessesseserasssesarsssnserssasasessnsane 1-185
VE(1) cereeeererenerrrenrnrneesseeissssssssismssssteeesistesesrssssssssassersssssosssssssessesansssnssnssnnsessrnnnnns 1-186
WHAL(1) coieiiiieniiiiiiiiiiiiiiietttertreiiieetietettateaaaee e s e saaaaa s eeeesttatetr ettt n s e e s e s anesasanns 1-189
XSIT(L) ceeieeireneeeeeirereceeaeessansotosessssereeeeeteeeessseserassansssssssseesesstssnssssssssarnsssasensnsnnnnns 1-190
FACC(L) cevererenteerrnieieneerneinennceresesiecerenssmssrsssssssessssassssesessssnsssssnssassssssnsnsssssnnsnssssses 1-191

Chapter 2 — System Calls

IOLFO(2) ceeeeeeeecriunemnmnsioriiseccreiiomsieieersssssssssssscssssassesssanssessassssssesasssasanasssnssssansassses 22
BCCEPL(2) weverrrrrnnnrureiiienrarenennstesssoneresnsssesssessrsssessnnssesasssseasassesssssssssassasssesesssssonsanss 2-19
BCCESS(2) ceveeerrrrrurrcieieiianuseenieeesisieesssssssiisesssessssnsssssnssssassssssssssssararassnsssensossrnnnans 2-21
BCCH(2) ceerrreerrmruiiiiiiiiieteetuitetttteetietterasesiesterrsssssesnrattsasssstsnssnsnsnsesasarassressanistssennns 223
adjtime(2) eetecruseeesenessentansereereanessrrterntantneretstresetttttrsaststesstasitresesentrerseronaanses 2-25
AlAIM(2) ceevevecrrrunnerenisiieteeeieetereassieesrsesttessssasesennsrssrsessasnessnttssasnsssasssssaesttrnsesarens 2-27
async_daemon(2)c.cceeeeeneniienneencennns tetseeenssenesennersesrsssaraennesesrreareresntarsstssatasnnes 2-28
DErk_SIZPAUSE(2) .evvveermenneenencrrmranmemmennuneeieiiteerenseesrarersssssssssssssssssarasassssanansssnsnsnnns 2-29
bind(2) ..ccvvcernreceriennenenns eeseeeeserrerresesteteranesssennststtarassotansattttsesesissssesrrisnnrrrrennrrns 2-30
DIK(2) cevrerreioeieneieenneenienmeasesssssseiiersensssssrsssescsssessssssssesasassssssssssssssssssssssnsnsssasaannes 2-31
(311 11 7)) OO eesresecinnarenteersostanasrsartetesteressattetetssornarattasesnasassuresases 2-33
CRMOA(2) ciiiiierrenrieieeenereeeeeraeerannesesasssssssesssteeressessssesassssosessasterssssssssrsrssessssssssssanees 2-34
CHOWII(2) .iiiieiiieriniiierennereecnotasesseensessseeseressstossesesssrsssosssssssssssessesssoressesssssnsasansnsss 2-37
(311 4 To { (7. TR PPN 2-39

X Licensed material—property of copyright holder(s) 093-701085

Centents

COSE(2) ..veererureriiesresissnrenneneeeiseeeesesesseansnsassnsensanannnns eesssnseetsasataneasarsassessassesesssans 241
COMMECE(2) ..euvrrarerrnnnsrernnnnsrernenceseeenensesosansesssnssssnssssssanaeasesastsnsesssnnsnssesssssersssssssens 243
CTEAL(2) .ieieveerrrrrcererrreruussssssersssmsssssssessssnsnssssssssssssssssssrssssssnnsesssssnansssssssssosssssnes 245
dg_allow_shared_descriptor_attach(2)cceeeeerreneneiiieenienmuienetiieiitenniiicereenneeeeennnennenee 246
dg_attach_to_shared_descriptors(2)cecuceemmunenieennneeeccssssnanenans ceerererenessseessssssssenes 247
dg_decryptsessionkey(2)cccoeveeeeeeeriasineanens eereceessninnineatenans ceeereetereinrsnessseisansenas 249
A2 AEVEHI(2) cicccerrererriinsissnnnnrrirniiesisiseesnnnnsnsnssesssnnseseeessinsesssnssnssssssessessssesssnnsasas 2-50
dg_encryptsessionkeY(2) weeeeeererereeeierneneeneniinienieeietetenioiieienietientieniesesssesssineasessssnes 2-52
AZ_eXT_EITNO(2) .vevererererrrrnernreninenieieressseanseeeeseonsecssetsttacaeesesssssssensnsnsssesesssarnesessssass 2-53
dg file_INfO(2) .eevveerssssreessarneninininiesinrentnesteiesssnassessesssanessesssnenesessnasesssssessaesansaens 2-54
dg £5tat(2) ..cccvvereerirennrninieniieiiinnineiieeeneeee ceeetrreseetertttrttteiisiseseeetaranereseseteneraneraaata 2-56
A2 _GETOOTKEY(2) ..eeerrerenmrnnnnrnnmenueereeneeneierunnssceesnssssosssssssrsssassssssessnsanssssssssssssssnns 2-57
A IPC_ANLO(2) ceeeererrerermuurerenrrnisiirssssisennerarsssseesansseseseteesssrssssnnensssennanssasasanaaseasaaeens 2-58
AZICRMI(2) tirvrreiririiriiiiisinritiniireeeieeeerarsassesnesasenntsrttteisteeessassassassannnsresasesasiaees 2-60
A JOCK_KIll(2) «eeeeereeersnnnererirnisuuieiiiisisecerasassnessesssnsssssenesueessessensnnssnssnssssessenssnsaees 263
A2 JOCK_TESEL(2) wevvverrermunurmrumnnmeiiisiiiiereneserenetenmsseassasssnesisseissssssseeeesennmsnmsmnnmessensanns 2-64
A2 OCK_WAIL(2) weeverennerunmmrmmmnuemeiiiiiiiieeensserseeressessssssesssnsinnessesasseseseesnsrssnssssseeesennnns 2-65
A2_MKNOG(2) ceerreenenennrsessssesssssreeecieeerrssesessssssssssssrnsesseeessssessssnsssnssnssssssssessssssseess 2-66
dZ_NOUDL(2) toeviiiererrnnunnniieeieeerieniiesieetnansenssererasessecsmesssmsseeieeessassssssestaranssssssssssnnnnes 269
A2 DSTAL(2) ceeirrrrrrniniieiiiiiiiiiisiitteee et e s ta s e nana e re st et raatta e et e a e e e s s s a s e e e e e nranaaiees 2-73
dg_paging_info(2) eerseeerereereeeeertetetatete e terta e rat st r bt s b et aeaa s e e ee s eee e abes 275
dg_process_info(2) ..ccceeerrirririiiiiiiiiiiieiieteteerrerr et e e et e e e e e 2-78
dg_set_cpd_LMIts(2) ...ceeeererrrrminiiiiiiiirineenntieteiiittiieeereeesirra e e e neaa e e s e e e e e eeeaeeseaas 2-80
AZ_SESECTETKEY(2) wuvvvrrrerireiiiisiuirneiiirnneentnietesenstentsteteeetienrnanesssasasaeaaaseeessessssnans 2-82
dg _Stat(2) ..iceereiiireniirniireiiiree et re e e e ee e e st s e aese s se e rerererer e 2-83
AZ_SYS_INTO(2) evveerrieriiirirriiiiiiiiiiiiitieteinereeeerea ettt e e e ese e s e s e e e e e e nraae s et et e e s sane 2-85
dg_SYSCU(2) ceirerirmnnniimnniiirnnniiiiiiiineeene e eeaas SO 2-86
dg_unbuffered_read(2)ccoeirrrriiiiiiiiiiireniieie e 292
dg_unbuffered_WIte(2) ...ccooeveeiiiiiiiniiinirettereiterei ettt 293
AZ_XITACE(2) teverrrrrrrrriereirirssserisiunrriessesstassssesssranssessossmmmreesssssssasssasssssensstassssssssssnns 2-94
QUP(2) weeerrirteriniiiiiiiiinrrree i rreee e eseaaa e et s e e s e e e et e e aese s et e e e et et s et s et s e e et s e s s sa et s s e 2-101
QUP2(2) teeerrernrneeiereennneneetirtieesteeieieeetessseesrssnnssieraarreettttresaiaresessssnsnssssssssessesssnnins 2-102
(S -1 7. UL PPPRPPPTPPP PO PPN 2-103
EXIL(2) cvuvveerrcereissesesesesesssseseseassesssensesssansaatansansestatessasssssaesantentesestentesentssesesesene 2-107
13 42702 11 1172 ULV USRS RRNRRRRRRRR PRSI 2-109
b 1017 1 4 72 TR U UU U UUUIURRRRIISUEUIUIRPPPEEPEURP PP PP pPR 2-111
CHIMOA(2) +evererererrereesereesesessesesesesesessassensesssesessessesmsentsacntasessstosesessesessssenmsesses 2-112
FECROWN(2) 1eieeieeermneniemneeniietiemuniiiiiciireassesssssersssssrasseeneesmessssesessessncacasansesssesssanonoes 2-113
b 1o 11 {72 TSRO UPIUURRRRRRRRPRUOPOEUUP PPNt 2-114
fetch_and_add(2) .cccveeeecrnicinniiieenieiiacsetensesaosrssiessassssncasessssiosassosssssssnsssnssaasssannnens 2-117
FOTK(2) eenrrnnreriiiseiisisisesnisssssisinntissneesssssessssssssesssnsretteersssssssessasasasssssssssssssssssannes 2-119
b 13 €1 { 7)) USSP UPPPUPPOUURRR PRSP ST PN 2-121
ESTALES(2) ceveveernrrreenrensaeeersannenseeeerennasnsasssssessesssssasessnssssssstsstesessaransassansssestttonaanas 2-122
ESTATVES(2) tevvvrerereennninnnciranisiemmeiioicrancrecsessosceessosenassssarnsssssassssassssasssssesssssssstscssens 2-123
37«11 7. [USSP PPPRN teresasssssessttnrietastsssnnanarannsssesissas 2-124
ftruncate(2) cereestesnisetanesntortnssasnssanse cesscestessessartrasatssnrsenassnesanessensrssnssasessannas 2-125
ZEICONTEXT(2) wevveererreieenrianiereeeenieiisisssssenrasssssranasssesaanssasassssnnsess ceeeeeessesnsstansisrnennns 2-126
P00 1 13110 7. U UEUURPOUUUUURUIUURRRSP SRR PR 2-127
getdomainname(2)ccceiiieeeiiieiiiiiiiiieei e s ee ettt s st e s s s s 2-129
getdtablesiZe(2) .ooeeiviuiiiiiiiiiiiiiiiiiiiiiiaecr s reeieeree ettt e s e e neessess st ssss s seaaes 2-130
0 {2 U< [U PEUUOUURRRRRRR PSP 2-131
ZEtEUIA(2) teivrrnrnriiiiiiieieiiieeieuniereieeeeeueeeneenerenesasasssssssrieenterenesanassssansessassssessssnssanne 2-132
{10417 IO OO SO OPTEUUUIPPPOTRRP PRI 2-133

093-701055 Licensed material—property of copyright holderts) Xi

Contents

-3 02 s [(7. U OO U UU PP U USROS N 2-134
BEIZTOUPS(2) ceverrerrrmunnnnniieneetneretuierenieeetenessssitssssesessassssennesranmsnsssserssessrsnssssssnsses 2-135
GELhOSHA(2) ..vveverrereariienreieieeitieearererieeieieioisssssssessssssssssssessiensssssnsesssssessssssssssees 2-136
ZEthOSTNAME(2) .iieerrreiiiiiienenrtntiiiiieeiureetieretsiessterassiiisssnsssssssessessisssssesssesssssssssnsns 2-137
ZEUHMET(2) .iovirrerrreieiiniienrereneiiietereieeniireiettteetettssieseeeesassnsessasssssssersessssesssssssenans 2-138
getmSg(2) .ceereerrennnnnnnannnnene eeeeteerraautsessssesatettttttrtttetaasterteasettstesaststtattaneseases eeeess 2-140
ZETPAZESIZE(2) .eeevrrririiiriririentiniieiettiietiireeeeeeeeeeeeetanatanta e taaaratartataae e e ssaananes ceveenee 2-143
ZETPEEINIAME(2) ..eeeerrerrrrrerererantenesesrrenereesssessssssaesesnarssasssssranssnsmesseeeissssrescessses ... 2-144
F15957:2 9 1 7)) [SO 2-145
ZEIPZTP2(2) cevveveereereeiersirianerstesesetsrnieertieteeteeieeteeenasssssssesssnsrssssssssteesieisisstsasssnaens 2-146
553 T (7 U OO 2-147
ZetPPIA(2) .ieireriiiiiiiiiniitnee e reeeanenaa s eeereseeetnertitrneeettttisisteeasesssssnsanes 2-148
P-033 23 5 [o) 914 72) H U UUUURR P OPPOIP PSR PRPRPRPPPPS R 2-149
BEIPST(2) teotrnrinerteeiiiiinriiiisiestetetaetenaessisssnnataeteeettatatatanaaanaarteseearaae s e rannaeas 2-150
-0 09511 0514 72 LU UUUUU PP EUU PR LR 2-151
ZEITUSAZE(2) .uvvuerrerririiinurieieteirnuuieiesiiiereineeeessssasserensasssssesessssssssssssnsenesessessssnssnenns 2-154
LS 13 [(7 UL N '2-155
getSOCKNAME(2) ..evvrieiiiiiunnrernneniiieinriirenteeeretiteeteetaeieeaerettnesiasensssanssinnsanesssanssannnns 2-156
ZEISOCKOPT(2) evverirueeiriiieiiiiieiirererrrrieeetiieeissssssssnnssnssnnssaeeseeensnsissresssssnseenssseanes 2-157
gettimeofday(2)eeieiiiiiiiiiinieniiiiieriri e e ae e 2-159
getuid(2) ..eeevenniieinnn. Heeeteeiesetettar ettt st et ieseeteseeeetesaranraasn e e a s antatsrbenarreea e e satnanatenns 2-161
HOCTI(2) wevveeenerrmunnernernorrerensscsrennseseteerumrasesssseesanssiseenssssansssesesersneresieneseeesonasssssns 2-162
KIlI(2) cevereneenermmennesiennnonunnenassesessueeteimsssmsaiisessersnsscesarasesssssssnrerssssnstessssesseesssasenns 2-163
KIlIPZ(2) teeereierrremueniiieiiiiiuieruansisieernimrsstiiestiertstssseesesseesnssessrraneseesstesianssarsrsesnnssns 2-165
BIOK(2) ceveverererneeesesensssiscssscssessesessessanssesessssasesensesessesensassassesesesesesesesnsesesesasannsns 2-167
HSTEN(2) cevvverrrrurererennerersemmesssensssenssteesuiiietesssseneesseermsssessssssssenrssseseessssnssrssssssanones 2-169
ISEEK(2) terrreniernnrerrrinnninnrieneesienssienssseasssssismisssierseseressestessreesarrsssseeesssesrrrsssssnsansans 2-170
ISTAL(2) ceveeenennrirunnneeinnitiotieaneieteneierettateessieteseatasiteeentesartiesseesatnataetesaeeeseraranenns 2-171
MEMCOI(2) ..oreiiininirininiiiieretrasiruiieriertratiermeeeerasersseeasseasesssrnsessrssreesssrassssssasnsanses 2-173
MEMCHI(2) .iiieniruiiiinuiiiiiirieiiatiuireuiierttirrriiietesteeniersisrsssiosnsssrnnstiersrrtsasesrerrrennaens 2-178
MUOCOTE(2) oveuienierrrrnrnnieereesiassrencreniesstscierssestassenssesssseassssssssserssssssrsrssssessessnsannes 2-180
101« b1 (7. TS UEUURIUUUUPRUPPPRt 2-181
111'< 1 1< T« [(72 IR U UUURUUU PPN 2-183
MMAP(2) eereeerirenuerieiiieiiiesersneeissecsrsssssseresssssessessssasssssasssassssennsssssassssssnsnsnssssnnsses 2-186
INOUDT(2) .oiirunirennrennessesierrsassseesssesssessrssssssesssstossssssessssssssssssssssensssnsesssnnsesssssansnanes 2-192
TOPTOTECT(2) teuirunirmunnieiiniirennorocssnssssssorsssnssasssstessstssssssserasessssssessssssssssssssasesrsssananes 2-195
MSZCI(2) wurrirnniruerieimuiiiiierenitietteuireretttasetirertetsseessieenssasensssrssesssraseesansseesesnannans 2-197
11 17-2-2 { 7. TR PPN 2-199
ISZTCV(2) ueeeeenreerarenmmensmesesrosssisssssersssessessessssssassssossssssssssnssssscsssssnsnssssssasasnssnnas 2-202
1:17-23 + L« [7. UL PEURURRURRR P 2-204
MSESYS(2) oeeeeenrrererearrrarereeeestnnsiesasssstesesssscsssrsssssssssessssasssesssssnssesessasssstasssesssananns 2-206
TOUNMAP(2) ceverrererereoetorncrascsescrasersnsersnssassssssesssssssssssssssssssssssssssssssssssnansssssasanansnne 2-208
DESSVE(2) weoeererirueieninnineeeteanereeeeesceenerssscasasssosssssssssssssossessssssssssssssssansanessssssnassnsnes 2-210
BECE(2) teereeeeettmnuirniuiititiieeiireneeescessssssssssssrssssssssssssssssssssssesteraennransastettttittitssasanss 2-211
open(2) Ceeeeteeeetstittitienennnsesenesennsresestassessesesnsisesessestassrsettrinessestestittetestiresanaans 2212
PAKCONT(2) eeeerreriiiiiiiirinieeeeieeenneneeeeerosssessssssssseneerenesssasesessassensassersesssssssnsennansans 2218
pause(2) creeerns certssneneeanas cevseenesene ceereceesnsssannsssessrnnns ceorans cerserstsrsisetennessssnsnens 2221
PIPE(2) teereerinriirnnttiiitieiiscrieeeereeeeenesennsssestesssesettesesesannssnsnsssstatesasasasesassanananns 2-222
PIOCK(2) ceuvrtniiiittiiiiittiiiieeeneeeeeennneeeeeeseessasssssssssessesessarssessssnsensssssssssssssnsssanannnns 2223
POLI(2) ettt sttt s e s st ses s s s s s e s e e e s e e s e s e e a s e et s s s s n e et e e s s aees 2-225
Profil(2) ...cccocivuiiiiiiiiiiiiieninnnnens eeeeesessensesesssssesesssasnanessasatterenstaerratnrernsrassnennnanas 2-228
PIACE(2) tereeniiuniieniiiiiiitieeiieteeraaeeeresseesesssssssssesssssssssssssssnssssssssssrsrssmsssssssssesensennns 2-229
PULIDSE(2) weeeernreinnrennnintietiiiteeensanesesusassnassssesssssnsessssssessssssssanasssaesssessasssessssanass 2-232

X Licensed materisl—property of copyright holders) 093-701055

Contents

.. 2-235
i s 5238
readlink(2) 5520
PEAAV(Z) vvrrrres e s 2242
A 2243
) i 5245
recvfrom(2) R 5246
recvisg(2)ceeeene. e 5247
rename(2) 2.250
FIRIE(2) v oy
BIK(2) covvrerecrs e 5083
e 7555
SEMCLI(2) civvererrererrieennnirsnniriennnnisssecacnnenaes s 2258
semget(2) 5261
SEMOP(Z) -rrcrveer e %64
SEISYS(Z) worvrveser o 5265
SEMA() -vvvrsersvess s 5267
sendmsg(2) 5268
SEBAIO(2) evvssceseer s nr 5265
SEJOMAIADAMEZ) ovvrssvvvrss s ers s 5570
B 2 5971
i o7
SEIGIA(Z) oo s 5973
SEBOSHA(Z) ovrcvessevess s s 5o
sethostname(2) 557
setpgid(2) 5977
L7 2078
SSIPETP(D) cvvvrverev e 5975
setpriority(2) 581
SEIPST(Z). oerscrs e 508
B 5083
setreuid(2) T .y
£33 23T [7)1 ORIt s 505
SEISOCKOPH(Z) .vvrsvvrssssorirsss s 5588
settimeofday(2) 5589
setuid(2) .ceeeeriiinniienns e 2250
shmat(2) SRRSO 5503
g < 5956
i 5507
Shmget(2) ...eeeereerrenonsennencnenneienns O 2.301
e A e 2300
shutdown(2) s 2503
i A 5306
sigaltstack(2) 5308
sigblock(2) 5309
SIBRIISEN() corsvrsvvsvers v s 2310
sighold(2) 2311
A 31
SIGORL(2) scuvrvrserr s s 5315
SIBPAUSE(2) ovvorcvsirvt o 5316
SIEPEAING(Z) 1uvrvvsvvrsvvvr oo 5317
SIEPFOCTIASK(Z) ovscvssvvr vt 5319
sigrelse(2) e 5320
3T £ { 7 [OOSR

; xiii
093-701055 Licensed material—property of copyright holderts)

