
q» Data General

Customer Documentation

Programmer’s Reference for the

DG/UX"TM System (Volume 1)

A Vii ON®
PRODUCT LINE

Programmer’s Reference for the

DG/UXTM System (Volume 1) |

093-701055-02

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 093-701055

Copyright © Data General Corporation, 1990, 1991

Unpublished—all rights reserved under the copyright laws of the United States

Printed in the United States of America

Revision 02, June 1991

Licensed material—property of copyright holder(s)

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION
CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS
ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes i in specifications and other information contained in this
document without prior notice, and the reader should in all cases determine whether any such changes have been

made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND CONDITIONS
GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN TRE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION OR OTHER

AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO

STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE

OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED 70 THOS DOCUMENT OR THE INFORMATION CONTAINED IN IT,

EVEN IF DGC HAS BEEN ADVISED, ENEW, OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF
SUCH DAMAGES.

All software is made av ailable solely pursuant to the terms and conditions of the applicable license agreement which
governs its use.

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set

forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [FAR] 52.227-7015

(May 1987).

DATA GENERAL CORPORATION
4400 Computer Drive

Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000,

PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General Cerporation. CEO Connection,
CEO Connection/LAN, DASSER/One, DASHER/286, DASHER/386, DASHER/LNN, DATA GENERAL/One,

DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/7800,

ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV//26000, ECLIPSE MV/40000,

microECLIPSE, microMV, MV/U&, PC Liaison, RASS, SPARE MAIL, TEO, TEO/D, TEO/Electronics,
TURBO/4, UNITE. and XODIAC are trademarks of Data General Corporation.
IBM is a U.S. registered trade:nark of International Business Machines Corporation.

UNIX is 2 U.S. registered trademark of American Telephone & Telegraph Company.

NFS is a trademark of Sun Microsystems, Inc.

Portions of this text are re from IEEE Std 1003.1-1988, Portable Operating Systern Interface for Cornputer

Environments, copyright G@ 1988 by the Institute of Electrica] and Electronics Engineers, Inc., with the permission of

the IEEE Standards Departmeni. To purchase IEEE Standards, call 800/678- EEF.

Portions of this material aave been previously cop: righted by: Regents of the University of California, 1980
The Network Information Service (NIS) was forsiesly “mown as Sun Yellow Pages. The functionality of the two
remains ths same; only the name has changed. The name Yellow Pages js a regrstered trademark in the United
Kingdom of British Telecommunications pie and may not be used without permission.

LEGAL, NOTICE TO USERS: Yellow Pages is a registered trademark in the United Kingdon of British
Telecommunications pic, and may also be a trademark of various telephone compavies around the world. Sun will
be revising future versions of software and documentation to remove references to Yellow Pages.

_ Programmer’s Reference for the DG/UX System (Volume 1)

093-701055-02

~ Revision History: Effective with:

Original Release - February 1990 = DG/UX 4.20

Revision 1 — June 1990 DG/UX 4.30

Revision 2 - June 1991 DG/UX 5.4

Preface

This is Volume 1 of the Programmer's Reference for the DG/UXTM System. The Programmer's —

Reference describes the programming features of the DG/UX system. It contains individual

manual pages that describe commands, system calls, subroutines, file formats, and other
useful topics, such as the ASCII table shown on ascii(5). :

This manual is part of a five-volume reference set. The other manuals are the System

Manager's Reference for the DG/UX System and the User’s Reference for the DG/UX System.
These manuals contain in printed (typeset) form the online entries released with the DG/UX
System in /usr/catman for access by the man command.

The Programmer’s Reference provides neither a general overview of the DG/UX system nor
details of the implementation of the system. For more details about some of the most often —

used programming tools, see Programmer’s Guide: ANSI C and Programming Support Tools, .

Programmer's Guide: System Services and Application Packaging Tools, and the Data General
supplements to these two manuals. Other related manuals are listed under “Related
Manuals” at the end of this manual.

Man Pages

For historical reasons, each entry is called a “manual page” or “man page,” though an entry

may occupy more than one physical page and may contain mor? than one entry. Ii the man

page contains more than one ertry, it is alphabetized under its “primary” name; for example,

the uname manual page describes the uname and nename files.

Manual pages are assigned to classes ranging from 0 through 8 for easy cross-reference. The
class number appears in parentheses following the name; for example, in accept(iM) the “i”
indicates that accept is a command, and the “M” indicates that the man page is in the System

Manager’s Reference. -

A command followed by a (1) or (iG) usually means that it is described in the User’s —
Reference. (Class 1 commands appropriate for use by programmers are located in the

Programmer's Reference.) A man page name with a (1M), (4M), (7), or (8) following it means

that the entry is in the System Manager's Reference. Names with (2) or (3x), (4), (5), [except
editread(5)], or (6F) are in the Programmer's Reference. Occasionally, DG/UX man pages

refer to other products’ man. pages, which are not part of the DG/UX documentation; these

are so noted. |

083-701055 Licensed materia—property of copyright holder(s) - Hl

Preface

Manual Organization

Volume 1 contains two chapters:

Chapter 1; Commands (i)

This chapter describes commands that support C and other programming languages.

Chapter 2: System Calls (2) This chapter describes the access to services provided by the

DG/UX kernel, including the C language interface and a description of returned error codes.

Volume 2 contains one chapter:

Chapter 3: Subroutines and Libraries (3) This chapter describes the available subroutines

and subroutine libraries. Their binary versions reside in various system libraries in the

directories /lib and /usr/lib. See intro(3) for descriptions of these libraries and the files in

which they are stored. Although these man pages are alphabetized together, each has a letter

associated with the number 3 indicating the pertinent library:

3C C Programming Language Libraries

3E ELF Library Routines

3G General Library Routines

3M Mathematical Library Routines

3N Networking Support Utilities

3S Standard I/O Library Routines

3X Specialized Libraries

Volume 3 contains three chapters and one appendix:

Chapter 4: File Formats (4) This chapter documents the structure of particular kinds of files;

for example, the format of the output of the link editor is given in a.out(4). Excluded are

files used by only one command (for example, the assembler’s intermediate files). In general,
the C language structures corresponding to these formats can be found in the directories

/usr/include and /usr/include/sys.

Chapter 5: Miscellaneous Features (5) This chapter contains a variety of facilities. Included
are descriptions of character sets, macro packages, and other things.

Chapter 6: Communications Protocols (6) This chapter contains a description of the
unix_ipe communications facility.

Appendix A: Contents and Permuted Index Man Pages

These manual pages contain information extracted from the DG/UX man pages in all five
reference volumes.

IV Licensed material—property of copyright holder(s) 093-701055

Preface

Man Page Format

Each man page has at least some of the following sections:

NAME gives the primary name (and secondary names, as the case may be) and
briefly states its purpose.

SYNOPSIS summarizes the usage of the program being described.

DESCRIPTION discusses how to use these commands.

EXAMPLES _ gives examples of usage, where appropriate.

FILES contains the file names that are referenced by the prozram.

EXIT CODES discusses values set when the command terminates. The value set is
available in the shell environment variable ‘‘?” (see sh(1)).

DIAGNOSTICS discusses the error messages that may be produced. Messages that are

intended to be self-explanatory are not listed.

SEE ALSO offers pointers to related information.

NOTES gives information that may be helpful under the particular circumstances

described.

Some man pages may contain other heads such as ENVIRONMENT and CAVEATS.

Man Page Notation Conventions
This manual uses certain symbols and styles of type to indicate different meanings in man
pages. Those symbol and typeface conventions are defined in the following list. You should

familiarize yourself with these conventions before reading the manual.

The description of convention meanings uses the terms “command line,” ‘format iine,’”’ and

“syntax line.” A command line is an example of a command string that you should type

verbatim; it is preceded by a system prompt. A format line shows how to structure a

command; it shows the variables that must be supplied and the available options. A syntax

line is a fragment of program code that shows how to use a particular routine; some syntax

lines contain variables.

093-761055 Ucensed material—property of copyright holder(s) V

Preface

Convention Meaning

boidface

constant

width/

monospace

italic

[optional]

choicel|choice2

$, %, #

This font is used for section heads and subsection heads. It is

also used to distinguish input from output in examples where the

two are intermixed.

In command formats and code syntax: This typeface indicates text

(including punctuation) that you type verbatim from your

keyboard.

In text: This typeface is used for examples, code samples,

pathnames, and the names of commands, files, directories, and

manual pages.

In all contexts: The following characters, which have special

meanings explained below, do not have special meaning but simply

represent themselves when they appear in constant-width font: <

> {] {) |. In constant-width font they are are /O

redirection operators, brackets, braces, and the pipe symbol.

In format lines: This font represents variables for which you

supply values; for example, the names of your directories and

files, your username and passwerd, and possible arguments to

commands.

In format lines: Regular-font brackets surround an optional

argument. Don’t type the brackets; they only set off what is

optional. These brackets should not be confused with constant-

width brackets.

In format lines: The vertical bar indicates a choice between

choicel and choice2. :

In format lines and syntax lines: You can repeat the preceding
argument as many times as desired. |

In format lines: These regular-font braces surround either two or

more choices or syntax elements that are repeatable as a group.

In command lines and other examples: Angie brackets distinguish

a command sequence or a keystroke (such as <Ctrl-D>, <Ese>,

and <3dw>) from surrounding text. Note that these angle

brackets are in regular type and that you do not type them; there

are, however, constant-width versions of these symbols that you

do type.

In command lines and other examples: These symbols represent

the system command prompt symbols used for the Bourne and

Korn shells, the C shell, and the superuser, respectively. Note

that your system might use different symbols for the command

prompts.

Licensed material—property of copyright holder(s) 093-701055

Preface

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please feel
free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form (United States

only) or contact your local Data General sales representative. A list of related documents

appears at the end of this manual with the TIPS order form.

For a complete list of AViiON® and DG/UXTM manuals, see the Guide to AViION® and
DG/UXTM ‘System Documentation (069-701085). The on-line version of this manual found in
/usr/release/doc_guide contains the most current List.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, free
telephone assistance is available with your hardware warranty and with most Data General

software service options. If you are within the United States or Canada, contact the Data

General Service Center by calling 1-800-DG-HELPS. Lines are open from 8:00 a.m. to 5:00

p-m., your time, Monday through Friday. The center will put you in touch with a member of

Data General’s telephone assistance staff who can answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General sales

representative for the appropriate telephone number. |

Joining Our Users Group

Please consider joining the largest independent organization of Data General users, the North

American Data General Users Group (NADGUG). In addition to making valuable contacts,

members receive FOCUS monthly magazine, a conference discount, access to the Software

Library and Electronic Bulletin Board, an annual Member Directory, Regional and Special

Interest Groups, and much more. For more information about membership in the North

American Data General Users Group, call 1-800-877-4787 or 1-512-345-5316.

End of Preface

093-701055 Licensed materia—property of copyright holder(s) Vil

Contents

Chapter 1 — Commands

INtTO(1)cescccsccsecsscccccccscccncececeececesescesscecccecccesscsescessseescescesaeccsessccsscssccccecesoseses 1-2

AAUMIN(1)ceccecsecsccscesccsccocecesccssccscccccccesecessecececcsceeecccesceceesenssessessescescesssssoeces 1-4

AI(1)cecsccccceccscsccsccscessceseereeescecccecscsccessceecseeeeecenscscesecscceesecessecscesceeessssascseseees 1-8

BS(1)ccceseccccscsscccescsccecescscccceccececcssenceceseecesseeeeecsesecessescescnesccsscececcecossescseseeses 1-10

BSA(1),.csecscescssccscscccscceccssscsccscsescescsascescecsscceccescesesceecseseeseceerssseesceccesssnssseeesoes 1-12

ALt_GuMp(1)cscecsccssccsececceceeceseescscssseeeeesecescesesseesseseessensseeeseccseseeessssseseesesees 1-13

CH(1)ceecescescseccccesscnsecnsseeecscsceseeeceecceneecessesseeessseeseeesnessesneeecseessseesseceeeereeeeees 1-15

CC(1)seceececcsccececesccescescceseeenseseneeseecnesseeeeseeeeenseseeeseeeeeseeeseseeeseaeeesseseeeserseseeeseees 1-16

CAC(1)cccecececcccscecccecrecscescessencseeseeeeeseneneesereeeneneseneeneeseeeneneeeesseeseeseneneseseesssaseees 1-22

CHOW (1)ccececscccccccnccscsccscecscececeeceeeee see ereseeeneeeseeneeseeeneceeneneserecsrensensseesesseeseessones 1-24

Ci(1)ccescecsccsccscceecescceseesccsceeesesececenencesereeeseesesceeeseeaseseeseeeeessecessesescseesessesenses 1-26

Chedate(1)ccsscsscsesccsccsscccscscscescccnecscsccesssessecesssscseeenscesessecesecscssesessessssesscesenses 1-29

CKEIG(1)csceseceecesveecccesceeccscececcesesessceseseeesscesssseesenscesseeeeesnecesssenesesesseeesseeeeeses 1-31

CKint(1)cccecsscsceccscescsccscescncscessccnsccessceesssesesecsseesseesseesesecenceeseessssseeesseecesceeeeeee 1-33

CKiter(1)cescsceccsceccsccsccsccceccceccsescscecscssssccescessesseesesseesseeeeessssssseeseesseseeseseseees 1-35

Chkeywd(1)cesceccssccssccssececcesecscsecscsceseescsesesscssescesesseeeeccessecsseseesecesssesseseceeeess 1-38

Chpath(1)cececceccesecessccesscecnccececescceeerseseceseesssssseeseaseseesseeeeenescssacsssesesensseeeseees 1-40

Chrange(1)csscsscsscssscssscesccsccececsccscecessssssesevessssseesseessescessescessesessescsessseeesseseeeees 1-42

CKSIr(1)cecescsccscecnecscasccscsececcscscscncesssecseesnsessesessesenesseeseceseesccessesseesescesesoeesoees 1-44

CKtime(1) cc eeceecececscscsscscscsccceecscncessccecsesceasseccseceeesesseecesseeeseseseseeseceereseseseeeee 1-46

CKU(1) c.cceeecescsesssccessccsssssscsccsscsceeccssscessesessesesscssesseescssceseeeceeccsessessascesesseesseeees 1-48

CKYOrT(1)scceccecsceccsccsccccsessccnseccescscscscsssececcecseseseescssseeseeeeesessecesseessessneseseonees 1-50

CO(1) ccccccecscessscscsccscessscnesccscescecneeesesseseceesssseseeeeeeeseeeeeneeenesseeeeeessseeeeeeeenes 1-52

COPZELL(1)cecsescscecsccesccscncscescescsseessaceccsceccccccecescssecesssscececeececssseseeeseressscseeseeens 1-56

COMD(1)sceccecececscsccscscnscecencscecesceccacesecsensecascssceeceseeeseceseseceseceseecesecesesessceseeses 1-57

CPp(1)-.ccecescccccscecccccsccrsssnsescsceeesceeceesseseceensesscneseceeeseeeeeeeeneceeseneseneenneeceeaeeees 1-58

CPTS(1) 20.0... ee eececececnscncsccecncncencscccenceaceeeeaseneceseseeseeceseseneeesecereeesesseeecesseseseensees 1-61

CSCOPE(1)ccceccccsccscccccecccccncccscreececseeessessesesenceeeessescesseeceseeresseceeessseeeenen snes 1-62

CtAGS(1)ceneesersccccssccccccccncesecsseccecceeseessescrececesesseesesesseeecesecnsceseeeeassaasenesesaeeees 1-67

CU(1)ccscccscsccsccscscnsccsccsccscscecenccccescncecseseseecsecscsesceeessssesceeeeceesesereeesseseessecenees 1-69

Ctrace(1)ccccccccccncscacscscsccncccccscceseesccencccesencncscscesececncecnesec ces scscseseeeseeseeeerscseeees 1-70

CXTCL(1)c.ceccccccscccccccsccecescesceccececcnccsseescsrssscesesscscessceccsescccsssecsssceseeseeesessee noes 1-74

GDX(1)-.sscocsscscsscscssssccscecscseceescessncesscesssenccssecesecsccsceecseecessnsenseeseeensteeeeseneaees 1-76

Gelta(])ccscscscecscscccsscncccescsscscesccncccscccccesceccscsscssecssecsseeecsenenseseenseseseseeseeneees 1-83

GiS(1)-cccsceccccseccscsscssccsscnscececscscsscescnccccsseseecsecssncsscceesereecseesnesnseeseeeeesseneeeenenes 1-86

Fsplit(1)cscsccccccsssccssssccssccssceccecseccsccecescacsseressescesccessccn ses ees asses sseeeesesaneeeeesoese 1-87

QCC(1) ...cceccecccsscccscccccncccssscccessssccecceceneccscceeccecsencsssceereecoenessenenessenesseseeeseescaseaeenes 1-88

ZOt(])cnerocccscceccnccsesccnssscescvcccescsccsccesceesrsecenscseeseessenseeeseenesansssesesessseseeeeeees 1-101

UeNt(1)cececscccscscsccccccscscecceccecceceecesssesssessesesceseceeecseeeeeceeccecscseeseseeesececeenenes 1-107

UPCTIN(1)cceccccceccvcsscsscrsccscscensescscssscescseenscccenescescesceseessececesessenes erases esesee sees 1-108

UPCS(1)cccccscccccsccsccsecsssccscecscecscnscesscsecesecseceeessseseeesnsesersenecesseeeseeeeseeeseesenenes 1-109

1d (1)cessccsccsccscscccccsccsccnsccscesenseesecensscoscecessceesscscseesassesnsecsccersseeseesn eee eeaeee sees 1-112

Id-COff(1)cscececvccscsccccccccccceccscccccccccceessccececctscecececescccscscccenscssescscesceseccsscecess 1-116

1dd(1)ececcsscceccecsssccecnsscsscncececetsccecscccssssccsccssecsecseeesessessceececssesescessesseseesseees 1-119

093-701055 Licensed material—property of copyright hoider(s) | IX

Contents

1eX(1)cccescccccessscsssccceecesscccseseecnssscceeereeeseesseaeeeeeeesanesssceesseseansesssescosseseceesseneeeess 1-120

Lint(1)ssseccccssccccssccecssecceccveccvccssscseesssssenesseesceeeeeseeeeecesesssesecsesenecsssecesseeessneeses 1-125

LOPder(1)scccsssscsscccscceeccccscnscescescseseceeeseeeesereeeeeseneseeseneceneseceesseeessseesesesesesesooes 1-129

M41)csssccccecccccccccccneessccssccecsseescsssssssseseeesecessesesseseessssseessessssssssesessececsssssees 1-130

MAKE(1)cesccrsssssscccccscccnccsccccsccsccscecsssssecesseeseeaseccassseeescseseanesesssscseocsecssesceseees 1-133

IMNCS(1)ccccccssssscccnscessccecccsscccesceccesssssceasesecseeeseeessssseeeesesacsseeseesssesecseassessenecees 1-139

MKStr(1)ccccssssssscerccrcsscccecccecscceecessssseesceeesccsecnsseeeseeeccerensscessceseecssseeesesossesoees 1-141

TIM(1)cccscsscscsesceerccecsccccccceccscseecsesssesceeeeeecceecnecceseessesceeeessensceseesesssaaseseesseesoes 1-143

POf(1)scscssrrerscrsscsesscccsecceseseseseecseseesneseceneseeeaeeseeessesssseserssscesseeeesassscceseesees 1-146

PIS(1)cccccccccsssscccccrsseccsssccserecssssessessssesseesssceneeeseceasestesssssssessccsssseecesseesssoesareees 1-149

TAtfOr(1)ccccesesccccccnsssccsccccecsecececsssseseeeeceseeeseeessseceeseceseeessssscccesecseessseeeescoeeses 1-152

TCS(1)cscccescccccssscrsesccnscceccsscecccescesceensceeesscseceeesereseececeseescsesenesseseceseeescesesaceess 1-153

FCSGHFE(1) ...esceccccscsssscssssessssecsesscsesecsssnccescessscencesaeeaseceesencsssssessessesesesesseensenssesoees 1-155

TCSINtLO(1)cssccccsscrcsccncceccosccsceeeseeesseeesseeseesceeescessseesseasesessceeessesenessenseessesesouss 1-156

rcsmerge(1)0000 peceeececccscsccsccsccsccesecescescacscecerseeesesenccecetsccssceseeesecesenseereneees 1-157

TESCP(1)-.-.esescscceccesscsccsceeesseceensesesceeeensseeeeceeeenaesseseneeeseseeeeseansaseeesccnsesseeeeees 1-158

TOV(1)csssccccseccccsscvscccceeccsccscsnesenaseceeneseeneee ees eeeesaeesennseaesessaeseesaneseseeesceseeereeeers 1-159

T1OG(1)cccessccccrrcssscceceeccsnecteeseeeceseneessseceeneeeeeec nese eeesseeesesaeneesseesensacnesesesseaeeeesees 1-160

rmdel(1) ssseeeee peceeececncscnecnccseasccescesccerceceseceescseseeseeceseeseceseessseseceseeeeeeeeeeeees 1-162

SCCSGIff(1)reecevee beceecececescsesccscescscececsteccesecracecoess eceseccecsescecesscsssescecesecscoseee 1-163

SCCStOrcS(1)000 se etecceececesescececscescscascecsesscncenseecsceneeeseeceseeeeceessescecseeeseseneeees 1-164

SAD(1)ceeceeeeveeves bec neceaeeescncesescsseccscesscsceceescecceeesesseseeesseeeassesscesensesesceeeeeseeenes 1-165

sde-target(1)06 seceecececeeenenccecncascesenscesseenseseesncesceeeeessaseessessesseesesescsesceeaseees 1-172

Sifilter(1)cccee0 deca eencnceaecncnscecasceseesseseeeeseeeceescenseeeececeessesseceseceeeeeeeeeseseereees 1-174

SIZE(1) oo... cccceceereeeeees dececeececcncsceccccecscascescsecscecscessseeseseecscsessesccesessssccesesecseeseaseras 1-176

STO(1)esscssscsssecosscccsccsscscesccesccessesescessseeseeeseseesesesesesescneesseeesssenesseeeseeceeeseeeees 1-178

SITIP(1)ssccssccssscccssccssceccccesecssccecsssesceessescessecsseesseeseeeeseesseneesssanseseesseereseseneees 1-179

TSOTt(1)secssccosceccsscnsscnscsceacsccsscesccsscsseeeesceceeeesessneceesseeesesceseseeessesseessceeesseessees 1-181

UNGEL(1)cscesssccssccccsccecceccsscssccnseeeseseesceesensceeeseecseeseeesecesseeesceeeesseseeseceeeseeeseees 1-182

Val(1)ccscsscsccssccssccscsccccscsescnssescessessesceseseeeesessenssscsecseceeesesseestesssesseseerscesonsens 1-183

ValtOO]s(1)cssccsscsscesceccssccccsceccecescsccescescncecececesscessecesceseesseseesascsscseeseceserescenees 1-185

VC(1) ...cccsccsccecccccsccsccscasscscecececscnscscscescsecceesecesseeecccssceeseeeeseesseseseasceeeeeseneceeeeeee res 1-186

What(1)ccsccscccsscsssccsscsccccssececcesesscecececsecesscensenscesccseescrscseecnseseeesseeseecseneren sees 1-189

XStr(1)ccsccsccssccscsscesssscscecscscnsescescesessccecceescecsesecsessesecsessssceeesccssssseeecescceeeeeees 1-190

VACC(1)cescssccccsscccsccnsccccsccccsscccsenssesescessceesseceeesesesesensesessenesssesssseesseceeeensen eens 1-191

Chapter 2 — System Calls

INTTO(2)ceccsccssccscccscrsccccccccscceccsccscssscccecccsecccececcecsssseseesesevecsesesesessceceeeeeeeeeesenees 2-2

ACCEPt(2)eecsreccsccccrecccccsccccccsccccsssccsscsscscccceescccsesesccssseseeescesenecsesnensensseneeeeees 2-19

ACCESS(2)eceecesscece pececeeccecenccaccsccccesccscescscececceccscsssescsascscscnscccecceccccesesescccesseseees 2-21

BCCH(Z) 2... .ccereccesccscesccccsccsccecsccccscsccscescssrcccsceeeccesecsscecescessccsscscesseseseseeeseeesesenosees 2-23

AAjtimme(2)cecsscoveccssccsccccsvcscccscccsccsscccsececcesesscsassceessecsssccessenesesseseescesseseesenees 2-25

alarm (2)ccccccsssrsccsccsceccsescsccsscssccscscsccsecccccceseerescesscesscresseseesecesesseaesesesenseesens 2-27

ASVNC_AAeCMON(2Z)sccscocccscccsccccsccccsccesocecescscscsessscecsceacceeeeseeaeecsssesseeseseesse esses 2-28

Derk_sigpause(2)cescecccsscccccscccceccsccceccscscccesersnseeseeesssceesscessecessenseaessesoneseees 2-29

DiNd(2)cccsccccccsscesscsccssscssccsscssscsscssccscceccesccceccesccccscceccccessccececsesoeseceeeesneeneeceees 2-30

DrK(2)cesccsccecccsccnscscccccecscecsscescnscssscessescesseseccecceseescecenccssceecesssesesseeeeseseesseceees 2-31

CHAIr(2)ccccscesccescesccccececscnccescnccsseescsssccccesacescssesccsessceccessesccsesessssesecesescasseeees 2-33

CHMOA(2)ccccesecesccsccscscccscnscscssccsccesccsscccsacscseecscessesasccsseessescesesesececesscessescecees 2-34

CHOWN(2)cccscccccsvccscccrsceccescscescsscecscccsscscncncncscscssnsccescsscssesscssoessescessccesesseoeeees 2-37

CHIOOL(2Z)ccscscscccnccccsceccccccccncscecscsesccsssccccesssesensssecsceeeeaseesecscnsecesesceaescecssesecoees 2-39

Xx Licensed material—-property of copyright hoider(s) 093-701055

Contents

ClOSE(2)sssssccescccccrecscccccccecessccssccececcssecseseessecsecenes ocecscsceesccesscccccccccccccecsccescecees 2-41

COMNECE(2)sccescceccvecsscecccceecscersscececseeceeeeseecnsneaseeeseneseeenseeeeeeeesceeseeeesesssneesesssnes 2-43

CTCAL(2)cccssscccscecsssscenseccscccsssceesccecsenseeeeseeeeeesesseesesereseescseeeseseecoeceeccesessecceoaenes 2-45

dg_allow_shared_descriptor_attach(2)ccccccsscssccsessssessecscsccccesesecccnccescsesssseeescees 2-46

dg_attach_to_shared_descriptors(2)csccccscccscccscccssscsccssssscnececcesecsccsccossecscsssereses 2-47

dg_decryptsessionkey(2)ccccrccssscsesececcraccrsccssccrssseccsssssssscescsesceesscncsececseseeeeeess 2-49

Ag_evetl(2)scsssseccsssscscersssssssesececscccersesssesceeseeseesesssescseoeesceesscrececsssscssseeeeces 2-50

dg_encryptsessionkey(2)-.ssssccccccccscsccnccnscccnsccsseconsssssesscesesenessesseseceescceceeesssseseoes 2-52

Ge_eXt_errn0(2)sscccscccccncssscercsccescescscccssssescessscusssoceessscseeeseeseresssecsesccssesseasssees DOS

g_file_info(2)sssccsccssssssecssessecescnscesccessecescescsseseensssessesenesseessesescenescsseesensees 2-54

Gg_fstat(2)cccccccscccsescscsssccrsesscesececsceesssscsscescerssseesssssseeescessecescnesnesereeseseneseses 2-56

de_getrootkey(2)sssccsecccscscsscccccecssscncccccssssccevcccessscesssscssessescscescensescsssescesseeeceess 2-57

Ag_ipC_infO(2)ccscssccssccccecccccccercccsccveccccccsccceccssecesencesessecseccsensceseeetescesceesseeeneees 2-58

Go_Jentl(2)cssccsscssscccssercccecccsscsccessececcescossesccsecesseessessseeesssesceescsesersssesseeeesceseees 2-60

Go JOCK _Kil](2)c.sccssccssscsscccscccccsscceccccceseceeseceessesssesssnesssssceseeeeeeeesseeseessseessoooreees 2-63

do_Jock_reset(2)ssssccccsssccccssccseccstececesessscesceesscessccessceseneessesensenscesceesesessereseens 2-64

do Jock wait(2)scscccssccssccsssccsesssecceccecscceceeceeescenseeessesseeseeeeeseesaseeeseseeneeeeeeeens 2-65

Go MKNOd(2)cccsscecccscesccscccscccsessecccesscecscescsseeseseseeseensseneeeeeseeteseesasteeeesceseeeesssecs 2-66

GE_MOUNE(2Z)cssccsccsscccccceccreccesscesencncetenseseeeeeseeeeseneseeenesseeseseeeesesecesceesessesseoes 2-69

Go_MStat(2)ccceseccccsccsscnscncvcssscrecestacecsceseeseseensseeensenesseneseeeeneenenecestesaeeseseseneecons 2-73

de_pagine_info(2) wetencesecseneeccssecnecsseeesececescnceeseceeeseesesesceecsneeceeceeeteeeeseeseseeseneeees 2-75

de_process_info(2)csssccscscccsssscscsceccetcccscenceeceecsesesseceesssseeesesseesceecesessseesesseeenes 2-78

Gg_set_cpd_limits(2)csccssccccssscsscseccccesccccesensesssesescesssceeeeeeeseeceseeseesensesaeesereeses 2-80

do_setsecretkey(2)-..ssscsssccsccsccsscssceesccecscsescncsecsssseeeesseeeseeeeeesereseeesesssseesseneenens 2-§2

Gg _Stat(2)cccsccscccccccsccscccsssecccssscccececcserscsscececsseesecesseesecneeneaes Vasasescscsccecescesceees 2-§3

Go_SyS_info(2)ccescccscccsscccscscssssceseessccsceceesenseessessceeesssceeceeseesceeesaeeeeeeteeeaeeees 2-85

Gg_SYSCH(2)cceccecscccccsccccccssccsscnseesececeseeceees De ceecccecncceseeccncececscscesscscccscsssscesosoees 2-86

dg_unbuffered_read(2)cessssccssscscccccesccsrcsseeceecesecessseseneseneeaecenscecensseessseeseseees 2-92

Go_unbuffered_Write(2)cccsscccsscececsccccstsccscesesseteecesessenssseeoeeassceeaneeeseesesseeseees 2-93

Go_Xtrace(2)cccsccscccsccccsccessscccssscnsecesecseseseesceseeseeesccsenesceneesesesesesecessseeerseeeeees 2-94

GUP(2)cesscccosscccsceseccesscccccscesceseceenenseseeseeseeeesesesessessssseeness esse esse ese neseneseeaee ees 2-101

GUP2(2)ccsesscersccssccscccssccesccssscccssccsesececeseeaecasseseeeeeesceesseserseeseeaeseessaeseseseeseeeneees 2-102

CXEC(2)csccosccsscsccecacceccscescssscsscescescecensecscccsecessecsceeseserscesesceseeeeeescecneaseassaeesaeses 2-103

OXIt(2)ccccccccssccsccccsccscsscnccnccnsccescaceesessscccsccececccecescescesscseoseesesesseeeseeeesesecnseeeeees 2-107

EXPOTthS(2) 0... .cecccsseccsceesccesecssssccscnscasecscceseeeaeeeessesceeesessssesoesessseneeesessceeseeeoees 2-109

EChdir(2)csccsccscscncsscsscscssccsscsscsceccseccecsccssscsceseseesscccsssecseneneceseeeeeesecesersenscees 2-111
FcHMOA(2)cccscsccccvsccccsccccsssecscscecesssecesesseresecesesssserscrecesesessensessenseeseeensseseeees 2-112

FCHOWN(2)ceccecscsccccccsccscsvescssccccscececcccscccscsccscscscesscosccssscsenee pancocecescscsesessssevces 27LLS

fontl(2)sccssccsscssccccccccsccsccscccsscccccncccsccecessccscesscesceeeesceesccseeeeseeessessesserseceeseeees 2-114

fetch_and_add(2)cscsccecccsceccccscccsccsncccascsscscccccccccccecsccsccsecccccccssscceseceseeseeeenees 2-117

FOrK(2)ccssccssccscccssccsccsccscesccssssscsscscsscscccsecseccessseesscessecessecescecesseensesreseeereseeees 2-119

Fstat(2)ccccccsccscsccscccsccescscescnscnscseesescecccsserccsceesscessessenecseceensesseenscesseeeeeceeeeees 2-121

Fstatis(2)cccccsccccccccscsccsccscsccscnccnscccecsacesencesssccnsecscssssesescssccececsesssesssseeeeeeessen sees 2-122

fstatvis(2)cccccccccsccscsccsccssscsccsccsccscsccesesccesrscscscessceressesceseesenesesanesesseseeseeeereeees 2-123

ESYTIC(2)cceccccecccrcccscccscccsevcresccsscescccsceccccecersceeescessessenssenesea ses eneseeosesereeeseecseeese 2-124

FtrUNCate(2)ccccscccsscsccscsccsccsccsscsccscscsccscecscecscccenccsecsecsssceseeseessoneess ease eessceeeensens 2-125
QETCONTENT(2)cnsrcesecrevccccccccsscccssccnceccvcecccececcescessccenssssseassssscceseseconseneseseenecess 2-126

PEtHENts(2)cererecccccesccscccsccsscccsscccesscsccsccccscsccesseecesssssssssessssccsensccseecesseseecesens 2-127

Getdomainname(2)csecccccsssccsccscccccccecsceccecscnscescesssnessesenccsonecesensecsenesesssens 2-129
getdtablesize(2)ssssssesssssessccssssescccescsccasececcansessssssssseescesenenaesesccsssaasaneseeeees 2-130

ZETEC LIA(2)cssecsccssccssccsccseccssccesceececcsccecsssscsccsccsccsssssnsseeesceeescsessassasssesoesenese 2-131

GETCUIC(2)cccsceccscsccsccccsccsccsctscccscescscccscscececscscesssscsccssssesscescscesesnensssessseosess 2-132

GetHh(2)eecccesceccscceccsccscscceccescccceccccscecsccececccssssescssscssessssecesceceressesssnscoeseeeees 2-133

093-701055 Licensed material—property of copyright holder(s) XI

Contents

ZETIA (2)ceccecccccccsscccscverscccccscssccesssseessessseeseeeeseseserseesceecsesessseccsescsscscssesseoesensees 2-134

ZETLTOUPS(2)crecsccsnvecsccceccscscscrsceccecescnccsseeseesesserseeseeescecesssessnceeeseeeceessseeseueees 2-135

GEthOSTI(2)csesssroscsercecccccccccccccscccesccssssescesseesssscsecessssessucccsesaescescssessssoooeeees 2-136

gethostmame(2)ssssccccccecsccsceccsscccescescseseeeseesesessecececscesesceesssesssscessesesseeeees 2-137

QEtitimer(2)csesccconcseccceccescccccrccrescnscssesensseescseeseeeeserecesetecseecessessesesseeecessoese 2-138

GELMSE(2)cesccccssccecccrnscesescceccccccsvccessvcssssecesscesenesesescessseseecesscesscsesnsssccseeecsecoes 2-140

getpagesize(2) laseenceecscnaccscecscsscsscscescccceceeccseesesescencecescncesseseesscesceccesceeneeess 2-143

getpeername(2) desecasceeccescscccassecesscsccsccescscececeecesceceaececescesenscesssessoescesscseesees 2-144

ZEtPATP(2)ccssseeoees donesecescaseeeceeesscesscessccssceescesceseesseesesessesseessssssscesesccnessceesceoees 2-145

QETPSTP2(Z)ssccccscercccsscccceccccccsccceceseenscsesscesseessesseeseesescesseesssnessssenscesseesencse 2-146

Getpid(2)scceeceeee desea eecececeescececnssesescecesceeceenseceeescecsoeesaseesescesessssscescecsesceeeeees 2-147

BEtPPId (2)sscccscscrecsceccsccsccecsccenccsccsevcsssesesesscesceseccesenscesseesscecssessscsessceseeseseees 2-148

QELPTIOTIty(2)ccescceesscccsccccsccccscsecccsescccsseseseessecesessessescscessesseeseeessceesssesseecesess 2-149

QELPST(2)-. sesccccccsssecccecccceccsecessecscesecsscenesseresseesaseeeecesessseececseesececeseuseesseseeeess 2-150

QEtrlimit(Z)ceecscserevsscccccsccceceseceesccssccsesseeecesseceeseescesessesseesseesceeesseeessseeeeecess 2-151

QETTUSAGE(2)ceseeeserecsscccsccccsccccesceeeessceceeseesseeeceeeeceeceeesesenseesseesenesseeseensesesaecess 2-154

JETSIA(2)cceccsecccsscccccesssccsccescccccsecsscenssseessseeecessesecesseeessseseasesersesseresenseeseseeeenes 2-155

PETSOCKMAME(2)ccereseccccscccccscessverscsscsesceeeseeecesceesceesesseesceeesessssseseeeeeeesseeeeess 2-156

JETSOCKOPt(2)ssssscecccccccescccecccscccsccnsvsscesessceeesececseaseeseseeseeseeeesseesssseesscesseeesseeees 2-157

Gettimeofday(2)cecessccssccecscesscesenscessceeseeessescessaseeeseecesecenseseeseseesseoesseseneseneees 2-159

QETUIA(2)csccescccssscccnssccnsccccscesenecsesssessaecsesssessscnsscnseeeneees sesceccsccscceseescesseceeeess 2-161

LOCTI(2)sececscsccscccsceessesscssscsccecccsssccesenseceeseeeeeseeeseceeseeeesseceecesseseneenesseeeeesenees 2-162

Kill(2)csscsecsccnsccescccnssecceccecascescessecsesseceesseseesecsscesseasecessesenseecsseessesesceeseseseesess 2-163

Ki O(2)ecssccececcccsccccesscccscsscssscccescsscsssccsseeesecesesseeseeeneneeeseeseesseesesseeseneessseseeeess 2-165

Link (2)csscsccscosccnccccessconscencncscsscnscscccsecsccseseecccssseseceeecscseseeseeseesseesessessseceseeeeess 2-167

Listem(2)cscecceccncccsstcnscnccccscecscsccscesccscsccecseeccessessccesecessesseescsscesscseeeesensseseseees 2-169

Ws@eK(2)ccsccccsccnsccssscccnccecsccececsccssesccscescssesecsscesesscesscesccesescessesseesceeseseseesseesess 2-170

Istat(2)sccsccescccectcccsensscnscescnscesessescecseesssacecsescsceesscsccenscsenceescssessssesescesereseceess 2-171

MEMCHI(2)cececcscescsscscssccscsccccccscsccesecssesccescesesenee seceescecececscscscesscscscesceseesessoes 2-175

MCMICH (2)cecsecceccnsccssccscececsccscscsscscescsscsscsecscessccssecesevecscesescessescsssscessesseeeaseees 2-178

TMINCOTE(2)scssccesccsccssccecscsccecncecssceeccscsccecesceeseseccececuceesescecescensessseesencsescseeees 2-180

MKCir(2)ccccccccceccscccssccscsencescececessescssnssescesensecescsseeeecsscescusessseesesecescessesseeeeeees 2-181

MKNOA(Z)cccsccscccseccnsccececacsccessssssscsssscescesesescecesceccccscesssccssessesssssseccsseaseeeees 2-183

MIMAP(2)cccsccsccccccssccsscsscscncscsscecssescsecsccssseeesessesscccscecessesseesessscasceescesseeseeeeeeees 2-186

IMMOUNE(2)scoccsccsccnsscsssccccscncsensescssessssccssescssescesscescesceccnsersecessessessenssesceessereeeees 2-192

MIPFOLeCt(2)cccssccsccssccccscscccscsscessscnccscccsscesscscsssesssccssceessseecesessesssseseesscescesceeees 2-195

ISOCHI(2)ccececccscccssccsccscscscccccsccscecscnccscscsccesssscescscconcesccceesessesesesensectecsseessesoneees 2-197

TSPPCT(2)cececcsccsscccsscccsccscnccscnccscsscnsssscesccessescsccccsccececscsccscsesesesessessceesseceescecees 2-199

ISQOTCV(2)ccsccccsccscsssccsccscescescsssccscnscsccscssssccscececsccececnsccsccssccccssessesesecescsseneccecees 2-202

IMSESNG(2Z)sceccccseccocscccscccccscscccacsccscnssscsccccecesccecccecscccccsccensseseesercesecsessseeseneees 2-204

ISZSYS(2)c.ccccccccccccccesccccscccccssnccscscescscnsceccccecsccsecsccccccceccccccsceseeeesessesenssesecenes 2-206

MUMIMAP(2)ccscceccssccsccecccccscccscscccecescecccsscnsessssceccscesccescccccsccsescssssceeseeeesen canoes 2-208

DESSVC(2)c0csceccecccsscsscccsccccscccccscrcccescsseccessscnscecccscscescccccnseeceseceesesssesceeee sees eeenes 2-210

TICE(2)ccscccccccscscccsccrcscsccccccccccecccnccseeccsceseessenceseececccccecescosssecescesssnesesseseeeneenes 2-211

OPCD(2Z)ccecceccrccccccscccescrssccsccsccescssccssseesccsseccsssecccsscesceseccesscansssaesseseconsssseeseewees 2-212

PAthcOns(2)cccocssscccsscecscccsccsccsssecsccsscssscscccccscesscccscsscacssceesensesseesseaseceeees 2-218

PAUSE(2Z)cecccccrccsscccessccssccccccscsccsccsscnscsecsecnececcecsncececececescescesee ness esseneaeseneaenees 2-221

PIPe(2Z)cscveccccccscccsssscccssceccnscesccesscseccresseesscessesccoesasessesenescsessesesseeeersceeeeee cess 2-222

PIOCK(2)cscccccscsscccccsscccscnsccsccsccassessescessecensesccsesceseseeseessseseeecsseesenessesenee snes 2-223

POL](2)ccceccccccrecssccccssscccccscceccscccnsscsessesesesseseeeseeeseeseceeeeeeceeeseceseseseeseceeeeeeees 2-225

PFOFI(2)cccccccccssscccccrssccsccedesscnsecnssecsccesscsssccscceseceseceeseeseesssessseesssesescesseeaesees 2-228

PUTACE(2)eccccressscscscccsescescenscsccesseceeccsnssccssccssccecssecessesseeessessessecessceesseseeeese 2-229

PUUIMSY(2)sccccssessscsresssccccsseccesssccscccnsessseseccncseeocceseeseeseseeeseasseseesssosessssensees 2-232

Xil Licensed material—property of copyright holder(s) 093-701055

Contents

TCAG(2)cssssssscccecsscecescesceecsssvenssceseseeesesseeeeeesseseeeeseseeeeesseeeenesesseesecnscesssscesseeers 2-235

TEACLINK(2)csecccscccrcccnccccsccccscccssscsccccccsceccsesccesesssescsceees pe escecccevccenceesoscesesses reve 29238

TEAV(2)sssccccccssccssccccccseccrsecessessesscesseeeeeecesesecsseeeseneseeeeeeseeseseeeescecescessessouooss 2-240

TEDOOT(2)ccccesccscscscccccccccsccccccccsscssecescnccesseseencesseeseesseseeseeessensessessescesassensene cess 2-242

TECV(2)cccssccsccsccccscscccecvccscccesescccceseccscscsecesceseceneeseseneeeeeeeereessceseeeecesecececscescueeses 2-243

TECVETOMN(2)cssccscccsccsccscccsscccsecsecscceecsseseesesesesecceseseseseoescessseseeseeesecscsescceooues 2-245,

TECVISE(2)ssssscsescccsccscccccccccccsscceressesessenceeesceecsseesessreesesesscsesessseseeseeecesssesensees 2-246

TENAME(2)csssccsccccccccsccscccscsscccoscesescesecsscsseecesesesesececssssescescessonsccescsccsosseresees 2-247

TINGIr(2)ccccsssscescccccccccccsccceseescssecssececsessceesesecssesesecssesesssessscnececescessessecesceneess 2-250

SDIK(2)sscsecssccsececcecccccecccsecscccrscesacceeccsccssccecccscssecesscsecsecsssscessessesssssssersvseee DLIL

SC]ECt(2)cescccssscescesccccccccsccaccccsceecscevccscesceecscescenscsenscecsessecceccsecesescsseesessscoeeses 2-253

SCMNCH(2Z)cccccssccscesccscsccscccesccscccccccesccsccescecscceccessescccssccasessssscescssssecssessssssesece D7LID

SEMLEL(Z)cessccssccsccccccceccessceccceceecsscaccecseccscerseesesceseseseesecessesesesseeecseseseeessneess 2-258

SEMOP(2)cssscssccsccccrecsccccssccecccccseseeescesccesecoescsscescssesessescencesssssessessesesseesoenseess 2-261

SEMSYS(2)cescesceeeees Lecencncecscscssscsscscsenceencncecenseeseoneseeeeesesesensesesesesseeeseeesen sesese 27204

SONG(2)ssssccssecseccsccececcccsecsscssccsscsscsssceseecsscescessssesenesecseseseesesesessesseeseeeesseeseeess 2-265

SENAMSE(2)csescssccsceccscsscccsccesseesseeccescescceeescesesseeseeseeecesensseeseeeesseseecsesssaceeeeees 2-267

SENGIO(2Z)ccreccsecsccscscecccscsccccsscsscsccececseeseesseeeseceseseeesersesseceesseeseeseeeeseseesesceesees 2-268

SCtdomainnamMe(2)csccsssscscscceccccsccsesssscscscecececccccscsscsecssessevsecsscseesecsseessesesecseneee 2-269

SCTEZIC(2)ccssesccesccscccccnsscnscescceseesseesceessnesessesceescenesseeecsseeeseeeesseneseeesseeneseeenees 2-270

seteuid(2)00. secaececceevecsccnccecsscnscnenececscecsceassesesceeessescesscesesssscesceceseseeseseeeses 2-271

SOTCIC(2) ss esccccsseenscecccesccesssccsseessececensseeeeeeenessceeeseessseseesseesnaseeeeeeeesseesenneceees 2-272

SCtHOSTIG(2)sscscssscecccsccscccseccscsecsscesecesscecececccecessesesesseensseeseesesenseesessasseeeesees 2-273

SethosStmame(2)csssccecccscsccsccccscessesccssscscsecccsscsesssecseesessssssesseessessecesessesseeseseees 2-274

SCTPZIG(2) ...c.cccssescccscccsccccesccssccnssensssseeseeesseeesecescneesceseresseseeeeseneesesseesaecseeeseesas seen 2-275

SCEPOTP(2)ccccsscccsccscceccecessccscceseeecsccessesceeceeeeeneseeesseeeseeesseeeeseeeceneseesaeseeseeeceenes 2-277

SCTPOTP2(2)seccrscccscccccsccessccceecesersssscensceesaceseseeseeescereseeesceseesseneeeseeseescseneeesenes 2-278

SCTPFIOTIty (2)cecsecsessecccecescececsccecsseeseesesecesscessenscesessseeseeeseeesseeeseeeesaeeneseeeeeeees 2-279

SETPSI(2)ceccesccscscccnennencensccecssesceseseeessnceseeceeesseeeeeeeeeeneeeeeaeee nen eseeeeeneneeeeeensaesens 2-281

SETrEGIA(2) ce eecsecsesennrncsecescceccsscssacccssccesecsensceecesseseesseesseeeesceseeesceeeeesaesssaeeennes 2-282

SCTTEVIG(2)csccecsoorensnscecscescecscccesscsecsccsecscssescesesssceensneenecneseeseeceseeeseeeecesseenecs 2-283

SCTSIG(2)ccssceecsnscenncescecsccsccccssscecccceccccscecececeseceesscesseceseseeeesesenseeseesaeesassaesees 2-284

SETSOCKOPt(2)cenesseccescsrecccceecsrcscesncecscsecececscssscceeseeess ccccsccceccscccsccccecsssscceneeees 2-285

Settimecfday(2)ssessccscccccccscesscsccccscncscecccssssssecseceses sescccseccccccscccecceccsssscececseces 2-288

SETUIG(2)seceecesconssceccceccsscescnscesccescesescsscenscccsceecesssecscnscsssesesseesesseseresseesceesens 2-289

Shmat(2)csscsscsseres ene seencncasesceecscescescncececcsceceecseseesssseseececcssenceseccesesesesescenssceess 2-290
SHMCH(2) ..ccecsceccsesccssesscesssscssssssccssssscscssscssssscsccscsceeesesseesssssesssnsesessceeeeseseesensenees 2-293

SHMAt(2)secsesccrsssccccscscssssceccscsescesssssscssscccscscsccsccsseccscescesecscescsesscecnssnsceecnsees 2-296

SHMGE?(Z)ccsecossecrecccccecscccccscssccescececcscaccescseccesceseeceseesesceeseesssenssenesescessesesees 2-297

SHMSYS(2)cccceccssscvcscccvscecees ueevccsccccsccncccacccccccccvcccccesccssccecsncecenssenecsscsesccsesoees 2-301

SHUtdCOWN(2)cccccccccccccccccccsccncceccccscescecescecessssssssscscecscssscssensescesesessseessscnee snes 2-302

SIZACTION(2Z)cscecseccsceccsccsccescescccsccnccsscscescscssccsoceesssscsesensesenecesosssoeeeeeseeee eee nens 2-303

Sigaltstack(2)ccscecscsscssccscescsccnsscnccsccsescsccccssocsssessescesenseeesensceesnensesstessasseees 2-306

SIZDIOCK(2)sccsscoscescscsccssccsccsccnsccsscssccscsccecscecceecesceccesseesseneeessseseeeseeeeseeeseeneas 2-308

Sigfillset(2)ccsccscccscscescssccsscrssccesccescnscescenceccscncccssseeesaseaessseseeesscesseeseceeseoeeees 2-309

SIQHO]G(2)cccsecccsccsccscssscnsccssscesssccsscnsssaccecccccccsascesscsesssaesseseccsessssseesssseecwesees 2-310

SIZIONOTE(2)ccsscsscccvescccccsccsscssccssernccnscsscscesceccocsesceseeeresenssaesseeseeeseeseseseeeserees 2-311

Sigtal(2)cccscssccsccccccscscsscnsccecsstessceccscsssssscscsccesescessesseseeesesesesaseseeeeeeeeesseceeees 2-312

SIQPAUSE(2)cccsscsscceccsecsccssccnsccensccssccssceeeescescsececcsecceeeseeesesesesensseesseeseseeeeeeeees 2-315

SigPENING(2)ssccsccccsccssccsccssccesecsscceccssssccceccesescseseeecenessansseseeeseeseeceeceeseeees 2-316

SIQPFOCMASK(2)ccsccscsscssccsscceccnsscceccnccescssssceccccosseeceessenssen sess seeeseeseeceseeaeeeees 2-317

SICTEISE(2)c.sccsscsscecsccecscssccccsccsccesccsccccscecsecescssenesscceaeeseceeeeeseess esse seo eseesanenees 2-319

SIQTET(2)cccccssscccsscccsccccecsscccesccssseccsccesecasccscessssesseeeseeenesseseaeeseseesseseseesesee ness 2-320

093-701055 Licensed materiat—property of copyright holder(s) Xiil

Contents

SIZSENA(2)cescscccrrecsecccsccccsccceceserecseeesscseeseeeseeeeecscececeeeceeeescaseessesceseseseeeeeess 2-321

SIQSET(2)ceccececcscccccccccccccccsccercssscecceresceeerscsessseseeeeseeseeecesceccesesseeseensscescnsseesesess 2-323

SIQSEtTIMASK(2)-.cressscceccsccsccscecccceccccccrsesscscesesssseseessceecececescessesessasssseeserosesceeees 2-325

SIQStACK(2)csecesccsccsscccecceeecvccsccsccsceccesescsececsseceesersesceeeesesceseecessessessecesceseeesonees 2-326

SIQSUSPENA(2)cseerccscccccccsccscrsccecceccvccssecccreserescesetec sees cesses esescessssceeseacscessocoees 2-327

SIZVEC(2)ccesccsccscccssccsssccnsconscesccsscscceccccesesscseseseesceececcececcsccsssesesosscsscesonssceescoeees 2-328

SOCKEH(2)ccccceccsscsccssscccnscccsccsscessceccsesscscecccscesssccscacesssssccesceesoesasssseescosssoeses 2-331

SOCKetPair(2)sccssrcccccccscccscccseccccecceccesecerecceseesssenseesccecssessesccecssecssesessceesssesees 2-333

Stat(2)cccccesccesccsreccssssccesscccccescceccescseesseccsesceceseecceccecnscesccessesscosscssssecesccar scones 2-334

Stat£s(2)cccccccsccoreccsssccsscresccscassasccecccecccecceceseceeccnscceecsscnssessessseeessscccescenseoesess 2-336

Statvis(2)csscccceeeee desececeascesccascccsscecsccesceccssccccccessecceeeesessnscesescesseesscecsccescceceesees 2-338

StIME(2)ccecsccccsccesessccsscssescesceccscccccceccsceecesseeeeseeecececececscnccaccccsssesssoseesessceesoees 2-340

StOre_CONCItional(2)sscsscscccsccsecsscecceccececscccscseesecceceaseecscceccecssessessessccssseceonees 2-341

SWAPON(2)cceeeeee peeecetenccnecscescseesesescnscscensccscceccececeeececsseesonsesseessenscessasesescouse 2-343

SYMIINK(2)ccceccsscesccccssccesccsscrsccscccccecscseesscsscsseesseeseeeecesesssessecsescsscssscesssesensens 2-344

SYDC(2) ..ccescoscesccccsscccsccssscceccsecscsccsccessecssseccseseseseseteereceessescsseseesseessssereseesseeseeeees 2-346

SVSCONL(2)cecescsccovsccescccccesccascsccecsccsscececsesscseseeesseseececerescesseesesessseessesceseesen eens 2-347

SYSES(2)ccecceccececcvecsssceeceeee pecncscccnccecscecsscessascnscscesceessacescssesesesssasecescescecesseseess 2-350

SYSINLO(2)cceccecccusccssscccccesccaccsccscescseceeseseresereeseeeeeeeseeecsessseceencsseeeseseesssoceess 2-352

TiME(2)ccececcecssccnsareccecsccesccssescsececnsccsccececsseeesseeeseeeesesenecceseseseesessensceeeseseeeneens 2-354

TIMES(2)scccccccsccenscsssconscesccsceacesceseeessccesceesessnereseeeeeeenesesseceeeeeeeseseescenceeseseneens 2-355

TTUNCATE(2) 2... cs cecsccsccesccsccecesccececscceccccscesessesseeeeessseeeseeeseseeseseeeessesseeeesessecsoneenees 2-356

UAGMIN(2)csccscssccsccssccesecscesceccscceccccscceesesesseesesseeseeesesesessesessecsseescseeeseeseseseenes 2-358

UlIMIt(2)cceecoscsscseccesseeseesecscsscescscesccscecsseesceeseeseneeeeneceseceeceecesessessseenceneseeeeceee 2-359

UMASK(2)cccocesccccneccssccsscsecsscnscscaccscssesccsccssccsececssscecececececcscescsseessssecessssssesescnee 2-361

UMOUNL(2)cccecsccscscccscascncecscsecscecscscsccecesessceseeseeceseceecesscseceseusesescsssesceneeseseees 2-362

UMAME(2)scececsccccnccsccescsscscnsescscssessssscscsccsccscescessreceencessessecerscssssessecscssosssosecees 2-364

UNLINK(2)cececcscscccssccsscsscsceescsccscessccsccscseccsecsessesseeceeesceeseeceseseeecesesesessessseeseees 2-365

UStat(2)ccecscccsccccscccccccscncessccscececsessssscescscescecesesscnececcessressececessessessescsessseeeees 2-367

UtiMe(2)cecscscccscsccnsceccscecescececscecscsescecesescesesccesececeneecccesseneeesseseesceesccesessseeees 2-368

UtIMeS(2)cceccccscsecccsceccsceccsceccscessescssescescsscescscessscecececsesccscessesesssessecesesseeceess 2-370

VEOFk(2)scecoccscsccscccsccescnccecescsccescecescecsscesseesenssecescescecscescesecseseeessesssosecssseseees 2-372

VHANCUP(2)scceseccccsscccccsscescsccscesescncnscsscscscesscescsseecececccesscecescncasssesseseeeseseneeoens 2-374

WAIt(2)cececscecscsccccscnccnscscsesscscscesseecessceccscescscceseccececea cee esesseccecscesenscesseseccceseseees 2-375

WAit3(2)cececcceccccsccnccsccncsccnssscecscessscscccescssccecsscsccecescscccessccccesescessscseesesesenesoees 2-378

WAit4(2)cececscccceccsccnsccnccsccscnscsccscscscsscacccsccscesecsseccececcesccssecececesssesceseceresceseseees 2-380

WAIA(2) ...cccsceceececsccccesccssscsssssscscssscssscsssecsssssscesenceeccescceescessesesessesecsesessssnseeseeees 2-382

WTItE(2)ccscsccscsccccsscceccnscnccsscscnscnseencnscceccscccecensesssccnececesenseseseereseseceeesessceeseees 2-384

WIITEV(2)ccccccccccccccsscrscescscncescscncccscsceccscecsscesccccseccecoccenceecorsccseerescceecessseeeeeeees 2-387

index

Related Documents

Data General Software Manualscccccscscsvscscscccsssscccsscossccesssscesscsscscsscescessseoees RD-1

User’s Manualsccccsscssscsssccecssccsccscccssccssccsccccccesceccccsccsccccccestencccccescsessoosees RD-1

User’s Reference for the DG/UXTM Systemcccccscccscsccsccscecserenncsescssssceecoes RD-1

Using the DG/UXTM Editorscccccsoscsscscesccccccscnceccsccscscsccscscscccscescscecseseeeeces RD-1

Using the DG/UXTM Systemcccsscsscosccosccssccesccscecscscsccesscssesssnescesessessaseeesees RD-1

Installation and Administration Manualscccccsceccecccccscsccssscccccccscscsccscceeseeees RD-1

System Manager’s Reference for the DG/UXTM Systemsccccceseessesssssesseeenes RD-1

XIV Licensed material—property of copyright holder(s) 093-701055

Contents

Programming Manualsscsssseccsecccsssssssssssssenrsrenscscecesenseanecescecnsescssoseseooeces RD-2
Porting and Developing Applications on the DG/UXTM Systemsseseeeeeeeeees RD-2

Programmer’s Guide: ANSI C and Programming Support Tools:scsssseeeees RD-2

Programmer’s Guide: Systems Services and Application Toolsssssssseeeees RD-2

Programmer’s Reference for the DG/UXTM System, (Volume 2)-cesssoeres RD-2

Programmer’s Reference for the DG/UXTM System, (Volume 3)sseeeseeeees RD-2

Programming in the DG/UXTM Kernel Environmentssscsssrsrccesessnssereenees RD-2

093-701055 Licensed materiat—property of copyright holder(s) XV

Chapter 1

Commands

This chapter contains in printed form all the online manual entries for programming-related

DG/UX commands. Except for intro(1), the entries are in alphabetical order.

093-701055 Licensed material—property of copyright holder(s) 1 -1

intro (1) DG/UX 5.4 intro(1)

NAME |

intro — introduction to commands and application programs

DESCRIPTION

This section describes, in alphabetical order, publicly-accessible commands.

Command Syntax

Unless otherwise noted, commands described in this section accept options and other

arguments according to the following syntax:

name [option(s)] [cmdarg(s)]

name The name of an executable file.

option ~ noarglerter(s) or,

~ argletter <>optarg

where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument.

optarg Argument (character string) satisfying preceding argletter.

cmdarg Path name (or other command argument) nor beginning with - or, -

by itself indicating the standard input.

Command Syntax Standard: Rules

All new commands will follow the syntax rules below. Because existing commands

have been developed at various times by various people, some commands will not fol-

low the rules below. Getopts(1) should be used by all shell procedures to parse

positional parameters and to check for legal options. Getopts(1) supports Rules

3-10 below. The command itself must enforce the other rules.

1. Command names (name above) must be between two and nine charac-

ters long.

Command names must include only lower-case letters and digits.

Option names (oprfion above) must be one character long.

6699

All options must be preceded by

669?
eOptions with no arguments may be grouped after a singleAW PWN The first option-argument (opfarg above) following an option must be

preceded by white space.

Option-arguments cannot be optional.

fo Groups of option-arguments following an option must either be

separated by commas or separated by white space and quoted (e.g., -o

xxx,Z,Yy OF -o "xxx z yy”).

9. All options must precede operands (cmdarg above) on the command

line. |

10. ‘‘-—” may be used to indicate the end of the options.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their sig-

nificance in ways determined by the command with which they appear.

13. ‘“-” preceded and followed by white space should only be used to mean

Standard input.

1 -2 Licensed material—property of copyright ho!der(s) 093-701055

intro(1) DG/UX 5.4 intro (1)

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by the

system and giving the cause for termination, and (in the case of normal termination)

one supplied by the program (see wait(2) and exit(2)). The former byte is 0 for

normal termination; the latter is customarily 0 for successful execution and non-zero

to indicate troubles such as erroneous parameters, bad or inaccessible data, or other —

inability to cope with the task at hand. It is called variously “exit code,” “exit status,"

or "return code,” and is described only where special conventions are involved.

SEE ALSO

getopts(1), exit(2), wait(2), getopt(3C).

NOTES

Many commands do not adhere to the aforementioned syntax.

Some commands produce unexpected results when processing files containing null

characters. These commands often treat text input lines as strings and therefore

become confused upon encountering a null character (the string terminator) within a

line.

0$3-701055 Licensed material—property of copyright holder(s) 1 -3

admin(1) DG/UX 5.4 admin(1)

NAME

admin — create and administer SCCS files

SYNOPSIS

admin [-n] [-ilname]] [-rrel] [-t[name]] [-fflag[flag-val] } [-dflag[flag-

file] [~List] [-alogin] [-elogin } [-m[mrlisr]] [-y comment] } [-b] [-z]
es

DESCRIPTION

Admin creates new SCCS files and changes parameters of existing ones. SCCS file

names must begin with the characters "s.”. If a named file does not exist, it is

created, and its parameters are initialized according to any options specified. Param-

eters not initialized are assigned a default value. If a named file does exist, parame-

ters corresponding to specified options are changed, and other parameters are left as

they are.

If a directory is named, admin behaves as though each file in the directory were
specified as a named-file, except that non-SCCS files (last component of the path

name does not begin with s.) and unreadable files are ignored. If a name of - is

given, the standard input is read; each line of the standard input is taken to be the

name of an SCCS file to be processed. Again, non-SCCS files and unreadable files

are ignored.

The options are as follows. Each is explained as though only one named file is to be
processed since the effects of the arguments apply independently to each named file.

-n Indicates that a new SCCS file is to be created.

-i[name] The name of a file from which the text for a new SCCS file is to be taken.

The text constitutes the first delta of the file (see -r for delta numbering

scheme). If the i option is used, but the file name is omitted, the text is

obtained by reading the standard input until an end-of-file is encountered.

If this option is omitted, then the SCCS file is created empty. Only one

SCCS file may be created by an admin command line including the i

option. Using a single admin to create two or more SCCS files requires

that they be created empty (no —-i option). Note that the -i option

implies the —n option.

-rrel The release into which the initial delta is inserted. This option may be used

only if the —i option is also used. If the -—r option is not used, the initial

delta is inserted into release 1. The level of the initial delta is always 1 (by

default, initial deltas are named 1.1). .

-t{name] The name of a file from which descriptive text for the SCCS file is to be

taken. If the -t option is used and admin is creating a new SCCS file (the

-n and/or -i options also used), the descriptive text file name must also be

supplied. In the case of existing SCCS files: (1) a -t option without a file

name removes descriptive text (if any) currently in the SCCS file, and (2) a

-t option with a file name substitutes text (if any) in the named file for the

descriptive text (if any) currently in the SCCS file.

-fflag Specifies a flag, and, possibly, a value for the flag, to be placed in the SCCS

file. Several £ options may be supplied on a single admin command line.

The allowable flags and their values are:

b Allows use of the —b option on a get(1) command to create

branch deltas.

1-4 Licensed materiat—property of copyright hoider(s) 093-701055

admin(1)

093-701055

-dflag

cceil

£ floor

aSID

i[str]

liist

DG/UX 5.4 | admin(1)

The highest release (ceiling), a number less than or equal to 9999,

that can be retrieved by a get(1) command for editing. _The

default value for an unspecified c flag is 9999.

The lowest release (floor), a number greater than 0 but less than

9999, that can be retrieved by a get(1) command for editing. The

default value for an unspecified f flag is 1.

The default delta number (SID) to be used by a get(1) command.

Treats the "No id keywords (ge6)” message issued by get(1) or

delta(1) to be treated as a fatal error. In the absence of this flag,

the message is only a warning. The message is issued if no SCCS

identification keywords (see get(1)) are found in the text retrieved

or stored in the SCCS file. If a value is supplied, the keywords must

exactly match the given string; however, the string must contain a

keyword and must not contain embedded newlines.

Allows concurrent get(1) commands for editing on the same SID

of an SCCS file. This allows multiple concurrent updates to the

same version of the SCCS file.

A list of releases to which deltas can no longer be made (get -e

_ against one of these "locked" releases fails). The list has the follow-

qrext

mmnod

type

ing syntax:

list ::= range | list , range

range ::= RELEASE NUMBER |a

The character a in the list is equivalent to specifying “all releases”

for the named SCCS file.

Makes delta(1) create a “null” delta in any releases being skipped

when a delta is made in a mew release (e.g., in making delta 5.1

after delta 2.7, releases 3 and 4 are skipped). These null deltas

serve as anchor points so that branch deltas may later be created

from them. If you don’t use this flag, skipped releases won’t show

up in the SCCS file, thus preventing branch deltas from being

created from them in the future.

User definable text substituted for all occurrences of the %Q% key-

word in SCCS file text retrieved by get(1).

Module name of the SCCS file substituted for all occurrences of the

%M% keyword in SCCS file text retrieved by get(1). If the m flag

is not specified, the value assigned is the name of the SCCS file with

the leading s. removed.

Type of module in the SCCS file substituted for all occurrences of

%Y% keyword in SCCS file text retrieved by get(1).

v[pgm] Makes delta(1) prompt for Modification Request (MR) numbers

as the reason for creating a delta. The optional value specifies the

name of an MR number validity checking program (see delta(1)).

(If you set this flag when creating an SCCS file, you must also use

the m option, even if its value is null).

Removes (deletes) the specified flag from an SCCS file. You may specify

this option only when processing existing SCCS files. Several -d options

Ucensed material—property of copyright holder(s) 1 “5

admin(1)

—lilist

-alogin

-elogin

-m[mrlist]

DG/UX 5.4 admin(1)

may be supplied on a single admin command. See the -f option for
allowable flag names.

A list of releases to be “unlocked.” See the -f option for a description of

the 1 flag and the syntax of a list.