Contents

SIZSENA(2) ..oerennnrernmuniiiiiiiiiiiiiieiitiiieretiiieeettaraeeeeeerttnetetttttetanttisstessssissssesansanannans 2-321
T 0] { (7. YOS 2323
SIZSEMASK(2) cevvrerrrmmnmruirinsiiesinietentetenannesssiisiserssesessesansennssceseesessssesssseesessessssssennes 2-325
374210 < 7. PP UL 2-326
sigsuspend(2)cceveeeriiiiiininnens reseeettesternresensetesantanssranstesstetrresartattsttrarerettatnanens 2-327
SIZVEC(2) .eereeericrrmrnnninnniiniieeieeennns crsseecsnerentreanaeaanes eerreneens ceeeersretntatiiieseenteereanenes 2-328
SOCKET(2) ..uereureeereererereennsneresssserereaeecerersssssssesssssassssssrasesssssessssssssssssnsssssassssssssnne 2-331
SOCKETPAIr(2) ..cceeeerernrenrnrnenennnenseeenannes eeeteaeeetetettettateerebetrantreststtseessanssnssassssssens 2-333
3 2L 7. TP 2-334
L1715 £ (7)1 USROS 2-336
STAtVES(2) vuecceeenneceniennnnnnnenennnnneiieens cersseceseesesenanns cereeeerenniiieeetettetenestessssansssseseees 2-338
301 11 (72 U N 2-340
store_conditional(2)cceeceeerernrieiteiirennisientretteniiiiitiateniseniieitesaieisiisissisessrsssanaes 2-341
SWAPON(2) .eoreerrrernissssssssereerestessesssessssssessssesssssssssssnssssssansssssssessassesssssansesasnsessasans 2-343
L3z 11511 < (7 OO R 2-344
SYDC(2) eeeenreerenueiiiimentereearressisssieeeeesssssserserammesssaassssettnnssannsietesaraeteiiaeasessessesernes 2-346
SYSCONL(2) weurerrerenricirmmmnnneiiireennssisreesesnsessaresusssnsseseesnsensensseerereseseaessieeeeessssssssssses 2-347
SYSES(2) ceverncermreecerinnennnnennnnnneee eeeeseereeeestearsseiesetterartasstasaentritettttaaeasennesnsseennne 2-3§0
SYSINFO(2) wevvererneiirrenireiieeiiemuussiierierseeieeerrememmmmeemmssieeeenesnmsssesessareeeiiesissesesssseanes 2-352
time(2) ..ccverenncrrnnininns tererieresseseeeennetensesstenteretetttttntatantantesttiistettrtanertnarenesaseannns 2-354
1 11131 (7.2 T U U 2-355
TTUNCATE(2) ..ieeuerereermrurnrerrereseeseseeressesssrsssssssssisssssssesansessasseesesssessssssssssssssssssssnnees 2-356
uadmin(2) fereetseeteeitertatsettttetrttetarteetarattbarestenssaassarsteaatesteneteitetraterersrentn 2-358
ULIIE(2) oeeeeeeennmrmnnnnnnmenmenineereereeremeessucsesieresesesssssssssssssssnsssesesessassesnsssnsnsssssaseenees 2-359
UMASK(2) vevueeerenncereeeeneenrecoseansesssssssasssssosessssesssssssessscsrsnessssssssssssssssssesscesssssssrenssse 2-361
UIMOUNT(2) ..eveurerrescerrrennmnssssosssssssssssssssasssssressssssssssssssssssssssesrssssssssrmreressssenssssassnes 2-362
UDAME(2) eeurrrenrernesenraeseneensssosnessssssssssesssssssssssssessesssnsessssasssssrassesssssassssssssssssasanses 2-364
UDBNK(2) .eeeerirennnniieoinonnnesseossssssssessosserereesnmeertesesessesssessseseressssssssssssessesssssssssssnnes 2-365
USTAL(2) ceveveerenreenenrenerennsnoseeresnssossnnssssnssosssssssssssseessssssssseassesrsssssasssssssasssessesnrasones 2-367
UHIMIE(2) ieiieuieiiieeernierierensersiarasssosssssassrsssrssssrsssessssssssssssssssssssassssssssssssssssssssansens 2-368
UHIMES(2) teurnnienerneerennereierenecersescrosssesssssssssssssssersssssssesastassassessssesssrsrsssessassssannsns 2-370
12 1 ¢ /< 72 N RTINS 2-372
VBANGUP(2) cevvrrrrunnioenioninieeiiniierianeiseresssiiscssssetenseesnssssesssseanssssssssssessssssssasssnsssnnne 2-374
WRL(Z) ceereerrneneeerrrrentiriesisssssssssssssssssersressesrstetteseseossssasssssssarsssssssssssesissssssssssssnsnss 2-375
WRAL3(2) eeerrenereencrrnensimeonesirssssssssssssssrsescssasssssssescsrsssssssssssscorssssesssssssssssssssssnansssans 2-378
WRLA(2) ceeeeeeerrenniseaeroneeiseeesesseronssssssrssssssssssssssssssssarssetsssssssssssssssssssssssssssssssassans 2-380
WRA(Z) +eeveerrerrerrveseeseseesseseesessessessessessessesessasesessessessassssessesessessesssesssessesssesaons 2382
WIILE(2) wueerennnerenensseeronnensssenernerensessssesssssssssssessssssesasassesassssssesssssssssssnssnssssssssosaane 2-384
WILEV(2) .oreerrenreniionciiiiireneiiionecssercesecransossassssesssssssnensassnsanses crereerertereneentnnnsenanes 2-387
Index

Related Documents

Data General Software Manuals ceesersenernsnnes eeessresessreetsosssnssnsessserasnsenarssnese .RD-1
USEI’S MANUALS ..cucieieeeniiennrenceecenereceseressessesesssasesssansssecnscnrssssssstssssessssssensssanavas RD-1
User’s Reference for the DG/UX™ SyStemcceeerirrnnenciiernnsssnesssssnnneniiesanens RD-1
Using the DG/UX™ EdItOrScccceeeeerereeeranescerssecsnssasacsssosssssessssssssssssssssssansns RD-1
Using the DG/UX™ SYSIEIM ..cveererceeiereiarnienecsossssssssenssssssserssssssssssasaossssssssssssses RD-1
Installation and Administration ManuUalsc.ceeueeerenrrecencnnercoceseerssessessssseseessnnnes RD-1

System Manager’s Reference for the DG/UX™ SyStemcceeeesceeseecsnccssnnesans RD-1

Xiv Ucensed material—propesty of copyright holder(s) 093-701055

Contents

Programming ManuUalsccvueeeeummuereiniecsssenseetisessoitoniiisiensnnnessnnssnsssessissess RD-2
Porting and Developing Applications on the DG/UX™ Systemcccceeeeuceirnncee RD-2
Programmer’s Guide: ANSI C and Programming Support Toolsccccccceuernnneee. RD-2
Programmer’s Guide: Systems Services and Application Toolsccceceeerucrncnnnne. RD-2
Programmer’s Reference for the DG/UX™ System, (Volume 2)ccccevureereunenne RD-2
Programmer’s Reference for the DG/UX™ System, (Volume 3)ccceccvueienenne RD-2
Programming in the DG/UX™ Kernel Environmentcc.cccceveuueciisssernssnccsancsenens RD-2

093-701055 Licensed material—property of copyright holder(s)) XV

Chapter 1
Commands

This chapter contains in printed form all the online manual entries for programming-related
DG/UX commands. Except for intro(1), the entries are in alphabetical order.

093-701055 Licensed material—property of copyright holdes(s) 1-1

intro(1)

NAME

DG/UX 5.4 intro(1)

intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.

Command Syntax
Unless otherwise noted, commands described in this section accept options and other
arguments according to the following syntax:

name [option(s)] [cmdarg(s)]

name
option

no}zrgletter
argletter
optarg
cmdarg

The name of an executable file.

- noarglerter(s) or,
- arglerter <>optarg
where <> is optional white space.

A single letter representing an option without an argument.
A single letter representing an option requiring an argument.
Argument (character string) satisfying preceding arglerzer.

Path name (or other command argument) not beginning with - or, -
by itself indicating the standard input.

Command Syntax Standard: Rules

All new commands will follow the syntax rules below. Because existing commands
have been developed at various times by various people, some commands will not fol-
low the rules below. Getopts(1l) should be used by all shell procedures to parse
positional parameters and to check for legal options. Getopts(1) supports Rules
3-10 below. The command itself must enforce the other rules.

1.

ov s WL

% N

Command names (name above) must be between two and nine charac-
ters long.

Command names must include only lower-case letters and digits.
Option names (oprion above) must be one character long.

All options must be preceded by “-”.

«_»

Options with no arguments may be grouped after a single

The first option-argument (optarg above) following an option must be
preceded by white space.

Option-arguments cannot be optional.

Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (e.g., —o
XXX, 2,YY O -0 "xxxX z yy").

All options must precede operands (crmdarg above) on the command
line.

“—-" may be used to indicate the end of the options.

The order of the options relative to one another should not matter.

The relative order of the operands (cmdarg above) may affect their sig-
nificance in ways determined by the command with which they appear.

“~» preceded and followed by white space should only be used to mean
standard input.

Licensed material—property of copyright holder(s) 093-701055

intro(1)

DG/UX 5.4 intro(1)

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by the
system and giving the cause for termination, and (in the case of normal termination)
one supplied by the program (see wait(2) and exit(2)). The former byte is O for
pormal termination; the latter is customarily O for successful execution and non-zero
to indicate troubles such as erroneous parameters, bad or inaccessible data, or other
inability to cope with the task at hand. It is called variously "exit code,” "exit status,”
or "return code,” and is described only where special conventions are involved.

SEE ALSO

getopts(l), exit(2), wait(2), getopt(3C).

NOTES

093-701055

Many commands do not adhere to the aforementioned syntax.

Some commands produce unexpected results when processing files containing null
characters. These commands often treat text input lines as strings and therefore
become confused upon encountering a null character (the string terminator) within a

line.

Licensed material~property of copyright holder(s) 1 '3

admin(1) DG/UX 5.4 admin(1)

NAME
admin - create and administer SCCS files

SYNOPSIS
admin [~-n] [-i[name]] [-zrel] [-t[name]] [-£flag(flag-val]] [-dflag[flag-
}’;’]] [-LUist] [-alogin] [—elogin] [-m[mrlist]] [-y (commeni]] [-b] [-2]

es

DESCRIPTION
Admin creates new SCCS files and changes parameters of existing ones. SCCS file
names must begin with the characters "s.”. If a named file does not exist, it is
created, and its parameters are initialized according to any options specified. Param-
eters not initialized are assigned a default value. If a named file does exist, parame-
ters corresponding to specified options are changed, and other parameters are left as
they are.

If a directory is named, admin behaves as though each file in the directory were
specified as a named.file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are ignored. If a name of - is
given, the standard input is read; each line of the standard input is taken to be the
name of an SCCS file to be processed. Again, non-SCCS files and unreadable files
are ignored.

The options are as follows. Each is explained as though only one named file is to be
processed since the effects of the arguments apply independently to each named file.

-n Indicates that a new SCCS file is to be created.

—i[name] The name of a file from which the text for a new SCCS file is to be taken.
The text constitutes the first delta of the file (see -r for delta numbering
scheme). If the i option is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is encountered.
If this option is omitted, then the SCCS file is created empty. Only one
SCCS file may be created by an admin command line including the i
option. Using a single admin to create two or more SCCS files requires
that they be created empty (no -i option). Note that the -i option
implies the —n option.

-xrel The release into which the initial delta is inserted. This option may be used
only if the -i option is also used. If the —r option is not used, the initial
delta is inserted into release 1. The level of the initial delta is always 1 (by
default, initial deltas are named 1.1). '

-t[name] The name of a file from which descriptive text for the SCCS file is to be
taken. If the -t option is used and admin is creating a new SCCS file (the
-n and/or -i options also used), the descriptive text file name must also be
supplied. In the case of existing SCCS files: (1) a -t option without a file
name removes descriptive text (if any) currently in the SCCS file, and (2) a
-t option with a file name substitutes text (if any) in the named file for the
descriptive text (if any) currently in the SCCS file.

-fflag Specifies a flag, and, possibly, a value for the flag, to be placed in the SCCS
file. Several f options may be supplied on a single admin command line.
The allowable flags and their values are:

b Allows use of the -b option on a get(1) command to create
branch deltas.

1-4 Licensed material—property of copyright holder(s) 093-701055

admin(1)

093-701055

-dflag

cceil

£floor

dsiD
i[str)

1list

DG/UX 54 . admin(1)

The highest release (ceiling), a number less than or equal to 9999,
that can be retrieved by a get(1) command for editing. . The
default value for an unspecified c flag is 9999.

The lowest release (floor), a number greater than 0 but less than
9999, that can be retrieved by a get(1) command for editing. The
default value for an unspecified £ flag is 1.

The default delta number (SID) to be used by a get(1) command.

Treats the "No id keywords (ge6)" message issued by get(1) or
delta(l) to be treated as a fatal error. In the absence of this flag,
the message is only a warning. The message is issued if no SCCS
identification keywords (see get(1)) are found in the text retrieved
or stored in the SCCS file. If a value is supplied, the keywords must
exactly match the given string; however, the string must contain a
keyword and must not contain embedded newlines.

Allows concurrent get(1) commands for editing on the same SID
of an SCCS file. This allows multiple concurrent updates to the
same version of the SCCS file.

A list of releases to which deltas can no longer be made (get -e

- against one of these "locked" releases fails). The list has the follow-

qrext

wmod

taype

ing syntax:

list ::= range | list , range
range ::= RELEASE NUMBER | a

The character a in the list is equivalent to specifying “all releases”
for the named SCCS file.

Makes delta(l) create a "null” delta in any releases being skipped
when a delta is made in a new release (e.g., in making delta 5.1
after delta 2.7, releases 3 and 4 are skipped). These null deltas
serve as anchor points so that branch deltas may later be created
from them. If you don’t use this flag, skipped releases won’t show
up in the SCCS file, thus preventing branch deltas from being
created from them in the future.

User definable text substituted for all occurrences of the % Q% key-
word in SCCS file text retrieved by get(1).

Module name of the SCCS file substituted for all occurrences of the
%M% keyword in SCCS file text retrieved by get(1). If the m flag
is not specified, the value assigned is the name of the SCCS file with
the leading s. removed.

Type of module in the SCCS file substituted for all occurrences of
%Y% keyword in SCCS file text retrieved by get(1).

v[pgm] Makes delta(l) prompt for Modification Request (MR) numbers

as the reason for creating a delta. The optional value specifies the
name of an MR number validity checking program (see delta(l)).
(If you set this flag when creating an SCCS file, you must also use
the m option, even if its value is null).

Removes (deletes) the specified flag from an SCCS file. You may specify
this option only when processing existing SCCS files. Several -d options

Ucensed material—property of copyright holdert(s) 1 '5

admin(1)

-1list

-alogin

-elogin

-m[mrlist]

DG/UX 5.4 admin(1)

may be supplied on a single admin command. See the -£ option for
allowable flag names.

A list of releases to be "unlocked.” See the —£ option for a description of
the 1 flag and the syntax of a lisz.

A login name, or numerical group ID, to be added to the list of users who
may make deltas (changes) to the SCCS file. A group ID is equivalent to all
login names common to that group ID. Several a options may be used on a
single admin command line. As many logins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is empty, then
anyone may add deltas. To deny the privilege to a login or group ID, put a

! in front of it; e.g., —a!£fred will assert that fred may not add deltas.

A login name, or numerical group ID, to be erased from the list of users
allowed to make deltas (changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to that group ID. Several
e options may be used on a single admin command line.

The list of Modification Request (MR) numbers is inserted into the SCCS

file as the reason for creating the initial delta, just as for delta(l). The v

flag must be set and the MR numbers are validated if the v flag has a value
(the name of an MR number validation program). Diagnostics will occur if
the v flag is not set or MR validation fails.

-ycomment

-2

EXAMPLES

The comment text is inserted into the SCCS file as a comment for the initial
delta, just as for delta(l). Omitting the -y option results in a default
comment line being inserted in the form:

date and time created YY/MM/DD HH:MM:5S by login

The -y option is valid only if the -i and/or -n options are specified (i.e.,
a new SCCS file is being created).

Makes admin check the structure of the SCCS file (see sccsfile(5)), and
compare the sum of all the characters in the SCCS file, except those in the
first line, with the check-sum stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This option inhibits writing on the file, so that it nullifies the effect of any
other options supplied. It is meaningful only when processing existing files.

The SCCS file check-sum is recomputed and stored in the first line of the
SCCSs file (see -h, above).

Using this option on a truly corrupted file may prevent future detection of
the corruption.

admin -ifilel s.filel

This command will take a file called filel’ and create an SCCS file named ’s.filel’.
NOTE: If you receive a message ’No id keywords (cm7)’ do not be alarmed, it is a
warning message and should be ignored for now.

admin -ifile2 -r2.02 s.file2

Licensed material—property of copyright holder(s) 093-701055

admin(1) DG/UX 5.4 admin(1)

This command will take a file called *file2’ and create an SCCS file named ’s.file2’,
which will have a release of 2.02. Once again if you should receive message "No id
keywords (cm7)’ do not be alarmed, it is just a warning message and should be
ignored for now.

admin -ajohn s.file3

This command allows user ’john’ to make deltas (changes) to the SCCS file ’s.file3’,
while the command admin -ejohn s.file3 revokes the privilege for john to
change the file ’s.file3’.

FILES
The last component of all SCCS path names must be of the form s.filename. New
SCCS files are given mode 444 (see chmod(1)). Write permission in the pertinent
directory is required to create a file. All writing done by admin is to a temporary x-
file, called x.filename, (see get(1)), created with mode 444 if the admin command
is creating a new SCCS file, or with the same mode as the SCCS file if it exists. After
successful execution of admin, the SCCS file is removed (if it exists), and the x-file is
renamed with the name of the SCCS file. This ensures that changes are made to the
SCCS file only if no errors occurred.

Directories containing SCCS files should have access mode 755 and SCCS files them-
selves should be mode 444. This mode of the directories lets only the owner modify
SCCS files in the directories. The mode of the SCCS files prevents any modification
at all except by SCCS commands.

If you need to patch an SCCS file for any reason, the mode may be changed to 644 by
the owner allowing use of ed(1). Be careful! The edited file should always be pro-
cessed by an admin -h to check for corruption followed by an admin -z to gen-
erate a proper check-sum. Use another admin —h to ensure that the SCCS file is
valid.

Admin also uses a transient lock file (called z.filename), which prevents simultane-
ous updates to the SCCS file by different users. See get(1) for more information.

DIAGNOSTICS
Use help(l) for explanations.

SEE ALSO
delta(l), ed(1), get(l), help(1), prs(1), what(l), sccsfile(4).

093-701055 Licensed material—property of copyright holder(s) 1-7

ar(1) DG/UX 5.4 ar(1)
NAME
ar - archive and library maintainer for portable archives
SYNOPSIS
ar [-v] [-]key [posname] afile [name] ...
where:
key One of the following letters: drgtpmx. Arguments to key are made with
one of more of the following set: vuaibels.
posname
An archive member name used as a reference point in positioning other files
in the archive.
afile The name of the archive file.
name A constituent file in the archive file.
DESCRIPTION
: The ar command maintains groups of files combined into a single archive file. Its
main use is to create and update library files as used by the link editor. It can be
used, though, for any similar purpose. The magic string and the file headers used by
ar consist of printable ASCII characters. If an archive is composed of printable
files, the entire archive is printable.
When ar creates an archive, it creates headers in a format that is portable across all
machines. The portable archive format and structure are described in detail in
ar(4). The archive symbol table (described in ar(4)) is used by the link editor 1d(1)
to effect multiple passes over libraries of object files in an efficient manner. An
archive symbol table is only created and maintained by ar when there is at least one
object file in the archive. The archive symbol table is in a specially named file which
is always the first file in the archive. This file is never mentioned or accessible to the
user. Whenever ar(1) is used to create or update the contents of such an archive,
the symbol table is rebuilt. The s option described below will force the symbol table
to be rebuilt.
Options

-v Print axr’s version number on standard error.

Key Characters

The meanings of the key characters are as follows:
d Delete the named files from the archive file.

T Replace the named files in the archive file. If the optional character u is
used with r, only those files with dates of modification later than the archive
files are replaced. If an optional positioning character from the set abi is
used, the posname argument must be present and specifies that new files are
to be placed after (a) or before (b or i) posname. Otherwise new files are
Placed at the end.

q Quickly append the named files to the end of the archive file. Optional posi-
tioning characters are invalid. The command does not check whether the
added members are already in the archive. This option is useful to avoid qua-
dratic behavior when creating a large archive piece-by-piece. Unchecked, the
file may grow exponentially up to the second degree.

t Print a table of contents of the archive file. If no names are given, all files in
the archive are tabled. If names are given, only those files are tabled.
P Print the named files in the archive.

Licensed material—property of copyright holder(s) 093-701055

ar(1)

FILES

SEE ALSO

NOTES

093-701055

X

DG/UX 54 ar(1)

Move the named files to the end of the archive. If a positioning character is
present, then the posname argument must be present and, as in r, specifies
where the files are to be moved.

Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

v

H o & o e o

Give a verbose file-by-file description of the making of a new archive file from
the old archive and the constituent files. When used with t, give a long list-
ing of all information about the files. When used with x, precede each file
with a name.

Act only on those files with dates of modification later than the archive file’s.
(See the r key letter.)

(See the r key letter.)

(See the r key letter.)

Suppress the message that is produced by default when afile is created.

Place temporary files in the local (current working) directory rather than in
the default temporary directory, TMPDIR. In an ELF environment, ar does
not use temporary files, and this option is ignored.

Force the regeneration of the archive symbol table even if ar is not invoked
with a command which will modify the archive contents. This command is
useful to restore the archive symbol table after strip(l) or (mes(1) has
been used on the archive. This key can be used only in combination with one
of the keys [drgtpmx].

$TMPDIR/ * temporary files

$TMPDIR is usually /usr/tmp but can be redefined by setting the environment vari-
able TMPDIR [see tempnam() in tmpnam(3S)]. In an ELF environment, ar no
longer uses temporary files.

1d(1), lorder(1), strip(l), mes(l), a.out(4), ar(4).

By convention, archives are suffixed with the characters . a.

If the same file is mentioned twice in an argument list, it may be put in the archive

twice.

Licensed material—property of copyright holder(s) 1 '9

as(1) DG/UX 5.4 as(1)

NAME
as - MCB88000 assembler

SYNOPSIS
as [options] file

DESCRIPTION
The as command performs assembly of 88000 instruction mnemonics into object
files. The assembler input language is described in Chapter 11 of Programmer’s
Guide: ANSI C and Programming Support Tools. The as command may optionally
invoke the m4(1) macro processor and sifiltexr(1) before assembly. The as com-
mand reads input from file; if file is ‘~’, as reads from stdin.

as supports the following options:

-o objfile

: Causes as to place its output in the specified objfile. If this option is not
present, as places output in a file whose name is constructed from file by
replacing a .s suffix, if present, with .o, otherwise by appending .o. If as
takes its input from stdin, then the -o option must be supplied. The out-
put file must be a file on which as can perform fseek(3S).

-m Causes -as to process its input with the m4 macro processor before assembly.

-Y [md], dir
Normally, as will invoke m4 with a command line of the form:

/bin/m4 /lib/cm4defs file

The -Y option changes the directory from which m4 is invoked and the direc-
tory in which cm4defs is found. Thus

-Y m,dir will invoke dir/m4 and include /lib/cm4defs;

-Y 4,dir will invoke /bin/m4 and include dir/cmédefs;

-Y md, dir will invoke dir/m4 and include dir/cmé4defs.

-W s,sifilter-options N
This option controls invocation of the silicon filter before assembly. Argu-
ments to this option include on, which will unconditionally invoke
sifilter with default options, and off, which prevents invocation of
sifilter; any other arguments are passed as options to sifilter.

By default, as will not invoke sifilter.

-W ¢,ctl-options
This option controls invocation of the COFF-to-legend translator after assem-
bly. All arguments are passed as options to ctl.

By default, as will not invoke ctl.

FILES
/bin/ctl COFF-to-legend translator, ctl1(1)
/bin/sifilter silicon filter, sifilter(1)
SEE ALSO
cc(1), 14(1), m4(1), nm(1), strip(l), ctl(l), sifilter(l), tmpnam(3S),
a.out(4).

1-10 Licensed material—property of copyright holder(s) 093-701055

as(1) DG/UX 5.4 ' as(1)

NOTES
If the -m (m4 macro processor invocation) option is used, keywords for m4 [see
m4(1)] cannot be used as symbols (variables, functions, labels) in the input file since
m4 cannot determine which keywords are assembler symbols and which keywords are
real m4 macros.

Arithmetic expressions may have only one forward referenced symbol per expression.

Whenever possible, you should access the assembler through a compilation system
interface program such as cc.

093-701055 Licensed material—property of copyright holder(s) 1-11

asa(1)

NAME

DG/UX 54 asa(1)

asa - interpret ASA carriage control characters

SYNOPSIS

asa [files]

DESCRIPTION

Asa interprets the output of FORTRAN programs that utilize ASA carriage control
characters. It processes either the files whose names are given as arguments or the
standard input if no file names are supplied. The first character of each line is
assumed to be a control character; the meanings are:

t (blank) single new line before printing
0 double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with characters other than the ones above are treated as if they began
with ° ‘. The first character of the line is nor printed and an appropriate diagnostic
will appear on standard error. This program forces the first line of each input file to

start on a new page. _ '

To view correctly the output of FORTRAN programs which use ASA carriage control
characters, asa could be used as a filter thus:

a.out | asa | 1p

and the output, properly formatted and paginated, would be directed to the line
printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO

1-12

£77(1), £split(l), ratfor(l).