A login name, or numerical group ID, to be added to the list of users who

may make deltas (changes) to the SCCS file. A group ID is equivalent to all

login names common to that group ID. Several a options may be used on a

single admin command line. As many logins, or numerical group IDs, as

desired may be on the list simultaneously. If the list of users is empty, then

anyone may add deltas. To deny the privilege to a login or group ID, put a

! in front of it; e.g., -a! fred will assert that fred may not add deltas.

A login name, or numerical group ID, to be erased from the list of users

allowed to make deltas (changes) to the SCCS file. Specifying a group ID is

equivalent to specifying all login names common to that group ID. Several

e options may be used on a single admin command line.

The list of Modification Request (MR) numbers is inserted into the SCCS

file as the reason for creating the initial delta, just as for delta(1). The v

flag must be set and the MR numbers are validated if the v flag has a value

(the name of an MR number validation program). Diagnostics will occur if

the v flag is not set or MR validation fails.

-ycomment

—Z

EXAMPLES

The comment text is inserted into the SCCS file as a comment for the initial

delta, just as for delta(1). Omitting the -y option results in a default

comment line being inserted in the form:

date and time created YY¥Y/MM/DD HH:MM:SS by login

The ~y option is valid only if the -i and/or -n options are specified (i.e.,

a new SCCS file is being created).

Makes admin check the structure of the SCCS file (see sccsfile(5)), and

compare the sum of all the characters in the SCCS file, except those in the

first line, with the check-sum stored in the first line of the SCCS file.

Appropriate error diagnostics are produced.

This option inhibits writing on the file, so that it nullifies the effect of any

other options supplied. It is meaningful only when processing existing files.

The SCCS file check-sum is recomputed and stored in the first line of the

SCCS file (see —h, above).

Using this option on a truly corrupted file may prevent future detection of

the corruption.

admin ~ifilel s.filel

This command will take a file called ’filel’ and create an SCCS file named ’s.file1’.

NOTE: If you receive a message ’No id keywords (cm7)’ do not be alarmed, it is a

warning message and should be ignored for now.

admin ~ifile2 -r2.02 s.file2

Licensed materiak—property of copyright hoilder(s) 093-701055

admin(1) DG/UX 5.4 admin(1)

This command will take a file called ’file2’ and create an SCCS file named ’s.file2’,

which will have a release of 2.02. Once again if you should receive message ’No id

keywords (cm7)’ do not be alarmed, it is just a warming message and should be

ignored for now.

admin -ajohn s.file3

This command allows user john’ to make deltas (changes) to the SCCS file ’s.file3’,

while the command admin -ejohn s.file3 revokes the privilege for john to

change the file ’s.file3’.

FILES

The last component of all SCCS path names must be of the form s.filename. New

SCCS files are given mode 444 (see chmod(1)). Write permission in the pertinent

directory is required to create a file. All writing done by admin is to a temporary x-

file, called x. filename, (see get(1)), created with mode 444 if the admin command

is creating a new SCCS file, or with the same mode as the SCCS file if it exists. After

successful execution of admin, the SCCS file is removed (if it exists), and the x-file is

renamed with the name of the SCCS file. This ensures that changes are made to the

SCCS file only if no errors occurred.

Directories containing SCCS files should have access mode 755 and SCCS files them-

selves should be mode 444. This mode of the directories lets only the owner modify

SCCS files in the directories. The mode of the SCCS files prevents any modification

at all except by SCCS commands.

If you need to patch an SCCS file for any reason, the mode may be changed to 644 by
the owner allowing use of ed(1). Be careful! The edited file should always be pro-

cessed by an admin -h to check for corruption followed by an admin ~-z to gen-

erate a proper check-sum. Use another admin —h to ensure that the SCCS file is

valid.

Admin also uses a transient lock file (called z. filename), which prevents simultane-

ous updates to the SCCS file by different users. See get(1) for more information.

DIAGNOSTICS

Use help(1) for explanations.

SEE ALSO

delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(4).

093-701055 Licensed material—property of copyright holder(s) 1-7

ar(1) DG/UX 5.4 ar(1)

NAME

ar - archive and library maintainer for portable archives

SYNOPSIS

ar [-v] [-Jkey [posname] afile [name } ...

where:

key One of the following letters: drqtpmx. Arguments to key are made with

one of more of the following set: vuaibcls.

posname |

An archive member name used as a reference point in positioning other files

in the archive.

afile | The name of the archive file.

name A constituent file in the archive file.

DESCRIPTION

, The ar command maintains groups of files combined into a single archive file. Its

main use is to create and update library files as used by the link editor. It can be

used, though, for any similar purpose. The magic string and the file headers used by

ar consist of printable ASCII characters. If an archive is composed of printable

files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across all

machines. The portable archive format and structure are described in detail in
ar(4). The archive symbol table (described in ar(4)) is used by the link editor 1d(1)
to effect multiple passes over libraries of object files in an efficient manner. An

archive symbol table is only created and maintained by ar when there is at least one

object file in the archive. The archive symbol table is in a specially named file which

is always the first file in the archive. This file is never mentioned or accessible to the

user. Whenever ar(1) is used to create or update the contents of such an archive,

the symbol table is rebuilt. The s option described below will force the symbol table

to be rebuilt.

Options

-V Print ar’s version number on standard error.

Key Characters

The meanings of the key characters are as follows:

d Delete the named files from the archive file.

xr Replace the named files in the archive file. If the optional character u is

used with r, only those files with dates of modification later than the archive

files are replaced. If an optional positioning character from the set abi is

used, the posname argument must be present and specifies that new files are

to be placed after (a) or before (b or i) posname. Otherwise new files are

placed at the end.

q Quickly append the named files to the end of the archive file. Optional posi-

tioning characters are invalid. The command does not check whether the

added members are already in the archive. This option is useful to avoid qua-

dratic behavior when creating a large archive piece-by-piece. Unchecked, the

file may grow exponentially up to the second degree.

t Print a table of contents of the archive file. If no names are given, all files in

the archive are tabled. If names are given, only those files are tabled.

Pp Print the named files in the archive.

Licensed materia}—property of copyright holder(s) 093-701055

ar(1)

FILES

SEE ALSO

NOTES

093-701055

x

DG/UX 5.4 ar(1)

Move the named files to the end of the archive. If a positioning character is

present, then the posnamme argument must be present and, as in x, specifies

where the files are to be moved.

Extract the named files. If no names are given, all files in the archive are

extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

Vv

wa PSP & f

Give a verbose file-by-file description of the making of a new archive file from

the old archive and the constituent files. When used with t, give a long List-

ing of all information about the files. When used with x, precede each file

with a name.

Act only on those files with dates of modification later than the archive file’s.

(See the r key letter.)

(See the xr key letter.)

(See the x key letter.)

Suppress the message that is produced by default when afile is created.

Place temporary files in the local (current working) directory rather than in

the default temporary directory, TMPDIR. In an ELF environment, ar does

not use temporary files, and this option is ignored.

Force the regeneration of the archive symbol table even if ar is not invoked

with a command which will modify the archive contents. This command is

useful to restore the archive symbol table after strip(1) or (mces(1) has

been used on the archive. This key can be used only in combination with one

of the keys [arqtprx].

STMPDIR/*« temporary files

STMPDIR is usually /usr/tmp but can be redefined by setting the environment vari-

able TMPDIR [see tempnam() in tmpnam(3S)]. In an ELF environment, ar no

longer uses temporary files.

1a(1), lorder(1), strip(1), mes(1), a.out(4), ar(4).

By convention, archives are suffixed with the characters .a.

If the same file is mentioned twice in an argument list, it may be put in the archive

twice.

Licensed material—property of copyright holders) 1 -9

as(1) DG/UX 5.4 as(1)

NAME

as — MC88000 assembler

SYNOPSIS

as [options | file

DESCRIPTION

The as command performs assembly of 88000 instruction mnemonics into object

files. The assembler input language is described in Chapter 11 of Prograrmmer’s

Guide: ANSI C and Programming Support Tools. The as command may optionally

invoke the m4(1) macro processor and sifilter(1) before assembly. The as com-

mand reads input from file; if file is ‘~’, as reads from stdin.

as supports the following options:

-o objfile

Causes as to place its output in the specified objfile. If this option is not

present, as places output in a file whose name is constructed from file by

replacing a .s suffix, if present, with .o, otherwise by appending .o.If as

takes its input from stdin, then the -—o option must be supplied. The out-

put file must be a file on which as can perform fseek(3S).

-m Causes as to process its input with the m4 macro processor before assembly.

-Y [md], dir

Normally, as will invoke m4 with a command line of the form:

/bin/m4 /lib/emédefs file

The -Y option changes the directory from which m4 is invoked and the direc-

tory in which cm4defs is found. Thus

-Y m,dir will invoke dir/m4 and include /lib/cm4defs;

-Y d,dir will invoke /bin/mé4 and include dir/cm4defs;

-Y md, dir will invoke dir/m4 and include dir/em4defs.

-W s, Sifilter-options -

This option controls invocation of the silicon filter before assembly. Argu-

ments to this option include on, which will unconditionally invoke

sifilter with default options, and off, which prevents invocation of

sifilter; any other arguments are passed as options to sifilter.

By default, as will not invoke sifilter.

-W c,ctl-options | |

This option controls invocation of the COFF-to-legend translator after assem-

bly. All arguments are passed as options to ctl.

By default, as will not invoke ctl.

FILES

| /bin/ctl COFF-to-legend translator, ct1(1)

/bin/sifilter silicon filter, sifilter(1)

SEE ALSO

ec(1), 1d(1), m4(1), nm(1), strip(1), ctl(1), sifilter(1), tmpnam(3S),

a.out(4).

1 -1 0 Licensed material—property of copyright holder(s) 093-701055

as(1)

NOTES

093-701055

DG/UX 5.4 | as(1)

If the —m (m4 macro processor invocation) option is used, keywords for m4 [see

m4(1)] cannot be used as symbols (variables, functions, labels) in the input file since

m4 cannot determine which keywords are assembler symbols and which keywords are _

real m4 macros.

Arithmetic expressions may have only one forward referenced symbol per expression. |

Whenever possible, you should access the assembler through a compilation system

interface program such as cc.

Licensed material—property of copyright holder(s) | 1 -1 1

asa(1)

NAME

DG/UX 5.4 asa(1)

asa — interpret ASA carriage control characters

SYNOPSIS

asa [files]

DESCRIPTION

Asa interprets the output of FORTRAN programs that utilize ASA carriage contro!

characters. It processes either the files whose names are given as arguments or the

standard input if no file names are supplied. The first character of each line is

assumed to be a control character; the meanings are:

"* (blank) single new line before printing

0 double new line before printing

i new page before printing

+ overprint previous line.

Lines beginning with characters other than the ones above are treated as if they began

with ‘ ‘. The first character of the line is not printed and an appropriate diagnostic

will appear on standard error. This program forces the first line of each input file to

start on a new page. | |

To view correctly the output of FORTRAN programs which use ASA carriage control

characters, asa could be used as a filter thus:

a.out | asa | lp

and the output, properly formatted and paginated, would be directed to the line

printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO

1-12

£77(1), fsplit(1), ratfor(l).

Licensed material—property of copyright holder(s) 093-701055

att_dump(1) DG/UX 5.4 att_dump(1)

NAME .

att_dump — dump parts of an object or object archive file

SYNOPSIS

att_dump [options | files

DESCRIPTION

The att_dump command dumps selected parts of each of its file arguments.

This command will accept object and archives of object files. It processes each file

argument according to one or more options. These options are supported in both

ELF and COFF environments:

~a Dump the archive header of each member of each archive file argument.

-g Dump the global symbols in the symbol table of an archive.

-f Dump each file header.

-O pamP program header from ELF files; dump optional header from COFF
es.

-h Dump section headers.

-s Dump section contents.

-r Dump relocation information.

~1 Dump line number information.

-t Dump symbol table entries.

-c Dump the string table.

-L Dump dynamic linking information and static shared library information, if

available.

These options are supported only in an ELF environment:

-C Dump decoded C++ symbol table names.

-T index or -T Index] ,index2 |

Dump only the indexed symbol table entry defined by index or a range

of entries defined by index1,index2.

-V Print version information.

-u When reading a COFF object file, att_dump translates the file to ELF

internally (this translation does not affect the file contents). This

option controls how much translation occurs from COFF values to ELF.

Normally (without -u), the COFF values are preserved as much as pos-

sible, showing the actual bytes in the file. If -u is used, att_dump

updates the values and completes the internal translation, giving a con-

sistent ELF view of the contents. Although the bytes displayed under

this option might not match the file itself, they show how the file would

look if it were converted to ELF. (See cof2e1f(1) for more informa-

tion.)

This option is supported only in a COFF environment:

-z name Dump line number entries for the named function.

The following modifiers are used in conjunction with the options listed above to

modify their capabilities.

093-701055 Licensed material—property of copyright hoider(s) 1 “1 3

att_dump(1) DG/UX 5.4 att.dump(1)

-n name Dump information pertaining only to the named entity. This modifier

applies to -—h, -s, ~r, —1, and -t. When -nis used with —h or

-s, the argument will be treated as the name of a section. When <n is

used with -t or -r, the argument will be treated as the name of a

symbol. For example, dump -t -n .text will dump the symbol

table entry associated with the symbol whose name is .text, whereas

dump -h —n .text will dump the section header information for the

. text section.

—p Suppress printing of the headers.

-v Dump information in symbolic representation rather than numeric

(e.g., C_LSTATIC instead of 0x02).

-d index Dump only the indexed section. In an ELF environment, you may

specify a range of sections as

-d start-index ,end-index

In a COFF environment, use the +d modifier to specify a range of sec-

tions:

--d start-index +d end-index

These modifiers are accepted only in a COFF environment:

+d index Dump the sections in the range ending with the indexed section. The

range begins at the first section or at the section specified by the —d

option.

-tindex | Dump only the indexed symbol table entry.

+t index Dump the symbol table entries in the range ending with the indexed

entry. The range begins at the first symbol table entry or at the entry

specified by the —t option.

-u Underline the name of the file for emphasis.

-z name ,number

Dump the line number entry or range of line numbers starting at

number for the named function.

+z number Dump the line number entries starting at either function name or line

number specified by ~z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma separating the

name from the number modifying the -z option may be replaced by a blank.

The att_dump command attempts to format the information it dumps in a meaning-

ful way, printing certain information in character, hex, octal, or decimal representa-

tion as appropriate.

Although the command produces no output when invoked without options, it does

serve to verify that a file is an object, executable, or archive of an object or execut-

able.

SEE ALSO

a.out(4), ar(4).

1 “1 4 Licensed material—property of copyright hoider(s) 093-701055

eb(1) DG/UX 5.4 cb(1)

NAME

cb — C program beautifier

SYNOPSIS

cb [-s] [-j3] [-1 leng] [file ...]

DESCRIPTION

Cb reads C programs either from the files specified in its arguments or from the stan-
dard input and writes them on the standard output. Spacing and indentation display

the structure of the code. Under default options, cb preserves all user new-lines.

Options are:

-s Formats the code to the style of Kernighan and Ritchie in The C Program-

ming Language.

-j Puts split lines in the input back together.

-~lleng Causes cb to split lines that are longer than leng.

International Features

cb can process characters from supplementary code sets as well as ASCII characters.

SEE ALSO

ec(1).

The C Programming Language by B. W. Kernighan and D. M. Ritchie.

BUGS

Punctuation hidden in preprocessor statements will cause indentation errors.

093-701055 Ucensed material—property of copyright holder(s) 1 ° 1 °

e¢(1)

NAME

DG/UX 5.4 c¢(1)

ec — C language compiler

SYNOPSIS

ce [option | filename ...

DESCRIPTION

The cc command is the interface to the C compilation system. The system concep-

tually consists of a preprocessor, compiler, optimizer, assembler, and link-editor.

The cc command processes the supplied options and then executes the various tools
with the appropriate arguments.

The gcc command accesses the GNU C compiler. For a further description see
gec(1). The ghee command accesses the Green Hills C compiler; see ghec(1).
The Green Hills C compiler is a separate product and may not exist on your system.

Thé cc command invokes gcc with the -traditional option. This means that

cc will attempt to support PCC features. Facilities unique to gcc may not be acces-

sible from the cc command; instead you must use gcc directly.

The suffix of a filename argument indicates how the file is to be treated. Files whose

names end with .c are taken to be C source programs and may be preprocessed,

compiled, optimized, assembled, and link-edited. The compilation process may be

stopped after the completion of any pass if the appropriate options are supplied. If

the compilation process is allowed to complete the assembly phase, then an object

file is produced; the object file for a source file called xyz.c is created in a file

called xyz.o. However, the .o file is normally deleted if a single C program is

compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to be assembly

source programs, and may be assembled and link-edited. Files with names ending in

. i are taken to be preprocessed C source programs and may be compiled, optimized,

assembled, and link-edited. Files whose names do not endin .c, .s, or .iare

handed to the link-editor.

By default, if an executable file is produced (i.e., the link-edit phase is allowed to fin-

ish), the file is called a.out. This default name can be changed with the -o option

(see below).

Options

1-16

Some options to ec are sensitive to the sde target environment (see sde(5), sde-
target(1)). Options unique to ELF or COFF target environments are so indicated

in the following list.

These options are interpreted by cc:

-ansi Compile the source in accordance with rules for ANSI C and flag violations
(this is equivalent to the -xe option). Cc -ansi has the same effect as

gcc -ansi -pedantic.

-x [tac]

Specify the degree of conformance to the ANSI C standard. The arguments
have the following meanings:

t (transition)

The compiled language includes all new features compatible with older

(pre-ANSIJ) C (the default behavior). The compiler warns about all

language constructs that have differing behavior between the new and old

versions and uses the pre-ANSI C interpretation. This includes, for exam-

ple, warning about the use of trigraphs the new escape sequence \a, and

Licensed material—property of copyright holder(s) 093-701055

ec(1)

093-701055

~g

~P

DG/UX 54 | es(1)

the changes to the integral promotion rules. Cc -Xt has the same effect as

gece -traditional. |

a (ANSI)

The compiled language includes all new features of ANSI C and uses the

new interpretation of constructs with differing behavior. The compiler con-

tinues to warn about the integral promotion rule changes, but does not warn

about new escape sequences.

c (conformance)

The compiled language and associated header files are ANSI C conforming,

but include all conforming extensions of ~Xa. Warnings will be produced

about some of these. Also, only ANSI defined identifiers are visible in the

standard header files. (This is equivalent to the —ansi option.)

The predefined macro __STDC___ has the value 1 for -Xa and -Xc. All

warning messages about differing behavior can be eliminated in -Xa through

appropriate coding; for example, use of casts can eliminate the integral pro-

motion change warnings.

These options also affect the behavior of libc and libm routines if present on

the command line at link time.

Do compilation-phase optimization on .c or .i files. This option will not

affect code produced from .s files.

Do aggressive compilation-phase optimization on .c or .i files. All sup-

ported optimizations are performed. As compared to -O, this option will

increase both compilation time and the performance of the generated code.

The -02 option is supported only by Version 2 of the GNU C compiler (see

the -K V option, below).

Cause the compiler to generate additional information needed for the use of a

debugger.

Arrange for the compiler to produce code that counts the number of tmes

each routine is called: also, if link-editing takes place, a profiled version of

the standard C library is linked, and monitor (see monitor(3C)) is

automatically called. A mon.out file will then be produced on normal termi-

nation of the program. An execution profile can then be generated by use of

prof. Default parameters to monitor ensure that up to 600 call counts are

captured and that each pc has a corresponding histogram bucket in the

mon.out file.

-D name[=tokens |

Associate name with the specified tokens as if bya #define preprocessor

directive. If no =tokens is specified, the token 1 is supplied.

-U name

-V

—-V

Cause any definition of name to be forgotten, as if by a #undef preprocessor

directive. If the same name is specified for both -—pD and —U, name is not

defined, regardless of the order of the options.

Cause each invoked tool to print its version information on the standard error

output.

Print the invocation of each tool on the standard error output.

-K [PIC [,Vversion]]

Licensed material—property of copynght holder(s) 1 | tT

ec(1)

1-18

DG/UX 5.4 ce(1)

-K PIC (ELF only)

Generate position-independent code (PIC).

-K vversion

Select a version of the GNU C compiler. The command cc -KV

lists versions available on the system. (The command default-gee

is used to determine or to change the system default.)

The -K option can accept multiple arguments. For example, -K PIC,V2

can be used instead of -K PIC -K V2.

-E Preprocess the named C programs and send the result to the standard output.

-P Preprocess the named C programs and leave the result in corresponding files

suffixed .i.

-s Compile and do not assemble or link-edit the named C files. The assembly
language output is left in corresponding files suffixed .s.

-C Cause the preprocessing phase to pass along all comments other than those

on preprocessing directive lines.

-H Cause pathnames of files included during preprocessing to be printed on the

standard error output.

-c Suppress the link edit phase of the compilation, and do not remove any

object files produced.

-o outfile

Use the name ourfile, instead of the default a.out, for the executable file

produced. This is a link-editor option and does not apply to files produced by

the -S, -c, or —P options.

-d [y | 2] (ELF only)
-dy specifies dynamic linking, which is the default, in the link editor. -dn

specifies static linking in the link editor. This option and its argument are

passed to 1d. |

-G (ELF only) :

Direct the link editor to produce a shared object rather than a dynamically

linked executable. This option cannot be used with the —dn option.

-B [dynamic | static] (ELF only)

-B dynamic causes the link editor to look for files named libx.so and

then for files named libx.a when given the -lroption. -B static

causes the link editor to look only for files named libx.a. These options

may be specified multiple times on the command line as a toggle.

-B symbolic (ELF only)

. Direct the link editor to bind references to global symbols to their definitions

within the object, if definitions are available, when building a shared object.

This option is meaningful only in dymnamic mode.

The -B option and its argument are passed to the link editor.

-B string (COFF only)

Construct pathnames for substitute preprocessor, compiler, optimizer, assem-

bler, COFF-to-legend translator, and link-editor passes by concatenating srring

with the appropriate suffix. If stringfl is empty it is taken to be /lib/o.

This option is obsolete; -y should be used instead.

Licensed materiat—property of copyright holder(s) 093-701055

ec(1) DG/UX 5.4 ec(1)

-Q[y | n] (ELF only) .
-Qy directs the link editor to add identification information to the output file

(the default behavior); this can be useful for software administration. -Qn

suppresses this information.

~I dir Alter the search for included files whose names do not begin with / to look

in dir prior to the usual directories. The directories for multiple -I options

are searched in the order specified.

-L dir Add dir to the list of directories searched for libraries by 1d. This option

and its argument are passed to the link editor.

-l1 name

Search the library libname.so or libname.a. Its placement on the com-

mand line is significant as a library is searched at a point in time relative to

the placement of other libraries and object files on the command line. This

option and its argument are passed to the link editor.

-W c,arg1[,arg2...]

Hand off the argument(s) argi to phase c where c is one of [p02sacl] indi-

cating preprocessing, compilation, optimization, assembly, COFF-to-legend

symbol-table translation, or link-editing phases, respectively. For example,

-W a,-m passes -m to the assembler phase.

-Y items, dir

Specify a new directory dir for the location of the tools and directories desig-

nated in the first argument. items can consist of any grouping of the following

characters:

preprocessor

compiler

optimizer

assembler

COFF-to-legend translator

link-editor

directory searched last for include files (default /usr/include)

directory searched next to last for libraries (default /usr/lib)

directory containing the start-up object files (default /usr/lib)

U directory searched last for libraries (default /usr/1ib)

If the location of a tool is being specified, then the new pathname for the tool
will be dir/tool. If more than one -yY option is applied to any one item, the

last occurrence holds.

-t items (COFF only)

Find only the tools designated by items in the file whose name is constructed

by a -Y option. In the absence of a -Y option, the prefix is taken to be

/lib/n. items can be zero or more letters from [p02sac1], designating the

preprocessor, compiler, optimizer, assembler, COFF-to-legend translator, or

link-editor. If items is empty (as in ‘-t""’), all tools are designated.

nM tft HH FY AQ YP NY OO
The cc command passes any unrecognized options to 1d without any diagnostic (see

1d(1) for descriptions of 1d options).

093-701055 Licensed material—property of copyright hoider(s) 1 -1 9

e¢(1) DG/UX 5.4 ce(1)

Other arguments are taken to be C-compatible object programs or libraries of C-

compatible routines and are passed directly to the link-editor. These programs,

together with the results of any compilations specified, are linked (in the order given)

to produce an executable program with the name a.out (unless the -o link-editor

option is used).

The standard C library is automatically available to the C program. Other libraries

must be specified explicitly using the -1 option with cc (see 1d(1) for details).

#define Statements

FILES

1-20

The following list provides the meaning of symbols that are defined by default under

cc. When defined, the value is 1.

m8 8k

The target system is a Motorola 88100.

_ unix _

Unix operating system.

__DGUX__

DG/UX operating system.

__GNUC__

Defined as 1 or 2 by version 1 or 2 of the GNU C compiler.

__STDC__

ANSI features are assumed. Defined when -ansi, -Xa or -Xc is given.

__STRICT_ANSI__

Strict ANSI, no extensions. Defined when -ansi or -Xc is given.

__CLASSIFY_TYPE__

Defined as 1 or 2 by version 1 or 2 of the GNU C compiler; selects the

varargs method of the respective compiler.

__OPEN_NAMESPACE__ |
Defined when -Xa is given. Non-ANSI C standard features in header

files are visible during compilation.

Additionally, when the compiler is not in strict ANSI mode (ANSI prohibits prede-

fined names that don’t begin with either two ‘_’s, or an ‘_’ and an uppercase letter)

the following are also available:

m88000 Deprecated alternative of _ m88k_.

m88k Deprecated alternative of _ m88k_.

unix Deprecated alternative of _ unix_.

DGUX Deprecated alternative of _ DGUX__

There are several macros you can define to control your source and target environ-

ments when developing applications. These macros control header files, function

declarations, binary formats, and other aspects of the source and target environ-

ments. The macros are helpful when you are porting applications to or from non-

DG/UX systems such as BSD or AT&T systems. The macros can also make

development of POSIX- or BCS-conformant applications easier. For developing

BCS-conformant applications, the sde utility is also helpful. See Porting Applica-

tions to the DG/UXTM System and the sde-target(1), sdetab(4), and sde(5)
manual pages. :

Licensed material—property of copyright holders) 093-701055

ec(1) DG/UX 5.4 ec(1)

file.c C source file

file.i preprocessed C source file

file.o object file

file.s assembly language file

a.out link-edited output

STMPDIR/ctm* temporary files. $TMPDIR is usually /tmp but can be
redefined by setting the environment variable TMPDIR.

/usr/lib/gee/gee-cpp GNU preprocessor

/usr/lib/gee/gee-ecl GNU C compiler

/bin/as assembler, as(1)

/bin/ld link editor, 1d(1)

[/bin/etl COFF-to-legend translator, et1(1)

/lib/ert0.o start-up routine

flib/mert0.o profiling start-up routine

Jlib/libe.a | standard C library

SEE ALSO

as(1), etl(1), gec(1), 1d(1), sde-target(1), sdetab(4), sde(5).

NOTES

The -£ option is ignored on 88000 systems. Floating-point support is always present.

1-21093-701055 Licensed material—property of copyright holderts)

ede(1) DG/UX 5.4 ede(1)

NAME

cde — change the delta commentary of an SCCS delta

SYNOPSIS

ede -rSID [-m[mrlist]] [-y[comment]] files

DESCRIPTION

Cdc changes the delta commentary for the SID specified by the -r option of each

named SJD file.

Delta commentary is defined to be the Modification Request (mr) and comment infor-

mation normally specified via the delta(1) command (-m and -y options).

If a directory is named, cdc behaves as though each file in the directory were speci-

fied as a named file, except that non-SCCS files (last component of the pathname

does not begin with s.) and unreadable files are silently ignored. If a name of — Is

given, the standard input is read (see "WARNINGS"); each line of the standard input

is taken to be the name of an SCCS file to be processed.

Arguments to cde can appear in any order. They consist of options and filenames.

All the described options apply independently to each named file:

-rSID Specifies the SCCS JDentification (ID) SID string of a delta for which the
delta commentary is to be changed.

-n{mrlist)

If the SCCS file has the v flag set (see admin(1)), then you can supply a list

of mR numbers to be added and/or deleted in the delta commentary of the

SID specified by the -r option. A null me list has no effect. MR entries

are added to the list of MRs as in delta(1). To delete an mr, precede the MR

number with the character ! (see EXAMPLES). If the mr to be deleted is

currently in the list of mgs, it is removed and changed into a “comment” line.

A list of all deleted mrs is placed in the comment section of the delta com-

mentary and preceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRs? is

issued on the standard output before the standard input is read; if the stan-

dard input is not a terminal, no prompt is issued. The mrs? prompt always

precedes the comments? prompt (see -y option). MRs in a list are

separated by blanks and/or tab characters. An unescaped new-line character

terminates the mr list.

Note that if the v flag has a value (see admin(1)), it is taken to be the name

of a program (or shell procedure) that validates the mr numbers. If a non-

zero exit status is returned from the mr number validation program, cdc ter-

minates and the delta commentary remains unchanged.

-y[comment]

Arbitrary text that replaces the current comment(s) for the delta specified by

the -r option. The previous comments are kept and preceded by a comment

line stating that they were changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the prompt com-

ments? is issued on the standard output before the standard input is read; if

the standard input is not a terminal, no prompt is issued. An unescaped

new-line character terminates the comment text.

1 -22 Licensed material—property of copyright hoider(s) 093-701055

ede(1) DG/UX 5.4 | ede(1)

The exact permissions necessary to modify the SCCS file are documented in

Programmer's Guide: ANSI C and Programming Support Tools. Simply stated, they

are either (1) if you made the delta, you can change its delta commentary; or (2) if

you own the file and directory, you can modify the delta commentary.

EXAMPLES

S$ ede —r1.6 -m"b178—12345 !b177—54321 bl79—00001" —ytrouble s.file

S$ cde —r1.6 s.file

MRs? !bl77-54321 b178-12345 b179-00001

comments? trouble

Both examples add b178-12345 and b179-00001 to the mr list,

remove b177-54321 from the mr list, and add the comment

trouble to delta 1.6 of s. file.

FILES

x-file (see delta(1))

z-file (see delta(1))

DIAGNOSTICS

Use help(1) for explanations of error messages.

SEE ALSO -

admin(1), comb(1), delta(1), get(1), help(1), prs(1), secsfile(é).

NOTES

If SCCS filenames are supplied to the cde command via the standard input (— on the

command line), then the -m and -y options must also be used.

1-23
0$3-701055 Licensed materia\—property of copyright holder{s)

cflow(1)

NAME

DG/UX 5.4 cflow(1)

cflow — generate a C flow graph

SYNOPSIS

eflow [-r] [-ix] [-i_] [-Dname=value] [-Uname] [-Idir] [-dnum] filename ...

DESCRIPTION

1-24

Cflow analyzes a collection of C, yacc, lex, assembler, and object files and builds
a graph charting the external function references. Files suffixed with .y, .1, and

.@ are processed by yacc, lex, and the C compiler as appropriate. The results of

the preprocessed files, and files suffixed with .i, are then run through the first pass

of lint. Files suffixed with .s are assembled. Assembled files, and files suffixed

with .o, have information extracted from their symbol tables. The results are col-

lected and turned into a graph of external references that is written on the standard

output.

Each line of output begins with a line number, followed by a suitable number of tabs
indicating the level, then the name of the global symbol! followed by a colon and its

definition. Normally only function names that do not begin with an underscore are

listed (see the —i options below). For information extracted from C source, the

definition consists of an abstract type declaration (e.g., char »), and, delimited by

angle brackets, the name of the source file and the line number where the definition
was found. Definitions extracted from object files indicate the file name and location

counter under which the symbol appeared (e.g., text). Leading underscores in C-stvle

external names are deleted. Once a definition of a name has been printed, subse-

quent references to that name contain only the reference number of the line where

the definition may be found. For undefined references, only < > is printed.

AS an example, given the following in file.c:

int i;

main()

{

£();

9();

£();

£()

{

1 = h();

}

the command

cflow -ix file.c

produces the output

1 main: int(), <file.c 4>

2 f: int(), <file.c 11>

3 h: <>

4 i: int, <file.c 1>

5 g: <>

Licensed material—property of copyright holder(s) 093-701055

ctiow(1) DG/UX 5.4 cflow(1)

When the nesting level] becomes too deep, use the -e option of pr(1) to compress

the tab expansion to something less than every eight spaces.

In addition to the -D, -I, and -U options (which are interpreted just as they are by

cc), the following options are interpreted by cflow:

-r Reverse the “caller:callee” relationship producing an inverted listing showing

the callers of each function. The listing is also sorted in lexicographical

order by callee.

-ix Include external and static data symbols. The default is to include only func-

tions in the flowgraph.

-i_ Include names that begin with an underscore. The default is to exclude these

functions (and data if -ix is used).

~dnum The num decimal integer indicates the depth at which the flowgraph is cut

off. By default this number is very large. Attempts to set the cutoff depth to

a nonpositive integer will be ignored.

DIAGNOSTICS

Complains about bad options. Complains about multiple definitions and believes only

the first. Other messages may come from the various programs used (e.g., the C

preprocessor).

SEE ALSO

as(1), cc(1), epp(1), lex(1), lint(1), pr(1), yaee(1).

NOTES

Files produced by lex(1) and yacc(1) reorder line number declarations, which can

confuse cflow. To get proper results, feed cflow the yacc or lex input.

093-701055 Licensed material—property of copyright holder(s) 1 -25

ci(1)

NAME

DG/UX 5.4 ci(1)

ci - check in RCS revisions

SYNOPSIS

ci [options] file ...

DESCRIPTION

1-26

Ci stores new revisions into RCS files. Each file name ending in ‘,v’ is taken to be

an RCS file, all others are assumed to be working files containing new revisions. Ci
deposits the contents of each working file into the corresponding RCS file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example
section of co(1)).

1) Both the RCS file and the working file are given. The RCS file name is of the form

pathl/workfile,v and the working file name is of the form path2/workfile, where path1/

and path2/ are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is assumed to be in the current

directory and its name is derived from the name of the RCS file by removing parh1/

and the suffix ‘,v’.

3) Only the working file is given. Then the name of the RCS file is derived from the

name of the working file by removing path2/ and appending the suffix ‘,v’.

If the RCS file is omitted or specified without a path, then ci looks for the RCS file

first in the directory ./RCS and then in the current directory.

For ci to work, the caller’s login must be on the access list, except if the access list

is empty or the caller is the superuser or the owner of the file. To append a new revi-

sion to an existing branch, the tip revision on that branch must be locked by the

caller. Otherwise, only a new branch can be created. This restriction is not enforced

for the owner of the file, unless locking is set to strict (see res(1)). A lock held

by someone else may be broken with the recs command.

Normally, ci checks whether the revision to be deposited is different from the

preceding one. If it is not different, ci either aborts the deposit (if —q is given) or

asks whether to abort (if -q is omitted). A deposit can be forced with the -f option.

For each revision deposited, ci prompts for a log message. The log message should

summarize the change and must be terminated with a line containing a single °.’ or a

control-D. If several files are checked in, ci asks whether to reuse the previous log

message. If the std. input is not a terminal, ci suppresses the prompt and uses the

same log message for all files. See also -n.

The number of the deposited revision can be given by any of the options -r, —f,

-k, -1, -u, -q or -c (see -r).

If the RCS file does not exist, ci creates it and deposits the contents of the working

file as the initial revision (default number: 1.1). The access list is initialized to empty.

Instead of the log message, ci requests descriptive text (see -t below).

-r{rev] assigns the revision number rev to the checked-in revision, releases the

corresponding lock, and deletes the working file. This is also the default.

If rev is omitted, ci derives the new revision number from the caller’s last

lock. If the caller has locked the tip revision of a branch, the new revision

is appended to that branch. The new revision number is obtained by incre-

menting the tip revision number. If the caller locked a non-tip revision, a

new branch is started at that revision by incrementing the highest branch

Licensed material—property of copyright holder(s) 093-701055

ei(1)

093-701055

-f[rev]

-k[rev]

~1 [rev]

-u[rev]

-qlrev]

-c[rev]

~w7sg

~—nniame

~Nname

-sstate

-t[rxtfile]

DG/UX §.4 ci(1)

number at that revision. The default initial branch and level numbers are

1. If the caller holds no lock, but he is the owner of the file and locking is

not set to strict, then the revision is appended to the trunk.

If rev indicates a revision number, it must be higher than the latest one on

the branch to which rev belongs, or must start a new branch. |

If rev indicates a branch instead of a revision, the new revision is

appended to that branch. The level number is obtained by incrementing

the tip revision number of that branch. If rev indicates a non-existing

branch, that branch is created with the initial revision numbered rev. 1.

Exception: On the trunk, revisions can be appended to the end, but not

inserted.

forces a deposit; the new revision is deposited even if it is not different

from the preceding one.

searches the working file for keyword values to determine its revision

number, creation date, author, and state (see co(1)), and assigns these

values to the deposited revision, rather than computing them locally. A

revision number given by a command option overrides the number in the

working file. This option is useful for software distribution. A revision

that is sent to several sites should be checked in with the -k option at

these sites to preserve its original number, date, author, and state.

works like -r, except it performs an additional co -1 for the deposited

revision. Thus, the deposited revision is immediately checked out again

and locked. This is useful for saving a revision although one wants to con-

tinue editing it after the checkin.

works like -1, except that the deposited revision is not locked. This is

useful if one wants to process (e.g., compile) the revision immediately

after checkin.

quiet mode; diagnostic output is not printed. A revision that is not dif-

ferent from the preceding one is not deposited, unless -£ is given.

no changes mode; the working file is assumed to be unchanged. An
unchanged revision 1S deposited without the overhead of determining what
changes have been made.

uses the string msg as the log message for all revisions checked in.
assigns the symbolic name name to the number of the checked-in revision.

Ci prints an error message if name is already assigned to another number.

Names must begin with a letter, and cannot contain whitespace, period,

colon, semicolon, or @.

same as —n, except that it overrides a previous assignment of name.

sets the state of the checked-in revision to the identifier state. The default

is Exp. Any string that could be a name (see —n) is acceptable for srare.

writes descriptive text into the RCS file (deletes the existing text). If rx¢file

is omitted, ci prompts the user for text supplied from the std. input, ter-

minated with a line containing a single ‘.’ or control-D. Otherwise, the

descriptive text is copied from the file xrfile. During initialization,

descriptive text is requested even if -t is not given. The prompt is

Licensed material—property of copyright holder(s) 1 -2/

ci(1) DG/UX 5.4 ci(1)

suppressed if std. input is not a terminal.

File Modes

An RCS file created by ci inherits the read and execute permissions from the work-

ing file. If the RCS file exists already, ci preserves its read and execute permis-

sions. Ci always turns off all write permissions of RCS files.

The caller of the command must have read/write permission for the directories con-

taining the RCS file and the working file, and read permission for the RCS file itself.

DIAGNOSTICS

FILES

For each revision, ci prints the RCS file, the working file, and the number of both

the deposited and the preceding revision. The exit status always refers to the last file

checked in, and is 0 if the operation was successful, 1 otherwise.

A number of temporary files are created. A semaphore file is created in the direc-

tory containing the RCS file. Ci always creates a new RCS file and unlinks the old

one. This strategy makes links to RCS files useless.

SEE ALSO

1-28

co(1), ident(1), res(1), resdiff(1), resintro(1), resmerge(1), rlog(1),

resfile(4), sccstores(8). |

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control Sys-

tem,” in Proceedings of the 6th International Conference on Software Engineering,

IEEE, Tokyo, Sept. 1982.

Licensed material-—nronerty of copyriaht holder(s) 093-701055

ckdate(1) DG/UX 5.4 ckdate(1)

NAME

ckdate, errdate, helpdate, valdate — prompt for and validate a date

SYNOPSIS

ckdate [-Q] [-w width] [-f£ formar] [-d default] [-h help] [-e error] [-p prompt]

[-k pid [-s signal]

/usr/sadm/bin/errdate [-Ww] [-e error] [-£ formar]

/usr/sadm/bin/helpdate [-w] [-h help] [-£ formar]

/usr/saam/bin/valdate [-£ format] input

DESCRIPTION

Ckdate prompts a user and validates the response. It defines, among other things, a

prompt message whose response should be a date, text for help and error messages,
and a default value (which will be returned if the user responds with a carriage

return). The user response must match the defined format for a date.

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The -w option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined

under NOTES) will be displaved.

Three visual tool modules are linked to the ckdate command. They are errdate

(which formats and displavs an error message), helpdate (which formats and

displays a help message), and validate (which validates a response). These modules

should be used in conjunction with FML objects. In this instance, the FML object

defines the prompt. When formar is defined in the errdate and helpdate

modules, the messages will describe the expected format.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-wwidth Specifies that prompt, help and error messages will be formatted to a line

length of width.

-f format Specifies the format against which the input will be verified. Possible for-

mats and their definitions are:

tb = abbreviated month name

tB = full month name

$d = day of month (01 - 31)

tD = date as %m/%d/%y (the default format)

te = day of month (1 - 31; single digits are preceded by a blank)

th = abbreviated month name (jan, feb, mar)

$m = month number (01 - 12)

ty = year within century (e.g. 89)

Sy = year as CCry (e.g. 1989)

-d default Defines the default value as default.

The default does not have to meet the format criteria.

-h help Defines the help messages as help.

-e error Defines the error message as error.

-p prompt Defines the prompt message as prompt.

-k pid Specifies that process ID pid is to be sent a signal if the user chooses

to abort.

093-701055 Licensed material—property of copyright hoider(s) 1 -29

ckdate(1) DG/UX 5.4 ckdate(1)

-s signal Specifies that the process ID pid defined with the -k option

is to be sent signal signal when quit is chosen. If no signal is

specified, SIGTERM is used.

input Input to be verified against format criteria.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

4 = Garbled format argument

SEE ALSO

NOTES

1-30

valtools(l).

The default prompt for ckdate 1s:

Enter the date [?,q]:

The default error message 1s:

ERROR - Please enter a date, using the following format: formar.

The default help message is:

Please enter a date, using the following format: format.

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valdate module will not produce any output. It returns zero for suc-

cess and non-zero for failure.

Licensed materiat—property of copyright ho!der(s) 093-701055

ckgid(1) DG/UX 5.4 ekgid(1)

NAME ,

ckgid, errgid, helpgid, valgid -— prompt for and validate a group id

SYNOPSIS

ckgia [-0] [-w width] [-m] [-d default] [-h help] [-e error] [-p prompt] [-k pid

[-s signal]]

/usr/sadn/bin/errgid [-w] [-e e77or]

/usr/sadn/bin/helpgid [-w] [-m] [-h help}

/usxr/sadm/bin/valgid input

DESCRIPTION

ckgid prompts a user and validates the response. It defines, among other things, a

prompt message whose response should be an existing group ID, text for help and

error messages, and a default value (which will be returned if the user responds with a

Carriage return).

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The —Ww option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displaved.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckgid command. They are errgid

(which formats and displays an error message), helpgid (which formats and displays

a help message), and valgid (which validates a response). These modules should

be used in conjunction with FML objects. In this instance, the FML object defines

the prompt.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-wwidth Specifies that prompt, help and error messages will be formatted to a line

length of width.

-m Displays a list of all groups when help is requested or when the user

makes an error.

-d default Defines the default value as default. The default is not validated and so

does not have to meet any criteria.

-h help Defines the help messages as help.

-e error Defines the error message as error.

—p prompt Defines the prompt message as prompt.

-k pid Specifies that process ID pid is to be sent a signal if the user chooses to

abort.

-s signal Specifies that the process ID pid defined with the -k option is to be sent

sional signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against /etc/group

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

083-701055 Licensed materia—property of copyright holder(s) 1 -31

ckgid(1) DG/UX 5.4 ekgid(1)

SEE ALSO

valtools(1).

NOTES

The default prompt for ckgid is:

Enter the name of an existing group [?,q]:

The default error message is:

ERROR ~ Please enter the name of an existing group.

(if the -m option of ckgid is used, a list of valid groups is displayed here)

The default help message is:

Please enter an existing group name.

(if the -m option of ckgid is used, a list of valid groups is displayed here)

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valgid module will not produce anv output. It returns zero for suc-

cess and non-zero for failure.

1 -32 Licensed materiai—-property of copyright hoider(s) 093-701055

ckint(1) OG/UX 5.4 ckint(1)

NAME |

ckint — display a prompt; verify and return an integer value

SYNOPSIS |
ckint [-0Q] [-w width] [-b base] [-d default] [-h help] [-e error] [-p prompt]

[-k pid [-s signal]]

/usr/sadm/bin/errint [-w] [-b base] [-e error]

/usr/sadm/bin/helpint [-w] [-b base] [-h help]

/usxr/sadn/bin/valint [-b base] inpur

DESCRIPTION

ckint prompts a user, then validates the response. It defines, among other things, a

prompt message whose response should be an integer, text for help and error mes-

sages, and a default value (which will be returned if the user responds with a carnage

return). : :

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The —w option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displaved.

Three visual tool modules are linked to the ckint command. They are errint

(which formats and displavs an error message), helpint (which formats and displays

a help message), and valint (which validates a response). These modules should

be used in conjunction with FML objects. In this instance, the FML object defines

the prompt. When base is defined in the errint and helpint modules, the mes-

sages will include the expected base of the input.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line

length of width. .

-b Defines the base for input. Must be 2 to 36, default is 10.

-d Defines the default value as default. The default is not validated and so does

not have to meet any criteria. | |

-h Defines the help messages as help.

-e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to

abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against base criterioa.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

093-701055 Licensed material—property of copyright holder(s) 1 -33

ekint(1) DG/UX 5.4 ekint(1)

3 = User termination (quit)

SEE ALSO

valtools(1).

NOTES

The default base 10 prompt for ckint is:

Enter an integer [?,q]:

The default base 10 error message is:

ERROR - Please enter an integer.

The default base 10 help message is:

Please enter an integer.

The messages are changed from "integer" to "base base integer” if the base is set to a

number other than 10.

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valint module will not produce anv output. It returns zero for suc-

cess and non-zero for failure.

1 -34 Licensed material—property of copyright hoider(s) 093-70105S

ekitem(1) DG/UX 5.4 | ckitem(1)

NAME

ckitem — build a menu; prompt for and return a menu item

SYNOPSIS

ckitem [-Q] [-w width] [-uno] [-f file] [-1 label] [[-i invis] [, ...]] [-m max]
[-d defaulr] [-h help] [-e error] [-p prompt] [-k pid [-s signal] [choice [...]]

/usr/sadm/bin/erritem [-w] [-e error] [choice [...]]

/usr/sadm/bin/helpitem [-w] [-h help] [choice [...]]

DESCRIPTION

ckitem builds a menu and prompts the user to choose one item from a menu of

items. It then verifies the response. Options for this command define, among other

things, a prompt message whose response will be a menu item, text for help and error

messages, and a default value (which will be returned if the user responds with a car-

riage return).

By default, the menu is formatted so that each item is prepended by a number and 1s

printed in columns across the terminal. Column length is determined by the longest

choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The -w option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined

under NOTES) will be displayed.

Two visual tool modules are linked to the ckitem command. They are erritem
(which formats and displays an error message) and helpitem (which formats and

displays a help message). These modules should be used in conjunction with FML

objects. In this instance, the FML object defines the prompt. When choice is

defined in these modules, the messages will describe the available menu choice (or

choices). : :

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line

length of width.

—u Specifies that menu items should be displayed as an unnumbered list.

-n Specifies that menu items should not be displayed in alphabetical order.

-o Specifies that only one menu token will be returned.

-f Defines a file, file. which contains a list of menu items to be displayed. [The
format of this file is: tokenfabdescription. Lines beginning with a pound

sign (#) are designated as comments and ignored.]

-1l Defines a label, label, to print above the menu.

-i Defines invisible menu choices (those which will not be printed in the menu).

(For example, “all” used as an invisible choice would mean it is a legal option

but does not appear in the menu. Any number of invisible choices may be

defined.) Invisible choices should be made known to a user either in the

prompt or in a help message.

093-701055 Licensed materia—property of copyright hoider(s) 1 -35

ckitem(1) _ DG/UX 5.4 ckitem(1)

-m Defines the maximum number of menu choices allowed.

-d Defines the default value as default. The default is not validated and so does

not have to meet any criteria.

—b Defines the help messages as help.

—-e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that the process ID pid is to be sent a signal if the user chooses to

abort.

-s Specifies that process ID pid defined with the -k option is to be sent signal

signal when quit is chosen. If no signal is specified, SIGTERM is used.

choice Defines menu items. Items should be separated by white space or newline.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

4 = No choices from which to choose

SEE ALSO

valtools(1).

NOTES

The user may input the number of the menu item if choices are numbered or as much

of the string required for a unique identification of the item. Long menus are paged

with 10 items per page.

When menu entries are defined both in a file (by using the -f option) and also on the

command line, they are usually combined alphabetically. However, if the —n option

is used to suppress alphabetical ordering, then the entries defined in the file are

shown first, followed by the options defined on the command line.

The default prompt for ckitem is:

Enter selection [?,??,q]:

One question mark will give a help message and then redisplay the prompt. Two

question marks will give a help message and then redisplay the menu label, the menu

and the prompt.

The default error message is:

ERROR - Does not match an available menu selection.

Enter one of the following:

the number of the menu item you wish to select

the token associated withe the menu iten,

partial string which uniquely identifies the token for the

menu item

?? to reprint the menu

The default help message is:

Enter one of the following:

1 -36 Licensed material—property of copyright holder(s) 093-701055

ckitem(1) DG/UX 5.4 ekitem(1)

the number of the menu item you wish to select

the token associated with the menu iten,

partial string which uniquely identifies the token for the

menu item

?? to reprint the menu

When the quit option is chosen (and allowed), q is returned along with the return

code 3.

033-701055 Licensed materiai—property of copyright holder(s) 1 “37

ckke ywd(1) DG/UX 5.4 ckkeywd(1)

NAME

ckkeywd — prompt for and validate a keyword

SYNOPSIS |

ekkeywd [-Q] [-w width] [-d default] [-h help] [-e error] [-p prompt]

[-k pid [-s signal] [keyword [...]]

DESCRIPTION

ckkeywd prompts a user and validates the response. It defines, among other things,

a prompt message whose response should be one of a list of keywords, text for help

and error messages, and a default value (which will be returned if the user responds

with a carriage return). The answer returned from this command must match one of

the defined list of keywords.

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The -wW option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined

under NOTES) will be displayed.

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line

length of width.

-d Defines the default value as default. The default is not validated and so does

not have to meet any criteria.

-h Defines the help messages as help.

-e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to

abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is

used. |

keyword |

Defines the keyword, or list of keywords, against which the answer will be

verified.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

4 = No keywords from which to choose

SEE ALSO

valtools(l).

NOTES

The default prompt for ckkeywd is:

Enter selection [keyword,[...],?,q]:

1 -38 Licensed material—property of copyright holder(s) 093-701055

ekke ywd(1) DG/UX 5.4 ckkeywd(1)

The default error message is:

ERROR - Does not match any of the valid selections.

Please enter one of the following keywords:

keyword[,...]

The default help message is:

Please enter one of the following keywords:

keyword[,...]

When the quit option is chosen (and allowed), q is returned along with the return

code 3.

093-701055 | Licensed material—property of copyright hoider(s) 1 -39

ekpath(1) DG/UX 5.4 ckpath(1)

NAME

ckpath — display a prompt; verify and return a pathname

SYNOPSIS

ckpath [-Q] [-w width] [-a|1] [-ble|gly] [-n|[o]z]] [-rtwx] [-d default]

[-h help] [-e error] [-p prompt] [-k pid [-s signal]

/usr/sadm/bin/errpath [-w] [-a]1] [-blelgly] [-n|[olz]] [-rtwx] [-e error]

/usr/sadm/bin/helppath [-w] [-al1] [-blelgly] [-n|[ojz]] [-rtwx] [-h help]

/usr/sadm/bin/valpath [-a]1] [-ble|gly] [-n|[o|z]] [-rtwx] inpur

DESCRIPTION

ckpath prompts a user and validates the response. It defines, among other things, a

prompt message whose response should be a pathname, text for help and error mes-

sages, and a default value (which will be returned if the user responds with a carriage

return).

The pathname must obey the criteria specified by the first group of options. If no cri-
teria is defined, the pathname must be for a normal file that does not vet exist. If

neither —a (absolute) or -1 (relative) is given, then either is assumed to be valid.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displaved.

If the prompt, help or error message is not defined, the default message (as defined

under NOTES) will be displaved.

Three visual tool modules are linked to the ckpath command. They are errpath

(which formats and displays an error message), helppath (which formats and

displays a help message), and valpath (which validates a response). These modules

should be used in conjunction with FACE objects. In this instance, the FACE object

defines the prompt.

The options and arguments for this command are:

—Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line

length of width. |

a Pathname must be an absolute path.

-1 Pathname must be a relative path.

-b Pathname must be a block special file.

“Cc Pathname must be a character special file.

-g Pathname must be a regular file.

-y Pathname must be a directory.

—n Pathname must not exist (must be new).

-o Pathname must exist (must be old).

-2 Pathname must have a length greater than 0 bytes.

-r Pathname must be readable.

-t Pathname must be creatable (touchable). Pathname will be created if it does

not already exist.

1 -40 Licensed materiai—property of copyright holder(s) 093-701055

ekpath(1) DG/UX 5.4 | ckpath(1)

-—w Pathname must be writable.

—X Pathname must be executable.

-d Defines the default value as default. The default is not validated and so does |
not have to meet any criteria.

—h Defines the help messages as help.

—e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

—s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against validation options.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

4 = Mutually exclusive options

SEE ALSO

valtools(1).

NOTES

The text of the default messages for ckpath depends upon the criteria options that

have been used. An example default prompt for ckpath (using the -a option) is:

Enter a pathname [?,q]:

An example default error message (using the -a option) is:

ERROR - Invalid pathname entered. A pathname is a filename,

optionally preceded by parent directories.

An example default help message is:

A pathname is a filename, optionally preceded by parent direc-

tories. The pathname you enter:

must contain 1 to {NAME_MAX} characters

must not contain a spaces or special characters

NAME_MAX is a system variable that is defined in limits.h.

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valpath module will not produce any output. It returns zero for suc-

cess and non-zero for failure.

093-701055 Licensed material—property of copyright holder(s) 1 -41

ekrange (1) DG/UX 5.4 ekrange(1)

NAME

ckrange — prompt for and validate an integer

SYNOPSIS

ckrange [-Q] [-w width] [-1 lower] [-u upper] [-b base] [-d default] [-h help]

[-e error] [-p prompt] [-k pid [-s signal]

/usr/sadm/bin/errange [-w] [-1 lower] [-u upper] [-e error]

/usr/sadm/bin/helprange [-w] [-1 lower] [-u upper] [-h help]

/usr/sadm/bin/valrange [-1 lower] [-u upper] [-b base] input

DESCRIPTION

1-42

ckrange prompts a user and validates the response. It defines, among other things,

a prompt message whose response should be an integer in the range specified, text for

help and error messages, and a default value (which will be returned if the user

responds with a carriage return).

This command also defines a range for valid input. If either the lower or upper limit

is left undefined, then the range is bounded on only one end.

All messages are limited in length to 70 characters and are formatted automatically.

Anv white space used in the definition (including newline) is stripped. The -w option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined

under NOTES) will be displayed.

Three visual tool modules are linked to the ckrange command. They are errange

(which formats and displays an error message), helprange (which formats and

displays a help message), and valrange (which validates a response). These

modules should be used in conjunction with FACE objects. In this instance, the

FACE object defines the prompt.

The options and arguments for this command are: |

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line

length of width.

ol Defines the lower limit of the range as lower. Default is the machine’s largest

negative integer or long.

-u Defines the upper limit of the range as upper. Default is the machine’s largest

positive integer or long.

-b Defines the base for input. Must be 2 to 36, default is 10.

-d Defines the default value as default. The default is not validated and so does

not have to meet any criteria.

-h Defines the help messages as help.

-e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to

abort.

Licensed materiat—property of copyright holder(s) 0$3-701055

ckrange (1) DG/UX 5.4 ckrange(1)

-s Specifies that the process ID pid defined with the -k option is to be sent sig-

nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against upper and lower limits and base.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

SEE ALSO

valtools(1).

NOTES

The default base 10 prompt for ckrange is:

Enter an integer between lower_bound and upper_bound [q,?}:

The default base 10 error message is:

ERROR - Please enter an integer between lower_bound and

upper_bound.

The default base 10 help message is:

Please enter an integer between lower_bound and upper_bound.

The messages are changed from "integer" to “base base integer" if the base is set toa

number other than 10.

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valrange module will not produce any output. It returns zero for suc-

cess and non-zero for failure.

093-701055 Ucensed material—property of copyright holder(s) 1 -43

ckstr(1) | DG/UX 5.4 ekstr(1)

NAME

ckstr - display a prompt; verify and return a string answer

SYNOPSIS

ckstr [-Q] [-w width] [[-r regexp] [...]] [-1 length] [-d defaults] [-h help]
[-e error] |

[-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/erxrstr [-w] [-e error]

/usr/sadm/bin/helpstr [-w] [-h help]

/usr/sadm/bin/valstr input

DESCRIPTION

ckstr prompts a user and validates the response. It defines, among other things, a

prompt message whose response should be a string, text for help and error messages,

and a default value (which will be returned if the user responds with a carriage

return).

The answer returned from this command must match the defined regular expression

and be no longer than the length specified. If no regular expression is given, valid

input must be a string with a length less than or equal to the length defined with no

internal, leading or trailing white space. If no length is defined, the length is not

checked. Either a regular expression or a length must be given with the command.

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The -Ww option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displaved.

If the prompt, help or error message is not defined, the default message (as defined

under NOTES) will be displayed.

Three visual tool modules are linked to the ckstr command. They are errstr

(which formats and displays an error message), helpstr (which formats and displays

a help message), and valstr (which validates a response). These modules should

be used in conjunction with FACE objects. In this instance, the FACE object

defines the prompt.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line

length of width.

-Ir Specifies a regular expression, regexp, against which the input should be

validated. May include white space. If multiple expressions are defined, the

answer must match only one of them.

-1 Specifies the maximum length of the input.

-d Defines the default value as default. The default is not validated and so does

not have to meet any criteria.

-h Defines the help messages as help.

-e Defines the error message as error.

-p Defines the prompt message as prompt.

1 -44 Licensec material—property of copyright hoider(s) 093-701055

ekstr(1) DG/UX 5.4 ckstr(1)

-k Specifies that process ID pid is to be sent a signal if the user chooses to

abort. :

-s Specifies that the process ID pid defined with the —k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM Is used.

input Input to be verified against format length and/or regular expression criteria.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

SEE ALSO

valtools(l).

NOTES

The default prompt for ckstr is:

Enter an appropriate value [?,q]:

The default error message is dependent upon the type of validation involved. The

user will be told either that the length or the pattern matching failed.

The default help message is also dependent upon the type of validation involved. Ifa
regular expression has been defined, the message is:

Please enter a string which matches the following patterr:

regexp

Other messages define the length requirement and the definition of a stnng.

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valstr module will not produce any output. It returns zero for suc-

cess and non-zero for failure.

093-701055 Licensed materiai—property of copyright holder(s) 1 -45

cktime (1) DG/UX 5.4 cktime (1)

NAME

cktime — display a prompt; verify and return a time of day

SYNOPSIS

cktime [-Q] [-w width] [-£ format] [-d default] [-h help] [-e error] [-p prompt]

[-k pid [-s signal]

/usxr/sadn/bin/errtime [-w] [-e error] [-£ formar]

/usr/sadm/bin/helptime [-w] [-h help] [-£ formar]

/usr/sadm/bin/valtime [-f format] input

DESCRIPTION

cktime prompts a user and validates the response. It defines, among other things, a

prompt message whose response should be a time, text for help and error messages,

and a default value (which will be returned if the user responds with a carriage

return). The user response must match the defined format for the time of day.

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The -w option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined

under NOTES) will be displayed.

Three visual too] modules are linked to the cktime command. They are errtime

(which formats and displays an error message), helptime (which formats and

displays a help message), and valtime (which validates a response). These modules

should be used in conjunction with FML objects. In this instance, the FML object

defines the prompt. When formar is defined in the errtime and helptime

modules, the messages will describe the expected format.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line

length of width.

-f Specifies the format against which the input will be verified. Possible formats

and their definitions are:

%H = hour (00 - 25)

$i = hour(00-12)

minute (00 - 59)tM =

tp = ante meridian or post meridian

tr = time as $1:%M:%S %p

tR = time as tH: %M (the default format)

%S = seconds (00 - 59)

$T = time as $H:3M:%S

-d Defines the default value as default. The default is not validated and so does

not have to meet any criteria.

-h Defines the help messages as help.

—-e Defines the error message as error.

1 -46 Licensed material—property of copyright hoider(s) 093-701055

ektime(1) DG/UX 5.4 | ektime(1)

-p Defines the prompt message as prompt.

~k Specifies that process ID pid is to be sent a signal if the user chooses to

abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-

nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against format criteria.

EXIT CODES

© = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

4 = Garbled format argument

SEE ALSO

valtools(]).

NOTES

The default prompt for cktime is:

Enter the time of day [?,q]:

The default error message 1s:

ERROR - Please enter the time of day, using the following for-

mat:

format

The default help message 1s:

Please enter the time of day, using the following format:

format

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valtime module will not produce any output. It returns zero for suc-

cess and non-zero for failure.

1-47093-701055 Licensed material—property of copyright holder(s)

ekuid(1) DG/UX 5.4 ekuid(1)

NAME

ckuid - prompt for and validate a user ID

SYNOPSIS

ckuid [-Q] [-w width] [-m] [-d default] [-h kelp] [-e error] [-p prompr]

[-k pid [-s signal]

/usr/sadm/bin/erruid [-w] [-e ervor]

/usr/sadn/bin/helpuid [-wW] [-m] [-b Aelp]

/usr/sadn/bin/valuid input

DESCRIPTION

ckuid prompts a user and validates the response. It defines, among other things, a

prompt message whose response should be an existing user ID, text for help and error

messages, and | a default value (which will be returned ‘if the user responds with a car-
riage return).

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The -w option

cancels the automatic formatting. When a tilde is placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckuid command. They are erruid

(which formats and displays an error message), helpuid (which formats and displays

a help message), and valuid (which validates a response). These modules should

be used in conjunction with FML objects. In this instance, the FML object defines

the prompt.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

—-W Specifies that prompt, help and error messages will be formatted to a line

length of width.

—m Displays a list of all logins when help is requested or when the user makes an

error.

-d Defines the default value as default. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.

-e Defines the error message as error.

—p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-

nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against /etc/passwd.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

1 -48 Licensed material—property of copyright holder(s) 093-701055

ckuid(1) DG/UX 5.4 ckuid(1)

3 = User termination (quit)

SEE ALSO

valtools(1).

NOTES

The default prompt for ckuid is:

Enter the login name of an existing user [?,q]:

The default error message is:

ERROR - Please enter the login name of an existing user.

Select the help option (?) for a list of valid login names.

. (Last line appears only if the -m option of ckuid is used)

The default help message is:

Please enter the login name of an existing user.

(If the -m option of ckuid is used, a list of valid groups is also displayed.)

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valuid module will not produce any output. It returns zero for suc-

cess and non-zero for failure.

093-701055 Licensed material—property of copyright hoider(s) 1 -49

ekyorn(1) DG/UX 5.4 ekyorn(1)

NAME

ckyorn - prompt for and validate yes/no

SYNOPSIS

ekyorn [-Q] [-w width] [-d default] [-h help] [-e error] [-p prompt]

[-k pid [-s signal]

/usr/sadm/bin/erryorn [-W] [-e ervor]

/usr/sadn/bin/helpyorn [-w] [-h help]

/usr/sadn/bin/valyorn input

DESCRIPTION

ckyorn prompts a user and validates the response. It defines, among other things, a

prompt message for a yes or no answer, text for help and error messages, and a

default value (which will be returned if the user responds with a carriage return).

All messages are limited in length to 70 characters and are formatted automatically.

Any white space used in the definition (including newline) is stripped. The -w option

cancels the automatic formatting. When a tilde 1s placed at the beginning or end of a

message definition, the default text will be inserted at that point, allowing both cus-

tom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined

under NOTES) will be displayed.

Three visual too] modules are linked to the ckyorn command. They are erryorn

(which formats and displays an error message), helpyorn (which formats and

displays a help message), and valyorn (which validates a response). These modules

should be used in conjunction with FACE objects. In this instance, the FACE object

defines the prompt. sp The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line

length of width. |

-d Defines the default value as default. The default is not validated and so does

not have to meet any criteria.

-h Defines the help messages as help.

-e Defines the error message as error.

-p Defines the prompt message as prompt.

-k Specifies that process ID pid is to be sent a signal if the user chooses to

abort. |

-s Specifies that the process ID pid defined with the -k option is to be sent sig-

nal signal when quit is chosen. If no signal is specified, SIGTERM Is used.

input Input to be verified as y, yes, Y, Yes, YES or n, no, N, No, NO.

EXIT CODES

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

SEE ALSO

valtools(1).

1 -50 Licensed material—property of copyright hoider(s) 093-701055

ckyorn(1) DG/UX 5.4 ekyorn(1)

NOTES

The default prompt for ckyorn Is:

Yes or No [y,n,?,q]:

The default error message is:

ERROR - Please enter yes or no.

The default help message is:

To respond in the affirmative, enter y, yes, Y, or YES.

To respond in the negative, enter n, no, N, or NO.

When the quit option is chosen (and allowed), q is returned along with the return

code 3. The valyorn module will not produce any output. It returns zero for suc-

cess and non-zero for failure.

093-701055 Licensed materia\—property of copyright holder(s) 1 “5 1

c0(1)

NAME

DG/UX 5.4 co(1)

co — check out RCS revisions

SYNOPSIS

co [options | file ...

DESCRIPTION

1-52

Co retrieves revisions from RCS files. Each file name ending in ‘,v’ is taken to be an

RCS file. All other files are assumed to be working files. Co retrieves a revision

from each RCS file and stores it into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example

section).

1) Both the RCS file and the working file are given. The RCS file name is of the

form pathI1/workfile,v and the working file name is of the form path2/workfile, where

path1/ and path2/ are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is created in the current direc-

tory and its name is derived from the name of the RCS file by removing path1/ and

the suffix ‘,v’.

3) Only the working file is given. Then the name of the RCS file is derived from the

name of the working file by removing path2/ and appending the suffix ‘,v’.

If the RCS file is omitted or specified without a path, then co looks for the RCS file

first in the directory ./RCS and then in the current directory.

Revisions of an RCS file may be checked out locked or unlocked. Locking a revision

prevents overlapping updates. A revision checked out for reading or processing (e.g.,

compiling) need not be locked. A revision checked out for editing and later checkin

must normally be locked. Locking a revision currently locked by another user fails.