Licensed material—property of copyright holder(s) 093-701055

att_dump(1) DG/UX 5.4 att_dump(1)

NAME .
att_dump - dump parts of an object or object archive file
SYNOPSIS
att_dump [oprions] files
DESCRIPTION

The att_dump command dumps selected parts of each of its file arguments.

This command will accept object and archives of object files. It processes each file
argument according to one or more options. These options are supported in both

ELF and COFF environments:

-a Dump the archive header of each member of each archive file argument.

-g Dump the global symbols in the symbol table of an archive.

-£ Dump each file header.

-o glump program header from ELF files; dump optional header from COFF

es.

-h Dump section headers.

-s Dump section contents.

-r Dump relocation information.

-1 Dump line number information.

-t Dump symbol table entries.

-c Dump the string table.

-L Dump dynamic linking information and static shared library information, if
available.

These options are supported only in an ELF environment:

-C Dump decoded C++ symbol table names.

-T index or -T indexl,index2 4
Dump only the indexed symbol table entry defined by index or a range
of entries defined by indexl,index2.

-V Print version information.

-u When reading 2 COFF object file, att_dump translates the file to ELF
internally (this translation does not affect the file contents). This
option controls how much translation occurs from COFF values to ELF.
Normally (without -u), the COFF values are preserved as much as pos-
sible, showing the actual bytes in the file. If —u is used, att_dump
updates the values and completes the internal translation, giving a con-
sistent ELF view of the contents. Although the bytes displayed under
this option might not match the file itself, they show how the file would
look if it were converted to ELF. (See cof2el£(1) for more informa-

tion.)
This option is supported only in a COFF environment:
-2 name Dump line number entries for the named function.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

093-701055 Licensed material—property of copyright holder(s) 1 '1 3

att_dump(1)

-n name

~P
-v

-d index

DG/UX 5.4 att_dump(1)

Dump information pertaining only to the named entity. This modifier
applies to -h, -s, -r, -1, and -t. When -nis used with -h or
-s, the argument will be treated as the name of a section. When -n is
used with —t or -r, the argument will be treated as the name of a
symbol. For example, dump -t -n .text will dump the symbol
table entry associated with the symbol whose name is .text, whereas
dump -h -n .text will dump the section header information for the
.text section.

Suppress printing of the headers.

Dump information in symbolic representation rather than numeric
(e.g., C_STATIC instead of 0x02).

Dump only the indexed section. In an ELF environment, you may

specify a range of sections as

~d start-index,end-index

In a COFF environment, use the +d modifier to specify a range of sec-
tions:

-=d start-index +4d end-index

These modifiers are accepted only in a COFF environment:

+4d index

-t index
+t index

-u

Dump the sections in the range ending with the indexed section. The
range begins at the first section or at the section specified by the -ad
option.

Dump only the indexed symbol table entry.

Dump the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the entry
specified by the -t option.

Underline the name of the file for emphasis.

-z name , number

+2z number

Dump the line number entry or range of line numbers starting at
number for the named function.

Dump the line number entries starting at either function name or line
number specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma separating the
name from the number modifying the -z option may be replaced by a blank.

The att_dump command attempts to format the information it dumps in a meaning-
ful way, printing certain information in character, hex, octal, or decimal representa-
tion as appropriate.

Although the command produces no output when invoked without options, it does
serve to verify that a file is an object, executable, or archive of an object or execut-

able.

SEE ALSO
a.out(4), ar(4).

1-14

Ucensed material—property of copyright holder(s) 093-701055

eb(1) DG/UX 5.4 eb(1)

NAME
cb - C program beautifier
SYNOPSIS
cb[-s][=3)[-1leng][file...]
DESCRIPTION

Cb reads C programs either from the files specified in its arguments or from the stan-
dard input and writes them on the standard output. Spacing and indentation display
the structure of the code. Under default options, cb preserves all user new-lines.

Options are:

-s Formats the code to the style of Kernighan and Ritchie in The C Program-
ming Language.

-j Puts split lines in the input back together.

-1leng Causes cb to split lines that are longer than leng.

International Features
cb can process characters from supplementary code sets as well as ASCII characters.

SEE ALSO
ec(l).
The C Programming Language by B. W. Kernighan and D. M. Ritchie.

BUGS
Punctuation hidden in preprocessor statements will cause indentation errors.

093-701055 Licensed material—~property of copyright holdes(s) 1-15

cc(1)

NAME

DG/UX 54 cc(1)

cc - C language compiler

SYNOPSIS

cc [oprion] filename ...

DESCRIPTION

The cc command is the interface to the C compilation system. The system concep-
tually consists of a preprocessor, compiler, optimizer, assembler, and link-editor.
The cc command processes the supplied options and then executes the various tools
with the appropriate arguments.

The gcc command accesses the GNU C compiler. For a further description see
gce(l). The ghce command accesses the Green Hills C compiler; see ghcce(1).
The Green Hills C compiler is a separate product and may not exist on your system.

Thé cc command invokes gcc with the —traditional option. This means that
cc will attempt to support PCC features. Facilities unique to gcc may not be acces-
sible from the cc command; instead you must use gcc directly.

The suffix of a filename argument indicates how the file is to be treated. Files whose
names end with .c are taken to be C source programs and may be preprocessed,
compiled, optimized, assembled, and link-edited. The compilation process may be
stopped after the completion of any pass if the appropriate options are supplied. If
the compilation process is allowed to complete the assembly phase, then an object
file is produced; the object file for a source file called xyz.c is created in a file
called xyz.o. However, the .o file is normally deleted if a single C program is
compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to be assembly
source programs, and may be assembled and link-edited. Files with names ending in
.1 are taken to be preprocessed C source programs and may be compiled, optimized,
assembled, and link-edited. Files whose names donotendin .c, .s, or .iare
handed to the link-editor.

By default, if an executable file is produced (i.e., the link-edit phase is allowed to fin-
ish), the file is called a.out. This default name can be changed with the -o option
(see below).

Options

1-16

Some options to cc are sensitive to the sde target environment (see sde(5), sde-
target(l)). Options unique to ELF or COFF target environments are so indicated
in the following list.

These options are interpreted by cc:

-ansi Compile the source in accordance with rules for ANSI C and flag violations
(this is equivalent to the —Xc option). Cc —ansi has the same effect as
gcc -ansi -pedantic.

-X [tac]
Specify the degree of conformance to the ANSI C standard. The arguments
have the following meanings:

t (transition)
The compiled language includes all new features compatible with older
(pre-ANSI) C (the default behavior). The compiler warns about all
language constructs that have differing behavior between the new and old
versions and uses the pre-ANSI C interpretation. This includes, for exam-
ple, warning about the use of trigraphs the new escape sequence \a, and

Licensed material—property of copyright holderts) 093-701055

cc(1) DG/UX 54 | cc(1)

the changes to the integral promotion rules. Cc —Xt has the same effect as
gcc —traditional.

a (ANSI)
The compiled language includes all new features of ANSI C and uses the
new interpretation of constructs with differing behavior. The compiler con-
tinues to warn about the integral promotion rule changes, but does not warn
about new escape sequences.

c (conformance)
The compiled language and associated header files are ANSI C conforming,
but include all conforming extensions of —Xa. Warnings will be produced
about some of these. Also, only ANSI defined identifiers are visible in the
standard header files. (This is equivalent to the -ansi option.)

The predefined macro __STDC__ has the value 1 for -Xa and -Xc. All
warning messages about differing behavior can be eliminated in -Xa through
appropriate coding; for example, use of casts can eliminate the integral pro-
motion change warnings.

These options also affect the behavior of libc and libm routines if present on
the command line at link time.

-0 Do compilation-phase optimization on .c or .i files. This option will not
affect code produced from .s files.

-02 Do aggressive compilation-phase optimization on .c or .i files. All sup-
ported optimizations are performed. As compared to -0, this option will
increase both compilation time and the performance of the generated code.
The -02 option is supported only by Version 2 of the GNU C compiler (see
the -K V option, below).

-9 Cause the compiler to generate additional information needed for the use of 2
debugger.
-p Arrange for the compiler to produce code that counts the number of times

each routine is called: also, if link-editing takes place, a profiled version of
the standard C library is linked, and monitor (see monitor(3C)) is
automatically called. A mon.out file will then be produced on normal termi-
pation of the program. An execution profile can then be generated by use of
prof. Default parameters to monitor ensure that up to 600 call counts are
captured and that each pc has a corresponding histogram bucket in the
mon.out file.

-D name[=tokens)
Associate name with the specified tokens as if by a #define preprocessor
directive. If no =rokens is specified, the token 1 is supplied.

-U name
Cause any definition of name to be forgotten, as if by a #undef preprocessor
directive. If the same name is specified for both -D and -U, name is not
defined, regardless of the order of the options.

-v Cause each invoked tool to print its version information on the standard error
output.

-v Print the invocation of each tool on the standard error output.
-K [PIC [,Vversion]]

093-701055 Licensed material—property of copyright holder(s) 1 '1 7

cc(1)

1-18

DG/UX 5.4 ce(1)

-K PIC (ELF only)
Generate position-independent code (PIC).

-K Vversion
Select a version of the GNU C compiler. The command cc -KV
lists versions available on the system. (The command default-gcec
is used to determine or to change the system default.)

The -K option can accept multiple arguments. For example, -k PIC,V2
can be used instead of -K PIC -K V2.

-E Preprocess the named C programs and send the result to the standard output.

-P Preprocess the named C programs and leave the result in corresponding files
suffixed .i.

-s Compile and do not assemble or link-edit the named C files. The assembly
language output is left in corresponding files suffixed .s.

-C Cause the preprocessing phase to pass along all commeats other than those
on preprocessing directive lines.

-H Cause pathnames of files included during preprocessing to be printed on the
standard error output. ‘

-c Suppress the link edit phase of the compilation, and do not remove any
object files produced.

-o outfile
Use the name outfile, instead of the default a.out, for the executable file
produced. This is a link-editor option and does not apply to files produced by
the -s, -c, or —P options.

-d [y | o] (ELF only)
-dy specifies dynamic linking, which is the default, in the link editor. -dn
specifies static linking in the link editor. This option and its argument are
passed to 1d.

-G (ELF only) :
Direct the link editor to produce a shared object rather than a dynamically
linked executable. This option cannot be used with the -dn option.

-B [dynamic | static] (ELF only)
-B dynamic causes the link editor to look for files named libx.so and
then for files named 1ibx.a when given the -1x option. -B static
causes the link editor to look only for files named 1ibx.a. These options
may be specified multiple times on the command line as a toggle.

-B symbolic (ELF only)

: Direct the link editor to bind references to global symbols to their definitions
within the object, if definitions are available, when building a shared object.
This option is meaningful only in dymnamic mode.

The -B option and its argument are passed to the link editor.

-B string (COFF only)
Construct pathnames for substitute preprocessor, compiler, optimizer, assem-
bler, COFF-to-legend translator, and link-editor passes by concatenating sring

with the appropriate suffix. If stringfl is empty it is taken to be /1lib/o.
This option is obsolete; -Y should be used instead.

Licensed materiai—property of copyright holderts) 093-701055

cc(1)

093-701055

DG/UX 5.4 ec(1)

-0 [y | o] (ELF only) :
-Qy directs the link editor to add identification information to the output file
(the default behavior); this can be useful for software administration. -Qn
suppresses this information.

-1 dir Alter the search for included files whose names do not begin with / to look
in dir prior to the usual directories. The directories for multiple -I options
are searched in the order specified.

-L dir Add dir to the list of directories searched for libraries by 1d. This option
and its argument are passed to the link editor.

-1 name
Search the library libname.so or libname.a. Its placement on the com-
mand line is significant as a library is searched at a point in time relative to
the placement of other libraries and object files on the command line. This
option and its argument are passed to the link editor.

-wc,arglf,arg2...]
Hand off the argument(s) argi to phase ¢ where c is one of [p02sacl] indi-
cating preprocessing, compilation, optimization, assembly, COFF-to-legend
symbol-table translation, or link-editing phases, respectively. For example,
-W a,-m passes -m to the assembler phase.

-Y items,dir
Specify a new directory dir for the location of the tools and directories desig-
nated in the first argument. items can consist of any grouping of the following
characters:

preprocessor

compiler

optimizer

assembler

COFF-to-legend translator

link-editor

directory searched last for include files (default /usr/include)
directory searched next to last for libraries (default fusr/lib)
directory containing the start-up object files (default /usr/lib)
U directory searched last for libraries (default /usr/1ib)

If the location of a tool is being specified, then the new pathname for the tool
will be dir/rool. If more than one -Y option is applied to any one item, the
last occurrence holds.

-t items (COFF only)
Find only the tools designated by irems in the file whose name is constructed
by a -Y option. In the absence of a -Y option, the prefix is taken to be
/1lib/n. items can be zero or more letters from [p02sacl), designating the
preprocessor, compiler, optimizer, assembler, COFF-to-legend translator, or
link-editor. If items is empty (as in ‘-t""’), all tools are designated.

The cc command passes any unrecognized options to 1d without any diagnostic (see
14(1) for descriptions of 1d options).

n H H +F 0 P vV OWO

Licensed materiai—property of copyright holder(s) 1-19

cc(1)

DG/UX 54 ce(1)

Other arguments are taken to be C-compatible object programs or libraries of C-
compatible routines and are passed directly to the link-editor. These programs,
together with the results of any compilations specified, are linked (in the order given)
to produce an executable program with the name a.out (unless the -o link-editor
option is used).

The standard C library is automatically available to the C program. Other libraries
must be specified explicitly using the -1 option with cc (see 1d(1) for details).

#define Statements

FILES

1-20

The following list provides the meaning of symbols that are defined by default under
cc. When defined, the value is 1.

__m88k___

The target system is a Motorola 88100.
_unix

Unix operating system.
__DGUX__

DG/UX operating system.
__GNUC__

Defined as 1 or 2 by version 1 or 2 of the GNU C compiler.
__STDC__

ANSI features are assumed. Defined when -ansi, -Xa or -Xc is given.
__STRICT_ANSI__

Strict ANSI, no extensions. Defined when -ansi or -Xc is given.

__CLASSIFY_TYPE__
Defined as 1 or 2 by version 1 or 2 of the GNU C compiler; selects the
varargs method of the respective compiler.

__OPEN_NAMESPACE__
Defined when -Xa is given. Non-ANSI C standard features in header
files are visible during compilation.

Additionally, when the compiler is not in strict ANSI mode (ANSI prohibits prede-
fined names that don’t begin with either two ‘_’s, or an ‘_’ and an uppercase letter)
the following are also available:

m88000 Deprecated alternative of __m88k__.
m88k Deprecated alternative of _ m88k__.
unix Deprecated alternative of __ unix_ .
DGUX Deprecated alternative of __DGUX___

There are several macros you can define to control your source and target environ-
ments when developing applications. These macros control header files, function
declarations, binary formats, and other aspects of the source and target environ-
ments. The macros are helpful when you are porting applications to or from non-
DG/UX systems such as BSD or AT&T systems. The macros can also make
development of POSIX- or BCS-conformant applications easier. For developing
BCS-conformant applications, the sde utility is also helpful. See Porring Applica-
rions 1o the DG/UX'™ System and the sde-target(l), sdetab(4), and sde(5)
manual pages. :

Licensed material—property of copyright holdert(s) 093-701055

ec(1) DG/UX 5.4 ec(1)
file.c C source file
file.i preprocessed C source file -
file.o object file
file.s assembly language file
a.out link-edited output
$TMPDIR/ctm* temporary files. $TMPDIR is usually /tmp but can be
redefined by setting the environment variable TMPDIR.
/usr/1ib/gec/gec—-cpp GNU preprocessor
/usr/lib/gcc/gecc—ecl GNU C compiler
/bin/as assembler, as(1)
/bin/ld link editor, 1d(1)
/bin/ctl COFF-to-legend translator, ct1(1)
/lib/crt0.0 start-up routine
/lib/mertd.o profiling start-up routine
/lib/libc.a standard C library
SEE ALSO
as(l), ctl(1), gec(l), 1d(1), sde-target(l), sdetab(4), sde(5).
NOTES

The -f option is ignored on 83000 systems. Floating-point support is always present.

093-701055 Ucensed material—property of copyright holderts)

1-21

ede(1) DG/UX 5.4 ede(1)

NAME
cdc - change the delta commentary of an SCCS delta

SYNOPSIS
cdc -xSID [-m{mrlist]] [-y[comment]] files

DESCRIPTION
Cdc changes the delta commentary for the SID specified by the -r option of each
named SID file.

Delta commentary is defined to be the Modification Request (Mr) and comment infor-
mation normally specified via the delta(l) command (-m and -y options).

If a directory is named, cdc behaves as though each file in the directory were speci-
fied as a named file, except that non-SCCS files (last component of the pathname
does not begin with s.) and unreadable files are silently ignored. If 2 name of - is
given, the standard input is read (see "WARNINGS"); each line of the standard input
is taken to be the name of an SCCS file to be processed.

Arguments to cdc can appear in any order. They consist of options and filenames.
All the described options apply independently to each named file:

-xSID Specifies the SCCS IDentification (ID) SID string of a delta for which the
delta commentary is to be changed.

-m[mrlist]
If the SCCS file has the v flag set (see acmin(1)), then you can supply a list
of MR numbers to be added and/or deleted in the delta commentary of the
SID specified by the —r option. A null MR list has no effect. MR entries
are added to the list of MRs as in delta(l). To delete an MR, precede the MR
number with the character ! (see EXAMPLES). If the MR to be deleted is
currently in the list of Mrs, it is removed and changed into a "comment” line.
A list of all deleted Mrs is placed in the comment section of the delta com-
mentary and preceded by a comment line stating that they were deleted.

If -mis not used and the standard input is a terminal, the prompt MRs? is
issued on the standard output before the standard input is read; if the stan-
dard input is not a terminal, no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see —y option). MRs in a list are
separated by blanks and/or tab characters. An unescaped new-line character
terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to be the name
of a program (or shell procedure) that validates the MR numbers. If a non-
zero exit status is returned from the MR number validation program, cdc ter-
minates and the delta commentary remains unchanged.

-y[comment]
Arbitrary text that replaces the current comment(s) for the delta specified by
the -r option. The previous comments are kept and preceded by a comment
line stating that they were changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the prompt com-
ments? is issued on the standard output before the standard input is read; if
the standard input is not a terminal, no prompt is issued. An unescaped
new-line character terminates the comment text.

1-22 Licensed material—property of copyright holderts) 093-701055

DG/UX 5.4 ' ede(1)

ede(1)
The exact permissions necessary to modify the SCCS file are documented in
Programmer’s Guide: ANSI C and Programming Support Tools. Simply stated, they
are either (1) if you made the delta, you can change its delta commentary; or (2) if
you own the file and directory, you can modify the delta commentary.
EXAMPLES
$ cdc =rl.6 -m"bl78=12345 !bl77-54321 bl79—-00001" —ytrouble s.file
$ cdc =rl.6 s.file
MRs? !bl77-54321 b178-12345 bl79-00001
comments? trouble
Both examples add b178-12345 and b179-00001 to the Mr list,
remove b177-54321 from the MR list, and add the comment
trouble to delta 1.6 of s.file.
FILES
x-file (see delta(l))
z-file (see delta(l))
DIAGNOSTICS
Use help(l) for explanations of error messages.
SEE ALSO :
admin(l), comb(l), delta(l), get(l), help(l), prs(l), sccsfile(4).
NOTES

093-701055 Ucensed material—property of copyright holder(s)

If SCCS filenames are supplied to the cdc command via the standard input (- on the
command line), then the —m and -y options must also be used.

1-23

cflow(1)

NAME

DG/UX 5.4 ctiow(1)

cflow - generate a C flow graph

SYNOPSIS

cflow [-r] [~ix] [-i_] [-Dname=value] [-Uname] [-1dir] [-anum)] filename ...

DESCRIPTION

1-24

Cflow analyzes a collection of C, yacc, lex, assembler, and object files and builds
a graph charting the external function references. Files suffixed with .y, .1, and
.c are processed by yace, lex, and the C compiler as appropriate. The results of
the preprocessed files, and files suffixed with .i, are then run through the first pass
of lint. Files suffixed with .s are assembled. Assembled files, and files suffixed
with .o, have information extracted from their symbol tables. The results are col-

lected and turned into a graph of external references that is written on the standard

output.

Each line of output begins with a line number, followed by a suitable number of tabs
indicating the level, then the name of the global symbol followed by a colon and its
definition. Normally only function names that do not begin with an underscore are
listed (see the —i options below). For information extracted from C source, the
definition consists of an abstract type declaration (e.g., char x), and, delimited by
angle brackets, the name of the source file and the line number where the definition
was found. Definitions extracted from object files indicate the file name and location
counter under which the symbol appeared (e.g., fexr). Leading underscores in C-style
external names are deleted. Once a definition of a2 name has been printed, subse-
quent references to that name contain only the reference number of the line where
the definition may be found. For undefined references, only <> is printed.

As an example, given the following in file.c:
int i;

main()

{
£0):
g():
£():

£()
{
i=h();
)
the command

cflow -ix file.c

produces the output

1 main: int(), <file.c 4>

2 f: int(), <file.c 11>

3 h: <>

4 i: int, <file.c 1>
5 g: <

Licensed material—property of copyright holder(s) 093-701055

ctiow(1) DG/UX 5.4 cflow(1)

When the nesting level becomes too deep, use the —e option of pr(1) to compress
the tab expansion to something less than every eight spaces.

In addition to the -D, -I, and -U options (which are interpreted just as they are by
cc), the following options are interpreted by cflow:

-r Reverse the “caller:callee” relationship producing an inverted listing showing
the callers of each function. The listing is also sorted in lexicographical
order by callee.

-ix Include external and static data symbols The default is to include only func-
tions in the flowgraph.

-i_ Include names that begin with an underscore. The default is to exclude these
functions (and data if -ix is used).

=dnum The num decimal integer indicates the depth at which the flowgraph is cut
off. By default this number is very large. Attempts to set the cutoff depth to
a nonpositive integer will be ignored.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and believes only
the first. Other messages may come from the various programs used (e.g., the C
preprocessor)..

SEE ALSO
as(1), cc(1), epp(1), lex(l), lint(1), pr(1), yace(l).

NOTES .
Files produced by lex(1l) and yacc(l) reorder line number declarations, which can
confuse cflow. To get proper results, feed cflow the yacc or lex input.

093-701055 Licensed material—property of copyright holder(s) 1-25

ci(1)

NAME

DG/UX 5.4 ci(1)

ci - check in RCS revisions

SYNOPSIS

ci [oprions] file ...

DESCRIPTION

1-26

Ci stores new revisions into RCS files. Each file name ending in ¢,v’ is taken to be
an RCS file, all others are assumed to be working files containing new revisions. Ci
deposits the contents of each working file into the corresponding RCS file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example
section of co(1)).

1) Both the RCS file and the working file are given. The RCS file name is of the form
pathl/workfile,v and the working file name is of the form path2/workfile, where pathl/
and path2/ are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is assumed to be in the current
directory and its name is derived from the name of the RCS file by removing pathl/
and the suffix ‘,v’.

3) Only the working file is given. Then the name of the RCS file is derived from the
name of the working file by removing park2/ and appending the suffix ‘,v’.

If the RCS file is omitted or specified without a path, then ci looks for the RCS file
first in the directory ./RCS and then in the current directory.

For ci to work, the caller’s login must be on the access list, except if the access list
is empty or the caller is the superuser or the owner of the file. To append a new revi-
sion to an existing branch, the tip revision on that branch must be locked by the
caller. Otherwise, only a new branch can be created. This restriction is not enforced
for the owner of the file, unless locking is set to strict (see res(1)). A lock held
by someone else may be broken with the rcs command.