(A lock may be broken with the res(1) command.) Co with locking requires the

caller to be on the access list of the RCS file, unless he is the owner of the file or the

superuser, or the access list is empty. Co without locking is not subject to access list

restrictions. |

A revision is selected by number, checkin date/time, author, or state. If none of

these options are specified, the latest revision on the trunk is retrieved. When the

options are applied in combination, the latest revision that satisfies all of them is

retrieved. The options for date/time, author, and state retrieve a revision on the

selected branch. The selected branch is either derived from the revision number (if

given), or is the highest branch on the trunk. A revision number may be attached to

one of the options -1, -p, —q, or -r.

A co command applied to an RCS file with no revisions creates a zero-length file.

Co always performs keyword substitution (see below).

~l{rev] locks the checked out revision for the caller. If omitted, the checked out

revision is not locked. See option -r for handling of the revision

number rev.

-plrev] prints the retrieved revision on the std. output rather than storing it in the

working file. This option is useful when co is part of a pipe.

-q[rev] quiet mode; diagnostics are not printed.

-ddate retrieves the latest revision on the selected branch whose checkin

date/time is less than or equal to dare. The date and time may be given

in free format and are converted to local time. Examples of formats for

date:

Licensed materiat—property of copyright hoider(s) 093-701055

co(1)

-r[rev]

—sstate

-w{login]

—jjoinlist

DG/UX 5.4 | ©0(1)

22-April-1982, 17:20-CDT,

2:25 AM, Dec. 29, 1983,

Tue-PDT, 1981, 4pm Jul 21 (free format),

Fri, April 16 15:52:25 EST 1982 (output of ctime).

Most fields in the date and time may be defaulted. Co determines the

defaults in the order year, month, day, hour, minute, and second (most

to least significant). At least one of these fields must be provided. For

omitted fields that are of higher significance than the highest provided

field, the current values are assumed. For all other omitted fields, the

lowest possible values are assumed. For example, the date "20, 10:30"

defaults to 10:30:00 of the 20th of the current month and current year.

The date/time must be quoted if it contains spaces.

retrieves the latest revision whose number is less than or equal to rev. If

rev indicates a branch rather than a revision, the latest revision on that

branch is retrieved. Rev is composed of one or more numeric or sym-

bolic fields separated by ‘.’. The numeric equivalent of a symbolic field is

specified with the -n option of the commands ci and res.

retrieves the latest revision on the selected branch whose state is set to

State.

retrieves the latest revision on the selected branch which was checked in

by the user with login name login. If the argument login is omitted, the

caller’s login is assumed.

generates a new revision which is the join of the revisions on joinlisr.

Joinlist is a comma-separated list of pairs of the form rev2:rev3, where

rev2 and rev3 are (symbolic or numeric) revision numbers. For the initial

such pair, rev] denotes the revision selected by the options -1, ..., —w.

For all other pairs, rev] denotes the revision generated by the previous

pair. (Thus, the output of one join becomes the input to the next.)

For each pair, co joins revisions rev] and rev3 with respect to rev2. This

means that all changes that transform rev2 into rev1 are applied to a copy

of rev3. This is particularly useful if rev] and rev3 are the ends of two

branches that have rev2 as a common ancestor. If rev] < rev2 < rev3 on

the same branch, joining generates a new revision which is like rev3, but

with all changes that lead from rev] to rev2 undone. If changes from rev2

to rev] overlap with changes from rev2 to rev3, co prints a warning and

includes the overlapping sections, delimited by the lines

Kf <<< rey], SEE EH===, and >>>>>>> rev3.

For the initial pair, rev2 may be omitted. The default is the common

ancestor. If any of the arguments indicate branches, the latest revisions

on those branches are assumed. If the option -1 is present, the initial

rev1 is locked.

Keyword Substitution

Strings of the form SkeywordS and Skeyword:...§ embedded in the text are replaced

with strings of the form Skeyword: value $, where keyword and value are pairs listed

below. Keywords may be embedded in literal strings or comments to identify a revi-

093-701055

sion.

Licensed material—property of copyright holder(s) . 1 -53

co(1) DG/UX 5.4 co(1)

Initially, the user enters strings of the form Skeyword$. On checkout, co replaces
these strings with strings of the form $keyword: value $. If a revision containing

strings of the latter form is checked back in, the value fields will be replaced during

the next checkout. Thus, the keyword values are automatically updated on checkout.

Keywords and their corresponding values:

SAuthor§S The login name of the user who checked in the revision. LAAGEN.

Class$

SDateS The date and time the revision was checked in.

SHeaderS A standard header containing the RCS file name, the revision number,

the date, the author, and the state.

SLockerS The login name of the user who locked the revision (empty if not

locked).

SLog$S The log message supplied during checkin, preceded by a header con-

taining the RCS file name, the revision number, the author, and the

date. Existing log messages are NOT replaced. Instead, the new log

message is inserted after $Log:...$. This is useful for accumulating

a complete change log in a source file.

SRevisionS The revision number assigned to the revision.

SSourceS The full pathname of the RCS file.

SStateS The state assigned to the revision with res -s or ci -s.

sWhatS The working file name and the revision number, preceded by the string

@(#) recognized by what(1).

File Modes

The working file inherits the read and execute permissions from the RCS file. In

addition, the owner write permission is turned on, unless the file is checked out

unlocked and locking is set to strict (see res(1)).

If a file with the name of the working file exists already and has write permission, co

aborts the checkout if -q is given, or asks whether to abort if -q is not given. If the

existing working file is not writable, it is deleted before the checkout.

The caller of the command must have write permission in the working directory, read

permission for the RCS file, and either read permission (for reading) or read/write

permission (for locking) in the directory which contains the RCS file.

EXAMPLES

Suppose the current directory contains a subdirectory ‘RCS’ with an RCS file ‘io.c,v’.
Then all of the following commands retrieve the latest revision from ‘RCS/io.c,v’ and
store it into ‘io.c’.

co i0.c; co RCS/io.c,v; co i0.c,V;

co io.c RCS/io.c,v; co io.c i0.¢,Vv;

co RCS/io.c,v io.c; co io.c,v 10.C;

FILES

A number of temporary files are created. A semaphore file is created in the direc-

tory of the RCS file to prevent simultaneous update.

DIAGNOSTICS

The RCS file name, the working file name, and the revision number retrieved are

written to the diagnostic output. The exit status always refers to the last file checked

1 -54 Licensed material—property of copyright holder(s) 093-701055

out, and is 0 if the operation was successful, 1 otherwise.

SEE ALSO

ci(1), ident(1), res(1), resdiff(1), resintro(1), resmerge(1), rlog(1),

resfile(4), sccstorcs(8).

Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision Control Sys-

tem,” in Proceedings of the 6th International Conference on Software Engineering,

IEEE, Tokyo, Sept. 1982.

NOTES

The option -d gets confused in some circumstances, and accepts no date before

1970. There is no way to suppress the expansion of keywords, except by writing them

differently. In nroff and troff, this is done by embedding the null-character ‘\&’

into the keyword.

The option -j does not work for files that contain lines with a single ‘.’.

1-55
093-701055 Licensed material—property of copyright holder(s)

cof2elf(1) DG/UX 5.4 cof2elf(1)

NAME

cof2elf — translate object file from COFF to ELF

SYNOPSIS

cof2elf [-iqv] [-Q{yn)}] [-s directory] files

DESCRIPTION
Cof2elf converts one or more COFF object files to ELF. This translation occurs in

place, meaning the original file contents are modified. If an input file is an archive,

each member will be translated as necessary, and the archive will be rebuilt with its

members in the original order. Cof2elf does not change input files that are not

COFF.

Options have the following meanings:

-i Normally, the files are modified only when full translation occurs. Unrecog-

nized data, such as unknown relocation types, are treated as errors and

prevent translation. When -i is specified, cof2elf ignores these partial

translation conditions and modifies the file anyway.

-¢ Normally, cof2elf prints a message for each file it examines, telling
whether the file was translated, ignored, etc. The -q option (for quiet)

suppresses these messages.

-Qarg Ifargis y, identification information about cof2elf will be added to the

output files; this can be useful for software administration. Ifargis n (the

default), this information is suppressed.

-sdirectory

By default, cof2e1f modifies the input files. This option directs cof2elf

to save a copy of the original files in the specified directory, which must exist.

Cof2elf does not save files it does not modify.

-V This option directs cof2elf to print a version message on standard error.

SEE ALSO |
1da(1), elf(3E), a.out(4), ar(4).

NOTES

Some debugging information is discarded. Although this does not affect the behavior
of a running program, it may affect the information available for symbolic debugging.

Cof2elf translates only COFF relocatable files. It does not translate executable or

static shared library files for two main reasons. First, the operating system supports

executable files and static shared libraries, making translation unnecessary. Second,

those files have specific address and alignment constraints determined by the file for-

mat. Matching the constraints with a different object file format is problematic.

When possible, programmers should recompile their source code to build new object

files. Cof2elf is provided for those situations where source code is unavailable.

1 -56 Licensed material—property of copyright holder(s) 093-701055

comb(1) DG/UX 5.4 comb(1)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb [-o] [-s] [-psid] [-clist] files

DESCRIPTION

Comb generates a shell procedure (see sh(1)) that reconstructs the given SCCS files.

The reconstructed files will usually be smaller than the original files. The arguments

may be specified in any order, but all options apply to all named SCCS files. Ifa

directory is named, comb behaves as though each file in the directory were specified

as a named file, except that non-SCCS files (last component of the path name does

not begin with s.) and unreadable files are silently ignored. If a name of — is given,

the standard input is read; each line of the input is taken to be the name of an SCCS

file to be processed; non-SCCS files and unreadable files are silently ignored. The

generated shell procedure is written on the standard output.

The options are as follows. Each is explained as though only one named file is to be

processed, but the effects of any option apply independently to each named file.

-pSID The SCCS JDentification string (SID) of the oldest delta to be preserved.

All older deltas are discarded in the reconstructed file.

-clist <A list (see get(1) for the syntax of a list) of deltas to be preserved. All

other deltas are discarded.

-9o For each get —e generated, this argument causes the reconstructed file to

be accessed at the release of the delta to be created. Otherwise, the recon-

structed file would be accessed at the most recent ancestor. Using the -o

option may decrease the size of the reconstructed SCCS file. It may also

alter the shape of the delta tree of the original file.

-s This argument makes comb generate a shell procedure that produces a

report giving, for each file: the file name, size (in blocks) after combining,

original size (also in blocks), and percentage change computed by:

100 « (original - combined) / original

You should use this option before any SCCS files are actually combined, to

determine how much space is saved by the combining process.

If you supply no‘options, comb will preserve only leaf deltas and the minimal number

of ancestors needed to preserve the tree.

FILES

s.COMB The name of the reconstructed SCCS file.

comb????? Temporary. —

DIAGNOSTICS

Use help(1) for explanations.

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), sh(1), secsfile(4).

NOTES

Comb may rearrange the shape of the tree of deltas. It may not save any space; in

fact, the reconstructed file can be larger than the original.

093-701055 Licensed material—property of copyright hoider(s) 1 -57

epp(1) OG/UX 5.4 cpp(1)

NAME

cpp — the C language preprocessor

SYNOPSIS

/lib/epp [option ...] [ifile [ofile }]

DESCRIPTION

Cpp is the C language preprocessor. Thus, the output of cpp is designed to be in a

form acceptable as input to the next pass of the C compiler. You should specify

preprocessing by using the -E or -P option to cc(1), rather than by invoking

/lib/epp explicitly.

Cpp optionally accepts two file names as arguments. Jfile and ofile are respectively

the input and output for the preprocessor. They default to standard input and stan-

dard output if not supplied.

Options

-P Preprocess the input without producing the line control information used by

the next pass of the C compiler.

-Cc By default, cpp strips C-style comments. If the -C option is specified, all

comments (except those found on cpp directive lines) are passed along.

~Uname

Remove any initial definition of name. Name is a reserved symbol that is

predefined by the particular preprocessor.

~Dname

-Dname=def

Define name as if bya #define directive. If no =def is given, name is

defined as 1. The -D option has lower precedence than the -U option. That

is, if the same name is used in both a -U option and a —D option, the name

will be undefined regardless of the order of the options.

-Idir Change the algorithm for searching for #include files whose names do not

begin with / to look in dir before looking in the directories on the standard

list. Thus, #include files whose names are enclosed in "” will be searched

for first in the directory of the file with the #include line, then in direc-

tories named in ~I options, and last in directories on a standard list. For

#include files whose names are enclosed in <>, the directory of the file

with the #include line is not searched.

-T Forces cpp to use only the first eight characters for distinguishing different

preprocessor names. This behavior is the same as for previous preprocessors

with respect to the length of names and is included for backward compatabil-

ity.

-Ydir Use directory dir in place of the standard list of directories when searching

for #include files.

-H Print the path names of included files (one per line) on standard error.

Special Names

Two special names are understood by cpp. The name __LINE__ is defined as the

current line number (as a decimal integer) as known by cpp, and __FILE__ is

defined as the current file name (as a C string) as known by cpp. You can use them

anywhere (including in macros) just as any other defined name.

Directives

All cpp directives start with #. Any number of blanks and tabs are allowed between

1 -58 Licensed material—property of copyright holder(s) 093-701055

epp(1)

093-701055

DG/UX 5.4 cpp(1)

the # and the directive. The directives are:

#define name token-string

Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string

Replace subsequent instances of name followed by a (, a list of comma-

. separated set of tokens, and a) by token-string, where each occurrence of an

arg in token-string is replaced by the corresponding set of tokens in the list.

When a macro with arguments is expanded, the arguments are placed into the

expanded roken-string unchanged. After the entire roken-string has been

expanded, cpp restarts its scan for names to expand at the beginning of the
newly created token-string.

Notice that there can be no space between name and the (.

#undef name

Forget the definition of mame (if any).

#identstring

Put string into the .comment section of an object file.

#include "filename"

#include <filename>

Include at this point the contents of filename (which will then be run through

cpp). When you use the <filename> notation, filename is only searched for

in the standard places. See also the -I option above.

#line integer-constant "filename"

Makes cpp generate line control information for the next pass of the C com-

piler. Inreger-constant is the line number of the next line and filename is the

file where it comes from. If you omit filename, the current filename 1s

unchanged.

#endif

Ends a section of lines begun by a test directive (#if, #ifdef, or

ifndef). Each test directive must have a matching #endif.

#ifdef name

The lines following will appear in the output if name has been the subject of a

previous #define without being the subject of an intervening #undef.

#ifndef name |

The lines following will not appear in the output if nae has been the subject

of aprevious #define without being the subject of an intervening #undef.

#if constant-expression

Lines following will appear in the output if the constant-expression evaluates

to non-zero. All binary non-assignment C operators, the ?: operator, the

unary —, !, and ~ operators are legal in constant-expression. The pre-

cedence of the operators is the same as defined by the C language.

An unary operator is also defined, which can be used in Constant-expression

in these two forms: defined(name) or defined name. This lets you use

#ifdef and #ifndef ina #if directive. In constant-expression, use only

operators, integer constants, and names that cpp knows. The sizeof

operator is not available.

Licensed materiat—property of copyright holder(s) 1 ~-59

cpp(1) - DG/UX 5.4 epp(1)

#elif constant-expression

#else

Lines following will appear in the output if and only if the constant-expression

evaluates to non-zero. All binary non-assignment C operators, the ?: opera-

tor, the unary -,!, and ~ operators are all legal in constant-expression. The

precedence of the operators is the same as defined in the C language. There

is also a unary operator defined, which can be used in constant-expression

in these two forms: defined (mame) or defined name. This allows

the utility of #ifdef and #ifndef ina #if directive. Only these opera-

tors, integer constants, and names, which are known by cpp, should be used

in constant-expression. In particular, the sizeof operator is not available.

To test whether or not either of two symbols, bob and ted, are defined, use

#if defined(bob)|defined(ted)

Reverses the notion of the test directive that matches this directive. If lines

previous to this directive are ignored, the following lines will appear in the

output, and vice versa.

The test directives and the possible #else directives can be nested.

FILES

/usr/include Standard directory for #include files

DIAGNOSTICS

Cpp error messages are intended to be self-explanatory. The line number and

filename where the error occurred are printed along with the diagnostic.

SEE ALSO

ec(l).

NOTES

When new-line characters were found in argument lists for macros to be expanded,

previous versions of cpp put out the new-lines as they were found and expanded.

The current version of cpp replaces these new-lines with blanks.

1-60 Licensed materia—property of copyright holder(s) 093-701055

eprs(1) DG/UX 5.4 eprs(1)

NAME

cprs — compress a common object file

SYNOPSIS

eprs [-p] filel file2

DESCRIPTION |

Cprs reduces the size of a common object file, file], by removing duplicate structure,

enumeration, and union descriptors. The reduced file, file2, is produced as output.

The sole option to cprs is:

-p Print statistical messages, including total number of tags, total duplicate tags,

and total reduction of filel.

SEE ALSO

strip(1), a.out(4), syms(4).

093-701055 Ucensed materiat—property of copyright holder(s) 1 -61

escope (1) DG/UX 5.4 escope(1)

NAME

cscope — interactively examine a C program

SYNOPSIS

escope [options] files...

DESCRIPTION

1-62

escope is an interactive screen-oriented too] that allows the user to browse through C
source files for specified elements of code.

By default, cscope examines the C (.c and .h), lex (.1), and yace (.y) source

files in the current directory. cscope may also be invoked for source files named

on the command line. In either case, cscope searches the standard directories for

#include files that it does not find in the current directory. escope uses a symbol

cross-reference, cscope.out by default, to locate functions, function calls, macros,

variables, and preprocessor symbols in the files.

escope builds the symbol cross-reference the first time it is used on the source files

for the program being browsed. On a subsequent invocation, cscope rebuilds the

cross-reference only if a source file has changed or the list of source files is different.

When the cross-reference is rebuilt, the data for the unchanged files are copied from

the old cross-reference, which makes rebuilding faster than the initial build.

The following options can appear in any combination:

-b

-C

—c

-d

-e

~£ reffile

-I incdir

-i namefile

“L

-l

—num pattern

—P path

Build the cross-reference only.

Ignore letter case when searching.

Use only ASCII characters in the cross-reference file, that is, do not

compress the data.

Do not update the cross-reference.

Suppress the ~e command prompt between files.

Use reffile as the cross-reference file name instead of the default

escope.out.

Look in incdir (before looking in INCDIR, the standard place for

header files, normally /usr/include) for any #include files

whose names do not begin with / and that are not specified on the

command line or in namefile below. (The #include files may be

specified with either double quotes or angle brackets.) The incdir

directory is searched in addition to the current directory (which is

searched first) and the standard list (which is searched last). If more

than one occurrence of -I appears, the directories are searched in

the order they appear on the command line.

Browse through all source files whose names are listed in namefile

(file names separated by spaces, tabs, or new-lines) instead of the

default (cscope. files). If this option is specified, cscope ignores

any files appearing on the command line.

Do a single search with line-oriented output when used with the

—num pattern option.

Line-oriented interface (see “‘Line-Oriented Interface” below).

Go to input field num (counting from 0) and find pattern.

Prepend path to relative file names in a pre-built cross-reference file

so you do not have to change to the directory where the cross-

Licensed materiai—property of copyright holder(s) 093-701055

escope (1) DG/UX 5.4 escope (1)

reference file was built. This option is only valid with the -d option.

—pn Display the last file path components instead of the default (1).
Use 0 to not display the file name at all.

-s dir Look in dir for additional source files. This option is ignored if

source files are given on the command line.

-T Use only the first eight characters to match against C symbols. A
regular expression containing special characters other than a period

(. >) will not match any symbol if its minimum length is greater than
eight characters.

-U Do not check file time stamps (assume that no files have changed).

-u Unconditionally build the cross-reference file (assume that all files

have changed).

-V Print on the first line of screen the version number of cscope.

The -I, -p, and -T options can also be in the cscope. files file.

Requesting the Initial Search

After the cross-reference is ready, cscope will display this menu:

Find this C symbol:

Find this function definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Press the TAB key repeatedly to move to the desired input field, type the text to

search for, and then press the RETURN key.

Issuing Subsequent Requests

093-701055

If the search is successful, any of these single-character commands can be used:

1-9 Edit the file referenced by the given line number.

SPACE Display next set of matching lines.
+ Display next set of matching lines.

— Display previous set of matching lines.

“e Edit displayed files in order.

> Append the displayed list of lines to a file.

| Pipe all lines to a shell command.

At any time these single-character commands can also be used:

TAB Move to next input field.

RETURN Move to next input field.

“n Move to next input field.

“p Move to previous input field.

“y Search with the last text typed.

“b Move to previous input field and search pattern.

“f Move to next input field and search pattern.

“t Toggle ignore/use letter case when searching. (When ignoring letter case,

search for FILE will match File and file.)

Licensed material—property of copyright hoider(s) 1 -63

escope(1) DG/UX 54 escope (1)

“r Rebuild the cross-reference.

! Start an interactive shell (type “d to return to cscope).

“1 Redraw the screen.

? Give help information about cscope commands.

“d Exit escope.

Note: If the first character of the text to be searched for matches one of the above

commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text

After the text to be changed has been typed, cscope will prompt for the new text,

and then it will display the lines containing the old text. Select the lines to be

changed with these single-character commands:

1-9 Mark or unmark the line to be changed.

*. Mark or unmark all displayed lines to be changed.

SPACE Display next set of lines.

+ Display next set of lines.

_ Display previous set of lines.

a Mark all lines to be changed.

“4 Change the marked lines and exit.

ESCAPE Exit without changing the marked lines.
! Start an interactive shell (type “d to return to cscope).

“1 Redraw the screen.

? Give help information about cscope commands.

Special Keys

If your terminal has arrow keys that work in vi(1), you can use them to move around

the input fields. The up-arrow key is useful to move to the previous input field

instead of using the TAB key repeatedly. If you have the CLEAR, NEXT, or PREV

keys they will act as the “1, +, and — commands, respectively.

Line-Oriented Interface

The ~1 option lets you use cscope where a screen-oriented interface would not be

useful, e.g., from another screen-oriented program.

escope will prompt with >> when it is ready for an input line starting with the field

number (counting from 0) immediately followed by the search pattern, e.g., lmain

finds the definition of the main function.

If you just want a single search, instead of the -1 option use the -L and ~num pat-

tern options, and you won’t get the >> prompt.

For -1, cscope outputs the number of reference lines

cscope: 2 lines

For each reference found, cscope outputs a line consisting of the file name, func-

tion name, line number, and line text, separated by spaces, e.g.,

main.c main 161 main(arge, argv)

Note that the editor is not called to display a single reference, unlike the screen-

oriented interface.

You can use the r command to rebuild the database.

cscope will quit when it detects end-of-file, or when the first character of an input

line is “dor q.

ENVIRONMENT VARIABLES

EDITOR Preferred editor, which defaults to vi(1).

1 -64 Licensed materia—property of copyright holder(s) 093-701055

escope (1) DG/UX 5.4 | escope (1)

INCLUDEDIRS Colon-separated list of directories to search for #include files.
HOME Home directory, which is automatically set at login.

SHELL Preferred shell, which defaults to sh(1).

SOURCEDIRS Colon-separated list of directories to search for additional source
files.

TERM Terminal type, which must be a screen terminal.

TERMINFO Terminal information directory full path name. If your terminal is
not in the standard terminfo directory, see curses(3X) and ter-

minfo(4) for how to make your own terminal description.

TMPDIR Temporary file directory, which defaults to /var/tmp.

VIEWER Preferred file display program [such as pg], which overrides EDITOR

(see above).

VPATH A colon-separated list of directories, each of which has the same
directory structure below it. If VPATH is set, cscope searches for

source files in the directories specified; if it is not set, cscope

searches only in the current directory.

FILES

cscope. files Default files containing -I, -p, and —T options and the list of

source files (overridden by the -i option).

cscope.out Symbol cross-reference file, which is put in the home directory if it

cannot be created in the current directory.

nescope.out Temporary file containing new cross-reference before it replaces the

old cross-reference.

INCDIR Standard directory for #include files (usually /usr/include).

SEE ALSO

The “‘cscope”’ chapter in the Programmer’s Guide: ANSI C and Programming Support

Tools.

NOTES

cscope recognizes function definitions of the form:

fname blank (args) white arg_decs white {

where:

fname is the function name

blank is zero Or more spaces or tabs, not including newlines
ares is any string that does not contain a "ora newline
white is zero or more spaces, tabs, or newlines

are_decs are zero or more argument declarations (a7g_decs may include comments
and white space)

It is not necessary for a function declaration to start at the beginning of a line. The

return type may precede the function name; cscope will still recognize the declara-

tion. Function definitions that deviate from this form will not be recognized by

cscope.

The Function column of the search output for the menu option Find functions

called by this function: input field will only display the first function called

in the line, that is, for this function

e()

{

return (f£() + 9());

}

the display would be

Functions called by this function: e

File Function Line

093-701055 Licensed materiaproperty of copyright holder's) | 1 -65

1-66

a.c £ 3 return(f() + 9());

Occasionally, a function definition or call may not be recognized because of braces

inside #if statements. Similarly, the use of a variable may be incorrectly recognized

as a definition.

A typedef name preceding a preprocessor statement will be incorrectly recognized

as a global definition, e.g.,

LDFILE +

#if AR16WR

Preprocessor statements can also prevent the recognition of a global definition, e.g.,

char flag :

ifdef ALLOCATE STORAGE

=x —]

#endif

, ;

A function declaration inside a function is incorrectly recognized as a function call,

€.2.,

£()

{

void g();
\

is incorrectly recognized as acallto g().

escope recognizes C++ classes by looking for the class keyword, but doesn’t recog-

nize that a struct is also a class, so it doesn’t recognize inline member function

definitions in a structure. It also doesn’t expect the class keyword in a typedef, so

it incorrectly recognizes X as a definition in

typedef class X «* Y;

It also doesn’t recognize operator function definitions

Bool Feature: :operator==(const Feature & other)

{

}

Licensed material—property of copyright holder(s) 093-701055

ctags(1) DG/UX 5.4 ctags(1)

NAME

ctags — create a tags file

SYNOPSIS

ctags [-BFatuwvx] name...

DESCRIPTION

Ctags makes a tags file for ex(1) from the specified C, Pascal and Fortran sources.

A tags file gives the locations of specified objects (in this case functions and typedefs)

in a group of files. Each line of the tags file contains the object name, the file in

which it is defined, and an address specification for the object definition. Functions

are searched for with a pattern, typedefs with a line number. Specifiers are given in

separate fields on the line, separated by blanks or tabs. Using the tags file, ex can

quickly find these object definitions.

If the —x flag is given, ctags produces a list of object names, the line number and

file name on which each is defined, as well as the text of that line and prints this

information on the standard output. This is a simple index which can be printed out.

If the -v flag is given, an index of a different form is produced on the standard out-

put. This listing contains the function name, file name, and page number (assuming

64 line pages).

Files whose names end in or are assumed to be C source files and are searched for C

routine and macro definitions. Others are first examined to see if they contain any

Pascal or Fortran routine definitions; if not, thev are processed again looking for C
definitions.

Other options are:

-a append to tags file.

-w suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is, all references to them

are deleted, and the new values are appended to the file. (Beware: this option is

implemented in a way which is rather slow; it is usually faster to simply rebuild

the tags file.))

-F use forward searching patterns (/.../) (default).

-B use backward searching patterns (?...?).

-t create tags for typedefs.

The tag main is treated specially in C programs. The tag formed is created by

prepending M to the name of the file, with a trailing .c removed, if any, and leading

pathname components also removed. This makes use of ctags practical in direc-

tories with more than one program.

FILES .

tags output tags file

SEE ALSO

ex(1), vi(1).

BUGS

Recognition of functions, subroutines and procedures for FORTRAN and

Pascal is done in a very simpleminded way. No attempt is made to deal with block

structure; if you have two Pascal procedures in different blocks with the same name,

the procedure will not work.

093-701055 Licensed materia}—property of copyright holder(s) 1 -67

etags(1) DG/UX 5.4 ctags(1)

Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to detect

typedefs. Use of -tx shows only the last line of typedefs. |

1 -68 Licensed material—property of copyright holder(s) 093-701055

eti(1) DG/UX 5.4 etl(1)

NAME

ctl - COFF-to-legend translator

SYNOPSIS

ctl [option] filename

DESCRIPTION

The ctl command translates the debugging information stored inside an object

module from COFF format to legend format. Normally, ctl is invoked automatically

by the compiler (via an as(1) option); consult the man page for your compiler to see

if it does this.

Ctl accepts options both on the command line, and from the LEGENDS environ-

ment variable. In cases of conflicting options, command line options override

LEGENDS options, then option precedence is from right to left (with right-most
options having the highest precedence).

Many important ctl options are described by the legend(5) manual page. In addi-

tion, the following options are interpreted by ctl:

-~fix-bb

Indicate that the compiler generates a redundant pair of begin-block and end-

block symbols around each function. This option should be used with gcc.

-h" [string]"

Store the given String in the legend. This switch is generally used to indicate

which compiler was used.

-l{language]

Specify which source language was used; possible values are fortran, c,

ansi-c, and pascal. The default is c.

-ocs Assume an 88k-OCS-compliant frame format. If this switch 1s omitted, then it

is assumed that r30 is the frame pointer. This switch is ignored if a

.coffsem or sen[.value] symbol is present in the object module.

~reverse-arrays

Indicate that array dimensions are stored in reverse of the source code order.

This switch is ignored ifa .coffsem or sem[.value] symbol is present in the

object module.

-s"(pathname}"
Indicate that pathname is the source file for the object module being

translated.

FILES

file.o object file

file.1g optional debugging information file

SEE ALSO

as (1), ec(1), gece(1), ghece(1), ghf77(1), ghpe(1), mxdb(1), legend(5).

093-701055 Licensed material—property of copyright holder(s) 1-69

etrace(1) DG/UX 5.4 etrace(1)

NAME

ctrace — trace a C program to debug it

SYNOPSIS

ctrace [options] [file]

DESCRIPTION

1-70

Ctrace lets you follow the execution of a C program, statement by statement. The
effect is similar to executing a shell procedure with the -x option. Ctrace reads

the C program in file (or from standard input if you omit file), inserts statements to

print the text of each executable statement and the values of all variables referenced

or modified, and writes the modified program to the standard output. You must put

the output of ctrace into a temporary file because the cc(1) command does not

allow the use of a pipe. You then compile and execute this file.

As each statement in the program executes, it is listed at the terminal, followed by

the name and value of any variables referenced or modified in the statement, followed

by any output from the statement. Loops in the trace output are detected and tracing

is stopped until the loop is exited or a different sequence of statements within the

loop is executed. A warning message is printed every 1000 times through the loop to
help you detect infinite loops. The trace output goes to the standard output so you

can put it into a file for examination with an editor or the bfs(1) or tail(1) com-

mands.

Commonly used options are:

-f functions Trace only these functions.

-v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long and pointer

variables are always printed as signed integers. Pointers to character arrays are also

printed as strings if appropriate. Char, short, and int variables are also printed

as signed integers and, if appropriate, as characters. Double variables are printed

as floating point numbers in scientific notation. The oprions that print variables in

additional formats are: |

-O Octal

-x Hexadecimal

—u Unsigned

—-e Floating point

Other options for special circumstances are:

-1n Check n consecutively executed statements for looping trace output, instead

of the default of 20. Use 0 to get all the trace output from loops.

-s Suppress redundant trace output from simple assignment statements and

string copy function calls. This option can hide a bug caused by using the =

operator in place of the == operator.

-tn Tracen variables per statement instead of the default of 10 (the maximum
number is 20). The DLAGNOSTICS section below explains when to use this

option.

-P Run the C preprocessor on the input before tracing it. You can also use the

-D, -I, and -U ec(1) preprocessor options.

The oprions that tailor the run-time trace package for the traced program to run in a

non-UNIX system environment are:

Licensed material—property of copyright hoider(s) 093-701055

ctrace(1) DG/UX 5.4 | ctrace(1)

-p ‘string’

Change the trace print function from the default of ’printf(’. For example,

fprintf(stderr,’ would send the trace to the standard error output.

-rf Use file f in place of the runtime.c trace function package. This lets you — |
change the entire print function, instead of just the name and leading argu-

ments (see the —p option).

-Qarg Ifargis y, identification information about ctrace will be added to the out-

put files. This can be useful for software administration. Giving n for arg

exlicitly asks for no such information, which is the default behavior.

-V Prints version information on the standard error.

EXAMPLES

If the file 1¢.c¢ contains the following C program:

1 #include <stdio.h>

2 main() /* count lines in input */

3 {
4 int c, nl;

5

6 nl = 0;

7 while ((c = getchar()) != EOF)

8 if (c = ’\n’)

9 ++n];

10 printf("%d\n", nl);

11 }

and you enter the following commands and test data:

cc Ic.c

a.out

1

(ctrl-d)

the program will be compiled and executed.

The output of the program will be the number 2, which is not correct because there

is only one line in the test data. The error in this program is common, but subtle.

If you invoke ctrace with these commands: |

ctrace Ic.c >temp.c

cc temp.c

a.out

the output will be:

2 main()

6 ni = 0;

/* nl == 0 */

7 while ((c = getchar()) != EOF)

The program is now waiting for input. If you enter the same test data as before, the
output will be:

093-701055 Licensed material—property of copyright holder(s) , 1 “7 1

ctrace(1) DG/UX 5.4 ctrace(1)

/* ¢ == 49 or’ 1’ */

8 if (c = ’\n’)

/*c ==10or ’\n’ */

9 ++nl;

/* pn) == 1 */

7 while ((c = getchar()) != EOF)

/* ¢ == 10 or \n’ */

8 if (c = ’\n’)

/* ¢ == 10 or ’\n’ */

9 ++nl;

/* pl == 2 */

7 while ((c = getchar()) != EOF)

If you now enter an end of file character (ctrl-d), the final output will be:

/* ¢ == 1 */

10 _printf("%d\n", nl);

/* nl == 2 */2

return

Note the program output printed at the end of the trace line for the ni variable.
Also note the return comment added by ctrace at the end of the trace output.

This comment shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value 1 in line 7, but ‘\n’ in

line 8. Once your attention is drawn to the if statement in line 8, you will probably

realize that you used the assignment operator (=) in place of the equal operator (==).

You can easily miss this error during code reading.

Execution-time Trace Control

1-72

The default operation for ctrace is to trace the entire program file, unless vou use

the -f or —v options to trace specific functions. The default does not give you state-

ment by statement control of the tracing, nor does it let you turn the tracing off and

on when executing the traced program. |

You can do both of these by adding ctroff() and ctron() function calls to your

program to turn the tracing off and on, respectively, at execution time. Thus, you

can code arbitrarily complex criteria for trace control with if statements, and you

can even conditionally include this code because ctrace defines the CTRACE

preprocessor variable. For example:

#ifdef CTRACE

if (c ==’! && i > 1000)

ctron();

#endif

These functions can also be called from sdb(1) if they are compiled with the -g

option. For example, to trace all but lines 7 to 10 in the main function, enter:

sdb a.out

main:7b ctroff()

main:11b ctron()

xr

You can also turn the trace off and on by setting the static variable tr_ct_ to 0 and

1, respectively.

Licensed material—property of copyright holder(s) 093-701055

etrace (1) OG/UX 5.4 etrace(1)

FILES

runtime.c run-time trace package

DIAGNOSTICS

warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C compiler “out of

tree space; simplify expression” error. Use the -t option to increase this

number.

warning: statement too long to trace

This statement is over 400 characters long. Make sure that you are using tabs

to indent your code, not spaces.

cannot handle preprocessor code, use -P option

This is usually caused by #ifdef/#endif preprocessor statements in the middle

of a C statement, or by a semicolon at the end of a #define preprocessor

statement.

if ... else if’ sequence too long

Split the sequence by removing an else from the middle.

possible syntax error, try -P option

Use the -P option to preprocess the ctrace input, along with any appropri-

ate -D, -I, and -U preprocessor options. If you still get the error message,

check the Warnings section below.

SEE ALSO

signal(2), ctype(3C), fflush(3S), longjmp(3C), print£(3S), setjmp(3C),
string(35C).

NOTES

You will get a ctrace syntax error if you omit the semicolon at the end of the last

element declaration in a structure or union, just before the right brace (}). This is

optional in some C compilers.

Defining a function with the same name as a system function may cause a syntax error

if the number of arguments is changed. Just use a different name.

Ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are

#defined constants. Declaring any of these to be variables, e.g., "int EOF;”, will

cause a syntax error.

Pointer values are always treated as pointers to character strings.

Ctrace does not know about the components of aggregates like structures, unions,

and arrays. It cannot choose a format to print all the components of an aggregate

when an assignment is made to the entire aggregate. Ctrace may choose to print

the address of an aggregate or use the wrong format (e.g., 3.149050e-311 for a

structure with two integer members) when printing the value of an aggregate.

The loop trace output elimination is done separately for each file of a multi-file pro-

gram. Separate output elimination can result in functions called from a loop still

being traced, or the elimination of trace output from one function in a file until

another in the same file is called.

093-701055 Licensed materiai—property of copyright holder(s) 1 -73

exref(1) DG/UX 5.4 exref(1)

NAME

exref — generate C program cross-reference

SYNOPSIS

exref [options] files

DESCRIPTION

Cxref analyzes a collection of C files and builds a cross-reference table. Cxref

uses a special version of cc to include #define’d information in its symbol table. It

generates a list of all symbols (auto, static, and global) in each individual file, or, with

the -c option, in combination. The table includes four fields: NAME, FILE,

FUNCTION, and LINE. The line numbers appearing in the LINE field also show

reference marks as appropriate. The reference marks include:

assignment =

declaration ~

definition *

If no reference marks appear, you can assume a general reference.

Options

Cxref interprets the -D, -I, -U options in the same manner that cc does. In addi-

tion, exref interprets the following options:

-c Combine the source files into a single report. Without the -c option,

cxref generates a separate report for each file on the command line.

-o file Direct output to file.

-s Operates silently; does not print input file names.

-t Format listing for 80-column width.

-wnum Width option that formats output no wider than num (decimal) columns.

This option will default to 80 if num is not specified or is less than 51. These

options are accepted only in an ELF environment:

-d Disables printing declarations, making the report easier to read.

-1 Does not print local variables. Prints only global and file scope statistics.

-C Runs only the first pass of cxref, creating a .cx file that can later be

passed to cxref. This is similar to the -c option of cc or lint.

-F Prints the full path of the referenced file names.

-Lcols Modifies the number of columns in the LINE field. if you do not specify a
number, cxref defaults to five columns.

-V Prints version information on the standard error.

-wname, file, function, line

Set the width of each field (name, file, function, and line are non-negative

integers). The default widths are:

Field Characters

NAME 15

FILE 13

FUNCTION 15

LINE 20 (4 per column)

1-74 Licensed materia\—property of copyright holderis) 093-701055

exref(1) DG/UX 5.4 exref (1)

main()

int i;

extern char ¢c;

i=65;

c=(char)i;On NU WD fs
0

}

Resulting cross-reference table:

NAME FILE FUNCTION LINE

C a.c --- 4- 7=

i a.c main 3% = 7

Main a.c --- 2*

u3b2 predefined --- Ox

unix predefined --- Ox

FILES

ITMPDIR/tcx. * temporary files

TMPDIR/cx. + temporary files

LIBDIR/xref accessed by cxref

LIBDIR usually /usr/lib

TMPDIR usually /usr/tmp but can be redefined by setting the environ-

ment variable TMPDIR [see tempnam in tmpnan(3S)].

DIAGNOSTICS

Error messages usually mean you cannot compile the files.

SEE ALSO

cc(1), lint(1).

093-701055 Licensed material—property of copyright holder(s) 1 -/5

dbx(1) DG/UX 5.4 dbx(1)

NAME

dbx - source level debugger

SYNOPSIS

dbx [-r] [-s style] [-i] [-1 dir] [objfile [corefile]]

DESCRIPTION

The dbx utility is a tool for source-level debugging and execution of programs under

the DG/UX system. Objfile is an executable file—one that has been compiled and

linked. The compiler must use the appropriate flag(s) to produce symbol information

in the object file. The machine-level facilities of dbx can be used on any program

not linked with the —s option.

If no objfile is specified, dbx looks for a file named a.out in the current directory.

When a corefile is specified, dbx can be used to examine the state of the program

when it faulted.

If the file .dbxinit exists in the current directory, dbx executes the debugger com-

mands init. Dbx also checks for .dbxinit in the user’s home directorv if there 1s

not one in the current directory.

Options are:

-r Execute objfile immediately. The object flename must be supplied.

Parameters follow the object filename. When the program terminates, the

reason for termination is reported and the user can enter the debugger or

let the program fault. Dbx reads from /dev/tty when -rx is specified

and standard input is not a terminal.

-s style Inform dbx of the style of the symbol names in the executable. By con-

vention, style is the compile command that produced the executable, e.g.

ec, gcc, ghcc, or ghf77. The -s option is required only when debug-

ging a COFF executable whose of debugging information differs in form

from that produced by cc, the default style.

-i Force dbx to act as though standard input is a terminal.

-I dir Add dir to the list of directories that dbx searches when looking for a

source file. Normally dbx looks for source files in the current directory

and in the directory where objfile is located. The directory search path

can also be set with the use command.

Unless -r is specified, dbx just prompts and waits for a command.

Expressions and Scope

1-76

Dbx evaluates an expression according to the scope that is in effect at the time the

expression is evaluated. This scope determines which variables are accessible. For

example, the command

stop at "foo.c":5 if a == 17

contains the expression "a == 17", which will be evaluated when line 5 of the file

foo.c is reached. At that time, the variable a must be either a local variable of the
current function or a global variable. The expression "a == 17” must bea legal C

language expression.

Licensed material—property of copyright holder(s) 093-701055

dbx (1) DG/UX 5.4 | dbx(1)

Execution and Tracing Commands

run [args] [< filename] [>|>> filename]

093-701055

Execute the objfile specified on the dbx command line or the one specified

with the most recent debug command. Arvgs are passed as command line

arguments. Input and output can be redirected using the symbols <, >, and

>>. Other characters in args are passed through unchanged. If no arguments

are specified, the argument list from the last run command (if any) is used.

If objfile has been written since the last time the symbolic information was

read in, dbx reads the new information before beginning execution.

rerun [args] [< filename] [>|>> filename]

Except in the case where no arguments are specified, rerun is identical to

run. When no arguments are specified, rerun runs the program with no

arguments at all.

debug objfile [corefile]

kill

Stop debugging the current program (if any), and begin debugging the pro-

gram found in objfile with the given corefile. This process avoids the over-

head required to reinitialize dbx.

Stop debugging the current process, kill the process, but leave dbx ready to

debug another.

trace source-line-number [if condition]

trace @labelloffser] [if condition]

trace procedure/function[offset] [1£ condition]

trace expression at source-line-number [if condition]

trace variable [in procedure/funcrion] [if condition]

Print tracing information when the program is executed. A number is associ-

ated with the trace command, which may later be used to turn the tracing

off (see the delete and status commands).

The first argument describes what is to be traced. If it specifies a source

statement (by line number, label, or offset from a procedure or function), the

line or label is printed immediately before being executed. An offset is + or
— some number of lines.

If the argument is a simple procedure or function name, every time it is called

information is printed telling what routine called it, from what source line it

was called, and what parameters were passed to it.

If the argument is an expression with an at clause, the value of the expres-

sion is printed whenever the identified source line is reached.

If the argument is a variable, the name and value of the variable are printed

whenever it changes. The clause in procedure/function restricts tracing

information to be printed only while executing inside the specified procedure
or function.

Source line numbers and function names may be qualified by a filename and
following colon, asin "mumble.c”:17 (quotes are optional).

Condition is a boolean expression and is evaluated before printing the tracing
information; if it is false, the information is not printed.

Licensed materialt—property of copyright hoider(s) | 1 -17

dbx (1)

1-78

DG/UX 5.4 dbx(1)

stop at source-line-number [if condition]

stop @labelloffset] [i£ condition]

stop in procedure/function(offset] [if condition}

stop variable [if condition]

Stop execution when the given line or label is reached, the procedure or func-

tion is called, or the variable is changed.

status [> filename]

Print out the currently active trace and stop commands.

commands [command-number]

Attach a series of commands to the specified trace or stop command (or
to the last one that was set) to be performed whenever the trace or stop is

taken. The commands, which may be any debugger commands including

those that resume or redirect execution, are entered on successive lines and

delimited by the end command on a separate line. You may use an

if/then/else construct to specify alternate actions based on a conditional

expression.

delete command-number [,command-number...]

Remove the traces or stops corresponding to the given numbers. The

numbers associated with traces and stops are printed by the status com-

mand. Delete all removes all traces and stops.

clear [source-line-number]

clear @label

clear procedure/function

clear variable

Delete all traces or stops set on the given line-number, label, function, or

variable. Clear without argument clears all traces or stops on the line at

which execution is stopped.

catch [signal [,signal...]]

ignore [signal [,signal...]]

Start or stop trapping the specified signals before they ; are sent to the pro-
gram; a signal may be identified by its number or its name. This command
is useful when a program being debugged handles signals such as interrupts.

Initially, all signals are trapped except SIGCONT, SIGCLD, SIGALRM, and

SIGKILL. Without arguments, catch and ignore display a list of signals

currently trapped or ignored.

cont [n]

Continue execution. If n is specified, ignore the current breakpoint until it
has been reached this number of times. Execution cannot be continued if the

process has called the standard procedure ‘exit’. Dbx tries to keep the pro-

cess from exiting, thereby letting the user examine the program state.

position source-line-number

position procedure/function[offset]

position @abel [offser]

Set the current instruction pointer to the indicated position. Execution does
not resume until directed by the user. Positioning to a different stack frame

may have unpredictable results.

Licensed material—property of copyright holder(s) 093-701055

dbx(1) DG/UX 5.4 dbx(1)

jump source-line-number

jump procedure/function [offset]

jump @labelloffser]

Continue execution from the given source line, procedure, or label.

finish

Continue execution until the current frame is exited.

step [n]

Execute one or more source lines.

next [7]

Execute one or more source lines, but do not follow procedure or function

calls. The difference between next and step is that if a line contains a call

to a procedure or function, step stops at the beginning of that block,

whereas next continues execution to the next immediate source line.

Displaying and Naming Data

print[/format] expression [, expression ...]

Print out the values of the expressions. The optional formar is one of x (hex-

adecimal), d (signed decimal), u (unsigned decimal), o (octal), ¢ (charac-

ter), or b (binary). A valid expression may refer to variables in the current

procedure; it may also invoke any procedure or function in the program.

call subroutine [(arg [,arg...])]

Call a FORTRAN 77 subroutine.

whatis name

Print the declaration of the given name. In debugging COFF executables,

longs are reported as ints, and tags are reported as typedefs.

assign variable = expression

set variable = expression

Assign the value of the expression to the variable.

where [7] : |

Display the call/return stack. If n is specified and n < 0, show the bottom-

most 7 frames of the stack. If n is specified and n > 0, show the topmost 1

frames of the stack.

up [n] Move up the call stack n levels in the direction of main. If is not specified,

the default is 1. This command allows you to examine the local variables in

functions other than the current one.

down (n]

Move down the call stack n levels towards the current stopping point. If n is
not specified, the default is 1.

describe [procedure/funcrion]

Describe the current or specified procedure or function, including its name,

address, and source coordinates.

describe source-line-number

describe @label

Describe the given source line or label, including the associated starting

address and the name of the program block.

093-701055 Licensed material—property of copyright holder(s) 1 -79

dbx(1) DG/UX 5.4 dbx(1)

args Display the arguments to the current procedure or function.

dump [> filename]

Print the names and values of all local variables.

echo String

Print a constant string; C escape sequences must be used to print newlines

and leading or trailing whitespace.

Accessing Source Files

edit [filename] .

edit procedure/function-name

Invoke an editor on filename or the current source file if none is specified. If

a procedure or function name is specified, the editor is invoked on the file

that contains it. The default editor depends on the installation. To override

the default, set the environment variable EDITOR to the name of the desired

editor.

file [filename]

Change the current source filename to filename. If you omit filename, the

current source filename is printed.

func [procedure/function]

Change the current function. If no function is specified, print the name of

current function. Changing the current function implicitly changes the current

source file to the one that contains the function.

list [[filename :]linespec [, linespec]]

List the lines in the current (or specified) source file from the first line speci-

fied through the second, or print a window of lines surrounding a single line.

If no lines are specified, list 10 more lines. A linespec may be a source line

number, label, or function name with optional offset. It may also be a simple

offset (+ or — some number), which specifies an offset from the last line

printed, or from the first of two linespecs ina list command. $ used asa

line number means the last line in the file.

pwd Print dbx’s notion of the working directory.

ed directory

Change dbx’s working directory. The change does not take effect for the

program being debugged until the next time it is started.

use directory-list

Set the list of directories to be searched when dbx looks for source files.

Machine-level Commands

address ,address/ [mode]

[address] / [n] [mode]

Print the contents of memory starting at the first address and continuing up to
the second address or until n items are printed. If no address is specified, the

address following the one printed most recently is used. Mode specifies how

memory is to be printed; if mode is omitted, the previous mode specified is

used. The initial mode is H. The following modes are supported:

1 -80 Licensed material—property of copyright holders) 093-701055

dbx (1)

mhunnwosr<é§x oovwvnr

DG/UX 5.4 dbx(1)

a machine instruction

a short word in decimal

a long word in decimal

a short word in octal

a long word in octal

a short word in hexadecimal

a long word in hexadecimal

two bytes in octal

two bytes as characters

a string of characters terminated by a null byte

a single precision real number

a double precision real number

Symbolic addresses are specified by preceding the name with an &. Registers are

referred to with the following symbolic names:

$r0 Zero

$zx1 subroutine return pointer

$r2-$r9 called procedure parameter registers

$x10-$r13 called procedure temporary registers

$r14-$r25 calling procedure reserved registers

$xr26-Sr29 linker

$r30 frame pointer

$r31 stack pointer

$Ep frame pointer (register 30)

$sp stack pointer (register 31)

$fpsr floating-point status register

$fper floating-point control register

S$psr processor status register

$sxip shadow execute instruction pointer

$snip shadow next instruction pointer

$sfip _ shadow fetched instruction pointer

Scfa canonical frame address pseudo-register

Spe program counter pseudo-register

Addresses may be expressions made up of other addresses and the operators +, -,

and indirection (unary *).

stepi [n]

nexti [7]

Single step asin step or next, but do a single instruction rather than source line.

tracei [address] [if condition]

tracei [variable] [at address] [if condition]

stopi [at] [address] [if condition]

Turn on tracing or set a stop using a machine instruction address.

position address

Set the current instruction pointer to the specified address.

0$3-701055 Licensed materiai~—property of copyright hoider(s) 1 -81

dbx(1) OG/UX 5.4 dbx(1)

Miscellaneous Commands

sh [command-line]

Pass the command line to the shell for execution. Without argument, sh

suspends the debugging session and enters a shell. The SHELL environment

variable determines which shell is used.

define macro-name

Define a macro with the given name; the body of the macro is entered on suc-

cessive lines and delimited by the end command on a separate line. Argu-

ments to the macro are denoted by #1, #2, and so on.

alias [new-command-name [character-sequence]]

Respond to new-command-name as though it were character-sequence. Argu-

ments to the alias are permitted, and are denoted by #1, #2, and so on.

Invoked with new-command-name only, alias prints the character-sequence

associated with new-command-name. Invoked without arguments, alias

prints a list of currently defined aliases.

save filename

Save the state of the debugging session in the specified file (if file exists, it is

first deleted). The state comprises stop and trace commands (with any

associated commands), user-defined macros, and aliases.

restore filename |

Restore the debugger state saved in the specified file.

help [command]

Print out a summary of dbx commands, or a synopsis of the given command.

source filename

Read dbx commands from the given filename. Especially useful when the

filename has been created by redirecting a status command from an earlier
debugging session.

style stylename |

Inform dbx of the style of the symbol names in the executable to be

debugged. By convention, stylename is the compile command originally used

to produce the executable: currently valid stylenames are cc, gcc, ghcc,

and ghf77. The default style is cc.

When debugging ELF executables, the style command serves no purpose,

and is ignored.

quit Exit from dbx.

FILES

a.out Object file

.adbxinit Initial commands

SEE ALSO

ec(1), gece(1), ghee(1), ghf77(1).

NOTES

1-82

Non-local goto commands can cause some trace/stops to be missed.

Licensed material—property of copyright holder(s) 093-701055

delta(1)

NAME

DG/UX 5.4 | delta(1)

delta -— make a delta (change) to an SCCS file

SYNOPSIS

delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files

DESCRIPTION

093-701055

Delta permanently introduces into the named SCCS file changes that were made to
the file retrieved by get(1) (called the g-file, or generated file).

Delta adds a change to each named SCCS file. If a directory is named, delta

behaves as though each file in the directory were specified as a named file, except

that non-SCCS files (last component of the path name does not begin with s.) and
unreadable files are ignored. If a name of - is given, the standard input is read (see

WARNINGS); each line of the standard input is taken to be the name of an SCCS file

to be processed.

Delta may issue prompts on the standard output, depending on options specified and |

flags (see admin(1)) that may be present in the SCCS file (see -m and -y options

below).

Options apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the SCCS file.
. This option is necessary only if two or more outstanding gets

for editing (get -e) on the same SCCS file were done by the

same person (login name). The SID value specified with the

-r option can be either the SID specified on the get com-

mand line or the SID to be made as reported by the get com-

mand (see get(1)). A diagnostic results if the specified SID is

ambiguous, or, if necessary and omitted on the command line.

—s Suppresses the issue, on the standard output, of the created

deltas SID, as well as the number of lines inserted, deleted and

unchanged in the SCCS file.

“n Retains the edited g-file (normally removed at completion of

delta processing).

-glist Specifies a list (see get(1) for the definition of list) of deltas to

be ignored when the file is accessed at the change level (SID)

created by this delta.

~n[mrlist] If the SCCS file has the v flag set (see admin(1)) then a
Modification Request (MR) number must be supplied as the rea-

son for creating the new delta.

If -m is not used and the standard input is a terminal, the

prompt MRs? is issued on the standard output before the stan-

dard input is read; if the standard input is not a terminal, no

prompt is issued. The mrs? prompt always precedes the com-

ments? prompt (see -y option).

MRs in a list are separated by blanks and/or tab characters. An unescaped new-

line character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to
be the name of a program (or shell procedure) that will validate

the MR numbers. If a non-zero exit status is returned from the
MR number validation program, delta terminates (assumes

Licensed material—property of copyright holder(s) 1-83

deita(1) DG/UX §.4 deita(1)

that the MR numbers were not all valid).

-y[comment] Arbitrary text that describes the reason for making the delta.

A null string is considered a valid comment.

If -y is not specified and the standard input is a terminal, the

prompt comments? is issued on the standard output before

the standard input is read; if the standard input is not a termi-

nal, no prompt is issued. An unescaped new-line character ter-

minates the comment text.

-p Prints (on the standard output) the SCCS file differences before

and after the delta is applied in a diff(1) format.

EXAMPLES

delta /work/archives/s.filel

This command permanently installs any changes done to ’filel’ (the g¢-file), which
must be in the current working directory, into the SCCS file ’s.filel’ in the directory

/work/archives.

delta -ytest -n -p s.file2

This command permanently installs any changes done to ’file2’ (the 9-file) into the

SCCS file ’s.file2’, including adding the description found in ’test’ as the reason for

making the change, as well as not removing the file ’file2’ from the current directory.

The -p will list the before and after differences of the SCCS file.

FILES

All files of the form ?-file are explained in Programmer’s Guide: ANSI C and Pro-

gramming Support Tools The naming convention for these files is also described

there.

g-file Existed before the execution of delta; removed after completion of delra.

p-file Existed before the execution of delta; may exist after completion of delra.

q-file Created during the execution of delta; removed after completion of delra.

x-file Created during the execution of delra; renamed to SCCS file after com-

pletion of delta.

z-file Created during the execution of delta; removed during the execution of

delta.

d-file Created during the execution of delta; removed after completion of delta.

/oin/odiff Program to compute differences between the “gotten” file and the g-file.

DIAGNOSTICS

Use help(1) for explanations.

SEE ALSO

admin(l), bdiff(1), cde(1), comb(1), get(1), help(1), prs(1), rmdel(1).

sccsfile(4) in the Programmer's Reference for the DG/UX System (Volume 2)

"Source Code Contro] System" in Prograrnmer’s Guide: ANSI C and Programming

Support Tools.

NOTES

Lines beginning with an sou ASCII character (binary 001) cannot be placed in the

SCCS file unless the son is escaped. This character has special meaning to SCCS

(see sccsfile(4) (5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be avoided

when the get generates a large amount of data. Instead, use multiple get/delta

1 -84 Licensed materia}—property of copyright holder(s) 093-701055

delta(1) OG/UX 5.4 delta(1)

sequences.

If the standard input (-) is specified on the delra command line, the -m (if necessary)

and -y options must also be present. Omission of these options causes an error to

occur.

Comments are limited to text strings of at most 512 characters.

093-701055 Licensed materia}—property of copyright holder(s) 1 -85

dis(1) OG/UX 5.4 dis(1)

NAME

dis — object code disassembler

SYNOPSIS

dis [-o] [-v] [-d sec] [-D sec] [-F function] [-t sec] [-1 string] file ..

DESCRIPTION

Dis produces an assembly language listing of file, which may be an object file or, in

an ELF environment, an archive of object files. The listing includes assembly state-

ments and a hexadecimal representation of the binary that produced those statements.

In an ELF environment, dis accepts the following options, which may be specified

in any order.

-d Sec Disassemble the named section as data, printing the offset of the data

from the beginning of the section.

~-D sec Disassemble the named section as data, printing the actual address of

the data.

-F function Disassemble only the named function in each object file specified on the

command lire. The -F option may be specified multiple times on the

command line.

-l string Disassemble the archive file specified by string. For example, one

would issue the command dis -l1 x -1l zto disassemble libx.a and

libz.a, which are assumed to be in LIBDIR.

-o Print numbers in octal. The default is hexadecimal.

—t S€C Disassemble the named section as text.

-V Print, on standard error, the version number of the disassembler being

executed.

If the -d, -D or -t options are specified, only those named sections from each

user-supplied file name will be disassembled. Otherwise, all sections containing text

will be disassembled.

On output, a number enclosed in brackets at the beginning ofa line, such as [5],

indicates that the break-pointable line number starts with the following instruction.

These line numbers will be printed only if the file was compiled with additional

debugging information [e.g., the -g option of cc]. An expression such as <40> in

the operand field or in the symbolic disassembly, following a relative displacement for

control transfer instructions, is the computed address within the section to which con-

trol will be transferred. A function name will appear in the first column, followed by

() if the object file contains a symbol table. |

FILES

LIBDIR usually /usr/lib

DIAGNOSTICS

The self-explanatory diagnostics indicate errors in the command line or problems

encountered with the specified files.

SEE ALSO

as(1), ec(1), 1d(1), a.out(4).

NOTES

At this time, symbolic disassembly does not take advantage of additional information
available if the file is compiled with the -g option.

1 -86 Licensed materia—property of copyright holder(s) 093-701055

fsplit(1) DG/UX 5.4 fsplit(1)

NAME.

fsplit — split £77 or ratfor files

SYNOPSIS

fsplit options files

DESCRIPTION

Fsplit splits the named file(s) into separate files, with one procedure per file. A

procedure includes blockdata, function, main, program, and subroutine program seg-

ments. Procedure X is put in file X.£, or X.r depending on the language option

chosen, with the following exceptions: main is put in the file MAIN. [fr] and

unnamed blockdata segments in the files blockdataN.. [fr] where N is a unique

integer value for each file.

The following options pertain:

-f (default) Input files are f77.

-r Input files are ratfor.

-s Strip £77 input lines to 72 or fewer characters with trailing blanks removed.

SEE ALSO

esplit(1), £77(1), xatfor(1), split(1).

093-701055 Licensed material—property of copyright hoider(s) 1 -87

gec(1)

NAME

DG/UX 5.4 gec(1)

gcc — GNU C language compiler

SYNOPSIS

gece [option]... file...

DESCRIPTION

The GNU C compiler uses a command syntax much like the Unix C compiler. The

gece program accepts options and file names as operands. Multiple single-letter

options may not be grouped: ‘~dr’ is very different from ‘-d -r’. When you invoke

gcc, it normally does preprocessing, compilation, assembly and linking. File names

that end in .c are taken as C source to be preprocessed and compiled; compiler out-

put files plus any input files with names ending in .s are assembled; then the result-

ing object files, plus any other input files, are linked together to produce an execut-

able. Command options allow you to stop this process at an intermediate stage. For

example, the -c option says not to run the link editor. Then the output consists of

object files output by the assembler. Other command options are passed on to one

stage. Some options control the preprocessor and others the compiler itself.

Some options are accepted only by one or the other version of GNU C. Such

options are indicated below by "(v1)" or "(W2)".

OPTIONS

Here are the options | to control the overall compilation process, including those that
say whether to link, whether to assemble, and so on.

-V version

The argument version specifies which version of GNU C to run. This is useful

when multiple versions are installed. For example, version might be 2, meaning

to run GNU C version 2.

-c Compile or assemble the source files, but do not link. Produce object files with

names made by replacing .c or .s with .o at the end of the input file names.

Do nothing at all for object files specified as input.

-S Compile into assembler code but do not assemble. The assembler output file

name is made by replacing .c with .s at the end of the input file name. Do

nothing at all for assembler source files or object files specified as input.

-E Run only the C preprocessor. Preprocess all the C source files specified and out-

put the results to standard output.

-o file

Place output in file file. This applies to any output being produced, whether it be
an executable file, an object file, an assembler file or preprocessed C code. If
-o is not specified, the default is to put an executable file in a.out, the object

file source.c in source.o, an assembler file in source.s, and preprocessed C on

standard output.

-v Compiler driver program prints the commands it executes as it runs the prepro-

cessor, compiler proper, assembler and link editor. Some of these are directed to

print their own version numbers.

“pipe
Run preprocessor, compiler, and assembler in parallel, connected via pipelines.

You should not use this option if your system does not have enough physical

Licensed material—property of copyright hoider(s) 093-701055

gcc(1) DG/UX 5.4 | gee(1)

memory to support all four processes simultaneously.

Options Controlling Language

These options determine the dialect of C that the compiler accepts:

-ansi

Support all ANSI standard C programs. This turns off certain features of GNU

C that are incompatible with ANSI C, such as the asm, inline and typeof

keywords, and predefined macros such as unix that identify the type of system

you are using. It also enables the rarely-used ANSI trigraph feature.

The -ansi option does not cause non-ANSI programs to be rejected gratui-

tously. For that, -pedantic is required in addition to -ansi. The macro

__STRICT_ANSI__ is predefined when the -ansi option is used. Some header

_ files may notice this macro and refrain from declaring certain functions or defin-

ing certain macros that the ANSI standard doesn’t call for; this is to avoid

interfering with any programs that might use these names for other things.

~fno-asm

Do not recognize asm, inline or typeof as a keyword. These words mav

then be used as identifiers. -ansi implies ~fno-asn.
-trigraphs |

Support ANSI C trigraphs. The -ansi option also has this effect.

~traditional

Attempt to support some aspects of traditional C compilers. Specifically:

+ All extern declarations take effect globally even if they are written inside a

function definition. This includes implicit declarations of functions.

« The kevwords typeof, inline, signed, const and volatile are not

recognized.

« Comparisons between pointers and integers are always allowed.

+ Integer types unsigned short and unsigned char promote to unsigned

int. .

« Out-of-range floating point literals are not an error.

+ All automatic variables not declared register are preserved by longjmp.

Ordinarily, GNU C follows ANSI C: automatic variables not declared vola-

tile may be clobbered.

« In the preprocessor, comments convert to nothing at all, rather than to a space.

This allows traditional token concatenation.

+ In the preprocessor, macro arguments are recognized within string constants in a

macro definition (and their values are stringified, though without additional

quote marks, when they appear in such a context). The preprocessor also con-

siders a string constant to end at a newline.

+ The predefined macro __ STDC__ is not defined when you use -traditional,

but __GNUC__ is (since the GNU extensions which __GNUC__ indicates are not

affected by -traditional). If you need to write header files that work dif-

ferently depending on whether -traditional is in use, by testing both of these

predefined macros you can distinguish four situations: GNU C, traditional GNU

C, other ANSI C compilers, and other old C compilers.

093-701055 Licensed materiat—property of copyright holder(s) 1 -89

gc¢(1)

1-90

OG/UX 5.4 gec(1)

+ String literals are put into the writable data section instead of into read-only text.

-~fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arcuments. The value of such an expression is void.

~funsigned-char |

Let the type char be unsigned, like unsigned char. The type char is always

a distinct type from either signed char or unsigned char, even though its

behavior is always just like one of those two.

-fsigned-char

Let the type char be signed, like signed char.

-~fwritable-strings

Store string constants in the writable data segment and represent identical strings

. distinctly (don’t share storage). This is for compatibility with old programs which

assume they can write into string constants.

Options to Request or Suppress Warnings

-w Inhibit all warning messages.

-pedantic

Issue all the warnings demanded by strict ANSI standard C; reject all programs

that use forbidden extensions. Valid ANSI standard C programs should compile

properly with or without this option (though a rare few will require -ansi).

However, without this option, certain GNU extensions and traditional C features

are supported as well. With this option, they are rejected.

-pedantic-errors (V2) |

Like -pedantic, except that errors are produced rather than warnings. This

option is supported only in Version 2 of GNU C.

-wW Print extra warning messages for these events:

« An automatic variable is used without first being initialized. These warnings are

possible only in optimizing compilation, because they require data flow informa-

tion that is computed only when optimizing. They occur only for variables that
are candidates for register allocation. Therefore, they do not occur for a vari-

able that is declared volatile, or whose address is taken, or whose size is

other than 1, 2, 4, or 8 bytes. Also, they do not occur for structures, unions or

arrays, even when they are in registers. Note that there may be no warning

about a variable that is used only to compute a value that itself is never used,

because such computations may be deleted by the flow analysis pass before the
warnings are printed. These warnings are made optional because GNU C is not

smart enough to see all the reasons why the code might be correct despite

appearing to have an error.

+ A nonvolatile automatic variable might be changed by a call to longjmp. These

warnings as well are possible only in optimizing compilation. The compiler sees

only the calls to setjmp. It cannot know where longjmp will be called; in

fact, a signal handler could call it at any point in the code. Asa result, you may

get a warning even when there is in fact no problem because longjmp cannot in

fact be called at the place which would cause a problem.

+ A function can return either with or without a value. (Falling off the end of the

function body is considered returning without a value.) Spurious warnings can

occur because GNU C does not realize that certain functions (including abort

and long jmp) will never return.

Licensed material-—-property of copyright hoider(s) 093-701055

gcc(1)

093-701055

DG/UX 5.4 g¢c(1)

+ An expression-statement contains no side effects.

—-Wimplicit

Warn whenever a function is implicitly declared.

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int.

Also warn about any return statement with no return-value in a function whose

return-type is not void.

-Wunused

Warn whenever a local variable is unused aside from its declaration, whenever a

function is declared static but never defined, and whenever a statement computes

a result that is explicitly not used.