Normally, ci checks whether the revision to be deposited is different from the
preceding one. If it is not different, ci either aborts the deposit (if -q is given) or
asks whether to abort (if -g is omitted). A deposit can be forced with the -£ option.

For each revision deposited, ci prompts for a log message. The log message should
summarize the change and must be terminated with a line containing a single ‘.’ or a
control-D. If several files are checked in, ci asks whether to reuse the previous log
message. If the std. input is not a terminal, ci suppresses the prompt and uses the
same log message for all files. See also -m.

The number of the deposited revision can be given by any of the options -r, -f,
-k, -1, -u, —g or —c (see -r).
If the RCS file does not exist, ci creates it and deposits the contents of the working

file as the initial revision (default number: 1.1). The access list is initialized to empty.
Instead of the log message, ci requests descriptive text (see -t below).

-r[rev] assigns the revision number rev to the checked-in revision, releases the
corresponding lock, and deletes the working file. This is also the default.

If rev is omitted, ci derives the new revision number from the caller’s last
lock. If the caller has locked the tip revision of a branch, the new revision
is appended to that branch. The new revision number is obtained by incre-
menting the tip revision number. If the caller locked a non-tip revision, a
new branch is started at that revision by incrementing the highest branch

Licensed material—property of copyright holder(s) 093-701055

€i(1)

093-701055

-£[rev]

-k[rev]

-mmnsg
-nname

-Nname
-sstare

-t[rxtfile]

DG/UX 5.4 ci(1)

number at that revision. The default initial branch and level numbers are
1. If the caller holds no lock, but he is the owner of the file and locking is
not set to strict, then the revision is appended to the trunk.

If rev indicates a revision number, it must be higher than the latest one on
the branch to which rev belongs, or must start a new branch.

If rev indicates a branch instead of a revision, the new revision is
appended to that branch. The level number is obtained by incrementing
the tip revision number of that branch. If rev indicates 2 non-existing
branch, that branch is created with the initial revision numbered rev.1.

Exception: On the trunk, revisions can be appended to the end, but not
inserted.

forces a deposit; the new revision is deposited even if it is not different
from the preceding one.

searches the working file for keyword values to determine its revision
number, creation date, author, and state (see co(1)), and assigns these
values to the deposited revision, rather than computing them locally. A
revision number given by a command option overrides the number in the
working file. This option is useful for software distribution. A revision
that is sent to several sites should be checked in with the -k option at
these sites to preserve its original number, date, author, and state.

works like -r, except it performs an additional co -1 for the deposited
revision. Thus, the deposited revision is immediately checked out again
and locked. This is useful for saving a revision although one wants to con-
tinue editing it after the checkin.

works like -1, except that the deposited revision is not locked. This is
useful if one wants to process (e.g., compile) the revision mmedmtel)
after checkin.

quiet mode; diagnostic output is not printed. A revision that is not dif-
ferent from the preceding one is not deposited, unless £ is given.

no changes mode; the working file is assumed to be unchanged. An
unchanged revision is deposited without the overhead of determining what
cha.noes have been made.

uses the string msg as the log message for all revisions checked in.

assigns the symbolic name name to the number of the checked-in revision.
Ci prints an error message if name is already assigned to another number.
Names must begin with a letter, and cannot contain whitespace, period,
colon, semicolon, or @.

same as -n, except that it overrides a previous assignment of name.

sets the state of the checked-in revision to the identifier stare. The default
is Exp. Any string that could be a name (see -n) is acceptable for szare.

writes descriptive text into the RCS file (deletes the existing text). If zxtfile
is omitted, ci prompts the user for text supplied from the std. input, ter-
minated with a line containing a single ‘.’ or control-D. Otherwise, the
descriptive text is copied from the file rxzfile. During initialization,
descriptive text is requested even if -t is not given. The prompt is

Licensed material—property of copynght holder(s) 1 '27

ci(1)

DG/UX 5.4 ci(1)

suppressed if std. input is not a terminal.

File Modes .

An RCS file created by ci inherits the read and execute permissions from the work-
ing file. If the RCS file exists already, ci preserves its read and execute permis-
sions. Ci always turns off all write permissions of RCS files.

The caller of the command must have read/write permission for the directories con-
taining the RCS file and the working file, and read permission for the RCS file itself.

DIAGNOSTICS

FILES

For each revision, ci prints the RCS file, the working file, and the number of both
the deposited and the preceding revision. The exit status always refers to the last file
checked in, and is O if the operation was successful, 1 otherwise.

A number of temporary files are created. A semaphore file is created in the direc-
tory containing the RCS file. Ci always creates a new RCS file and unlinks the old
one. This strategy makes links to RCS files useless.

SEE ALSO

1-28

co(1), ident(1), res(l), resdiff(l), recsintro(l), resmerge(l), rlog(l),
rcsfile(4), sccstores(8).

Walter F. Tichy, "Design, Implementation, and Evaluation of 2 Revision Control Sys-
tem," in Proceedings of the 6th International Conference on Software Engineering,
IEEE, Tokyo, Sept. 1982.

Licensed material—aroperty of copyright holder(s) 093-701055

ckdate(1) DG/UX 5.4 ckdate(1)

NAME
ckdate, errdate, helpdate, valdate - prompt for and validate a date

SYNOPSIS
ckdate [-Q] [-W width] [-£f format] [-a defaulr] [~k help] [-e error]) [-p prompt]

[-k pid [-s signal]]

/usr/sadm/bin/errdate [-W] [~e error] [-f format]
/usr/sadm/bin/helpdate [-W] [~h help] [-£f format)
/usr/sadm/bin/valdate [-£ format] input

DESCRIPTION
Ckdate prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a date, text for help and error messages,
and a default value (which will be returned if the user responds with a carriage
return). The user response must match the defined format for a date.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckdate command. They are errdate
(which formats and displays an error message), helpdate (which formats and
displays a help message), and valdate (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt. When formar is defined in the errdate and helpdate
modules, the messages will describe the expected format.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.
-wwidth Specifies that prompt, help and error messages will be formatted to a line
length of width.

-f format Specifies the format against which the input will be verified. Possible for-
mats and their definitions are:
$b = abbreviated month name

£B = full month name

$d = day of month (01 - 31)

D = date as %m/%d/%y (the default format)

te = day of month (1 - 31; single digits are preceded by a blank)
th = abbreviated month name (jan, feb, mar)

sm = month number (01 - 12)

ty = year within century (e.g. 89)

$Y = year as CCYY (e.g. 1989)

-d defaulr Defines the default value as defaulr.
The default does not have to meet the format criteria.

-h help Defines the help messages as help.

-e error Defines the error message as error.

-p prompt Defines the prompt message as prompt.

-k pid Specifies that process ID pid is to be sent a signal if the user chooses
to abort.

093-701055 Licensed material—property of copyright holder(s) 1-29

ckdate(1) DG/UX 54 ckdate(1)

-s signal Specifies that the process ID pid defined with the -k option
is to be sent signal signal when quit is chosen. If no signal is
specified, SIGTERM is used.

input Input to be verified against format criteria.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Garbled format argument

SEE ALSO
valtools(l).

NOTES
The default prompt for ckdate is:

Enter the date [?,q]:
The default error message is:

ERROR - Please enter a date, using the following format: formar.
The default help message is:

Please enter a date, using the following format: format.
When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valdate module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

1-30 Licensed material—property of copyright holder(s) 093-701055

ckgid(1) DG/UX 5.4 ckgid(1)

NAME .
ckgid, errgid, helpgid, valgid - prompt for and validate a group id
SYNOPSIS
ckgid [-Q] [-W width] [-m] [-4 default] [-h help] [-e error] [-p prompr] [~k pid
[-s signal]]

/usr/sadm/bin/errgid [-W] [-e error]
/usr/sadm/bin/helpgid [-W] [-m] [-h kelp]
/usr/sadm/bin/valgid input

DESCRIPTION
ckgid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing group ID, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return).
All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -% option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, bhelp or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckgid command. They are errgid
(which formats and displays an error message), helpgid (which formats and displays
a help message), and valgid (which validates a response). These modules should
be used in conjunction with FML objects. In this instance, the FML object defines
the prompt.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-Wwidth Specifies that prompt, help and error messages will be formatted to a line
length of width.

-m Displays a list of all groups when help is requested or when the user
makes an error.

-d default Defines the default value as defaulr. The default is not validated and so
does not have to meet any criteria.

-h help Defines the help messages as help.

—-e error Defines the error message as error.

-p prompt Defines the prompt message as prompt.

-k pid Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s signal Specifies that the process ID pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against /etc/group

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

093-701055 Ucensed material—property of copyright holderts) 1-31

ckgid(1) DG/UX 5.4 ckgid(1)

SEE ALSO
valtools(l).

NOTES
The default prompt for ckgid is:

Enter the name of an existing group [?,q]:
The default error message is:

ERROR - Please enter the name of an existing group.
(if the -n option of ckgid is used, a list of valid groups is displayed here)

The default help message is:

Please enter an existing group name.
(if the —-m option of ckgid is used, a list of valid groups is displayed here)

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valgid module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

1-32 Licensed material—property of copyright holderts) 093-701055

ckint(1) DG/UX 5.4 ckint(1)

NAME ‘
ckint - display a prompt; verify and return an integer value

SYNOPSIS
ckint [-Q) [-W widrh] [-b base] [-4 default] [-h help) [-e error] [-p prompt]
[~k pid [-s signal]]

/usr/sadm/bin/errint [-W] [-b base] [-e error]
/usr/sadm/bin/helpint [-W] [~b base] [-h help]
/usr/sadm/bin/valint [-b base] input

DESCRIPTION
ckint prompts a user, then validates the response. It defines, among other things, a
prompt message whose response should be an integer, text for help and error mes-
sages, and a default value (which will be returned if the user responds with a carriage
return). ' ‘
All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed. -

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckint command. They are errint
(which formats and displays an error message), helpint (which formats and displays
a help message), and valint (which validates a response). These modules should
be used in conjunction with FML objects. In this instance, the FML object defines
the prompt. When base is defined in the errint and helpint modules, the mes-
sages will include the expected base of the input.

The options and arguments for this command are:
-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of wid:h. '

-b Defines'the base for input. Must be 2 to 36, default is 10.

-d Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria. '

-h Defines the help messages as help.
-e Defines the error message as error.
-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

inpur Input to be verified against base criterion.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error

093-701055 Licensed material—property of copyright holderts) 1-33

ckint(1) DG/UX 5.4 ekint(1)

3 = User termination (quit)

SEE ALSO
valtools(l).

NOTES
The default base 10 prompt for ckint is:

Enter an integer [?,q]:
The default base 10 error message is:

ERROR - Please enter an integer.
The default base 10 help message is:

Please enter an integer.

The messages are changed from "integer” to "base base integer” if the base is set to a
number other than 10.

When the quit option is chosen (and allowed), g is returned along with the return

code 3. The valint module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

1 ‘34 Licensec material—property of copyright holder(s) 093-701055

ckitem(1) DG/UX 5.4 | ckitem(1)

NAME
ckitem - build a menu; prompt for and return a menu item

SYNOPSIS
ckitem [-Q) [-W width] [-uno)] [-£ file] [-1 label] [[-i invis] [, ...]] [-m max]
[-a defaulr] [~b help] [-e error) [-p prompt] [-k pid [-s signal]] [choice [...]]

/usr/sadm/bin/erriten [-W] [-e error] [choice [...]]
/usr/sadm/bin/helpitem [-W] [-h help] [choice [...]]

DESCRIPTION
ckiten builds a menu and prompts the user to choose one item from a menu of
items. It then verifies the response. Options for this command define, among other
things, a prompt message whose response will be a2 menu item, text for help and error
messages, and a default value (which will be returned if the user responds with a car-
riage return).
By default, the menu is formatted so that each item is prepended by a number and is
printed in columns across the terminal. Column length is determined by the longest
choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Two visual tool modules are linked to the ckitem command. They are erritem
(which formats and displays an error message) and helpitem (which formats and
displays a help message). These modules should be used in conjunction with FML
objects. In this instance, the FML object defines the prompt. When choice is
defined in these modules, the messages will describe the available menu choice (or
choices). ‘ ‘

The options and arguments for this command are:
-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-u Specifies that menu items should be displayed as an unnumbered list.
-n Specifies that menu items should not be displayed in alphabetical order.
-0 Specifies that only one menu token will be returned.

-f Defines a file, file. which contains a list of menu items to be displayed. [The
format of this file is: tokenrabdescription. Lines beginning with a pound
sign (#) are designated as comments and ignored.]

-1 Defines a label, label, to print above the menu.

-i Defines invisible menu choices (those which will not be printed in the menu).
(For example, "all" used as an invisible choice would mean it is a legal option
but does not appear in the menu. Any number of invisible choices may be
defined.) Invisible choices should be made known to a user either in the
prompt or in a help message.

093-701055 Licensed material—property of copyright holder(s) 1-35

ckitem(1) DG/UX 5.4 ckitem(1)

-m Defines the maximum number of menu choices allowed.

-4 Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.
-p Defines the prompt message as prompt.

-k Specifies that the process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that process ID pid defined with the -k option is to be sent signal
signal when quit is chosen. If no signal is specified, SIGTERM is used.

choice Defines menu items. Items should be separated by white space or newline.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = No choices from which to choose

SEE ALSO
valtools(l).

NOTES
The user may input the number of the menu item if choices are numbered or as much
of the string required for a unique identification of the item. Long menus are paged
with 10 items per page.

When menu entries are defined both in a file (by using the -£ option) and also on the
command line, they are usually combined alphabetically. However, if the —n option
is used to suppress alphabetical ordering, then the entries defined in the file are
shown first, followed by the options defined on the command line.

The default prompt for ckiten is:
Entexr selection [?,??,q]:

One question mark will give a help message and then redisplay the prompt. Two
question marks will give a help message and then redisplay the menu label, the menu
and the prompt.

The default error message is:

ERROR - Does not match an available menu selection.
Enter one of the following:

the pumber of the menu item you wish to select

the token associated withe the menu item,

partial string which uniquely identifies the token for the
menu item

?? to reprint the menu

The default help message is:

Enter one of the following:

1-36 Licensed materiai—property of copyright holder(s) 093-701055

ckitem(1) DG/UX 5.4 ckitem(1)

the npumber of the menu item you wish to select
the token associated with the menu item,
partial string which uniquely identifies the token for the
menu item
?? to reprint the menu
When the quit option is chosen (and allowed), q is returned along with the return
code 3.

1-37

093-701055 Licensed materiai—property of copyright holdert(s)

ckkeywd(1) DG/UX 5.4 ckkeywd(1)

NAME
ckkeywd — prompt for and validate a keyword

SYNOPSIS
ckkeywd [-Q] [-W widrh] [-d default] [-h help] [-e error] [-p prompt]
[~k pid [-s signal]] [keyword [...]]

DESCRIPTION
ckkeywd prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be one of a list of keywords, text for help
and error messages, and a default value (which will be returned if the user responds
with a carriage return). The answer returned from this command must match one of
the defined list of keywords.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -w option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-d Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.

-e Defines the error message as error.

-p Defines the prompt message as promp!.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort. o

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

keyword .

Defines the keyword, or list of keywords, against which the answer will be
verified.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = No keywords from which to choose

SEE ALSO
valtools(1).

NOTES
The default prompt for ckkeywd is:

Enter selection [keyword,[...1,?,q]):

1 '38 Licensed material—property of copyright hoider(s) 093-701055

ckkeywd(1) DG/UX 5.4 ckkeywd(1)

The default error message is:

ERROR - Does not match any of the valid selectionms.
Please enter one of the following keywords:

keyword(, ...]
The default help message is:

Please enter one of the following keywords:
keyword[,...]

When the quit option is chosen (and allowed), q is returned along with the return
code 3.

093-701055 Licensed material—property of copyright holder(s) 1-39

ckpath(1) DG/UX 54 ckpath(1)

NAME
ckpath — display a prompt; verify and return a pathname

SYNOPSIS
ckpath [-Q] [-W width] [-a|1] [-b|c|gly] [-n|[o|z]] [-rtwx] [-a defaulr]
[~h help] [-e error] [-p prompt] [~k pid [-s signal]]

/usr/sadm/bin/errpath [-W] [-2]1] [-blc|gly] [-n|[o]z]] [~xrtwx] [-e error]
/usr/sadm/bin/helppath [-W] [-a|1] [-ble|gly] [-n|[o]z]] [-rtwx] [~h help]
/usr/sadm/bin/valpath [-a|l] [-b|c|gly] [-n|[o]2]] [-rtwx] input

DESCRIPTION
ckpath prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a pathname, text for help and error mes-
sages, and a default value (which will be returned if the user responds with a carriage
return).

The pathname must obey the criteria specified by the first group of options. If no cri-
teria is defined, the pathname must be for a normal file that does not yet exist. If
neither -a (absolute) or -1 (relative) is given, then either is assumed to be valid.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckpath command. They are errpath
(which formats and displays an error message), helppath (which formats and
displays a help message), and valpath (which validates a response). These modules
should be used in conjunction with FACE objects. In this instance, the FACE object
defines the prompt.

The options and arguments for this command are:
-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-a Pathname must be an absolute path.

-1 Pathname must be a relative path.

-b Pathname must be a block special file.

-c Pathname must be a character special file.

-g Pathname must be a regular file.

-y Pathname must be a directory.

-n Pathname must not exist (must be new).

-0 Pathname must exist (must be old).

-2 Pathname must have a length greater than 0 bytes.
-r Pathname must be readable.

-t Pathname must be creatable (touchable). Pathname will be created if it does
not already exist.

1-40 Ucensed materiai—property of copyright holdert(s) 093-701055

ckpath(1) DG/UX 54 | ckpath(1)

-w Pathname must be writable.
-x Pathname must be executable.

-d Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.
-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against validation options.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

4 = Mutually exclusive options

SEE ALSO

NOTES

093-701055

valtools(l).

The text of the default messages for ckpath depends upon the criteria options that
have been used. An example default prompt for ckpath (using the -a option) is:

Enter a pathname [?,q]:
An example default error message (using the —a option) is:

ERROR - Invalid pathname entered. A pathname is a filename,
optionally preceded by parent directories.

An example default help message is:

A pathname is a filename, optionally preceded by parent direc-
tories. The pathname you enter:

must contain 1 to {NAME_MAX) characters

must not contain a spaces or special characters

NAME_MAX is a system variable that is defined in limits.h.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valpath module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

Licensed material—property of copyright holder(s) 1 '41

ckrange(1) DG/UX 5.4 ckrange(1)

NAME

ckrange - prompt for and validate an integer

SYNOPSIS

ckrange [-Q] [-W width] [-1 lower] [-u upper] [-b base] [-a defaulr] [-h help)
[-e error] [-p prompi] [~k pid [-s signal]]

/usr/sadm/bin/errange [-W] [-1 lower] [-u upper] [-e error]
/usr/sadm/bin/helprange [-W] [-1 lower] [-u upper] [~k help]
/usr/sadm/bin/valrange [-1 lower] [-u upper] [-b base] input

DESCRIPTION

1-42

ckrange prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be an integer in the range specified, text for
help and error messages, and a default value (which will be returned if the user
responds with a carriage return).

This command also defines a range for valid input. If either the lower or upper limit
is left undefined, then the range is bounded on only one end.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -¥ option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckrange command. They are errange
(which formats and displays an error message), helprange (which formats and
displays a help message), and valrange (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are: .
-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-1 Defines the lower limit of the range as lower. Default is the machine’s largest
negative integer or long.

-u Defines the upper limit of the range as upper. Default is the machine’s largest
positive integer or long.

-b Defines the base for input. Must be 2 to 36, default is 10.

-d Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.
-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

Licensed material—property of copyright holder(s) 093-701055

ckrange(1) DG/UX 5.4 ckrange (1)

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

inpur Input to be verified against upper and lower limits and base.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

SEE ALSO
valtools(l).

NOTES
The default base 10 prompt for ckrange is:

Enter an integer between lower_bound and upper_bound [q,?]:
The default base 10 error message is:

ERROR - Please erter an integer between lower_bound and
upper_bound.

The default base 10 help message is:

Please enter an integer between lower_bound and-upper_bound.

The messages are changed from "integer" to "base base integer" if the base is set to a
number other than 10.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valrange module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

093-701055 Ucensed material—property of copyright holder(s) 1 '43

ckstr(1) ' DG/UX 5.4 ckstr(1)

NAME
ckstr - display a prompt; verify and return a string answer

SYNOPSIS
ckstr [-Q] [-W width] [[-r regexp] [...]] [-1 length] [-a defaulr] [-h help]
[-e error]
[-p prompt] [~k pid [-s signal]]

/usr/sadm/bin/errstr [-W] [-e error]
/usr/sadm/bin/helpstr [-W] [-h help]
/usr/sadm/bin/valstr input

DESCRIPTION
ckstr prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a string, text for help and error messages,
and a default value (which will be returned if the user responds with a carriage
return).

The answer returned from this command must match the defined regular expression
and be no longer than the length specified. If no regular expression is given, valid
input must be a string with a length less than or equal to the length defined with no
internal, leading or trailing white space. If no length is defined, the length is not
checked. Either a regular expression or a length must be given with the command.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckstr command. They are errstr
(which formats and displays an error message), helpstr (which formats and displays
a help message), and valstr (which validates a response). These modules should
be used in conjunction with FACE objects. In this instance, the FACE object
defines the prompt.

The options and arguments for this command are:
-Q Specifies that quit will not be allowed as a valid response.

-w Specifies that prompt, help and error messages will be formatted to a line
length of width.

-T Specifies a regular expression, regexp, against which the input should be
validated. May include white space. If multiple expressions are defined, the
answer must match only one of them.

-1 Specifies the maximum length of the input.

-d Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.
-p Defines the prompt message as prompt.

1 "44 Licensec material—property of copyright holder(s) 093-7€1055

ckstr(1) DG/UX 54 ckstr(1)

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

inpur Input to be verified against format length and/or regular expression criteria.

EXIT CODES
0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)
SEE ALSO

valtools(1).

NOTES
The default prompt for ckstr is:

Enter an appropriate value [?,Q]:
The default error message is dependent upon the type of validation involved. The
user will be told either that the length or the pattern matching failed.

The default help message is also dependent upon the type of validation involved. If a
regular expression has been defined, the message is:

Please enter a string which matches the following patterr:
regexp
Other messages define the length requirement and the definition of a string.
When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valstr module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

1-45

093-701055 Licensed material—property of copyright holders)

cktime (1) DG/UX 5.4 cktime (1)

NAME
cktime - display a prompt; verify and return a time of day

SYNOPSIS
cktime [-Q] [-W width] [-£ format] [-d default] [-h help] [-€ error) [-p prompt]
[~k pid [-s signal]]

/usr/sadm/bin/errtime [-W] [-e error] [-£ formai]
/usr/sadm/bin/helptime [-W] [-h help] [-f format]
/usr/sadm/bin/valtime [~£f formar] input

DESCRIPTION
cktime prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a time, text for help and error messages,
and a default value (which will be returned if the user responds with a carriage
return). The user response must match the defined format for the time of day.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -Ww option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the cktime command. They are errtime
(which formats and displays an error message), helptime (which formats and
displays a help message), and valtime (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt. When format is defined in the errtime and helptime
modules, the messages will describe the expected format.