-Wswitch

Warn whenever a switch statement has an index of enumeral type and lacks a case

for one or more of the named codes of that enumeration. (The presence of a

default label prevents this warning.) Outside the enumeration range, case labels

also provoke warnings when this option is used.

-Weomment

Warn whenever a comment-start sequence ‘/*’ appears in a comment.

-Wtrigraphs

Warn if any trigraphs are encountered (assuming they are enabled).

-Wformat (V2) |

Check calls to printf and scanf, etc., to make sure that the arguments sup-

plied have types appropriate to the format string specified.

-Wall

All of the above -wW options combined.

-Wtraditional (V2)

Warn about certain constructs that behave differently in traditional and ANSI C.

-Wshadow . | oe

Warn whenever a local variable shadows another local variable.

-Wid-clash-len

Warn whenever two distinct identifiers match in the first Jen characters.

-Wpointer-arith

Warn about anything that depends on the "size of" a function type or of void.

GNU C assigns these types a size of 1, for convenience in calculations with void

* pointers and pointers to functions.

-Weast-qual

Warn whenever a pointer is cast so as to remove a type qualifier from the target

type. For example, warn if a const char * is cast to an ordinary char *.

-Weast~align (V2)

Warn whenever a pointer is cast such that the required alignment of the target is

increased. For example, warn ifa char * is castto an int * on machines

where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

Give string constants the type const char [length] so that copying the address

of one into anon-const char * pointer will get a warning. These warnings will

help you find at compile time code that can try to write into a string constant, but

only if you have been very careful about using const in declarations and

Licensed material—=property of copyright hoider(s) 1 -9f

goc(1)

1-92

DOG/UX 5.4 gcee(1)

prototypes. Otherwise, it will just be a nuisance; this is why —Wall does not

request these warnings.

-Weonversion (V2)

Warn if a prototype causes a type conversion that is different from what would

happen to the same argument in the absence of a prototype. This includes

conversions of fixed point to floating and vice versa, and conversions changing

the width or signedness of a fixed point argument except when the same as the

default promotion.

~mwarn-passed-structs

Emit a warning message if a structure is passed to a function, or declared as a

function argument. This warns about the places where gcc will not interoperate

with compilers that do not pass structures according to the 88open Object Compa-

tibility Standard.

Options for Debugging Your Program

~g Produce debugging information for mxdb, dbx, or sdb.

Unlike most other C compilers, GNU C allows you to use -g with -O. The
shortcuts taken by optimized code may occasionally produce surprising results: some

variables you declared may not exist at all; flow of control may briefly move where

you did not expect it; some statements may not be executed because they compute

constant results or their values were already at hand; some statements may execute in

different places because thev were moved out of loops. Nevertheless it proves possi-

ble to debug optimized output. This makes it reasonable to use the optimizer for pro-

grams that might have bugs.

In the ELF environment, debugging information is in legend(5) format for all sup-

ported debuggers. An optional LEGENDS environment variable can contain special

generation options such as "-external” to reduce link-time by storing most debug-

ging information in a separate file. See legend(5) for details.

In a COFF environment, GNU C generates debugging information in legend format

for use by mxdb when the LEGENDS environment variable is present; the information

is in standard COFF format by default.

These three options, which control legend generation, are superseded by the use of

the LEGENDS environment variable, and will be eliminated in the future:

~mlegend

Causes the assembler to invoke ct1(1), the COFF-to-legend translator.

-mexternal-legend

Causes the assembler to pass the —external option to ct1(1).

-mkeep-coff

Causes the assembler to pass the ~keep-std option to et1(]1).

~mocs-debug-info

Put out additional debug information to comply with the 88open Object Compati-

bility Standard text description information. This is the default.

-mno-ocs-debug-info |

Do not put out any additional debugging information.

~mocs-frame-position

When emitting debugging information for automatic variables and parameters

stored on the stack, use the offset from the canonical frame address (CFA),
which is the stack pointer (register 31) when the function is entered. The CFA is

Licensed materiat—property of copyright holders) 093-701055

gee(1) DG/UX 5.4 gcec(1)

. specified by the 88open Object Compatibility Standard. This is the default

behavior of GNU C.

~mno-ocs~frame-position

When emitting debugging information for automatic variables and parameters

stored on the stack, use the offset from the frame pointer register (register 30).

When this option is in effect, the frame pointer is not eliminated when debugging |

information is selected by the -—g switch.

-p Generate extra code to write profile information suitable for the analysis program

prof.

Options Controlling Optimization

-O Optimize. Optimizing compilation takes somewhat more time, and a lot more

memory for a large function.

Without -O, the compiler’s goal is to reduce the cost of compilation and to make

debugging produce the expected results. Statements are independent: if you stop

the program with a breakpoint between statements, you can then assign a new

value to any variable or change the program counter to anv other statement in the

function and get exactly the results you would expect from the source code.

Without -O, only variables declared register are allocated in registers.

With —O, the compiler tries to reduce code size and execution time. Some of the

-£ options described below turn specific kinds of optimization on or off.

-02 (V2)

Highly optimize. All supported optimizations are performed. As compared to

-O, this option will increase both compilation time and the performance of the

generated code.

Options of the form -fflag specify machine-independent flags. Most flags have both

positive and negative forms, asin ffoo and fno-foo. Only one of the forms is

listed here: the one which is not the default.

~ffloat-store

Do not store floating-point variables in registers.

-~fno-defer-pop

Always pop the arguments to each function call as soon as that function returns.

Normally the compiler (when optimizing) lets arguments accumulate on the stack

for several function calls and pops them all at once.

~fforce-mem

Force memory operands to be copied into registers before doing arithmetic on

them. This may produce better code by making all memory references potential

common subexpressions. When they are not common subexpressions, instruction

combination should eliminate the separate register-load.

-~fforce-addr

Force memory address constants to be copied into registers before doing arith-

metic on them. This may produce better code just as -fforce-mem may.

-fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t need one. This

eliminates the instructions that save, set up and restore frame pointers; it also

makes an extra register available in many functions.

0$3-701055 Licensed material—property of copyright holder(s) 1 -93

gcec(1)

1-94

DG/UX 5.4 gec(1)

On an AViiON computer, if you specify -O and do not specify -fno-omit-

frame-pointer, this is enabled automatically.

~-finline (V2)

Pay attention the inline keyword. Normally the negation of this option -fno-

inline is used to keep the compiler from expanding any functions inline. How-

ever, the opposite effect may be desirable when compiling with -g, since -g nor-

mally turns off all inline function expansion.

~finline-functions

Integrate all simple functions into their callers. The compiler heuristically decides

which functions are simple enough to be worth integrating in this way. If all calls

to a given function are integrated, and the function is declared static, then the

function is normally not output as assembler code in its own right.

~fcaller-saves

" Enable values to be allocated in registers that will be clobbered by function calls,

by emitting extra instructions to save and restore the registers around such calls.

~fkeep-inline-functions

Even if all calls to a given function are integrated, and the function is declared

static, nevertheless output a separate run-time callable version of the function.

~fno-function-cse

Do not put function addresses in registers; make each instruction that calls a con-

stant function contain the function’s address explicitly. This option results in less

efficient code, but some strange hacks that alter the assembler output may be

confused by the optimizations performed when this option is not used.

These options control specific optimizations. All are implied by the -02 option.

~fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of iteration

variables.

-fthread-jumps (V2)

Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch

is redirected to either the destination of the second branch or a point immediately

following it, depending on whether the condition is known to be true or false.

~funroll-loops (V2)

Perform the optimization of loop unrolling. This is only done for loops whose

number of iterations can be determined at compile time or run time.

-funroll-all-loops (V2)

Perform the optimization of loop unrolling. This is done for all loops. This usu-

ally makes programs run more slowly.

-fese-follow-jumps (V2)
In common subexpression elimination, scan through jump instructions in certain

cases. This is not as powerful as completely global CSE, but not as slow either.

-frerun-cse-after-loop (V2)

Re-run common subexpression elimination after loop optimizations has been per-

formed.

~fexpensive-optimizations (V2)

Perform a number of minor optimizations that are relatively expensive.

Licensed materiat—property of copyright holder(s) 093-701055

gcc(1)

093-701055

DG/UX 5.4 gcec(1)

-fdelayed-branch

Reorder instructions to take advantage of the delay slot following branch and sub-

routine call instructions.

-~fschedule-insns (V2)

If supported for the target machine, attempt to reorder instructions to eliminate

execution stalls due to required data being unavailable.

~fschedule-insns2 (V2)

Similar to -fschedule-insns, but requests an additional pass of instruction

scheduling after register allocation has been done.

~fcombine-regs (V1)

Allow the combine pass to combine an instruction that copies one register into

another. This might or might not produce better code when used in addition to

_ 0.

Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before

actual compilation. If you use the -E option, nothing is done except C preprocess-

ing. Some of these options make sense only together with -E because they request

preprocessor output that is not suitable for actual compilation.

-i file (V2)

Process file as input, discarding the resulting output, before processing the regular

input file. Because the output generated from file is discarded, the only effect of

-i file is to make the macros defined in file available for use in the main input.

-nostdinc

Do not search the standard svstem directories for header files. Only the direc-

tories you have specified with -I options (and the current directory, if appropri-

ate) are searched. Between -nostdinc and -I-, you can eliminate all direc-

tories from the search path except those you specify.

-E Run only the C preprocessor. Preprocess all the C source files specified and out-

put the results to standard output.

~C Tell the preprocessor not to discard comments. Used with the -E option.

-P (V2)

Tell the preprocessor not to generate #line commands. Used with the -E

option.

-m Tell the preprocessor to output a rule suitable for make describing the dependen-

cies of each object file. For each source file, the preprocessor outputs one

make-rule whose target is the object file name for that source file and whose

dependencies are all the files #included in it. This rule may be a single line or

may be continued with ‘\’-newline if it is long. -Mimplies —E.

—-MM

Like -M, but the output mentions only the user-header files included with

‘ginclude "file".’ System header files included with ‘#include <file>’ are

omitted. -MM implies -E.

—MD (V2)

Like -M but the dependency information is written to files with names made by

replacing .c with .d at the end of the input file names. This is in addition to

compiling the file as specified: -mMD does not inhibit ordinary compilation the way

~M does.

Licensed materia\property of copyright holder(s) 1 -95

gce(1)

1-96

DG/UX 5.4 gec(1)

-MMD (V2)

Like -—MD but mention only user header files, not system header files.

-H Tell the preprocessor to output the names of include files to the standard error

file, in addition to the normal processing.

~Drnacro

Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn

Define macro macro as defn.

—-Umacro

Undefine macro macro.

-trigraphs

Support ANSI C trigraphs. The -ansi option also has this effect.

Options for Linking

~llibrary

Search a standard list of directories for a library named library, which is actually a

file named liblibrary.a. The link editor uses this file as if it had been specified

precisely by name. The directories searched include several standard system

directories plus any that you specify with -L. Normally the files found this way

are library files--archive files whose members are object files. The link editor

handles an archive file by scanning through it for members which define symbols

that have so far been referenced but not defined. But if the file that is found is

an ordinary object file, it is linked in the usual fashion. The only difference

between an -1 option and specifying a file name is that -1 searches several

directories. .

~nostdlib

Don’t use the standard system libraries and startup files when linking. Only the

files you specify will be passed to the link editor.

-static

Produce a static object, that is an object which contains no shared objects. This

option causes -dn to be added to the link line; see 1d(1).

~shared

Produce a shared object. This option causes -G to be added to the link line, to
produce a shared object which can then be linked with other objects to form an

executable. |

-symbolic

Bind references to global symbols when building a shared object. Warn about any

unresolved references (unless overridden by the link editor option -z defs: see

1d(1)). This option causes -Bsymbolic -G to be added to the link line.

Gcc also passes the options -e, -h, -n, -r, —s, -t, —u, -x, and -z to the link
editor; see 1d(1) for these options.

Options for Directory Search

-Idir

Search directory dir for include files.

-I-

Any directories specified with -I options before the -I- option are searched

only for the case of ‘¢include "file"’; they are not searched for ‘#include

<file>’. If additional directories are specified with -I options after the -I-,

Licensed material—property of copyright holderis) 093-701055

gec(1)

093-701055

DG/UX 5.4 gee(1)

these directories are searched for all #include directives. (Ordinarily al] -I

directories are used this way.) In addition, the —I- option inhibits the use of the

current directory as the first search directory for ‘#include “file"’. Therefore,

the current directory is searched only if it is requested explicitly with ‘-I.’.

Specifying both ‘-I-’ and ‘-1.’ allows you to control precisely which directories

are searched before the current one and which are searched after.

-Ldir

Add directory dir to the list of directories to be searched for -1.

—Bprefix |

Compiler driver program tries prefix as a prefix for each program it tries to run.

These programs are cpp, ccl, as and 1d. For each subprogram to be run, the

compiler driver first tries the -B prefix, if any. If that name is not found, or if

-B was not specified, the driver tries the standard prefix, which is

- fusr/lib/gee/gee-. If this does not result in a file name that is found, the

unmodified program name is searched for, using the directories specified in your

PATH environment variable.

The run-time support file gnulib is also searched for, using the —B prefix, if

needed. If it is not found there, the standard prefix above is tried, and that is all.

The file is left out of the link if it is not found by those means.

You can get a similar result from the environment variable GCC_EXEC_PREFIX.

If it is defined, its value is used as a prefix in the same way. If both the -B

option and the GCC_EXEC_PREFIX variable are present, the -B option is used

first and the environment variable value second.

Options for Code Generation Conventions

-fpic
|

Generate position-independent code, suitable for use in a shared object.

-mbig-pic

Produce position-independent code that will work correctly if the global offset

table of a shared object exceeds 16k. (Modules should be recompiled with this

option when the link editor reports the error "Relocation overflows at address..."

when producing a shared object.)

~fpcec-struct-return

Use the same convention for returning struct and union values that is used by

PCC. This convention is less efficient for small structures, and on many

machines it fails to be reentrant; but it has the advantage of allowing intercallabil-

ity between GCC-compiled code and PCC-compiled code.

-fshort-enums (V2)

Allocate to an enum type only as many bytes as it needs for the declared range of

possible values. Specifically, the enum type will be equivalent to the smallest

integer type which has enough room.

~fshared-data

Requests that the data and non-const variables of this compilation be shared

data rather than private data.

-fno-common (V2)

Allocate even unitialized global variables in the bss section of the object file,

rather than generating them as common blocks. This has the effect that if the

same variable is declared (without extern) in two different compilations, you

Licensed materiat—property of copyright holder(s) 1-97

gcec(1)

1-98

DG/UX 5.4 gec(1)

will get an error when you link them. The only reason this might be useful is if

you wish to verify that the program will work on other systems which always work

this way.

-fvolatile

Consider all memory references through pointers to be volatile.

~fvolatile-global (V1)

Consider all memory references to extern and global data items to be volatile.

~ffixed-reg

Treat the register named reg as a fixed register; generated code should never refer

to it (except perhaps as a stack pointer, frame pointer or in some other fixed

role). regis one of r0-r31. Use of this flag for a register that has a fixed per-

vasive role in the machine’s execution model, such as the stack pointer or frame

pointer, will produce disastrous results. This flag does not have a negative form,

because it specifies a three-way choice.

~fcall-used-reg

Treat the register named reg as an allocatable register that is clobbered by func-

tion calls. It may be allocated for temporaries or variables that do not live across

a call. Functions compiled this way will not save and restore the register reg.

Use of this flag for a register that has a fixed pervasive role in the machine’s exe-

cution model, such as the stack pointer or frame pointer, will produce disastrous

results. This flag does not have a negative form, because it specifies a three-way

choice.

~fcall-saved-reg

Treat the register named reg as an allocatable register saved by functions. It may

be allocated even for temporaries or variables that live across a call. Functions

compiled this way will save and restore the register reg if they use it. Use of this

flag for a register that has a fixed pervasive role in the machine’s execution

model, such as the stack pointer or frame pointer, will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in

which function values may be returned. This flag does not have a negative form,

because it specifies a three-way choice. :

~mno-underscores

Do not emit a leading underscore before all external names. This switch is useful

for embedded systems and does not allow interoperation with the standard library.

~mtrap-large-shift

Emit a tbnd instruction before each shift by a non-constant amount, to trap if

- the shift count is less than zero or greater than 31. The 88000 produces unusual

results in such cases, and the trap will halt the program at the point an out of

range shift is done, rather than producing unexpected results. The ANSI stan-

dard for C specifies that shifts outside of the range of 0 to number_bits - 1 is
undefined. It is an error to specify both -mtrap-large-shift and

~mhandle-large-shift.

-~mhandle~large-shift

Emit a four instruction sequence for each shift by a non-constant amount, if the

shift count is less than zero or greater than 31. Logical shifts and arithmetic shifts

left produce a 0 result if the shift count is out of bounds. Arithmetic shifts right

produce a copy of the sign bit if the shift count is out of bounds. The ANSI stan-

dard for C specifies that shifts outside of the range of 0 to number_bits - 1 is

undefined. It is an error to specify both -mtrap-large-shift and

Licensed materiat—property of copyright holder(s) 093-701055

gee(1) DG/UX 5.4 | gee(1)

- -mhandle-large-shift.

~mno-check-zero-division

Do not emit code to check both the divisor and dividend when doing normal

integer division (as opposed to unsigned division) to see if either is negative, and

fixup things up so that the division is done with positive numbers. You would use

this switch when you are confident that most or all signed divisions are done with

positive numbers.

-muse-div-instruction

Do not emit code to check if an integer division by zero occurs and issue trap

number 505 if it occurs.

If this fixup is not done, the 88100 will trap to the kernel if either number is nega-

tive. The operating system will calculate the correct answer for all negative

’ operands, except for the most negative number (-214783648) divided by negative

1, whose signed result cannot be represented in 32 bits.

~midentify-revision

Emit an assembly ident directive which gives the filename, date, time, and com-

piler revision, for use with the what command.

There are several macros you can define to control your source and target environ-

ments when developing applications. These macros control header files, function

declarations, binary formats, and other aspects of the source and target environ-

ments. The macros are helpful when you are porting applications to or from non-

DG/UX systems such as BSD or AT&T systems. The macros can also make

development of POSIX- or BCS-conformant applications easier. For developing

BCS-conformant applications, the SDE utility is also helpful. See Porting Applica-

tions to the DG/UXTM System and the sde-target(1), sdetab(4), and sde(5)

manual pages.

FILES

file.c input file

file.o object file

a.out loaded output

TMPDIR/cc* temporary files. TMPDIR is usually /usr/tmp but

can be redefined by setting the environment variable

TMPDIR.

/usr/lib/gec/gcec-cpp preprocessor

/usr/lib/gee/gee-cel compiler

Jusr/lib/gec/gee-gnulib library needed by gcc

/lib/ert0.o runtime startup routine

/lib/libc.a standard library, see intro(3)

/usr/include standard directory for #include files

SEE ALSO

ec(1), as(1), 1d4(1), sde-target(1), sdetab(4), sde(5).

COPYING

Copyright (c) 1988 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of the gcc(1) manual
page provided the copyright notice and this permission notice are preserved on all

copies.

Permission is granted to copy and distribute modified versions of the gec(1) manual
page under the conditions for verbatim copying, provided that the entire resulting

derived work is distributed under the terms of a permission notice identical to this

093-701055 Licensed material—property of copyright holder(s) 1 -99

gcec(1) DG/UX 5.4 gec(1)

one.

Permission is granted to copy and distribute translations of the gcc(1) manual page

into another language, under the above conditions for modified versions, except that

this permission notice may be included in translations approved by the Free Software

Foundation instead of in the original English.

1 =1 00 Licensed materia—property of copyright holders) 093-701055

get(1) DG/UX 5.4 get(1)

NAME

get — check out a version of an SCCS file

SYNOPSIS

get [-xSID] [-ccutoff] [-ilist] [-xlisr] [-wsrring] [-aseg-no] [-k] [-e] [-1[p] [-P]
[-m] [-n] [-s] [-b] [-9] [-t] file ...

where: |

SID The SCCS identification string of a version of an SCCS file

cutoff Date and time, in the form YY[MM[DD[HH[MM{SS]]]]]

list A list of deltas in the following syntax: list ::= range | list, range

range ::= SID | SID-SID

String A String (must be quoted if it contains a space)

seq-no The delta sequence number of the SCCS file delta (version) to be retrieved

file Name of the file to be checked out

DESCRIPTION

093-701055

Get generates an ASCII text file from each named SCCS file according to the specifi-

cations given by its options, which begin with -. The arguments may be specified in

any order, but they all apply to all named SCCS files. If a directory is named, get

treats each file in the directory as a named file, except that non-SCCS files (last com-

ponent of the path name does not begin with s.) and unreadable files are silently

ignored. If a name of - is given, the standard input is read; each line of the standard

input is taken to be the name of an SCCS file to be processed. Again, non-SCCS

files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file . Its name is derived

from the SCCS filename by simply removing the leading s.; (see also FILES, below).

Each of the options is explained below as though only one SCCS file is to be pro-

cessed, but the effects of anv option applies independently to each named file.

-rSID Specify the SCCS IDentification string (SID) of the version (delta) of an

SCCS file to be retrieved. Table 1 below shows, for the most useful cases,

what version of an SCCS file is retrieved (as well as the SID of the version

to be eventually created by delta(1) if the -e option is also used), as a

function of the SID specified.

-ccutoff Specify cutoff date and time. No changes (deltas) to the SCCS file which

were created after the specified curoff date-time are included in the gen-

erated ASCII text file. Units omitted from the date-time default to their

maximum possible values; that is, -c7502 is equivalent to

-c750228235959. Any number of non-numeric characters may separate

the various two-digit pieces of the cutoff date-time. This feature lets you

specify a curoff date in the form: "-c77/2/2 9:22:25". Note that this

implies that one may use the %E% and %U% identification keywords (see

below) for nested gets within, say the input toa send(1C) command:

“Iget "—c%HE% %WU%" s.file

-e Indicate that the get is for the purpose of editing or making a change

(delta) to the SCCS file via a subsequent use of delta(1). The -e option

used in a get for a particular version (SID) of the SCCS file prevents

further gets for editing on the same SID until delta is executed or the j

(joint edit) flag is set in the SCCS file (see admin(1)). Concurrent use of

get —e for different SIDs is always allowed.

If the g-file generated by get with an ~e option is accidentally ruined in

the process of editing it, it may be regenerated by re-executing the get

Licensed materia—property of copyright holder's) 1 -1 01

get(1)

1-102

—ilist

~P

a)

~m

nN

|

—t

-wstTing

—aseg-no

OG/UX §.4 get(1)

command with the -k option in place of the -e option.

SCCS file protection specified via the ceiling, floor, and authorized user list

stored in the SCCS file (see admin(1)) are enforced when the -e option is

used.

Used with the -e option, indicate that the new delta should have an SID in

a new branch as shown in Table 1. This option is ignored if the b flag is

not present in the file (see admin(1)) or if the retrieved delra is not a leaf

delta. (A leaf delta has no successors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf delta.

Specify a list of deltas to be included (forced to be applied) in the creation

of the generated file. SID, the SCCS Identification of a delta, may be in

any form shown in the "SID Specified" column of Table 1. Partial SIDs

are interpreted as shown in the "SID Retrieved" column of Table 1.

Specify a list of deltas to be excluded (forced not to be applied) in the crea-
tion of the generated file. See the -i option for the list format.

Suppress replacement of identification keywords (see below) in the

retrieved text by their value. The -k option is implied by the -e option.

Write a delta summary into an /-file. If -lp is used then an /-file is not

created; the delta summary is written on the standard output instead. See

FILES for the format of the /-file.

Write the text retrieved from the SCCS file to on the standard output. No

g-file is created. All output that normally goes to the standard output goes

to file descriptor 2 instead, unless the -s option is used. In that case, it

disappears.

Suppress all output normally written on the standard output. However,

fatal error messages (which always go to file descriptor 2) remain unaf-

fected. :

Precede each text line retrieved from the SCCS file by the SID of the delta
that inserted the text line in the SCCS file. The format is: SID, followed

by a horizontal tab, followed by the text line.

Precede each generated text line with the %M% identification keyword

value (see below). The format is: %M% value, followed by a horizontal

tab, followed by the text line. When both the -m and —n options are used,

the format is: %M% value, followed by a horizontal tab, followed by the

~-m option generated format.

Suppress the actual retrieval of text from the SCCS file. It is primarily
used to generate an I-file, or to verify the existence of a particular SID.

Access the most recently created (top) delta in a given release (e.g., -r1),

or release and level (e.g., ~r1.2).

Substitute string for all occurrences of sw% when geting the file.

Specify the delta sequence number of the SCCS file delta (version) to be
retrieved (see sccsfile(5)). This option is used by the comb(1) command; it

is not a generally useful option, and users should not use it. If both the -r

and -a options are specified, the -a option is used. Care should be taken

when using the —a option in conjunction with the -e option, as the SID of

the delta to be created may not be what one expects. The -r option can

be used with the -a and -e options to control the naming of the SID of

Licensed materialproperty of copyright holder(s) 0$3-701055

get(1) DG/UX 5.4 get(1)

the delta to be created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the SCCS file.

If the -e option is used, the SID of the delta to be made appears after the SID

accessed and before the number of lines generated. If there is more than one named

file or if a directory or standard input is named, each filename is printed (preceded by
a new-line) before it is processed. If the ~i option is used, included deltas are listed

following the notation “Included”; if the -x option is used, excluded deltas are listed

following the notation “Excluded”.

TABLE 1. Determination of SCCS Identification String

SID* -b Option Other SID SID of Delta

Specified Used+ Conditions Retrieved to be Created

none: - no R defaults to mR mR.mL mR.(mL+1)

nonez ves R defaults to mR mR.mL mR.mL.(mB=1).1

R no R>mkR mR.mL R.1***

R no R=mR mR.mL mR.(mL=+1)

R ves R>mR mR.mL mR.mL.(mB=1).1

R ves R=mkR mR.mL mR.mL.(mB=1).1

| R < mR and me =R - R does nor exist bhR.mL hR.mL.(mB-+1).1

Trunk succ.#

R - in release > R R.mL R.mL.(mB+1).1
and R exists

R.L no No trunk succ. R.L R.(L=1)

R.L ves No trunk succ. R.L R.L.(mB+1).1

Trunk succ.
R.L - in release > R R.L R.L.(mB+1).1

R.L.B no No branch succ. R.L.B.mS | R.L.B.(mS+1)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S=1)

R.L.B.S yes” No branch succ. R.L.B.S R.L.(mB+1).1

R.L.B.S - Branch succ. R.L.B.S R.L.(mB+1).1

* R, L, B, and S are the release, level, branch, and sequence components of the
SID, respectively; m means maximum. Thus, for example, R.mL means the

maximum level number within release R; R.L.(mB+1).1 means the first

sequence number on the new branch (i.e., maximum branch number plus one)

of level L within release R. Note that if the SID specified is of the form R.L,

R.L.B, or R.L.B.S, each of the specified components must exist.

** — bR is the highest existing release that is lower than the specified, nonexistent,

release R.

*** This is used to force creation of the first delta in a new release.

Successor.

+ The -b option is effective only if the b flag (see admin (1)) is present in the
file. An entry of — means "irrelevant."

+ This case applies if the d (default SID) flag is nor present in the file. If the d

flag is present in the file, then the SID obtained from the d flag is interpreted as

if it had been specified on the command line. Thus, one of the other cases in

093-701055 Licensed material—property of copyright holders) 1-103

get(1) DG/UX 5.4 get(1)

this table applies.

Identification Keywords

Identifying information is inserted into the text retrieved from the SCCS file by

replacing identification keywords with their value wherever they occur. The following

keywords may be used in the text stored in an SCCS file:

Keyword Value

$M% § Module name: either the value of the m flag in the file (see admin(1)), or if

absent, the name of the SCCS file with the leading s. removed.

$z% | SCCS identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text.

tR& Release.

$L3 Level.

$B% Branch.

St Sequence.

%bD% Current date (YY/MM/DD).

Hs Current date (MM/DD/YY).

Ts Current time (HH:MM:SS).

tE% Date newest applied delta was created (YY/MM/DD).

tG% Date newest applied delta was created (MM/DD/YY).

Us Time newest applied delta was created (HH:MM:SS).

yt Module type: value of the + flag in the SCCS file (see admin(1)).

tF% SCCS filename.

P% Fully qualified SCCS filename.

%Q% The value of the q flag in the file (see admin(1)).

Cs Current line number. This keyword is intended for identifying messages out-

put by the program such as this should not have happened type errors. It is

not intended to be used on every line to provide sequence numbers.

$Z% The four-character string @(#) recognizable by what(1).

ws A shorthand notation for constructing what(1) strings for UNIX system pro-

gram files. %W% = %Z%%M%horizontal-tab%I%

as Another shorthand notation for constructing what(1) strings for non-UNIX

system program files.

WAV = AWLWWVY% WM WIW%L%

EXAMPLES

FILES

1-104

get -e /work/archives/s.filel

This command generates an ASCII text file named ’filel’ in the current working

directory from the SCCS file ’s.filel’ in the directory /work/archives, while giving

the new file proper attributes for editing or changing (delta). This also creates a file

named ’p.filel’ in the directory /work/archives.

Several auxiliary files may be created by get. These files are known generically as

the g-file, l-file, p-file, and z-file. The letter before the hyphen is called the tag. An

auxiliary filename is formed from the SCCS filename: the last component of all

SCCS filenames must be of the form s.module-name, the auxiliary files are named

by replacing the leading s with the tag. The g-file is an exception to this scheme:

the g-file is named by removing the s. prefix. For example, s.xyz.c, the auxiliary

filenames would be xyz.c, 1.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current directory

(unless the -p option is used). A g-file is created in all cases, whether or not any

lines of text were generated by the get. It is owned by the real user. If the -k

Ucensed materiai—property of copyright hoider(s) 093-701055

get(1) DG/UX 5.4 } get(1)

option is used or implied its mode is 644; otherwise its mode is 444. Only the real
user need have write permission in the current directory.

The /-file contains a table showing which deltas were applied in generating the
retrieved text. The /-file is created in the current directory if the -1 option is used;

its mode is 444 and it is owned by the real user. Only the real user need have write

permission in the current directory.

Lines in the /-file have the following format:

e A blank character if the delta was applied; + otherwise.

e A blank character if the delta was applied or was not applied and ignored; +»

if the delta was not applied and was not ignored.

e A code indicating a special reason why the delta was or was not applied:

I: Included.

X: Excluded.

C: Cut off (by a -c option).

Blank.

SCCS identification (SID).

Tab character.

Date and time (in the form YY/MM/DD HH:MM:SS) of creation.

Blank.

Login name of person who created delta.

The comments and mr data follow on subsequent lines, indented one horizon-

tal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an —e option along

to delta. Its contents are also used to prevent a subsequent execution of get with an

~e option for the same SID until delra is executed or the joint edit flag, j, (see

admin(1)) is set in the SCCS file. The p-file is created in the directory containing the

SCCS file and the effective user must have write permission in that directory. Its

mode is 644 and it is owned by the effective user.

The format of the p-file is: the gotten SID, followed by a blank, followed by the SID
that the new delta will have when it is made, followed by a blank, followed by the

login name of the real user, followed by a blank, followed by the date-time the get

was executed, followed by a blank and the —i option if it was present, followed by a

blank and the -x option if it was present, followed by a new-line. There can be an

arbitrary number of lines in the p-file at any time; no two lines can have the same new

delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents

are the binary (2 bytes) process ID of the command (i.e., get) that created it. The

z-file is created in the directory containing the SCCS file for the duration of get.

The same protection restrictions as those for the p-file apply for the z-file. The z-file
is created in mode 444.

DIAGNOSTICS

Use help(1) for explanations.

SEE ALSO

083-701055

admin(1), comb(1), delta(1), help(1), prs(1), unget(1), what(1),
secsfile(4).

"Source Code Control System” in Programmer’s Guide: ANSI C and Programming

Support Tools.

Licensed material—property of copyright holders) 1 -4 05

get(1) DG/UX 5.4 get(1)

NOTES |

If the effective user has write permission (either explicitly or implicitly) in the direc-
tory containing the SCCS files, but the real user does not, then only one file may be

named when the —e option is used.

1 -1 06 Licensed material}—property of copyright holder(s) 093-701055

ident(1) DG/UX 5.4 ident(1)

NAME

ident — identify files

SYNOPSIS

ident file ...

DESCRIPTION

Ident searches the named files for all occurrences of the pattern $keyword.:...$,

where keyword is one of

Author

Date

Header

Locker

Log

. Revision

Source

State

What

These patterns are normally inserted automatically by the RCS command co(i), but

can also be inserted manually.

Ident works on text files as well as object files. For example, if the C program in

file f.c contains

char resid[{] = "$Header: Header information $";

and f.c is compiled into f.o, then the command

ident f.c f.o

will print

f.c: . .

SHeader: Header information $

f.0:

SHeader: Header information §$

SEE ALSO

ci(l), co(1), res(1), resdiff(1), resintro(1), resmerge(1), rlog(1),

resfile(4).

Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision Control Sys-

tem,” in Proceedings of the 6th International Conference on Software Engineering,

IEFE, Tokyo, Sept. 1982.

093-701055 Licensed materia}—property of copyright holder(s) 1 -1 07

iperm(1) DG/UX 5.4 iperm(1)

NAME

iperm - remove a message queue, semaphore set, or shared memory ID

SYNOPSIS |
iperm [options |

DESCRIPTION

NOTE

1-108

iperm removes one or more messages, semaphores, or shared memory identifiers.