The options and arguments for this command are:
-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-f Specifies the format against which the input will be verified. Possible formats
and their definitions are:

$H = hour (00 - 23)
$I = hour (00-12)
minute (00 - 59)

&M =

$p = ante meridian or post meridian

$r = time as $I:%M:%S %p

SR = time as $H:$M (the default format)
%S = seconds (00 - 59)

$T = time as $H:$M:%S

-d Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.

1 '46 Licensed material—property of copyright holder(s) 093-701055

cktime(1) DG/UX 5.4 ' cktime(1)

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against format criteria.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Garbled format argument

SEE ALSO
valtools(l).

NOTES
The default prompt for cktime is:

Enter the time of day [?,q]:
The default error message is:

ERROR - Please enter the time of day, using the following for-
mat:
format

The default help message is:

Please enter the time of day, using the following format:
format)
When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valtime module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

1-47

093-701055 Licensed material—property of copyright holderts)

ckuid(1) DG/UX 5.4 ckuid(1)

NAME
ckuid - prompt for and validate a user ID

SYNOPSIS
ckuid [-Q] [-W width] [-m] [-d default] [-b help] [-e error] [-p prompt]
[k pid [-s signal]]

/usr/sadm/bin/erruid [-%] [-e error]
/usr/sadm/bin/helpuid [-W] [-m] [-b help)]
/usr/sadm/bin/valuid input

DESCRIPTION
ckuid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing user ID, text for help and error
messages, and a default value (which will be returned if the user responds with a car-
riage return).
All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The - option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckuid command. They are erruid
(which formats and displays an error message), helpuid (which formats and displays
a help message), and valuid (which validates a response). These modules should
be used in conjunction with FML objects. In this instance, the FML object defines
the prompt.

The options and arguments for this command are:
-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-m Displays a list of all logins when help is requested or when the user makes an
error.

-d Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.
-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against /etc/passwd.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error

1-48 Licensed material—property of copyright holger(s) 093-701055

ckuid(1) DG/UX 5.4 ckuid(1)

3 = User termination (quit)

SEE ALSO
valtools(1).

NOTES
The default prompt for ckuid is:

Enter the login name of an existing user [?,q]:
The default error message is:
ERROR - Please enter the login name of an existing user.
Select the help option (?) for a list of valid login names.
. (Last line appears only if the —-m option of ckuid is used)

The default help message is:

Please enter the login name of an existing user.
(If the -m oprion of ckuid is used, a list of valid groups is also displayed.)

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valuid module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

093-701055 Uicensed material—property of copyright holdert(s) 1 '49

ckyorn(1) DG/UX 5.4 ckyomn(1)

NAME
ckyorn - prompt for and validate yes/no

SYNOPSIS
ckyorn [-Q] [-W width] [-d default] [-h help] [~e error] [-p prompt]
[-k pid [-s signal]]

/usr/sadm/bin/erryorn [-W] [-e error]
/usr/sadm/bin/helpyorn [-W] [-h help]
/usr/sadm/bin/valyorn input
DESCRIPTION
ckyorn prompts a user and validates the response. It defines, among other things, a

prompt message for a yes or no answer, text for help and error messages, and a
default value (which will be returned if the user responds with a carriage return).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -w option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both cus-
tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckyorn command. They are erryorn
(which formats and displays an error message), helpyorn (which formats and
displays a help message), and valyorn (which validates a response). These modules
should be used in conjunction with FACE objects. In this instance, the FACE object
defines the prompt. sp The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-d Defines the default value as defaulr. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.
-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified as y, yes, ¥, Yes, YES or n, no, N, No, NO.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)
SEE ALSO

valtools(1).

1-50 Licensed material—property of copyright holder(s) 093-701055

ckyorn(1) DG/UX 5.4 ckyorn(1)

NOTES
The default prompt for ckyorn is:

Yes or No [y,n,?,q]:
The default error message is:

ERROR - Please enter yes or no.
The default help message is:

To respond in the affirmative, enter y, yes, ¥, or YES.
To respond in the negative, enter n, no, N, or NO.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valyorn module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

093-701055 Licensed materiai—property of copyright holder(s) 1-51

co(1)

NAME

DG/UX 5.4 co(1)

co - check out RCS revisions

SYNOPSIS

co [oprions] file ...

DESCRIPTION

1-52

Co retrieves revisions from RCS files. Each file name ending in ¢,v’ is taken to be an
RCS file. All other files are assumed to be working files. Co retrieves a revision
from each RCS file and stores it into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example
section).

1) Both the RCS file and the working file are given. The RCS file name is of the
form pathl/workfile,v and the working file name is of the form path2/workfile, where
pathl/ and path2/ are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is created in the current direc-
tory and its name is derived from the name of the RCS file by removing pathl/ and
the suffix ‘,v’.

3) Only the working file is given. Then the name of the RCS file is derived from the
name of the working file by removing path2/ and appending the suffix ‘,v’.

If the RCS file is omitted or specified without a path, then co looks for the RCS file
first in the directory ./RCS and then in the current directory.

Revisions of an RCS file may be checked out locked or unlocked. Locking a revision
prevents overlapping updates. A revision checked out for reading or processing (e.g.,
compiling) need not be locked. A revision checked out for editing and later checkin
must normally be locked. Locking a revision currently locked by another user fails.
(A lock may be broken with the rcs(1) command.) Co with locking requires the
caller to be on the access list of the RCS file, unless he is the owner of the file or the
superuser, or the access list is empty. Co without locking is not subject to access list
restrictions.

A revision is selected by number, checkin date/time, author, or state. If none of
these options are specified, the latest revision on the trunk is retrieved. When the
options are applied in combination, the latest revision that satisfies all of them is
retrieved. The options for date/time, author, and state retrieve a revision on the
selected branch. The selected branch is either derived from the revision number (if
given), or is the highest branch on the trunk. A revision number may be attached to
one of the options -1, -p, —q, or -r.

A co command applied to an RCS file with no revisions creates a zero-length file.
Co always performs keyword substitution (see below).

-1[rev] locks the checked out revision for the caller. If omitted, the checked out
revision is not locked. See option -r for handling of the revision
number rev.

-p[rev] prints the retrieved revision on the std. output rather than storing it in the
working file. This option is useful when co is part of a pipe.

-g[rev] quiet mode; diagnostics are not printed.

-ddate retrieves the latest revision on the selected branch whose checkin
date/time is less than or equal to dare. The date and time may be given
in free format and are converted to local time. Examples of formats for
date:

Licensed material—property of copyright holdert(s) 093-701055

co(1)

-r{rev]

—sstare

-wllogin]

-jjoinlist

DG/UX 5.4 v co(1)

22-April-1982, 17:20-CDT,

2:25 AM, Dec. 29, 1983,

Tue-PDT, 1981, 4pm Jul 21 (free format),
Fri, April 16 15:52:25 EST 1982 (output of ctime).

Most fields in the date and time may be defaulted. Co determines the
defaults in the order year, month, day, hour, minute, and second (most
to least significant). At least one of these fields must be provided. For
omitted fields that are of higher significance than the highest provided
field, the current values are assumed. For all other omitted fields, the
lowest possible values are assumed. For example, the date "20, 10:30"
defaults to 10:30:00 of the 20th of the current month and current year.
The date/time must be quoted if it contains spaces.

retrieves the latest revision whose number is less than or equal to rev. If
rev indicates a branch rather than a revision, the latest revision on that
branch is retrieved. Rev is composed of one or more numeric or sym-
bolic fields separated by ‘.’. The numeric equivalent of a symbolic field is
specified with the -n option of the commands ci and rcs.

retrieves the latest revision on the selected branch whose state is set to
state.

retrieves the latest revision on the selected branch which was checked in
by the user with login name login. If the argument login is omitted, the
caller’s login is assumed.

generates a new revision which is the join of the revisions on joinlisr.
Joinlist is a comma-separated list of pairs of the form rev2:rev3, where
rev2 and rev3 are (symbolic or numeric) revision numbers. For the initial
such pair, rev] denotes the revision selected by the options -1, ..., -w.
For all other pairs, rev denotes the revision generated by the previous
pair. (Thus, the output of one join becomes the input to the next.)

For each pair, co joins revisions revl and rev3 with respect to rev2. This
means that all changes that transform rev2 into revl are applied to a copy
of rev3. This is particularly useful if revl and rev3 are the ends of two
branches that have rev2 as a common ancestor. If rev] < rev2 <rev3 on
the same branch, joining generates a new revision which is like rev3, but
with all changes that lead from revl to rev2 undone. If changes from rev2
to rev] overlap with changes from rev2 to rev3, co prints a warning and
includes the overlapping sections, delimited by the lines

<<<<<<< revl, =======, and >>>>>>> rev3.

For the initial pair, rev2 may be omitted. The default is the common
ancestor. If any of the arguments indicate branches, the latest revisions
on those branches are assumed. If the option -1 is present, the initial
revl is locked.

Keyword Substitution

Strings of the form $keyword$ and Skeyword:...$ embedded in the text are replaced
with strings of the form $keyword: value $, where keyword and value are pairs listed
below. Keywords may be embedded in literal strings or comments to identify a revi-

093-701055

sion.

Licensed materiai—properly of copyright hoiderts) 1-53

co(1) DG/UX 54 co(1)

Initially, the user enters strings of the form $keyword$. On checkout, co replaces
these strings with strings of the form Skeyword: value §. If a revision containing
strings of the latter form is checked back in, the value fields will be replaced during
the next checkout. Thus, the keyword values are automatically updated on checkout.

Keywords and their corresponding values:

SAuthorS The login name of the user who checked in the revision. DMAGEN.
Class$

SDateS The date and time the revision was checked in.

SHeaderS A standard header containing the RCS file name, the revision number,
the date, the author, and the state.

SLockerS The login name of the user who locked the revision (empty if not
locked).

SLogS The log message supplied during checkin, preceded by a header con-
taining the RCS file name, the revision number, the author, and the
date. Existing log messages are NOT replaced. Instead, the new log
message is inserted after $Log:...$. This is useful for accumulating
a complete change log in a source file..

SRevisionS The revision number assigned to the revision.
SSourceS The full pathname of the RCS file.
SState$ The state assigned to the revision with res -s or ci -s.

SWhat$ The working file name and the revision number, preceded by the string
@(#) recognized by what(1).

File Modes
The working file inherits the read and execute permissions from the RCS file. In
addition, the owner write permission is turned on, unless the file is checked out
unlocked and locking is set to strict (see rcs(l)).

If a file with the name of the working file exists already and has write permission, co
aborts the checkout if ~q is given, or asks whether to abort if -q is not given. If the
existing working file is not writable, it is deleted before the checkout.

The caller of the command must have write permission in the working directory, read
permission for the RCS file, and either read permission (for reading) or read/write
permission (for locking) in the directory which contains the RCS file.

EXAMPLES
Suppose the current directory contains a subdirectory ‘RCS’ with an RCS file ‘io.c,v’.
Then all of the following commands retrieve the latest revision from ‘RCS/io.c,v’ and
store it into ‘io.c’.

co io.c; co RCS/io.c,v; co io.c,v;
co io.c RCS/io.c,v; co io.c io.c,v;
co RCS/io.c,v io.c; co io.c,v io.c;

FILES
A number of temporary files are created. A semaphore file is created in the direc-
tory of the RCS file to prevent simultaneous update.

DIAGNOSTICS
The RCS file name, the working file name, and the revision number retrieved are
written to the diagnostic output. The exit status always refers to the last file checked

1 -54 Licensed material—property of copyright holder(s) 093-701055

eco(1) DG/UX 54 eo(1)

out, and is 0 if the operation was successful, 1 otherwise.
SEE ALSO
ci(1), ident(1), res(l), resdiff(l), resintro(l), rcsmerge(l), rlog(l),

rcsfile(4), scestores(8).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control Sys-

tem,” in Proceedings of the 6th International Conference on Software Engineering,
IEEE, Tokyo, Sept. 1982.

NOTES
The option -d gets confused in some circumstances, and accepts no date before
1970. There is no way to suppress the expansion of keywords, except by writing them
differently. In nroff and troff, this is done by embedding the null-character &’
into the keyword.

The option -3 does not work for files that contain lines with a single <.

1-55

093-701055 Ucensed material—property of copyright holderts)

cof2elf(1) DG/UX 5.4 cof2eH(1)

NAME

cof2elf - translate object file from COFF to ELF
SYNOPSIS

cof2elf [-iqV] [-Q(yn}] [-s directory] files
DESCRIPTION

Cof2elf converts one or more COFF object files to ELF. This translation occurs in
place, meaning the original file contents are modified. If an input file is an archive,
each member will be translated as necessary, and the archive will be rebuilt with its
members in the original order. Cof2elf does not change input files that are not
COFF.

Options have the following meanings:

-i Normally, the files are modified only when full translation occurs. Unrecog-
’ nized data, such as unknown relocation types, are treated as errors and
prevent translation. When -i is specified, cof2elf ignores these partial
translation conditions and modifies the file anyway.

-q Normally, cof2elf prints a message for each file it examines, telling
whether the file was translated, ignored, etc. The -g option (for quiet)
suppresses these messages.

-Qarg If argis y, identification information about cof2elf will be added to the
output files; this can be useful for software administration. If argis n (the
default), this information is suppressed.

-sdirectory
By default, cof2elf modifies the input files. This option directs cof2elf
to save a copy of the original files in the specified directory, which must exist.
Cof2elf does not save files it does not modify.

-V This option directs cof2elf to print a version message on standard error.
SEE ALSO
14(1), el£(3E), a.out(4), ar(4).

NOTES
Some debugging information is discarded. Although this does not affect the behavior
of a running program, it may affect the information available for symbolic debugging.

Cof2elf translates only COFF relocatable files. It does not translate executable or

static shared library files for two main reasons. First, the operating system supports

executable files and static shared lLibraries, making translation unnecessary. Second,

those files have specific address and alignment constraints determined by the file for-
mat. Matching the constraints with a different object file format is problematic.

When possible, programmers should recompile their source code to build new object
files. Cof2elf is provided for those situations where source code is unavailable.

1 '56 Licensed material—property of copyright holder(s) 0983-701055

comb(1) DG/UX 5.4 comb(1)

NAME

comb - combine SCCS deltas
SYNOPSIS

comb [~o] [~s] [-psid] [-clis]] files
DESCRIPTION

Comb generates a shell procedure (see sh(1)) that reconstructs the given SCCS files.
The reconstructed files will usually be smaller than the original files. The arguments
may be specified in any order, but all options apply to all named SCCS files. Ifa
directory is named, comb behaves as though each file in the directory were specified
as a named file, except that non-SCCS files (last component of the path name does
not begin with s.) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the input is taken to be the name of an SCCS
file to be processed; non-SCCS files and unreadable files are silently ignored. The
generated shell procedure is written on the standard output.

The options are as follows. Each is explained as though only one named file is to be
processed, but the effects of any option apply independently to each named file.

-pSID The SCCS IDentification string (SID) of the oldest delta to be preserved.
All older deltas are discarded in the reconstructed file.

-clist A list (see get(1) for the syntax of a lisr) of deltas to be preserved. All
other deltas are discarded.

-o For each get —-e generated, this argument causes the reconstructed file to
be accessed at the release of the delta to be created. Otherwise, the recon-
structed file would be accessed at the most recent ancestor. Using the -o
option may decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

-s This argument makes comb generate a shell procedure that produces a
report giving, for each file: the file name, size (in blocks) after combining,
original size (also in blocks), and percentage change computed by:

100 » (original — combined) / original
You should use this option before any SCCS files are actually combined, to
determine how much space is saved by the combining process.

If you supply nooptions, comb will preserve only leaf deltas and the minimal number
of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.
DIAGNOSTICS
Use help(l) for explanations.
SEE ALSO
admin(1), delta(l), get(l), help(l), prs(l), sh(l), sccsfile(4).
NOTES

Comb may rearrange the shape of the tree of deltas. It may not save any space; in
fact, the reconstructed file can be larger than the original.

093-701055 Licensed material—property of copyright holdert(s) 1 -57

epp(1)

NAME

DG/UX 5.4 cpp(1)

cpp - the C language preprocessor

SYNOPSIS

/1lib/cpp [option ...] [ifile [ofile]]

DESCRIPTION

Cpp is the C language preprocessor. Thus, the output of cpp is designed to be in a
form acceptable as input to the next pass of the C compiler. You should specify
preprocessing by using the -E or -P option to cc(1), rather than by invoking
/1ib/cpp explicitly.

Cpp optionally accepts two file names as arguments. Ifile and ofile are respectively

the input and output for the preprocessor. They default to standard input and stan-
dard output if not supplied.

Options

-P Preprocess the input without producing the line control information used by
the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is specified, all
comments (except those found on cpp directive lines) are passed along.

-UTname
Remove any initial definition of name. Name is a reserved symbol that is
predefined by the particular preprocessor.

-Dname

-Dname=def
Define name as if by a #define directive. If no =def is given, name is
defined as 1. The -D option has lower precedence than the -U option. That
is, if the same name is used in both a -U option and a -D option, the name
will be undefined regardless of the order of the options.

-1dir Change the algorithm for searching for #include files whose names do not
begin with / to look in dir before looking in the directories on the standard
list. Thus, #include files whose names are enclosed in " " will be searched
for first in the directory of the file with the #include line, then in direc-
tories named in -I options, and last in directories on a standard list. For
#include files whose names are enclosed in <>, the directory of the file
with the #include line is not searched.

-7 Forces cpp to use only the first eight characters for distinguishing different
preprocessor names. This behavior is the same as for previous preprocessors
with respect to the length of names and is included for backward compatabil-
ity.

-Ydir Use directory dir in place of the standard list of directories when searching
for #include files.

-H Print the path names of included files (one per line) on standard error.

Special Names

Two special names are understood by cpp. The name __LINE__ is defined as the
current line number (as a decimal integer) as known by cpp, and __FILE__ is
defined as the current file name (as a C string) as known by cpp. You can use them
anywhere (including in macros) just as any other defined name.

Directives

1-58

All cpp directives start with #. Any number of blanks and tabs are allowed between

Licensed matenial—property of copyright holderts) 093-701055

epp(1)

083-701085

DG/UX 5.4 epp(1)

the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string

Replace subsequent instances of name followed by a (, a list of comma-

. separated set of tokens, and a2) by token-string, where each occurrence of an
arg in token-string is replaced by the corresponding set of tokens in the list.
When a macro with arguments is expanded, the arguments are placed into the
expanded roken-string unchanged. After the entire roken-smring has been
expanded, cpp restarts its scan for names to expand at the beginning of the
newly created token-string .

Notice that there can be no space between name and the (.

#undef name
Forget the definition of name (if any).

#identstring
Put string into the .comment section of an object file.

#include "filename"

#include <filename>
Include at this point the contents of filename (which will then be run through
cpp). When you use the <filename> notation, filename is only searched for
in the standard places. See also the -I option above.

#line integer-constant "filename"
Makes cpp generate line control information for the next pass of the C com-
piler. Inreger-constant is the line number of the next line and filename is the
file where it comes from. If you omit filename, the current filename is
unchanged.

$endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

gifdef name
The lines following will appear in the output if name has been the subject of a
previous #define without being the subject of an intervening #undef.

¢#ifndef name
The lines following will not appear in the output if name has been the subject
of a previous #define without being the subject of an intervening #undef.

#if constant-expression
Lines following will appear in the output if the constant-expression evaluates
to non-zero. All binary non-assignment C operators, the ?: operator, the
unary —, !, and ~ operators are legal in constant-expression. The pre-
cedence of the operators is the same as defined by the C language.

An unary operator is also defined, which can be used in constant-expression
in these two forms: defined(name) or defined name. This lets you use
$ifdef and #ifndef in a #if directive. In consrant-expression, use only
operators, integer constants, and names that cpp knows. The sizeof
operator is not available.

Licensed material—property of eopyright holder(s) 1-59

epp(1) DG/UX 5.4 cpp(1)

#elif constant-expression

Lines following will appear in the output if and only if the constant-expression
evaluates to non-zero. All binary non-assignment C operators, the ?: opera-
tor, the unary -,!, and ~ operators are all legal in constanr-expression. The
precedence of the operators is the same as defined in the C language. There
is also a unary operator defined, which can be used in consrant-expression
in these two forms: defined (name) or defined name. This allows
the utility of #ifdef and #ifndef in a #if directive. Only these opera-
tors, integer constants, and names, which are known by cpp, should be used
in constant-expression. In particular, the sizeof operator is not available.

To test whether or not either of two symbols, bob and red, are defined, use

#if defined(bob)|defined(ted)

¢else Reverses the notion of the test directive that matches this directive. If lines
previous to this directive are ignored, the following lines will appear in the
output, and vice versa.

The test directives and the possible #else directives can be nested.

FILES .
/usr/include Standard directory for #include files
DIAGNOSTICS
Cpp error messages are intended to be self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.
SEE ALSO
cc(l).
NOTES

When new-line characters were found in argument lists for macros to be expanded,
previous versions of cpp put out the new-lines as they were found and expanded.
The current version of cpp replaces these new-lines with blanks.

1 ‘60 Licensed material—property of copyright holcer(s) 093-70105S

eprs(1) DG/UX 5.4 cprs(1)

NAME
cprs - compress a common object file

SYNOPSIS
cprs [-p] filel file2

DESCRIPTION
Cprs reduces the size of a common object file, filel, by removing duplicate structure,
enumeration, and union descriptors. The reduced file, file2, is produced as output.

The sole option to cprs is:

-p Print statistical messages, including total number of tags, total duplicate tags,
and total reduction of filel.

SEE ALSO
strip(l), a.out(4), syms(4).

093-701055 Licensed material=—property of copyright holder(s) 1 -61

escope(1) DG/UX 5.4 escope(1)

NAME

cscope - interactively examine a C program

SYNOPSIS

cscope [options] files. ..

DESCRIPTION

1-62

cscope is an interactive screen-oriented tool that allows the user to browse through C
source files for specified elements of code.

By default, cscope examines the C (.c and .h), lex (.1), and yacc (.y) source
files in the current directory. cscope may also be invoked for source files named
on the command line. In either case, cscope searches the standard directories for
#include files that it does not find in the current directory. cscope uses a symbol
cross-reference, cscope.out by default, to locate functions, function calls, macros,
variables, and preprocessor symbols in the files.

cscope builds the symbol cross-reference the first time it is used on the source files
for the program being browsed. On a subsequent invocation, cscope rebuilds the
cross-reference only if a source file has changed or the list of source files is different.
When the cross-reference is rebuilt, the data for the unchanged files are copied from
the old cross-reference, which makes rebuilding faster than the initial build.

The following options can appear in any combination:

-b Build the cross-reference only.

-C Ignore letter case when searching.

-c Use only ASCII characters in the cross-reference file, that is, do not
compress the data.

-d Do not update the cross-reference.

-e Suppress the ~e command prompt between files.

-£ reffile Use reffile as the cross-reference file name instead of the default
cscope.out.

-I incdir Look in incdir (before looking in INCDIR, the standard place for

header files, normally /usr/include) for any #include files
whose names do not begin with / and that are not specified on the
command line or in namefile below. (The #include files may be
specified with either double quotes or angle brackets.) The incdir
directory is searched in addition to the current directory (which is
searched first) and the standard list (which is searched last). If more
than one occurrence of -I appears, the directories are searched in
the order they appear on the command line.

~i namefile ~ Browse through all source files whose names are listed in namefile
(file names separated by spaces, tabs, or new-lines) instead of the
default (cscope.files). If this option is specified, cscope ignores
any files appearing on the command line.

-L Do a single search with line-oriented output when used with the
-num pattern option.

-1 Line-oriented interface (see “Line-Oriented Interface” below).

-num pattern Go to input field num (counting from 0) and find partern.

-P path Prepend parh to relative file names in a pre-built cross-reference file

so you do not have to change to the directory where the cross-

Ucensed materiai—property of copyright holder(s) 093-701055

escope(1) DG/UX 5.4 cscope(1)

reference file was built. This option is only valid with the -d option.

-pn Display the last n file path components instead of the default (1).
Use 0 to not display the file name at all.

-s dir Look in dir for additional source files. This option is ignored if
source files are given on the command line.

-T Use only the first eight characters to match against C symbols. A

regular expression containing special characters other than a period
(.) will not match any symbol if its minimum length is greater than
eight characters.

-U Do not check file time stamps (assume that no files have changed).

-u Unconditionally build the cross-reference file (assume that all files
have changed).

-v Print on the first line of screen the version number of cscope.

The -I, -p, and -T options can also be in the cscope.files file.

Requesting the Initial Search

After the cross-reference is ready, cscope will display this menu:

Find this C symbol:

Find this function definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Press the TAB key repeatedly to move to the desired input field, type the text to
search for, and then press the RETURN key.

Issuing Subsequent Requests

083-701055

If the search is successful, any of these single-character commands can be used:

1-9 Edit the file referenced by the given line number.
SPACE Display next set of matching lines.

+ Display next set of matching lines.

- Display previous set of matching lines.

“e Edit displayed files in order.

> Append the displayed list of lines to a file.

| Pipe all lines to a shell command.

At any time these single-character commands can also be used:
TAB Move to next input field.

RETURN Move to next input field.

“n Move to next input field.

“p Move to previous input field.

' Search with the last text typed.

“b Move to previous input field and search pattern.
~f Move to next input field and search pattern.

“t Toggle ignore/use letter case when searching. (When ignoring letter case,

search for FILE will match File and file.)

Licensed material—property of copyright holder(s) 1 '63

cscope(1) DG/UX 54 cscope(1)

“r Rebuild the cross-reference.

! Start an interactive shell (type ~d to return to cscope)
~1 Redraw the screen.

? Give help information about cscope commands.

~d Exit cscope.

Note: If the first character of the text to be searched for matches one of the above
commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, cscope will prompt for the new text,
and then it will display the lines containing the old text. Select the lines to be
changed with these single-character commands:

1-9 Mark or unmark the line to be changed.

* . Mark or unmark all displayed lines to be changed.
SPACE Display next set of lines.

+ Display next set of lines.

- Display previous set of lines.

a Mark all lines to be changed.

=4 Change the marked lines and exit.

ESCAPE Exit without changing the marked lines.
! Start an interactive shell (type ~d to return to cscope).
-1 Redraw the screen.
? Give help information about cscope commands.

Special Keys
If your terminal has arrow keys that work in vi(1), you can use them to move around
the input fields. The up-arrow key is useful to move to the previous input field
instead of using the TAB key repeatedly. If you have the CLEAR, NEXT, or PREV
keys they will act as the =1, +, and - commands, respectively.

Line-Oriented Interface
The -1 option lets you use cscope where a screen-oriented mterface would not be
useful, e.g., from another screen-oriented program.

cscope will prompt with >> when it is ready for an input line starting with the field
number (counting from 0) immediately followed by the search pattern, e.g., lmain
finds the definition of the main function.

If you just want a single search, instead of the -1 option use the -L and -num pat-
tern options, and you won’t get the >> prompt. :
For -1, cscope outputs the number of reference lines

cscope: 2 lines

For each reference found, cscope outputs a line consisting of the file name, func-
tion name, line number, and line text, separated by spaces, e.g.,

main.c main 161 main(argc, argv)
Note that the editor is not called to display a single reference, unlike the screen-
oriented interface.
You can use the r command to rebuild the database.
cscope will quit when it detects end-of-file, or when the first character of an input
lineis “d or q.
ENVIRONMENT VARIABLES
EDITOR Preferred editor, which defaults to vi(1).

1-64 Licensed material—property of copyright holder(s) 093-701055

escope (1) DG/UX 5.4 ' escope(1)

INCLUDEDIRS Colon-separated list of directories to search for #include files.

HOME Home directory, which is automatically set at login.

SHELL Preferred shell, which defaults to sh(1).

SOURCEDIRS Colon-separated list of directories to search for additional source
files.

TERM Terminal type, which must be a screen terminal.

TERMINFO Terminal information directory full path name. If your terminal is

not in the standard terminfo directory, see curses(3X) and ter-
minfo(4) for how to make your own terminal description.

TMPDIR Temporary file directory, which defaults to /var/tmp.

VIEWER Preferred file display program [such as pg], which overrides EDITOR
(see above).

VPATH A colon-separated list of directories, each of which has the same

directory structure below it. If VPATH is set, cscope searches for
source files in the directories specified; if it is not set, ecscope
searches only in the current directory.
FILES

cscope.files Default files containing -I, -p, and —T options and the list of
source files (overridden by the -i option).

cscope.out Symbol cross-reference file, which is put in the home directory if it

_.cannot be created in the current directory.

ncscope.out Temporary file containing new cross-reference before it replaces the

old cross-reference.

INCDIR Standard directory for #include files (usually /usr/include).
SEE ALSO
The “cscope” chapter in the Programmer’s Guide: ANSI C and Programming Support
Tools.
NOTES

cscope recognizes function definitions of the form:
fname blank (args) white arg_decs white {

where:

fname is the function name .

blank is zero or more spaces or tabs, not including newlines
args is any string that does not contain a " or a newline
white is zero or more spaces, tabs, or newlines

arg decs are zero or more argument declarations (arg_decs may include comments
and white space)

It is not necessary for a function declaration to start at the beginning of a line. The

return type may precede the function name; cscope will still recognize the declara-

tion. Function definitions that deviate from this form will not be recognized by

cscope.

The Function column of the search output for the menu option Find functions

called by this function: input field will only display the first function called

in the line, that is, for this function

e()
{
return (£() + g());
}
the display would be

Functions called by this function: e

File Function Line

093-701055 Licensed material—~property of copyright holderts) . 1 '65

escope(1) DG/UX 5.4 escope(1)

1-66

a.c £ 3 return(f() + g()):
Occasionally, a function definition or call may not be recognized because of braces
inside #if statements. Similarly, the use of a variable may be incorrectly recognized
as a definition.
A typedef name preceding a preprocessor statement will be incorrectly recognized
as a global definition, e.g.,

LDFILE =

$#if AR16WR
Preprocessor statements can also prevent the recognition of a global definition, e.g.,

char flag

$¢ifdef ALLOCATE_STORAGE
= -1

#endif

. ;
A function declaration inside a function is incorrectly recognized as a function call,
e.g.,

£

{
void g();

3
is incorrectly recognized as a call to g().
cscope recognizes C++ classes by looking for the class keyword, but doesn’t recog-
nize that a struct is also a class, so it doesn’t recognize inline member function
definitions in a structure. It also doesn’t expect the class keyword in a typedef, so
it incorrectly recognizes X as a definition in

typedef class X x Y;
It also doesn’t recognize operator function definitions

Bool Feature::operator==(const Feature & other)

{
}

Licensed material—property of copyright holder(s) 093-701055

ctags(1) DG/UX 5.4 ctags(1)

NAME

ctags - create a tags file
SYNOPSIS

ctags [-BFatuwvx] name ...
DESCRIPTION

Ctags makes a tags file for ex(1) from the specified C, Pascal and Fortran sources.
A tags file gives the locations of specified objects (in this case functions and typedefs)
in a group of files. Each line of the tags file contains the object name, the file in
which it is defined, and an address specification for the object definition. Functions
are searched for with a pattern, typedefs with a line number. Specifiers are given in
separate fields on the line, separated by blanks or tabs. Using the tags file, ex can
quickly find these object definitions.

If the —x flag is given, ctags produces a list of object names, the line number and
file name on which each is defined, as well as the text of that line and prints this
information on the standard output. This is a simple index which can be printed out.

If the -v flag is given, an index of a different form is produced on the standard out-
put. This listing contains the function name, file name, and page number (assuming
64 line pages).

Files whose names end in or are assumed to be C source files and are searched for C
routine and macro definitions. Others are first examined to see if they contain any
Pascal or Fortran routine definitions; if not, they are processed again looking for C
definitions.

Other options are:

-a append to tags file.

-w suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is, all references to them
are deleted, and the new values are appended to the file. (Beware: this option is

implemented in a way which is rather slow; it is usually faster to simply rebuild
the tags file.) '

-F use forward searching patterns (/.../) (default).
-B use backward searching patterns (?...7).
-t create tags for typedefs.

The tag main is treated specially in C programs. The tag formed is created by
prepending M to the name of the file, with a trailing .c removed, if any, and leading
pathname components also removed. This makes use of ctags practical in direc-
tories with more than one program.

FILES .
tags output tags file

SEE ALSO
ex(1), vi(1).

BUGS
Recognition of functions, subroutines and procedures for FORTRAN and
Pascal is done in a very simpleminded way. No attempt is made to deal with block
structure; if you have two Pascal procedures in different blocks with the same name,
the procedure will not work.

093-701055 Licensed material~property of copyright hoider(s) 1 '67

ctags(1) DG/UX 5.4 ctags(1)

Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to detect
typedefs. Use of —tx shows only the last line of typedefs. '

1-68 Licensed material—property of copyright holder(s) 093-701055

cti(1) DG/UX 5.4 cti(1)

NAME
ctl - COFF-to-legend translator

SYNOPSIS
ctl [oprion] filename

DESCRIPTION
The ctl command translates the debugging information stored inside an object
module from COFF format to legend format. Normally, ctl is invoked automatically
by the compiler (via an as(1) option); consult the man page for your compiler to see
if it does this.
Ct1 accepts options both on the command line, and from the LEGENDS environ-
ment variable. In cases of conflicting options, command line options override
LEGENDS options, then option precedence is from right to left (with right-most
options having the highest precedence).

Many important ctl options are described by the legend(5) manual page. In addi-
tion, the following options are interpreted by ctl:
=fix-bb
Indicate that the compiler generates a redundant pair of begin-block and end-
block symbols around each function. This option should be used with gcc.
-h"[string]"
Store the given string in the legend. This switch is generally used to indicate
which compiler was used.
-1[language]
Specify which source language was used; possible values are fortran, c,
ansi-c, and pascal. The defaultis c.

-ocs Assume an 88k-OCS-compliant frame format. If this switch is omitted, then it
is assumed that r30 is the frame pointer. This switch is ignored if a
.coffsem or sem|.value] symbol is present in the object module.

-reverse-arrays
Indicate that array dimensions are stored in reverse of the source code order.
This switch is ignored if a .coffsem or sem[.value] symbol is present in the
object module.

-s"[pathname]"
Indicate that parhname is the source file for the object module being
translated. '

FILES
file.o object file
file.lg optional debugging information file

SEE ALSO
as (1), cc(1), gee(l), ghee(l), gh£77(1), ghpe(l), mxdb(l), legend(s).

093-701055 Licensed material—property of copyright hoiderts) 1 ’69

ctrace(1) DG/UX 5.4 ctrace(1)

NAME

ctrace - trace a C program to debug it

SYNOPSIS

ctrace [oprions] [file]

DESCRIPTION

1-70

Ctrace lets you follow the execution of a C program, statement by statement. The
effect is similar to executing a shell procedure with the -x option. Ctrace reads
the C program in file (or from standard input if you omit file), inserts statements to
print the text of each executable statement and the values of all variables referenced
or modified, and writes the modified program to the standard output. You must put
the output of ctrace into a temporary file because the cc(l) command does not
allow the use of a pipe. You then compile and execute this file.

As each statement in the program executes, it is listed at the terminal, followed by
the name and value of any variables referenced or modified in the statement, followed
by any output from the statement. Loops in the trace output are detected and tracing
is stopped until the loop is exited or a different sequence of statements within the
loop is executed. A warning message is printed every 1000 times through the loop to
help you detect infinite loops. The trace output goes to the standard output so you
can put it into a file for examination with an editor or the bfs(l) or tail(l) com-
mands.

Commonly used options are:

-£ functions Trace only these functions.
-v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long and pointer
variables are always printed as signed integers. Pointers to character arrays are also
printed as strings if appropriate. Char, short, and int variables are also printed
as signed integers and, if appropriate, as characters. Double variables are printed
as floating point numbers in scientific notation. The oprions that print variables in
additional formats are:

-0 Octal
-x Hexadecimal
-u Unsigned

-e Floating point
Other options for special circumstances are:

-1n Check n consecutively executed statements for looping trace output, instead
of the default of 20. Use 0 to get all the trace output from loops.

-s Suppress redundant trace output from simple assignment statements and
string copy function calls. This option can hide a bug caused by using the =
operator in place of the == operator.

-t n Trace n variables per statement instead of the default of 10 (the maximum
number is 20). The DIAGNOSTICS section below explains when to use this
option.

-P Run the C preprocessor on the input before tracing it. You can also use the
-D, -I,and -U cc(1) preprocessor options.

The options that tailor the run-time trace package for the traced program to run in a
non-UNIX system environment are:

Licensed material—property of copyright holder(s) 093-701055

ctrace(1) DG/UX 5.4 ' ctrace(1)

-p 'string’
Change the trace print function from the default of ’printf(’. For example,
*fprintf(stderr,” would send the trace to the standard error output.

-rf Use file f in place of the runtime.c trace function package. This lets you
change the entire print function, instead of just the name and leading argu-
ments (see the —p option).

-Qarg If arg is y, identification information about ctrace will be added to the out-
put files. This can be useful for software administration. Giving n for arg
exlicitly asks for no such information, which is the default behavior.

-v Prints version information on the standard error.
EXAMPLES
If the file 1lc.c contains the following C program:

1 #include <stdio.h>

2 main() /* count lines in input */
34

4 int ¢, ni;

5

6 nl =0;

7 ‘while ((c = getchar()) != EOF)

8 if (c =’\n’)

9 ++nl;

10 printf("%d\n", nl);

1}

and you enter the following commands and test data:

ccle.c
a.out

1
(ctrl-d)

the program will be compiled and executed.
The output of the program will be the number 2, which is not correct because there
is only one line in the test data. The error in this program is common, but subtle.
If you invoke ctrace with these commands:

ctrace lc.c >temp.c

cc temp.c
a.out

the output will be:

2 main()
6 nl = 0;
/* nl == 0 */
7 while ((c = getchar()) != EOF)
The program is now waiting for input. If you enter the same test data as before, the
output will be:

093-701055 Uicensed material—property of copyright holder(s) ’ 1-71

ctrace(1) DG/UX 5.4 ctrace(1)

/*c=490r’1 */

8 if (c ="\n’)
/*c==10 or '\n’ */
9 ++nl;
/*nl==1°%/

7 while ((c = getchar()) != EOF)
/*c==100r"\n’ */

8 if (c = "\n’)
/*c==100or’\n’ */
9 ++nl;
/*nl==2*%/

7 while ((c = getchar()) != EOF)
If you now enter an end of file character (ctrl-d), the final output will be:

/*c==-1%
10 printf("%d\n", nl);
/*nl==2%*/2
return
Note the program output printed at the end of the trace line for the nl variable.

Also note the return comment added by ctrace at the end of the trace output.
This comment shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value 1 in line 7, but ‘\n’ in
line 8. Once your attention is drawn to the if statement in line 8, you will probably
realize that you used the assignment operator (=) in place of the equal operator (==).
You can easily miss this error during code reading.

Execution-time Trace Control

1-72

The default operation for ctrace is to trace the entire program file, unless vou use
the -f or —v options to trace specific functions. The default does not give you state-
ment by statement control of the tracing, nor does it let you turn the tracing off and
on when executing the traced program.

You can do both of these by adding ctroff() and ctron() function calls to your
program to turn the tracing off and on, respectively, at execution time. Thus, you
can code arbitrarily complex criteria for trace control with if statements, and you
can even conditionally include this code because ctrace defines the CTRACE
preprocessor variable. For example:

#ifdef CTRACE
if (c =="P && i > 1000)
ctron();
#endif

These functions can also be called from sdb(1) if they are compiled with the -g
option. For example, to trace all but lines 7 to 10 in the main function, enter:

sdb a.out
main:7b ctroff()
main:1l1b ctron()
r

You can also turn the trace off and on by setting the static variable tr_ct_ to 0 and
1, respectively.

Licensed material—property of copyright holder(s) 093-701055

ctrace(1) DG/UX 5.4 ctrace(1)

FILES
runtime.c run-time trace package

DIAGNOSTICS
warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out of
tree space; simplify expression” error. Use the -t option to increase this
number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are using tabs
to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor statements in the middle
of a C statement, or by a semicolon at the end of a #define preprocessor
statement.

if ... else if’ sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any appropri-
ate -D, -I, and -U preprocessor options. If you still get the error message,
check the Warnings section below.

SEE ALSO
signal(2), ctype(3C), ££flush(3S), longjmp(3C), printf(3S), setjmp(3C),
string(3C).

NOTES
You will get a ctrace syntax error if you omit the semicolon at the end of the last
element declaration in a structure or union, just before the right brace (}). This is
optional in some C compilers.

Defining a function with the same name as a system function may cause a syntax error
if the number of arguments is changed. Just use a different name.

Ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are
#defined constants. Declaring any of these to be variables, e.g., "int EOF;", will
cause a syntax error.

Pointer values are always treated as pointers to character strings.

Ctrace does not know about the components of aggregates like structures, unions,
and arrays. It cannot choose a format to print all the components of an aggregate
when an assignment is made to the entire aggregate. Ctrace may choose to print
the address of an aggregate or use the wrong format (e.g., 3.149050e-311 for a
structure with two integer members) when printing the value of an aggregate.

The loop trace output elimination is done separately for each file of a multi-file pro-
gram. Separate output elimination can result in functions called from a loop still
being traced, or the elimination of trace output from one function in a file until
another in the same file is called.

093-701055 Licensed materiai—~property of copyright holderts) 1 '73

cxref(1) DG/UX 5.4 cxref(1)

NAME

cxref - generate C program cross-reference
SYNOPSIS

cxref [options) files
DESCRIPTION

Cxxef analyzes a collection of C files and builds a cross-reference table. Cxref
uses a special version of cc to include #define’d information in its symbol table. It
generates a list of all symbols (auto, static, and global) in each individual file, or, with
the -c option, in combination. The table includes four fields: NAME, FILE,
FUNCTION, and LINE. The line numbers appearing in the LINE field also show
reference marks as appropriate. The reference marks include:

assignment =
declaration -
definition *

If no reference marks appear, you can assume a general reference.

Options
Cxref interprets the =D, —I, -U options in the same manner that cc does. In addi-
tion, cxref interprets the following options:

-c Combine the source files into a single report. Without the -c option,
cxref generates a separate report for each file on the command line.

-o file Direct output to file.
-s Operates silently; does not print input file names.
-t Format listing for 80-column width.

-wnum Width option that formats output no wider than num (decimal) columns.
This option will default to 80 if num is not specified or is less than 51. These
options are accepted only in an ELF environment:

-d Disables printing declarations, making the report easier to read.

-1 Does not print local variables. Prints only global and file scope statistics.

-C Runs only the first pass of cxref, creating a .cx file that can later be
passed to cxref. This is similar to the -c option of cc or lint.

-F Prints the full path of the referenced file names.

-Leols Modifies the number of columns in the LINE field. If you do not specify a
number, cxref defaults to five columns.

-V Prints version information on the standard error.

-Viname, file, function, line
Set the width of each field (name, file, function, and line are non-negative
integers). The default widths are:

Field Characters

NAME 15

FILE 13

FUNCTION 15

LINE 20 (4 per column)

1-74 Licensed material—property of copyright holder(s) 093-701055

exref(1) DG/UX 5.4 cxref(1)

EXAMPLE
a.c
1 main()
2 {
3 int i;
4 extern char c;
5
6 i=65;
7 c=(char)i;
8)

Resulting cross-reference table:

NAME FILE FUNCTION LINE

c a.c -— 4- 7=

i a.c main 3= 6= 7
main a.c -— 2%

u3b2 predefined --- 0x

unix predefined --- 0x

FILES '
TMPDIR/tcx. * temporary files
TMPDIR/cx. « temporary files

LIBDIR/xxef accessed by cxref
LIBDIR usually /usr/lib
TMPDIR usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam in tmpnam(3S)].
DIAGNOSTICS
Error messages usually mean you cannot compile the files.
SEE ALSO

ce(1), lint(1).

093-701055 Licensed material—property of copyright holder(s) 1 '75

dbx(1) DG/UX 5.4 dbx(1)
NAME
dbx - source level debugger
SYNOPSIS
dbx [-r] [~s style] [-i] [-1 dir] [objfile [corefile]]
DESCRIPTION

The dbx utility is a tool for source-level debugging and execution of programs under
the DG/UX system. Objfile is an executable file~one that has been compiled and
linked. The compiler must use the appropriate flag(s) to produce symbol information
in the object file. The machine-level facilities of dbx can be used on any program
not linked with the -s option.

If no objfile is specified, dbx looks for a file named a.out in the current directory.

When a corefile is specified, dbx can be used to examine the state of the program
when it faulted.

If the file .dbxinit exists in the current directory, dbx executes the debugger com-
mands in it. Dbx also checks for .dbxinit in the user’s home directory if there is
not one in the current directory.

Options are:

-r Execute objfile inmediately. The object filename must be supplied.
Parameters follow the object filename. When the program terminates, the
reason for termination is reported and the user can enter the debugger or
let the program fault. Dbx reads from /dev/tty when -z is specified
and standard input is not a terminal.

-s style Inform dbx of the style of the symbol names in the executable. By con-
vention, style is the compile command that produced the executable, e.g.
cc, gee, ghee, or gh£77. The -s option is required only when debug-
ging a COFF executable whose of debugging information differs in form
from that produced by cc, the default style.

-i Force dbx to act as though standard input is a terminal.

-1 dir Add dir to the list of directories that dbx searches when looking for a
source file. Normally dbx looks for source files in the current directory
and in the directory where objfile is located. The directory search path
can also be set with the use command.

- Unless -r is specified, dbx just prompts and waits for 2 command.

Expressions and Scope

1-76

Dbx evaluates an expression according to the scope that is in effect at the time the
expression is evaluated. This scope determines which variables are accessible. For
example, the command

stop at "foo.c":5 if a == 17
contains the expression "a == 17", which will be evaluated when line 5 of the file
foo.c is reached. At that time, the variable a must be either a local variable of the

current function or a global variable. The expression "a == 17" must be a legal C
language expression.

Licensed material—property of copyright holderts) 093-701055

dbx(1)

DG/UX 5.4 ' dbx(1)

Execution and Tracing Commands
run [args) [< filename] [>|>> filename)

093-701055

Execute the objfile specified on the dbx command line or the one specified
with the most recent debug command. Args are passed as command line
arguments. Input and output can be redirected using the symbols <, >, and
>>. Other characters in args are passed through unchanged. If no arguments
are specified, the argument list from the last run command (if any) is used.
If objfile has been written since the last time the symbolic information was
read in, dbx reads the new information before beginning execution.

rerun [args] [< filename] [>|>> filename]

Except in the case where no arguments are specified, rerun is identical to
run. When no arguments are specified, rerun runs the program with no
arguments at all.

debug objfile [corefile]

kill

Stop debugging the current program (if any), and begin debugging the pro-
gram found in objfile with the given corefile. This process avoids the over-
head required to reinitialize dbx.

Stop debugging the current process, Kill the process, but leave dbx ready to
debug another.

trace source-line-number [if condition)

trace @abel[offset] [if condirion)

trace procedure/function|offset] [1£ condition]

trace expression at source-line-number [if condition]
trace variable [in procedure/funcrion] [if condition]

Print tracing information when the program is executed. A number is associ-
ated with the trace command, which may later be used to turn the tracing
off (see the delete and status commands).

The first argument describes what is to be traced. If it specifies a source
statement (by line number, label, or offset from a procedure or function), the
line or label is printed immediately before being executed. An offsetis + or
- some number of lines.

If the argument is a simple procedure or function name, every time it is called
information is printed telling what routine called it, from what source line it
was called, and what parameters were passed to it.

If the argument is an expression with an at clause, the value of the expres-
sion is printed whenever the identified source line is reached.

If the argument is a variable, the name and value of the variable are printed
whenever it changes. The clause in procedure/function restricts tracing
information to be printed only while executing inside the specified procedure
or function.

Source line numbers and function names may be qualified by a filename and
following colon, as in "mumble.c":17 (quotes are optional).

Condition is a boolean expression and is evaluated before printing the tracing
information; if it is false, the information is not printed.

Licensed material—property of copyright holderts) . 1 '77

dbx(1)

1-78

DG/UX 5.4 dbx(1)

stop at source-line-number [if condition]

stop @abel[offset] [i£ condition)

stop in procedure/function[offset] [if condition]

stop variable [if condition)
Stop execution when the given line or label is reached, the procedure or func-
tion is called, or the variable is changed.

status [filename]
Print out the currently active trace and stop commands.

commands [command-number]
Attach a series of commands to the specified trace or stop command (or
to the last one that was set) to be performed whenever the trace or stop is
taken. The commands, which may be any debugger commands including
those that resume or redirect execution, are entered on successive lines and
delimited by the end command on a separate line. You may use an
if/then/else construct to specify alternate actions based on a conditional
expression.

delete command-number [,command-number...]
Remove the traces or stops corresponding to the given numbers. The
numbers associated with traces and stops are printed by the status com-
mand. Delete all removes all traces and stops.

clear [source-line-number]

clear @abel

clear procedure/function

clear variable
Delete all traces or stops set on the given line-number, label, function, or
variable. Clear without argument clears all traces or stops on the line at
which execution is stopped.

catch [signal [,signal...]]

ignore [signal [,signal...]]
Start or stop trapping the specified signals before they are sent to the pro-
gram; a signal may be identified by its number or its name. This command
is useful when a program being debugged handles signals such as interrupts.
Initially, all signals are trapped except SIGCONT, SIGCLD, SIGALRM, and
SIGKILL. Without arguments, catch and ignore display a list of signals
currently trapped or ignored.

cont [n]
Continue execution. If n is specified, ignore the current breakpoint until it
has been reached this number of times. Execution cannot be continued if the
process has called the standard procedure ‘exit’. Dbx tries to keep the pro-
cess from exiting, thereby letting the user examine the program state.

position source-line-number

position procedure/function[offset]

position @abel[offset]
Set the current instruction pointer to the indicated position. Execution does
not resume until directed by the user. Positioning to a different stack frame
may have unpredictable results.

Licensed material—property of copyright holder(s) 093-701055

dbx(1)

DG/UX 5.4 dbx(1)

jump source-line-number
jump procedure/function|offset]

jump @abel|[offset]
Continue execution from the given source line, procedure, or label.

finish
Continue execution until the current frame is exited.

step [n]
Execute one or more source lines.

next [n]
Execute one or more source lines, but do not follow procedure or function
calls. The difference between next and step is that if a line contains a call
to a procedure or function, step stops at the beginning of that block,
whereas next continues execution to the next immediate source line.

Displaying and Naming Data

print[/format] expression [, expression ...]
Print out the values of the expressions. The optional formar is one of x (hex-
adecimal), d (signed decimal), u (unsigned decimal), o (octal), c (charac-
ter), or b (binary). A valid expression may refer to variables in the current
procedure; it may also invoke any procedure or function in the program.

call subroutine [(arg [,arg...])]
Call a FORTRAN 77 subroutine.

whatis name
Print the declaration of the given name. In debugging COFF executables,
longs are reported as ints, and tags are reported as typedefs.

assign variable = expression
set variable = expression
Assign the value of the expression to the variable.

where [n] :
Display the call/return stack. If n is specified and n < 0, show the bottom-
most n frames of the stack. If n is specified and n > 0, show the topmost n

frames of the stack.

up [n] Move up the call stack n levels in the direction of main. If n is not specified,
the default is 1. This command allows you to examine the local variables in
functions other than the current one.

down [n]
Move down the call stack n levels towards the current stopping point. If n is
not specified, the default is 1.

describe [procedure/function)
Describe the current or specified procedure or function, including its name,

address, and source coordinates.

describe source-line-number

describe @abel
Describe the given source line or label, including the associated starting
address and the name of the program block.

093-701055 Licensed materiai~—property of copyright holder(s) 1 '79

dbx(1) DG/UX 5.4 dbx(1)

args Display the arguments to the current procedure or function.

dunp [> filename)
Print the names and values of all local variables.

echo string
Print a constant string; C escape sequences must be used to print newlines
and leading or trailing whitespace.

Accessing Source Files

edit [filename]) ,

edit procedure/function-name
Invoke an editor on filename or the current source file if none is specified. If
a procedure or function name is specified, the editor is invoked on the file
that contains it. The default editor depends on the installation. To override
the default, set the environment variable EDITOR to the name of the desired
editor.

file [filename)
Change the current source filename to filename. If you omit filename, the
current source filename is printed.

func [procedure/function)
Change the current function. If no function is specified, print the name of
current function. Changing the current function implicitly changes the current
source file to the one that contains the function.

list [[filename:)linespec [, linespec]]
List the lines in the current (or specified) source file from the first line speci-
fied through the second, or print a window of lines surrounding a single line.
If no lines are specified, list 10 more lines. A linespec may be a source line
number, label, or function name with optional offset. It may also be a simple
offset (+ or - some number), which specifies an offset from the last line
printed, or from the first of two linespecs in 2 1ist command. $ used asa
line number means the last line in the file.

pwd Print dbx’s notion of the working directory.

cd directory
Change dbx’s working directory. The change does not take effect for the
program being debugged until the next time it is started.

use directory-list
Set the list of directories to be searched when dbx looks for source files.

Machine-level Commands

address ,address/ [mode])

[address) / [n) [mode]
Print the contents of memory starting at the first address and continuing up to
the second address or until n items are printed. If no address is specified, the
address following the one printed most recently is used. Mode specifies how
memory is to be printed; if mode is omitted, the previous mode specified is
used. The initial mode is H. The following modes are supported:

1-80 Licensed material—property of copyright holderts) 093-701055

dbx(1)

aHn O XX OO0 U

DG/UX 54 dbx(1)

a machine instruction

a short word in decimal

a long word in decimal

a short word in octal

a long word in octal

a short word in hexadecimal

a long word in hexadecimal
two bytes in octal

two bytes as characters

a string of characters terminated by a null byte
a single precision real number
a double precision real number

Symbolic addresses are specified by preceding the name with an &. Registers are
referred to with the following symbolic names:

$ro zero
$rl subroutine return pointer
$r2-$r9 called procedure parameter registers
$rl0-$xrl3 called procedure temporary registers
$r14-$r25 calling procedure reserved registers
$r26-$r29 linker
$r30 frame pointer
$r31 stack pointer

fp frame pointer (register 30)
$sp stack pointer (register 31)
Sfpsr floating-point status register
$fper floating-point control register
$psr processor status register
$sxip shadow execute instruction pointer
$snip shadow next instruction pointer
$sfip shadow fetched instruction pointer
$cfa canonical frame address pseudo-register
$pc program counter pseudo-register

Addresses may be expressions made up of other addresses and the operators +, —,
and indirection (unary *).

stepi [n]

nexti [n]

Single step as in step or next, but do a single instruction rather than source line.
tracei [address) [if condition)

tracei [variable] [at address] [i£ condition)

stopi [at] [address) [if condition)

Turn on tracing or set a stop using a machine instruction address.

position address
Set the current instruction pointer to the specified address.

083-701055 Licensed material—property of copyright hoider(s) 1 '81

dbx(1) DG/UX 5.4 dbx(1)

Miscellaneous Commands

sh [command-line]
Pass the command line to the shell for execution. Without argument, sh
suspends the debugging session and enters a shell. The SHELL environment
variable determines which shell is used.

define macro-name
Define a macro with the given name; the body of the macro is entered on suc-
cessive lines and delimited by the end command on a separate line. Argu-
ments to the macro are denoted by £#1, £2, and so on.

alias [new-command-name [character-sequence]}
Respond to new-command-name as though it were character-sequence. Argu-
ments to the alias are permitted, and are denoted by #1, #2, and so on.
Invoked with new-command-name only, alias prints the character-sequence
associated with new-command-name. Invoked without arguments, alias
prints a list of currently defined aliases.

save filename
Save the state of the debugging session in the specified file (if file exists, it is
first deleted). The state comprises stop and trace commands (with any
associated commands), user-defined macros, and aliases.

restore filename
Restore the debugger state saved in the specified file.

help [command)
Print out a summary of dbx commands, or a synopsis of the given command.

source filename
Read dbx commands from the given filename. Especially useful when the
filename has been created by redirecting 2 status command from an earlier
debugging session.

style stylename .
Inform dbx of the style of the symbol names in the executable to be
debugged. By convention, stylename is the compile command originally used
to produce the executable: currently valid srylenames are cc, gee, ghee,
and ghf77. The default style is cc.

When debugging ELF executables, the style command serves no purpose,
and is ignored.

quit Exit from dbx.

FILES
a.out Object file
.dbxinit Initial commands

SEE ALSO
cc(1), gee(l), ghee(l), ghf77(1).

NOTES
Non-local goto commands can cause some trace/stops to be missed.

1-82 Licensed materiai—property of copyright holderts) 093-701055

delta(1)

NAME

DG/UX 5.4 ' delta(1)

delta - make a delta (change) to an SCCS file

SYNOPSIS

delta [-xSID] [~s] [-n] [~glist] [-m[mrlist]) [-y[comment]] [-p] files

DESCRIPTION

093-701055

Delta permanently introduces into the named SCCS file changes that were made to
the file retrieved by get(1) (called the g-file, or generated file).

Delta adds a change to each named SCCS file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file, except
that non-SCCS files (last component of the path name does not begin with s.) and
unreadable files are ignored. If a name of - is given, the standard input is read (see
WARNINGS); each line of the standard input is taken to be the name of an SCCS file
to be processed.

Delta may issue prompts on the standard output, depending on options specified and
flags (see admin(1)) that may be present in the SCCS file (see -m and -y options
below).

Options apply independently to each named file.

-xSID Uniquely identifies which delta is to be made to the SCCS file.
» This option is necessary only if two or more outstanding gets

for editing (get -e) on the same SCCS file were done by the
same person (login name). The SID value specified with the
-r option can be either the SID specified on the get com-
mand line or the SID to be made as reported by the get com-
mand (see get(1)). A diagnostic results if the specified SID is
ambiguous, or, if necessary and omitted on the command line.

-s Suppresses the issue, on the standard output, of the created
deltas SID, as well as the number of lines inserted, deleted and
unchanged in the SCCS file.

-n Retains the edited g-file (normally removed at completion of
delta processing).
-glist Specifies a list (see get(1) for the definition of list) of deltas to

be ignored when the file is accessed at the change level (SID)
created by this delta.

-m[mrlist) If the SCCS file has the v flag set (see admin(1)) then a
Modification Request (MR) number musr be supplied as the rea-
son for creating the new delta.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the stan-
dard input is read; if the standard input is not a terminal, no
prompt is issued. The MrRs? prompt always precedes the com-
ments? prompt (see -y option).
MRs in a list are separated by blanks and/or tab characters. An unescaped new-
line character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to
be the name of a program (or shell procedure) that will validate
the MR numbers. If a non-zero exit status is returned from the
MR number validation program, delta terminates (assumes

Licensed material—property of copyright holder(s) : 1-83

delta(1) DG/UX 5.4 delta(1)

that the MR numbers were not all valid).

-y[comment] Arbitrary text that describes the reason for making the delta.
A null string is considered a valid comment.

If -y is not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before
the standard input is read; if the standard input is not a termi-
nal, no prompt is issued. An unescaped new-line character ter-
minates the comment text.

-p Prints (on the standard output) the SCCS file differences before
and after the delta is applied in a diff(1) format.

EXAMPLES
delta /work/archives/s.filel

This command permanently installs any changes done to ’filel’ (the g-file), which
must be in the current working directory, into the SCCS file ’s.file1’ in the directory
/work/archives.

delta -ytest -n -p s.file2

This command permanently installs any changes done to ’file2’ (the g-file) into the
SCCS file ’s.file2’, including adding the description found in ’test’ as the reason for
making the change, as well as not removing the file ’file2’ from the current directory.
The -p will list the before and after differences of the SCCS file.

FILES
All files of the form ?-file are explained in Programmer’s Guide: ANSI C and Pro-
gramming Support Tools The naming convention for these files is also described

there.
g-file Existed before the execution of delta; removed after completion of delza.
p-file Existed before the execution of delra; may exist after completion of delra.
g-file Created during the execution of delta; removed after completion of delta.
x-file Created during the execution of delta; renamed to SCCS file after com-
pletion of delza.
z-file Created during the execution of delta; removed during the execution of
delta.
d-file Created during the execution of delta; removed after completion of delra.
/oin/bdiff Program to compute differences between the "gotten” file and the g-file.
DIAGNOSTICS
Use help(1) for explanations.
SEE ALSO

admin(1l), bdiff(1), cde(l), comb(l), get(l), help(l), prs(l), rmdel(l).
sccsfile(4) in the Programmer’s Reference for the DG/UX System (Volume 2)
"Source Code Control System" in Programmer’s Guide: ANSI C and Programming
Support Tools.

NOTES
Lines beginning with an soH ASCI character (binary 001) cannot be placed in the
SCCS file unless the soH is escaped. This character has special meaning to SCCS
(see sccsfile(4) (5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, use multiple get/delta

1-84 Licensed materiai—property of copyright holder(s) 093-701055

delta(1) DG/UX 5.4 delta(1)

sequences.

If the standard input (-) is specified on the delra command line, the -m (if necessary)
and -y options must also be present. Omission of these options causes an error to
occur.

Comments are limited to text strings of at most 512 characters.

093-701055 Licensed materiai—property of copyright holder(s) 1-85

dis(1) DG/UX 5.4 dis(1)

NAME
dis - object code disassembler

SYNOPSIS
dis [-o] [-V] [-4 sec] [-D sec] [-F function] [-t sec) [-1 string] file ...

DESCRIPTION
Dis produces an assembly language listing of file, which may be an object file or, in
an ELF environment, an archive of object files. The listing includes assembly state-
ments and a hexadecimal representation of the binary that produced those statements.

In an ELF environment, dis accepts the following options, which may be specified

in any order.

-d sec Disassemble the named section as data, printing the offset of the data
from the beginning of the section.

-D sec Disassemble the named secticn as data, printing the actual address of
the data.

~F function Disassemble only the named function in each object file specified on the
command line. The ~F option may be specified multiple times on the
command line.

-1 string Disassemble the archive file specified by string. For example, one
would issue the command dis -1 x -1 z to disassemble libx.a and
1libz.a, which are assumed to be in LIBDIR.

-0 Print numbers in octal. The default is hexadecimal.

-t sec Disassemble the named section as text.

-V Print, on standard error, the version number of the disassembler being
executed.

If the -4, -D or -t options are specified, only those named sections from each
user-supplied file name will be disassembled. Otherwise, all sections containing text
will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as (5],
indicates that the break-pointable line number starts with the following instruction.
These line numbers will be printed only if the file was compiled with additional
debugging information [e.g., the —g option of cc]. An expression such as <40> in
the operand field or in the symbolic disassembly, following a relative displacement for
control transfer instructions, is the computed address within the section to which con-
trol will be transferred. A function name will appear in the first column, followed by
() if the object file contains a symbol table.

FILES
LIBDIR usually fusr/lib

DIAGNOSTICS
The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

SEE ALSO
as(1), cc(l), 14(1), a.out(4).

NOTES
At this time, symbolic disassembly does not take advantage of additional information
available if the file is compiled with the —g option.

1-86 Licensed materia—property of copyright holder(s) 093-701055

tspihit(1) DG/UX 5.4 tspiit(1)

NAME

fsplit - split f77 or ratfor files
SYNOPSIS

fsplit options files
DESCRIPTION

Fsplit splits the named file(s) into separate files, with one procedure per file. A
procedure includes blockdata, function, main, program, and subroutine program seg-
ments. Procedure X is put in file X. £, or X. r depending on the language option
chosen, with the following exceptions: main is put in the file MAIN. [£r] and
unnamed blockdata segments in the files blockdaraN. [£fr] where N is a unique
integer value for each file.

The following options pertain:
-£ (default) Input files are f77.

-r Input files are ratfor.
-s Strip £77 input lines to 72 or fewer characters with trailing blanks removed.
SEE ALSO

esplit(l), £77(1), ratfox(l), split(l).

093-701055 Licensed materiai—property of copyright holder(s) 1 ‘87

gcce(1)

NAME

DG/UX 5.4 gee(1)

gcc = GNU C language compiler

SYNOPSIS

gcc [oprion] ... file ...

DESCRIPTION

The GNU C compiler uses a command syntax much like the Unix C compiler. The
gcc program accepts options and file names as operands. Multiple single-letter
options may not be grouped: ‘~-dr’ is very different from ‘-d -r’. When you invoke
gce, it normally does preprocessing, compilation, assembly and linking. File names
that end in .c are taken as C source to be preprocessed and compiled; compiler out-
put files plus any input files with names ending in .s are assembled; then the result-
ing object files, plus any other input files, are linked together to produce an execut-
able. Command options allow you to stop this process at an intermediate stage. For
example, the —c option says not to run the link editor. Then the output consists of
object files output by the assembler. Other command options are passed on to one
stage. Some options control the preprocessor and others the compiler itself.

Some options are accepted only by one or the other version of GNU C. Such
options are indicated below by "(V1)" or "(V2)".

OPTIONS

Here are the options to control the overall compilation process, including those that
say whether to link, whether to assemble, and so on.

=V version
The argument version specifies which version of GNU C to run. This is useful
when multiple versions are installed. For example, version might be 2, meaning
to run GNU C version 2.

-c Compile or assemble the source files, but do not link. Produce object files with
pames made by replacing .c or .s with .o at the end of the input file names.
Do nothing at all for object files specified as input.

-S Compile into assembler code but do not assemble. The assembler output file
name is made by replacing .c with .s at the end of the input file name. Do
nothing at all for assembler source files or object files specified as input.

-E Run only the C preprocessor. Preprocess all the C source files specified and out-
put the results to standard output.

-o file
Place output in file file. This applies to any output being produced whether it be
an executable file, an object file, an assembler file or preprocessed C code. If
-o is not specified, the default is to put an executable file in a.out, the object
file source. c in source .o, an assembler file in source.s, and preprocessed C on
standard output.

-v Compiler driver program prints the commands it executes as it runs the prepro-
cessor, compiler proper, assembler and link editor. Some of these are directed to
print their own version numbers.

—pipe
Run preprocessor, compiler, and assembler in parallel, connected via pipelines.
You should not use this option if your system does not have enough physical

Licensed material—property of copyright hoider(s) 093-701055

gee(1)

093-7010585

DG/UX 5.4 ‘ gee(1)

memory to support all four processes simultaneously.
Oprions Controlling Language
These options determine the dialect of C that the compiler accepts:

-ansi
Support all ANSI standard C programs. This turns off certain features of GNU
C that are incompatible with ANSI C, such as the asm, inline and typeof
keywords, and predefined macros such as unix that identify the type of system
you are using. It also enables the rarely-used ANSI trigraph feature.

The -ansi option does not cause non-ANSI programs to be rejected gratui-
tously. For that, —pedantic is required in addition to -ansi. The macro
__STRICT_ANSI__is predefined when the —ansi option is used. Some header
files may notice this macro and refrain from declaring certain functions or defin-
" ing certain macros that the ANSI standard doesn’t call for; this is to avoid
interfering with any programs that might use these names for other things.

~fno-asm
Do not recognize asm, inline or typeof as a keyword. These words may
then be used as identifiers. -ansi implies ~fno-asm.

-trigraphs .
Support ANSI C trigraphs. The -ansi option also has this effect.

—traditional
Attempt to support some aspects of traditional C compilers. Specifically:

+ All extern declarations take effect globally even if they are written inside a
function definition. This includes implicit declarations of functions.

+ The kevwords typeof, inline, signed, const and volatile are not
recognized.

+ Comparisons between pointers and integers are always allowed.

+ Integer types unsigned short and unsigned char promote to unsigned
int. ‘

+ Out-of-range floating point literals are not an error.

+ All automatic variables not declared register are preserved by longjmp.
Ordinarily, GNU C follows ANSI C: automatic variables not declared vola-
tile may be clobbered.

+ In the preprocessor, comments convert to nothing at all, rather than to a space.
This allows traditional token concatenation.

+ In the preprocessor, macro arguments are recognized within string constants in a
macro definition (and their values are stringified, though without additional
quote marks, when they appear in such a context). The preprocessor also con-
siders a string constant to end at a newline.

+ The predefined macro __STDC__ is not defined when you use -traditional,
but __GNUC__ is (since the GNU extensions which __GNUC__ indicates are not
affected by -traditional). If you need to write header files that work dif-
ferently depending on whether —traditional is in use, by testing both of these
predefined macros you can distinguish four situations: GNU C, traditional GNU
C, other ANSI C compilers, and other old C compilers.

Licensed material—property of copyright holdert(s) - 1 '89

gee(1)

1-90

DG/UX 5.4 gee(1)

+ String literals are put into the writable data section instead of into read-only text.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void.

-funsigned-char
Let the type char be unsigned, like unsigned char. The type char is always
a distinct type from either signed char or unsigned char, even though its
behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

-fwritable-strings
Store string constants in the writable data segment and represent identical strings
- distinctly (don’t share storage). This is for compatibility with old programs which
assume they can write into string constants.

Options to Request or Suppress Warnings
-w Inhibit all warning messages.

-pedantic
Issue all the warnings demanded by strict ANSI standard C; reject all programs
that use forbidden extensions. Valid ANSI standard C programs should compile
properly with or without this option (though a rare few will require -arsi).
However, without this option, certain GNU extensions and traditional C features
are supported as well. With this option, they are rejected.

-pedantic-errors (V2) _
Like -pedantic, except that errors are produced rather than warnings. This
option is supported only in Version 2 of GNU C.

-w Print extra warning messages for these events:

*+ An automatic variable is used without first being initialized. These warnings are
possible only in optimizing compilation, because they require data flow informa-
tion that is computed only when optimizing. They occur only for variables that
are candidates for register allocation. Therefore, they do not occur for a vari-
able that is declared volatile, or whose address is taken, or whose size is
other than 1, 2, 4, or 8 bytes. Also, they do not occur for structures, unions or
arrays, even when they are in registers. Note that there may be no warning
about a variable that is used only to compute a value that itself is never used,
because such computations may be deleted by the flow analysis pass before the
warnings are printed. These warnings are made optional because GNU C is not
smart enough to see all the reasons why the code might be correct despite
appearing to have an error.

+ A nonvolatile automatic variable might be changed by a call to longjmp. These
warnings as well are possible only in optimizing compilation. The compiler sees
only the calls to setjmp. It cannot know where longjmp will be called; in
fact, a signal handler could call it at any point in the code. As a result, you may
get a warning even when there is in fact no problem because longjmp cannot in
fact be called at the place which would cause a problem.

+ A function can return either with or without a value. (Falling off the end of the
function body is considered returning without a value.) Spurious warnings can
occur because GNU C does not realize that certain functions (including abort
and longjmp) will never return.

Licensed material=property of copyright hoider(s) 093-701055

gee(1)

093-701055

DG/UX 5.4 gee(1)

s+ An expression-statement contains no side effects.
-Wimplicit
Warn whenever a function is implicitly declared.
-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int.

Also warn about any return statement with no return-value in a function whose
return-type is not void.

—Wunused
Warn whenever a local variable is unused aside from its declaration, whenever a
function is declared static but never defined, and whenever a statement computes
a result that is explicitly not used.

-Wswitch
Warn whenever a switch statement has an index of enumeral type and lacks a case
for one or more of the named codes of that enumeration. (The presence of a
default label prevents this warning.) Outside the enumeration range, case labels
also provoke warnings when this option is used.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a comment.

-Wtrigraphs
Warn if any trigraphs are encountered (assuming they are enabled).

-Wformat (V2)
Check calls to printf and scanf, etc., to make sure that the arguments sup-
plied have types appropriate to the format string specified.

-Wall
All of the above —W options combined.

-Wtraditional (V2)
Warn about certain constructs that behave differently in traditional and ANSI C.

-Wshadow)) . ’
Warn whenever a local variable shadows another local variable.

-Wid-clash-len
Warn whengver two distinct identifiers match in the first len characters.

-Wpointer-arith
Warn about anything that depends on the "size of" a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wcast—-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char = is cast to an ordinary char =.

-Wecast-align (V2)
Warn whenever a pointer is cast such that the required alignment of the target is
increased. For example, warn if a2 char *iscasttoan int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
Give string constants the type const char [length] so that copying the address
of one into a non-const char * pointer will get a warning. These warnings will
help you find at compile time code that can try to write into a string constant, but
only if you have been very careful about using const in declarations and

Licensed material—property of copyright holder(s) 1 °91

gee(1)

1-92

DG/UX 5.4 gee(1)

prototypes. Otherwise, it will just be a nuisance; this is why -Wall does not
request these warnings.

-Wconversion (V2)
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

-mwarn-passed-structs
Emit a warning message if a structure is passed to a function, or declared as a
function argument. This warns about the places where gcc will not interoperate
with compilers that do not pass structures according to the 88open Object Compa-
tibility Standard.

Options for Debugging Your Program
~-g Produce debugging information for mxdb, dbx, or sdb.

Unlike most other C compilers, GNU C allows you to use —g with —-0. The
shortcuts taken by optimized code may occasionally produce surprising results: some
variables you declared may not exist at all; flow of control may briefly move where
you did not expect it; some statements may not be executed because they compute
constant results or their values were already at hand; some statements may execute in
different places because they were moved out of loops. Nevertheless it proves possi-
ble to debug optimized output. This makes it reasonable to use the optimizer for pro-
grams that might have bugs.

In the ELF environment, debugging information is in legend(5) format for all sup-
ported debuggers. An optional LEGENDS environment variable can contain special
generation options such as "-external” to reduce link-time by storing most debug-
ging information in a separate file. See legend(5) for details.

In a COFF environment, GNU C generates debugging information in legend format
for use by mxdb when the LEGENDS environment variable is present; the information
is in standard COFF format by default.

These three options, which control legend generation, are superseded by the use of
the LEGENDS environment variable, and will be eliminated in the future:

-mlegend
Causes the assembler to invoke ctl1(1), the COFF-to-legend translator.

-mexternal-legend
Causes the assembler to pass the —external option to ctl(1).

-mkeep-coff
Causes the assembler to pass the —keep-std option to ctl(1).

-mocs-debug-info
Put out additional debug information to comply with the 88open Object Compati-
bility Standard text description information. This is the default.

-mno-ocs-debug-info

Do not put out any additional debugging information.
-mocs-frame~-position

When emitting debugging information for automatic variables and parameters

stored on the stack, use the offset from the canonical frame address (CFA),
which is the stack pointer (register 31) when the function is entered. The CFA is

Licensed material—property of copyright holder(s) 093-701055

gee(1) DG/UX 54 gee(1)

. specified by the 88open Object Compatibility Standard This is the default
behavior of GNU C.

-mno—ocs-frame-position
When emitting debugging information for automatic variables and parameters
stored on the stack, use the offset from the frame pointer register (register 30).
When this option is in effect, the frame pointer is not eliminated when debugging
information is selected by the —g switch.

-p Generate extra code to write profile information suitable for the analysis program
prof.

Options Controlling Optimization

-0 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

Without -0, the compiler’s goal is to reduce the cost of compilation and to make
debugging produce the expected results. Statements are independent: if you stop
the program with a breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any other statement in the
function and get exactly the results you would expect from the source code.
Without -0, only variables declared register are allocated in registers.

With -0, the compiler tries to reduce code size and execution time. Some of the
-£ options described below turn specific kinds of optimization on or off.

-02 (V2)
Highly optimize. All supported optimizations are performed. As compared to
-0, this option will increase both compilation time and the performance of the
generated code.

Options of the form -£fflag specify machine-independent flags. Most flags have both
positive and negative forms, as in £foo and fno-foo. Only one of the forms is
listed here: the one which is not the default.

-ffloat-store
Do not store floating-point variables in registers.

—fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
Normally the compiler (when optimizing) lets arguments accumulate on the stack
for several function calls and pops them all at once.

~fforce-men
Force memory operands to be copied into registers before doing arithmetic on
them. This may produce better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruction
combination should eliminate the separate register-load.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them. This may produce better code just as —~fforce-mem may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one. This

eliminates the instructions that save, set up and restore frame pointers; it also
makes an extra register available in many functions.

093-701055 Licensed material—property of copyright holder(s) 1-93

gee(1)

1-94

DG/UX 5.4 gee(1)

On an AViiON computer, if you specify —0 and do not specify ~fno-omit-
frame-pointer, this is enabled automatically.

~finline (V2)
Pay attention the inline keyword. Normally the negation of this option -fno-
inline is used to keep the compiler from expanding any functions inline. How-
ever, the opposite effect may be desirable when compiling with -g, since -g nor-
mally turns off all inline function expansion.

~finline-functions
Integrate all simple functions into their callers. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way. If all calls
to a given function are integrated, and the function is declared static, then the
function is normally not output as assembler code in its own right.

~fcaller-saves
" Enable values to be allocated in registers that will be clobbered by function calls,
by emitting extra instructions to save and restore the registers around such calls.

~fkeep-inline-functions
Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.

—fno-function-cse
Do not put function addresses in registers; make each instruction that calls a con-
stant function contain the function’s address explicitly. This option results in less
efficient code, but some strange hacks that alter the assembler output may be
confused by the optimizations performed when this option is not used.

These options control specific optimizations. All are implied by the -02 option.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of iteration
variables.

-fthread-jumps (V2)
Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immediately
following it, depending on whether the condition is known to be true or false.

-~funroll-loops (V2)
Perform the optimization of loop unrolling. This is only done for loops whose
number of iterations can be determined at compile time or run time.

-funroll-all-loops (V2)
Perform the optimization of loop unrolling. This is done for all loops. This usu-
ally makes programs run more slowly.

-fcse-follow-jumps (V2)
In common subexpression elimination, scan through jump instructions in certain
cases. This is not as powerful as completely global CSE, but not as slow either.

-frerun-cse-after-loop (V2)
Re-run common subexpression elimination after loop optimizations has been per-
formed.

-fexpensive-optimizations (V2)
Perform a number of minor optimizations that are relatively expensive.

Licensed material—property of copyright holder(s) 093-701055

gee(1)

093-701055

DG/UX 5.4 gee(1)

—fdelayed-branch
Reorder instructions to take advantage of the delay slot following branch and sub-
routine call instructions.

-fschedule-insns (V2)
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable.

-fschedule-insns2 (V2)
Similar to ~fschedule-insns, but requests an additional pass of instruction
scheduling after register allocation has been done.

-fcombine-regs (V1)
Allow the combine pass to combine an instruction that copies one register into
another. This might or might not produce better code when used in addition to
-0.

Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before
actual compilation. If you use the -E option, nothing is done except C preprocess-
ing. Some of these options make sense only together with —E because they request
preprocessor output that is not suitable for actual compilation.
-1 file (V2)
Process file as input, discarding the resulting output, before processing the regular
input file. Because the output generated from file is discarded, the only effect of
-i file is 1o make the macros defined in file available for use in the main input.

-nostdinc
Do not search the standard system directories for header files. Only the direc-
tories you have specified with -I options (and the current directory, if appropri-
ate) are searched. Between -nostdinc and -I-, you can eliminate all direc-
tories from the search path except those you specify.

-E Run only the C preprocessor. Preprocess all the C source files spec:.ﬁed and out-
put the results to standard output.

-C Tell the preprocessor not to discard comments. Used with the -E option.

=P (V2)

Tell the preprocessor not to generate #line commands. Used with the -E
option.

-M Tell the preprocessor to output a rule suitable for make describing the dependen-
cies of each object file. For each source file, the preprocessor outputs one
make-rule whose target is the object file name for that source file and whose
dependencies are all the files #included in it. This rule may be a single line or
may be continued with “\’-newline if it is long. —M implies -E.

-MM
Like -M, but the output mentions only the user-header files included with
‘¢include "file".’ System header files included with ‘¢include <file>’ are
omitted. -MM implies -E.

=M (V2)

Like -M but the dependency information is written to files with names made by
replacing .c with .d at the end of the input file names. This is in addition to
compiling the file as specified: -MD does not inhibit ordinary compilation the way
=M does.

Ucensed material—property of copyright holder(s) 1 '95

gee(1)

1-96

DG/UX 5.4 gee(1)

-mvMD (V2)
Like -MD but mention only user header files, not system header files.

-H Tell the preprocessor to output the names of include files to the standard error
file, in addition to the normal processing.

-Dmacro
Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn
Define macro macro as defn.

=Umacro
Undefine macro macro.

-trigraphs
Support ANSI C trigraphs. The —ansi option also has this effect.

Options for Linking

-1library
Search a standard list of directories for a library named library, which is actually a
file named liblibrary.a. The link editor uses this file as if it had been specified
precisely by name. The directories searched include several standard system
directories plus any that you specify with -L. Normally the files found this way
are library files—-archive files whose members are object files. The link editor
handles an archive file by scanning through it for members which define symbols
that have so far been referenced but not defined. But if the file that is found is
an ordinary object file, it is linked in the usual fashion. The only difference
between an -1 option and specifying a file name is that -1 searches several
directories. '

-nostdlib
Don’t use the standard system libraries and startup files when linking. Only the
files you specify will be passed to the link editor.

-static
Produce a static object, that is an object which contains no shared objects. This
option causes —-dn to be added to the link line; see 1d(1).

—-shared
Produce a shared object. This option causes -G to be added to the link line, to
produce a shared object which can then be linked with other objects to form an
executable.

-symbolic
Bind references to global symbols when building a shared object. Warn about any
unresolved references (unless overridden by the link editor option -z defs: see
14(1)). This option causes ~Bsymbolic -G to be added to the link line.

Gec also passes the options -e, -h, -n, -r, -s, -t, -u, -X, and -z to the link
editor; see 1d4(1) for these options.

Options for Directory Search

-1dir
Search directory dir for include files.

_I—
Any directories specified with -I options before the -I- option are searched
only for the case of ‘¢include "file"’; they are not searched for ‘¢include
<file>’. If additional directories are specified with —I options after the -I-,

Licensed material—property of copyright holder(s) 093-701055

gee(1)

093-701055

DG/UX 5.4 gee(1)

these directories are searched for all #include directives. (Ordinarily all -I
directories are used this way.) In addition, the —I- option inhibits the use of the
current directory as the first search directory for ‘¢include "file"’. Therefore,
the current directory is searched only if it is requested explicitly with ‘-I.°.
Specifying both ‘~-I1-’ and ‘~I.’ allows you to control precisely which directories
are searched before the current one and which are searched after.

-Ldir

Add directory dir to the list of directories to be searched for -1.

-Bprefix

Compiler driver program tries prefix as a prefix for each program it tries to run.
These programs are cpp, ccl, as and 1d. For each subprogram to be run, the
compiler driver first tries the -B prefix, if any. If that name is not found, or if
-B was not specified, the driver tries the standard prefix, which is

- fusr/lib/gce/gee~. If this does not result in a file name that is found, the

unmodified program name is searched for, using the directories specified in your
PATH environment variable.

The run-time support file gnulib is also searched for, using the -B prefix, if
needed. If it is not found there, the standard prefix above is tried, and that is all.
The file is left out of the link if it is not found by those means.

You can get a similar result from the environment variable GCC_EXEC_PREFIX.
If it is defined, its value is used as a prefix in the same way. If both the -B
option and the GCC_EXEC_PREFIX variable are present, the =B option is used
first and the environment variable value second.

Options for Code Generation Conventions

-fpic
Generate position-independent code, suitable for use in a shared object.
-mbig-pic
Produce position-independent code that will work correctly if the global offset
table of a shared object exceeds 16k. (Modules should be recompiled with this
option when the link editor reports the error "Relocation overflows at address..."
when producing a shared object.)

-fpcc-struct-return
Use the same convention for returning struct and union values that is used by
PCC. This convention is less efficient for small structures, and on many
machines it fails to be reentrant; but it has the advantage of allowing intercallabil-
ity between GCC-compiled code and PCC-compiled code.

-fshort-enums (V2)
Allocate to an enum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type will be equivalent to the smallest
integer type which has enough room.

-fshared-data
Requests that the data and non-const variables of this compilation be shared

data rather than private data.

-fno-common (V2)
Allocate even unitialized global variables in the bss section of the object file,
rather than generating them as common blocks. This has the effect that if the
same variable is declared (without extern) in two different compilations, you

Licensed material—property of copyright holderts) 1 °97

gee(1)

1-98

DG/UX 5.4 gee(1)

will get an error when you link them. The only reason this might be useful is if
you wish to verify that the program will work on other systems which always work
this way.

-fvolatile
Consider all memory references through pointers to be volatile.

-fvolatile-global (V1)
Consider all memory references to extern and global data items to be volatile.

~ffixed-reg
Treat the register named reg as a fixed register; generated code should never refer
to it (except perhaps as a stack pointer, frame pointer or in some other fixed
role). regis one of r0-r31. Use of this flag for a register that has a fixed per-
vasive role in the machine’s execution model, such as the stack pointer or frame
_pointer, will produce disastrous results. This flag does not have a negative form,
because it specifies a three-way choice.

~fcall-used-reg
Treat the register named reg as an allocatable register that is clobbered by func-
tion calls. It may be allocated for temporaries or variables that do not live across
a call. Functions compiled this way will not save and restore the register reg.
Use of this flag for a register that has a fixed pervasive role in the machine’s exe-
cution model, such as the stack pointer or frame pointer, will produce disastrous
results. This flag does not have a negative form, because it specifies a three-way
choice.

~fcall-saved-reg
Treat the register named reg as an allocatable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it. Use of this
flag for a register that has a fixed pervasive role in the machine’s execution
model, such as the stack pointer or frame pointer, will produce disastrous results.
A different sort of disaster will result from the use of this flag for a register in
which function values may be returned. This flag does not have a negative form,
because it specifies a three-way choice. '

-mno-underscores
Do not emit a leading underscore before all external names. This switch is useful
for embedded systems and does not allow interoperation with the standard library.

-mtrap-large-shift .
Emit 2 tbnd instruction before each shift by 2 non-constant amount, to trap if
the shift count is less than zero or greater than 31. The 88000 produces unusual
results in such cases, and the trap will halt the program at the point an out of
range shift is done, rather than producing unexpected results. The ANSI stan-
dard for C specifies that shifts outside of the range of 0 to number_bits - 1 is
undefined. It is an error to specify both -mtrap-large-shift and
-mhandle-large-shift.

-mhandle-large-shift
Emit a four instruction sequence for each shift by a non-constant amount, if the
shift count is less than zero or greater than 31. Logical shifts and arithmetic shifts
left produce a 0 result if the shift count is out of bounds. Arithmetic shifts right
produce a copy of the sign bit if the shift count is out of bounds. The ANSI stan-
dard for C specifies that shifts outside of the range of 0 to number_bits - 1 is
undefined. It is an error to specify both -mtrap-large-shift and

Licensed material—property of copyright holder(s) 093-701055

gee(1) DG/UX 5.4 gee(1)
- -mhandle-large-shift.
-mno-check-zero-division
Do not emit code to check both the divisor and dividend when doing normal
integer division (as opposed to unsigned division) to see if either is negative, and
fixup things up so that the division is done with positive numbers. You would use
this switch when you are confident that most or all signed divisions are done with
positive numbers.
-muse-div-instruction
Do not emit code to check if an integer division by zero occurs and issue trap
pumber 503 if it occurs.
If this fixup is not done, the 88100 will trap to the kernel if either number is nega-
tive. The operating system will calculate the correct answer for all negative
" operands, except for the most negative number (-214783648) divided by negative
1, whose signed result cannot be represented in 32 bits.
-midentify-revision
Emit an assembly ident directive which gives the filename, date, time, and com-
piler revision, for use with the what command.
There are several macros you can define to control your source and target environ-
ments when developing applications. These macros control header files, function
declarations, binary formats, and other aspects of the source and target environ-
ments. The macros are helpful when you are porting applications to or from non-
DG/UX systems such as BSD or AT&T systems. The macros can also make
development of POSIX- or BCS-conformant applications easier. For developing
BCS-conformant apfplications, the SDE utility is also helpful. See Porting Applica-
tions to the DG/UX™™ System and the sde-target(l), sdetab(4), and sde(5)
manual pages.
FILES
file.c input file
file.o ~ object file
a.out loaded output
TMPDIR/cc* temporary files. TMPDIR is usually /usr/tmp but
can be redefined by setting the environment variable
TMPDIR.
/usr/lib/gcc/gcec-cpp preprocessor
/usr/lib/gec/gcc—cecl compiler
/usr/lib/gcc/gcec—gnulib library needed by gcc
/1lib/cxt0.0 runtime startup routine
/lib/libc.a standard library, see intro(3)
/usr/include standard directory for #include files
SEE ALSO
cc(l), as(l), 14(1), sde-target(l), sdetab(4), sde(5).
COPYING

093-701055

Copyright (c) 1988 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of the gcc(1l) manual
page provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of the gcc(1) manual
page under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this

Licensed material—property of copyright holderts) » 1 '99

gee(1) DG/UX 54 gee(1)

one.
Permission is granted to copy and distribute translations of the gcc(1) manual page

into another language, under the above conditions for modified versions, except that
this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

1-100 Licensed materia—property of copyright holderts) 093701055

get(1) DG/UX 54 get(1)
NAME
get — check out a version of an SCCS file
SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [~wstring] [-aseg-no] [-k] [~e] [-1[p]] [-P]
[-=] [-2] [-s] [-D] [-g] [-¢] file ...
where:

SID The SCCS identification string of a version of an SCCS file

cutoff Date and time, in the form YY[MM[DD[HHIMM[SS]]]]]

list A list of deltas in the following syntax: list ::= range |list,range

range ::= SID | SID-SID

string A string (must be quoted if it contains a space)

seg-no The delta sequence number of the SCCS file delta (version) to be retrieved

file Name of the file to be checked out

DESCRIPTION

Get generates an ASCII text file from each named SCCS file according to the specifi-

cations given by its options, which begin with —. The arguments may be specified in

any order, but they all apply to all named SCCS files. If a directory is named, get
treats each file in the directory as a named file, except that 21on-SCCS files (last com-
ponent of the path name does not begin with s.) and unreadable files are silently
ignored. If 2 name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an SCCS file to be processed. Again, non-SCCS
files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file . Its name is derived

from the SCCS filename by simply removing the leading s.; (see also FILES, below).

Each of the options is explained below as though only one SCCS file is to be pro-

cessed, but the effects of any option applies independently to each named file.

-rSID Specify the SCCS IDentification string (SID) of the version (delta) of an
SCCS file to be retrieved. Table 1 below shows, for the most useful cases,
what version of an SCCS file is retrieved (as well as the SID of the version
to be eventually created by delta(l) if the —e option is also used), as a
function of the SID specified.

—ccutoff Specify cutoff date and time. No changes (deltas) to the SCCS file which
were created after the specified cutoff date-time are included in the gen-
erated ASCII text file. Units omitted from the date-time default to their
maximum possible values; that is, —c7502 is equivalent to
-c750228235959. Any number of non-numeric characters may separate
the various two-digit pieces of the curoff date-time. This feature lets you
specify a cutoff date in the form: "-¢77/2/2 9:22:25". Note that this
implies that one may use the %E% and %U% identification keywords (see
below) for nested gets within, say the input to 2 send(1C) command:

“lget "=c%E% %U%" s.file

-e Indicate that the get is for the purpose of editing or making a change
(delta) to the SCCS file via a subsequent use of delta(l). The -e option
used in a get for a particular version (SID) of the SCCS file prevents
further gets for editing on the same SID until delra is executed or the j
(joint edit) flag is set in the SCCS file (see admin(1)). Concurrent use of
get -e for different SIDs is always allowed.

If the g-file generated by get with an -e option is accidentally ruined in
the process of editing it, it may be regenerated by re-executing the get
093-701085 Licensed materiai—property of copyright hoiderts) 1 '1 01

get(1)

1-102

-ilist

-P

-S

-

-n

-9
-t

-wsiring
~aseq-no

DG/UX 5.4 get(1)

command with the -k option in place of the —e option.

SCCS file protection specified via the ceiling, floor, and authorized user list
stored in the SCCS file (see admin(1)) are enforced when the —-e option is
used.

Used with the -e option, indicate that the new delta should have an SID in
a new branch as shown in Table 1. This option is ignored if the b flag is
not present in the file (see admin(1)) or if the retrieved delta is not a leaf
delta. (A leaf delta has no successors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf delza.

Specify a list of deltas to be included (forced to be applied) in the creation
of the generated file. SID, the SCCS Identification of a delta, may be in
any form shown in the "SID Specified” column of Table 1. Partial SIDs
are interpreted as shown in the "SID Retrieved” column of Table 1.

Specify a list of deltas to be excluded (forced not to be applied) in the crea-
tion of the generated file. See the -i option for the lisr format.

Suppress replacement of identification keywords (see below) in the
retrieved text by their value. The -k option is implied by the -e option.

Write a delta summary into an /-file. If -1p is used then an [-file is not
created; the delta summary is written on the standard output instead. See
FILES for the format of the I-file.

Write the text retrieved from the SCCS file to on the standard output. No
g-file is created. All output that normally goes to the standard output goes
to file descriptor 2 instead, unless the -s option is used. In that case, it
disappears.

Suppress all output normally written on the standard output. However,
fatal error messages (which always go to file descriptor 2) remain unaf-
fected.

Precede each text line retrieved from the SCCS file by the SID of the delta
that inserted the text line in the SCCS file. The format is: SID, followed
by a horizontal tab, followed by the text line.

Precede each generated text line with the %M% identification keyword
value (see below). The format is: %M% value, followed by a horizontal
tab, followed by the text line. When both the -m and -n options are used,
the format is: %M% value, foll<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>