The identifiers are specified by the following options:

—q msqid

-m shmid

-s semid

-Q msgkey

—-TM shinkey

-S semkey

Remove the message queue identifier msgid from the system and destroy

the message queue and data structure associated with it.

Remove the shared memory identifier shmid from the system. The

shared memory segment and data structure associated with it are des-

troyed after the last detach.

Remove the semaphore identifier sernid from the system and destroy the

set of semaphores and data structure associated with it.

Remove the message queue identifier, created with key msgkey, from the

system and destroy the message queue and data structure associated with

it.

Removes the shared memory identifier, created with key shmkey, from

the system. The shared memory segmert and data structure associated

with it are destroyed after the last detach.

Remove the semaphore identifier, created with key semkey, from the

system and destroy the set of semaphores and data structure associated

with it.

The details of the removes are described in msgct1(2), shmct1(2), and semctl(2).

Use the ipes command to find the identifiers and keys.

SEE ALSO

ipes(1), dg_sys_info(2), msgctl(2), msgget(2), semct1(2), semget(2),

semop(2), shmctil(2), shmget(2), shmsys(2).

The ipes(1) command returns hex values for the message queue key, semaphore

key, and shared memory key. If you use ipes to return values for use by ipern(1)
with the -S, -Q, or -M options, you must convert the values to decimal before giving

them to ipcerm.

Licensed materiaproperty of copyright holder(s) 093-701055

ipes(1)

NAME

DG/UX 5.4 ipes(1)

ipes — report inter-process communication facilities status

SYNOPSIS

ipes [options |

DESCRIPTION

093-701055

ipes prints information about active inter-process communication facilities. Without

options, information is printed in short format for message queues, shared memory,

and semaphores that are currently active in the system. Otherwise, the information

that is displayed is controlled by the following options:

“-q Print information about active message queues.

-m Print information about active shared memory segments.

-s Print information about active semaphores.

If -q, -m, or -s are specified, information about only those indicated is printed. If

none of these three are specified, information about all three is printed subject to

these options:

-b Print information on biggest allowable size: maximum number of bytes in
messages on queue for message queues, size of segments for shared memory,

and number of semaphores in each set for semaphores. See below for mean-

ing of columns in a listing.

-c Print creator’s login name and group name. See below.

-o Print information on outstanding usage: number of messages on queue and

total number of bytes in messages on queue for message queues and number

of processes attached to shared memory segments.

-p Print process number information: process ID of last process to send a mes-

sage, process ID of last process to receive a message On message queues, pro-

cess ID of creating process, and process ID of last process to attach or detach

on shared memory segments. See below.

-t Print time information: time of the last contro] operation that changed the

access permissions for all facilities, time of last msgsnd and last msgrev on

message queues, time of last shmat and last shmdt on shared memory, time

of last semop on semaphores. See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -o, —p,

and -t.)

The column headings and the meaning of the columns in an ipes listing are given

below; the letters in parentheses indicate the options that cause the corresponding

heading to appear; “all” means that the heading always appears. Note that these

options only determine what information is provided for each facility, they do not

determine which facilities are listed.

T (all) Type of the facility:

q message queue

m shared memory segment

s semaphore

ID (all) The identifier for the facility entry.

KEY (all) The key used as an argument to msgget, semget, or shmget to

create the facility entry. (Note: The key of a shared memory seg-

ment is changed to IPC_PRIVATE when the segment has been

Licensed material—property of copyright hoider(s) 1 - 1 09

tpes(1)

1-110

MODE

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ

CPID

(all)

(all)

(all)

(a,c)

(a,c)

(a,0)

(a,0)

(a,b)

(a,p)

(a,p)

(a,t)

(a,t)

(a,t)

(a,0)

(a,b)

(a,p)

DG/UX 5.4 ipes(1)

removed until all processes attached to the segment detach it.)

The facility access modes and flags: The mode consists of 11 char-

acters that are interpreted as follows. The first two characters are:

R A process is waiting on a msgrcv.

S <A process is waiting on a msgsnd.

D The associated shared memory segment has been removed.

It will disappear when the last process attached to the seg-

ment detaches it.

C The associated shared memory segment is to be cleared

when the first attach is executed.

- The corresponding special flag is not set.

The next nine characters are interpreted as three sets of three bits

each. The first set refers to the owner’s permissions; the next to

permissions of others in the user-group of the facility entry; and the

last to all others. Within each set, the first character indicates per-

mission to read, the second character indicates permission to write

or alter the facility entry, and the last character is currently unused.

. The permissions are indicated as follows:

x Read permission is granted.

w Write permission is granted.

a Alter permission is granted.

The indicated permission is not granted.

The login name of the owner of the facility entry.

The group name of the group of the owner of the facility entry.

The login name of the creator of the facility entry.

The group name of the group of the creator of the facility entry.

The number of bytes in messages currently outstanding on the asso-

ciated message queue. .

The number of messages currently outstanding on the associated

message queue.

The maximum number of bytes allowed in messages outstanding on

the associated message queue.

The process ID of the last process to send a message to the associ-

ated queue.

The process ID of the last process to receive a message from the

associated queue.

The time the last message was sent to the associated queue.

The time the last message was received from the associated queue.

The time when the associated entry was created or changed.

The number of processes attached to the associated shared memory
segment.

The size of the associated shared memory segment.

The process ID of the creator of the shared memory entry.

Licensed material—property of copyright hoider(s) 083-701055

ipes(1) DG/UX 5.4 | ipes(1)

LPID (a,p) The process ID of the last process to attach or detach the shared
memory segment.

ATIME (a,t) The time the last attach was completed to the associated shared
memory segment.

DTIME (a,t) The time the last detach was completed on the associated shared
memory segment.

NSEMS (a,b) The number of semaphores in the set associated with the semaphore

entry.

OTIME (a,t) The time the last semaphore operation was completed on the set

associated with the semaphore entry.

FILES

/dagux system image (namelist)

/etc/passwa user names

/etc/group group names

SEE ALSO

dg_sys_info(2), semop(2), shmsys(2).

NOTES

Things can change while ipcs is running; the information it gives is guaranteed to be

accurate only when it was retrieved.

093-701055 Licensed material—property of copyright holder(s) . 1-1 1 1

bd(1)

NAME

DG/UX 5.4 id(1)

1d - link editor for object files

SYNOPSIS

1d [options] files ...

DESCRIPTION

1-112

The 1d command combines relocatable object files, performs relocation, and

resolves external symbols. 1d operates in two modes, static or dynamic, as

governed by the -d option. In static mode, —dn, relocatable object files given as

arguments are combined to produce an executable object file; if the -r option is

specified, relocatable object files are combined to produce one relocatable object file.

In dynamic mode, —dy, the default, relocatable object files given as arguments are

combined to produce an executable object file that will be linked at execution with

any shared object files given as arguments; if the -G option is specified, relocatable

object files are combined to produce a shared object. In all cases, the output of 1d

is left in a.out by default.

If any argument is a library, it is searched exactly once at the point it is encountered

in the argument list. The library may be either a relocatable archive or a shared

object. For an archive library, only those routines defining an unresolved external

reference are loaded. The archive library symbol table [see ar(4)] is searched

sequentially with as many passes as are necessary to resolve external references that

can be satisfied by library members. Thus, the ordering of members in the library is

functionally unimportant, unless there exist multiple library members defining the

same external symbol. A shared object consists of a single entity all of whose refer-

ences must be resolved within the executable being built or within other shared

objects with which it is linked.

The following options are recognized by 1d:

-a In static mode only, produce an executable object file; give errors for unde-

fined references. This is the default behavior for static mode. -a may not

be used with the -r option. |

—-b In dynamic mode only, when creating an executable, do not do special pro-

cessing for relocations that reference symbols in shared objects. Without the

-b option, the link editor will create special position-independent relocations

for references to functions defined in shared objects and will arrange for data

objects defined in shared objects to be copied into the memory image of the

executable by the dynamic linker at run time. With the —-b option, the output

code may be more efficient, but it will be less sharable.

-d[y|n}] When -dy, the default, is specified, 1d uses dynamic linking; when dn is

specified, 1d uses static linking.

—e epsym

Set the entry point address for the output file to be that of the symbol epsym.

—h name

In dynamic mode only, when building a shared object, record name in the

object’s dynamic section. name will be recorded in executables that are

linked with this object rather than the object’s DG/UX system file name.

Accordingly, name will be used by the dynamic linker as the name of the

shared object to search for at run time.

-lx Search a library libxy.so or libx.a, the conventional names for shared
object and archive libraries, respectively. In dynamic mode, unless the

-Bstatic option is in effect, 1d searches each directory specified in the

Licensed material—property of copyright hoider(s) 093-701055

bd(1) DG/UX 5.4 id (1)

library search path for a file libxy.soor libx.a. The directory search

stops at the first directory containing either. 1d chooses the file ending in

.so if -lx expands to two files whose names are of the form libx.so and

libz.a. If no libx.so is found, then ld accepts libx.a. In static mode,

or when the -Bstatic option is in effect, 1d selects only the file ending in

.a. A library is searched when its name is encountered, so the placement of

-1 is significant.

-m Produce a memory map or listing of the input/output sections on the standard

output.

-o outfile

Produce an output object file named ourfile. The name of the default object

file is a.out. :

“I Combine relocatable object files to produce one relocatable object file. 1d

will not complain about unresolved references. This option cannot be used in >

dynamic mode or with -a.

-Ss Strip symbolic information from the output file. The debug and line sections

and their associated relocation entries will be removed. Except for relocat-

able files or shared objects, the symbol table and string table sections will also

be removed from the output object file.

-t Turn off the warning about multiply defined symbols that are not the same

size.

—u symname

Enter symname as an undefined symbol in the symbol table. This is useful for

loading entirely from an archive library, since initially the symbol table is

empty and an unresolved reference is needed to force the loading of the first

routine. The placement of this option on the command line is significant; it

must be placed before the library that will define the symbol.

-z defs

Force a fatal error if any undefined symbols remain at the end of the link.

This is the default when building an executable. It is also useful when build-

ing a shared object to assure that the object is self-contained, that is, that all

its symbolic references are resolved internally.

-z nodefs

Allow undefined symbols. This is the default when building a shared object.

It may be used when building an executable in dynamic mode and linking with

a shared object that has unresolved references in routines not used by that

executable. This option should be used with caution.

-z text

In dynamic mode only, force a fatal error if any relocations against non-
writable, allocatable sections remain.

-z [lowzeroes | lowzeros]

Support dereferencing of null pointers. The link editor creates a segment at

addresses 0 (inclusive) through 0x1000 (exclusive), consisting entirely of read-

only zeroes.

-zZ sysinuser

Set the EF_88K_SYSINUSER flag in the executable file. This allows the

operating system to place the process’s stack and/or its dynamic segments in

the user-managed area, provided they do not overlay any of the process’s

093-701055 Licensed materia}—property of copyright hoider(s) 1-113

Id(1) DG/UX 5.4 id(1)

loadable segments or its actual or potential break area.

-B (dynamic|static]

Options governing library inclusion. -Bdynamic is valid in dynamic mode

only. These options may be specified any number of times on the command

line as toggles: if the -Bstatic option is given, no shared objects will be

accepted until -Bdynamic is seen. See also the -1 option.

-~Bsymbolic

In dynamic mode only, when building a shared object, bind references to glo-

bal symbols to their definitions within the object, if definitions are available.

Normally, references to global symbols within shared objects are not bound

until run time, even if definitions are available, so that definitions of the same

symbol in an executable or other shared objects can override the object’s own

definition. 1d will issue warnings for undefined symbols unless -z defs

overrides.

-G In dynamic mode only, produce a shared object. Undefined symbols are

allowed by default (see -z defs, above).

~-I name |

When building an executable, use mame as the path name of the interpreter to

be written into the program header. The default in static mode is no inter-

preter; in dynamic mode, the default is the name of the dynamic linker,

/usr/lib/libe.so.1. Either case may be overridden by -I. exec will

load this interpreter when it loads the a.out and will pass control to the

interpreter rather than to the a.out directly.

~L path

Add path to the library search directories. 1d searches for libraries first in

any directories specified with -L options, then in the standard directories.

This option is effective only if it precedes the -1 option on the command

line.

-TM mapfile

In static mode only, read mapfile as a text file of directives to 1d. Because

these directives change the shape of the output file created by 1d, use of this

option is strongly discouraged.

-Q[y|n] Under -Qy, an ident string is added to the .comment section of the output
file to identify the version of the link editor used to create the file. This will

result in multiple 1d idents when there have been multiple linking steps,

such as when using 1d -r. This is identical with the default action of the

cc command. -Qn suppresses suppresses this behavior.

-V Output a message giving information about the version of 1d being used.

-YP a dir list

Change the default directories used for finding libraries. dirlist is a colon-

separated path list.

The environment variable LD_LIBRARY_PATH may be used to specify library search

directories. In the most general case, it will contain two directory lists separated by a

semicolon:

dirlistl ; dirlist2

If 1d is called with any number of occurrences of -L, as in

1 -1 1 4 Licensed material—property of copyright holder(s) 093-701055

id(1) DG/UX 5.4 id(1)

ld... -Lpathl ...-Lpathn ...

then the search path ordering is

dirlist1 path1 ... pathn dirlist2 LIBPATH

LD_LIBRARY_PATH is also used to specify library search directories to the dynamic

linker at run time. That is, if LD_LIBRARY_PATH exists in the environment, the

dynamic linker will search the directories named in it, before its default directory, for

shared objects to be linked with the program at execution.

The environment variable LD_RUN_PATH, containing a directory list, may also be

used to specify library search directories to the dynamic linker. If present and not
null, it is passed to the dynamic linker by 1d via data stored in the output object file.

FILES

libx.so libraries

libx.a libraries

a.out output file

LIBPATH usually /usr/lib

SEE ALSO

as(1), ec(1), ld-coff(1), sde-target(1), exec(2), exit(2), end(3C),
a.out(4), ar(4), sde(5).

The ‘“‘C Compilation System”’ chapter and the ““Mapfile Option” appendix in the

Programmer’s Guide: ANSI C and Programming Support Tools.

NOTES

Through its options, the link editor gives users great flexibility; however, those who

use the -M mapfile option must assume some added responsibilities. Use of this
feature is strongly discouraged.

093-701055 Licensed material—property of copyright holder(s) 1 = 1 5

id-coff(1) DG/UX §.4 id-coff(1)

NAME

1d — link editor for common object files

SYNOPSIS

1d [options] filename ... [indirect-file ...]

DESCRIPTION

1-116

The 1d command combines several common object files into one, performs reloca-

tion, resolves external symbols, and supports symbol table information for symbolic

debugging.

When given several object files, 1d combines them, producing an executable object

module. If you include the -r option on the command line, 1d produces a linkable

file (suitable for linking by another 1d command) instead of an executable one. The

output of 1d is left in a.out by default. This file is executable if no errors occurred

during the load. If any input file is not an object file, 1d assumes it is either an

archive library or an indirect file, a text file containing link editor directives. In an

indirect file, one option letter, filename, or symbol assignment is put on each line.

(See Programmer’s Guide: ANSI C and Programming Support Tools for a discussion

of input directives.)

If any argument is a library, the library is opened once, searched as many times as

required, and then closed. Only those routines defining an unresolved external refer-

ence are loaded. Thus, library members can be in any order.

Options are:

-ansi On absolute links, do not produce the symbols etext, edata, or

end, as these svmbols are in the ansi namespace. The symbols

__etext, __edata, and __end are still defined by the linker.

-e symbol Set the default entry point address for the output file to be that of the

symbol symbol.

-£ fill Set the default fill pattern for “holes” within an output section as well

as initialized bss sections. The argument fill is a two-byte constant.

-F magic Give the program the magic number magic, in the conventional format

for octal, decimal, or hexadecimal numbers. Octal numbers have a 0

prefix, hexadecimal numbers have an 0x prefix. Two magic numbers

are valid for DG/UX: 0541 for DG/UX programs, 0555 for BCS

compliant programs. The default magic number is 0541.

-lname Search for library libname.a (name may be up to 9 characters in

length). Ld searches in LIBDIR (usually /lib) and LLIBDIR (usu-

ally /usr/lib) by default. See -L. Note the format of the library

name that 1d searches for. This option must be specified on the

command line after the object file names that contain references to a

module in libname.a.

-L dir Search for libraries in dir before searching LIBDIR and LLIBDIR.

For this option to have any effect, you must also include the -1

option. The -L option must precede the -1 option on the command

line.

-m Produce a link map.

-M Warn about multiply defined external definitions.

-N Put the text section at the beginning of the text segment rather than

after all header information, and put the data section immediately

Licensed materiai—property of copyright holder(s) 093-701055

id-coftf(1)

“dD

-o file

—z

“a

-—S

—u name

~xX

—Z

-Y [LU], dir

FILES

OG/UX 5.4 : id-coff(1)

following text in the core image.

Do not make contributions to output sections that are not made by

input files on the command line. Use of this option may cause the

link to fail if dg/ux libraries or start up code are used. It will also

prevent the linker from producing correct low level debugging infor-

mation with input .tdesc sections. (See Programmer’s Guide: ANSI C

and Programming Support Tools for a discussion of Id handling of spe-

cial sections.)

Executable module is called file instead of a.out.

Retain relocation entries in the output object file. Relocation entries

must be saved if the output file is to become an input file in a subse-

quent ld run. The link editor will not complain about unresolved

references, and the output file will not be executable.

Create an absolute file. This is the default if the -r option is not

used. Used with the -r option, -a allocates memory for common

symbols.

Strip line number entries and symbol table information from the out-

put object file.

Turn off the warning about multiply-defined symbols that are not the

same size.

Add name as an undefined symbol in the svmbol table. This is useful

for loading entirely from a library, since initially the symbol table is

empty and an unresolved reference is needed to force the loading of

the first routine. The placement of this option on the 1d command

line is significant; it must be placed before the library which will

define the symbol.

Print the revision number of ld.

Strip local symbols from the outputleave external and static symbols

only. This option saves space in the output file.

Do not bind anything to address zero. This option will allow runtime

detection of null pointers.

Change the default directory used for finding libraries. If L is speci-

fied, the first default directory that 1d searches, LIBDIR, is replaced

by dir. If vu is specified, the second default directory that 1d

searches, LLIBDIR, is replaced by dir. If 1d was built with only one

default directory but you specify U anyway, 1d prints a warning and

ignores the option.

LIBDIR/libx.a libraries

LLIBDIR/libx.a libraries

a.out

LIBDIR

LLIBDIR

SEE ALSO

output file

the first default search directory for libraries, usually

Jib.

the second default search directory for libraries, usually

usr/lib.

as(1), att_dump(1), cc(1), nm(1), size(1), exit(2), end(3C), a.out(4), ar(4).

093-701055 Licensed materia}—property of copyright holder(s) 1 -1 1 7

id-coff (1) DG/UX 5.4 id-coft(1)

Programmer’s Guide: ANSI C and Programming Support Tools

CAVEATS

Through its options and input directives, the common link editor gives users great

flexibility; however, those who use the input directives must assume some added

responsibilities. Input directives and options should ensure the following properties

for programs:

- C defines a zero pointer as null. A pointer to which zero has been assigned

must not point to any object. To satisfy this, users must not place any object

at virtual address zero in the program’s address space.

- When the link editor is called through cc(1), a startup routine is linked with

the user’s program. This routine calls exit(2) after execution of the main

program. If the user calls the link editor directly, the user must insure that

the program always calls exit rather than falling through the end of the entry

routine.

The symbols etext, edata, and end [see end(3c)] are reserved and are defined by the

link editor. It is incorrect for a user program to redefine them.

If the link editor does not recognize an input file as an object file or an archive file, it

will assume that it contains link editor directives and will attempt to parse it. This

will occasionally produce an error message compaining about "syntax errors.”

Arithmetic expressions may have only one forward-referenced symbol per expression.

1-118 Licensed materiat—property of copyright hoider(s) 093-701055

idd(1)

NAME

SYNOP

DG/UX 5.4 Idd (1)

ldd - list dynamic dependencies

SIS

ldd [-d | -r] file

DESCRIPTION

The 1dd command lists the path names of all shared objects that would be loaded as

a result of executing file. If file is a valid executable but does not require any shared

objects, 1dd will succeed, producing no output.

1dd may also be used to check the compatibility of file with the shared objects it

uses. It does this by optionally printing warnings for any unresolved symbol refer-

ences that would occur if file were executed. Two options govern this mode of 1dd:

-d Causes 1dd to check all references to data objects.

-r Causes ldd to check references to both data objects and functions.

Only one of the above options may be given during any single invocation of ldc.

DIAGNOSTICS

ldd prints its record of shared object path names to stdout. The optional list of

symbol resolution problems are printed to stderr. If file is not an executable file or

cannot be opened for reading, a non-zero exit Status is returned.

SEE ALSO

NOTES

093-701055

ec(1), 1d(1).

The “C Compilation System” chapter in the Programmer’s Guide: ANSI C and Pro-

gramming Support Tools.

1dd doesn’t list shared objects explicitly attached via dlopen(3X).

1dd uses the same algorithm as the dynamic linker to locate shared objects.

Licensed materia-—property of copyright holder(s) 1 | 1 9

tex(1) DG/UX 5.4 tex(1)

NAME

lex — generate programs for simple lexical tasks

SYNOPSIS

lex { -tvn] [file]...

DESCRIPTION

Lex generates programs to do simple lexical analysis of text using regular expressions.

Lex reads its input files, or the standard input if no files are named, to get a list of

regular expressions the generated program will look for, and C text to execute when

each expression is matched.

An output file lex.yy.c is produced that contains C code for the generated program,
which is named yylex. It must be linked using the -11 switch, to get the lex

library routines.

The input to lex is of the form:

Geclarations

%%

rules

$%

programs

Anv of the sections may be empty. If the "programs" section is empty, the "% %"

that precedes it may be omitted. Thus the shortest legal lex input is

$%

Rules

Each rule is of the form:

<expression> <action>

An <expression> defines a regular expression that yylex will try to match. The

<action> is the C code that yylex will execute when that <expression> is matched.

yylex writes any input characters that match no expression to the standard output.

The notation for lex regular expressions is described below. In the description, X

and Y stand for lex regular expressions, and x and y stand for characters.

x An ordinary single character matches itself. Exceptions are these meta-

characters: "\[]7-?.*+|()$/{}8<>.

\“ Matches x, except for these special escape sequences beginning with a

backslash:

\n matches newline

\t matches tab

\b matches backspace

\\ matches backslash

"xy" A string of characters in double quotes matches the string of characters. Any

special meaning those characters (except for backslash) might otherwise have

is ignored. The string "\x" matches whatever \x would match. For example,

"" matches a period

"\n" matches newline

1-1 20 Licensed materiat—property of copyright hoider(s) 093-701055

tex(1)

093-701055

[xy]

“X

X$

X/Y

DG/UX 5.4 lex(1)

"[hello]\t"

matches the &-character string “[hello}” followed by a tab

A period matches any character except newline.

A string of elements inside square brackets matches any character any of the

elements match. Elements can be any of the following:

single characters, which match themselves (except for "]" anywhere and "-"

immediately after the initial "[").

\x regular expressions, which match what they usually do.

triplets of characters x-y; these match any character from x to y, inclusive.

For example, {adm-p\n} matches any one of these characters: a, d, m, n, 0,

p, newline.

A caret, *, as the first character inside the square brackets has special mean-

ing: if S is a string of characters, then [“S] matches any character except for

newline and any character that [S] would match.

matches anything that X would match concatenated with anything that Y

would match. For example, [ab] [cd] matches "ac", "bc", "ad", and “bd”.

matches 0 or more successive strings each matched by X. For example, c*

matches the empty string, "c", "cc", and so forth.

matches 1 or more successive strings each matched by X. For example, c+

matches "c", "cc", and so forth.

where j and k are integers in the range [0,255], matches j to k (inclusive) suc-

cessive strings each matched by X. For example, c{3,5} matches "ccc’,

"eccc", and "ccccc”.

is equivalent to X{j,j); it matches exactly j successive strings each matched

by Xx.

matches j or more successive strings matched by X.

matches whatever X matches.

matches the empty string and whatever XY matches; it is equivalent to

X{0,1). For example, (ab)? matches "ab" and".

matches anything that either X or Y would match. For example,

"bob" |(ab?c) matches “bob”, “ac”, and “abc”.

A caret, ~, at the beginning of a regular expression restricts it to only match

strings at the beginning of a line. A caret not at the beginning of a regular

expression does not have this effect. For example, “Bob matches "Bob"

when it occurs at the beginning of a line, but nowhere else.

A dollar sign, $, at the end of a regular expression restricts it to only match

strings at the end of a line. A dollar sign not at the end of a regular expres-

sion does not have this effect. For example, bye$ matches “bye” when it

occurs at the end of a line, but nowhere else.

restrict X to match only strings that are followed by something Y matches.

For example, (bob)/(white) matches “bob” in the context “bobwhite" but

not in the context "bobolink”.

Licensed material—property of copyright holder(s) 1 -1 21

tex(1) OG/UX 5.4 lex(1)

Blanks or tabs can only appear within a regular expression if each is:

e escaped with a backslash;

e inside double quotes; or

e within square brackets.

The <action> may be a single line of C code terminated with a semicolon, or a

sequence of C statements within curly braces { and }. Lex provides the following for
use in actions:

yytext Character pointer to the text matched by the regular expression.

yyleng Length of text in yytext.

| "|;" as the action for one rule is equivalent to the action for the next rule.

may not be used inside curly braces "{}".

ECHO Equivalent to

""

printf("%s", yytext)

REJECT
Causes yylex to reject this match and continue looking to see if other regu-

lar expressions will match it instead.

unput(c)

Routine that pushes a character back onto the input.

yless(n)

Causes all but first n characters of yytext to be pushed back onto the input.

yymore()

Causes the next input string to be matched to be catenated onto the end of

yytext, rather than overwriting it.

You can redefine several routines and macros to change how yylex behaves:

input() By default, a macro that is called to read a character from stdin. It returns 0

at end-of-file. ae

unput(c)

By default, a macro that is called to push the character c back onto the input.

The lex library allows 100 characters worth of pushback.

If you redefine input() or unput(c), you must ensure that the two of them are

consistent with each other.

output(c) |

By default, a macro that is called to write a character c to stdout.

yyin File pointer for input; macro defined as stdin.

yyout File pointer for output; macro defined as stdout.

yywrap() |
This routine is called when input() returns 0. If yywrap(returns 1, yylex
finishes wrapping up and returns. If yywrap() returns 0, however, yylex

continues to read input and match expressions. The default yywrap() always

returns 1.

Declarations

The declarations section may contain:

1 “1 22 Licensed material—property of copyright holder(s) 093-701055

lex(1) DG/UX 5.4 | lex(1)

e . C code to be placed at the head of lex.yy.c. Any lines between lines contain-

ing only "%{" and "%}" are copied into lex.yy.c.

e Lex substitution string definitions. Each such definition is a line of the form: .

name definition

The name must start in the first column and begin with a letter, and it must

be separated from the translation by one or more blanks or tabs. The transla-

tion can be anything.

Such names may be used in expressions in the rules section by surrounding

them with curly braces, {}. For example,

DIGIT [0-9]

£%

{DIGIT}+ printf("integer");

The "{DIGIT}" is replaced by its definition "[0-9]".

e Start condition definitions. Each definition line is of the form:

$Start condl cond2...

where the "% Start" begins in the first column. Each word following it is

declared to be the name of a start condition.

Expressions in the rules section may then be preceded by the names of start

conditions in angle brackets, <>; this restricts them to be matched only

when yylex is in the listed start conditions. Several start conditions may be

listed, separated by commas; for example, "“<condl1,cond2>".

The start condition yylex is in may be changed by an action that executes a

"BEGIN name;" statement, where "name" is the name of a start condition.

yylex is initially in start condition 0, or INITIAL; "BEGIN 0;" or "BEGIN

INITIAL;” will reset it.

NOTE: Any expression not preceded by a start condition may be matched at any

time. For example,

Start one two

%%

“one { ECHO; BEGIN one;)

“two { ECHO; BEGIN two; }

“zip { ECHO; BEGIN zip; }

onetarget { printf("one"); }
twotarget { printf("two"); }

Different rules for “target” will be executed depending on what start condi-

tion is active.

e Table size limits for the finite state machine implemented by yylex.

tpn Maximum number of positions is n (default 2000)

tn no Maximum number of states is n (500)

093-701055 Licensed material—property of copyright holder(s) | 1 | 23

lex(1) DG/UX 5.4 lex(1)

ttn Maximum number of parse tree nodes is n (1000)

tan Maximum number of transitions is n (3000)

Programs

The programs section may contain anything you like. It is copied to the end of

lex.yy.c.

Any line in any of the three sections that begins with a space is copied directly into

lex.yy.c.

To use yylex, you must provide a program to call it and link them with the "-1I"

option. To use yylex with a yacc(1) parser, end the action for each lex rule with

return(token);

where "token" is the appropriate token. Access to yacc’s token names may be

ensured by including the yylex code in the yacc generator with

#include "lex.yy.c”

or generating the "y.tab.h" file with yacc’s "-d" option and including it with

#include "y.tab.h"

in the definitions section of the lex input.

Options

-t Output which normally goes to lex.yy.c is sent to stdout.

“Vv A one-line summary of the finite state machine implemented by yylex is

printed.

“n Cancels -v option.

EXAMPLE

D [0-9]

%%

if printf("IF statement\n");

[a-z]+ printf("tag, value %s\n" ,yytext);

O{D}+ printf("octal number %s\n",yytext);

{D}+ printf("decimal number %s\n",yytext);

"+4" printf("unary op\n");
mae printf("binary op\n");
"/ ne { loop:

while (input() != ‘«#');

switch (input())

{

case ‘/': break;

case ‘a’: unput(’s’);

default: go to loop;

}

SEE ALSO

yacc(1), malloc(3X).

1 -1 24 Licensed material—property of copyright holder(s) 093-701055

lint (1)

NAME

OG/UX 5.4 fint(1)

lint - aC program checker

SYNOPSIS

lint [option ...] file ...

DESCRIPTION

Lint attempts to detect features of the C program files that are likely to be bugs,

non-portable, or wasteful. It also checks type usage more strictly than does the com-

piler. Lint detects unreachable statements, loops not entered at the top, automatic

variables declared and not used, and logical expressions whose value is constant. It

also checks for functions that return values in some places and not in others, func-

tions called with varying numbers or types of arguments, and functions whose values

are not used or used but not returned.

Arguments whose names end with .c are taken to be C source files. Arguments

whose names end with .1n are taken to be the result of an earlier invocation of

lint with either the -c or the -o option used. The .1n files are analogous to .o

(object) files that are produced by the ec(1) command when given a .c file as input.

Files with other suffixes generate warnings and are ignored.

Lint processes all the .c, .1n, and llib-lx.1n (specified by -1+x) files in their
command line order. By default, lint appends the standard C lint library

(1lib-1c.1n) to the end of the list of files. (In a COFF environment, the -p

option causes the portable C lint library (11ib-port.1n) to be appended instead.)
When the -c option is not used, the second pass of lint checks this list of files for

mutual compatibility. When the -c option is used, the .1n and the 1lib-ly.1in

files are ignored.

OPTIONS

093-701055

Lint is sensitive to the target environment (see sde-target(1) and sde(5)): lint

options that are accepted only in an ELF target environment are noted below.

Lint recognizes many cce(1) and cpp(1) command line options, including -D, -U,

-g, and -0, although -g and -0 are ignored. In an ELF target environment, the

cc options —Xa, -Xc, and -Xt can be used to indicate to lint the degree of ANSI |

conformance to be found in the source. When coding to the ANSI C standard in a

COFF target environment, you may wish to run lint in an ELF environment with

the appropniate option.

You can use any number of lint options, in any order, intermixed with file-name

arguments. The following options suppress certain kinds of complaints:

—a Suppress complaints about assignments of long values to variables that are not
long.

-b Suppress complaints about break statements that cannot be reached. (Pro-
grams produced by lex or yacc will often result in many such complaints).

-h Do not apply heuristic tests that try to find bugs, improve style, and reduce
waste.

-u Suppress complaints about functions and external variables used and not

defined, or defined and not used. (This option is suitable for running lint

on a subset of files of a larger program).

-Vv Suppress complaints about unused arguments in functions.

—-x Do not report variables referred to by external declarations but never used.

Licensed materiai—property of copyright holder(s) 1 -1 25

lint (1)

1-126

—m

DG/UX 5.4 lint(1)

Suppress complaints about external symbols that could be declared static

(ELF environment only).

The following arguments alter lint’s behavior. Some of these option settings are

also available through lint comments (see below).

-1lx Include the additional lint library 11ib-1lx.1n. For example, you can

include a lint version of the math library 11ib-1m.1n by inserting -1m on

the command line. This argument does not suppress the default use of

llib-le.in. These lint libraries must be in the assumed directory. You

can use this option to reference local lint libraries and to develop multi-file

projects.

—Ldirectory

“nO

~P

“Cc

-o lib

Look in directory first for libraries, then go to /usr/lib libraries not found

in directory. You can specify several directories by giving the -L option and

a directory name for each directory you want searched.

Do not check compatibility against either the standard or the portable lint

library.

Check portability to other dialects of C. Along with stricter checking, this

option causes all non-external names to be truncated to eight characters and

all external names to be truncated to six characters and one case.

Produce a .in file for every .c file on the command line. These .1n files

are the product of lint’s first pass only, and are not checked for inter-

function compatibility.

Cause lint to create a lint library with the name 1lib-llib.1n. The -c

option nullifies the -o option. The lint library produced is the input that is

given to lint’s second pass. The -o option simply saves this file in the

named lint library. To produce a 1lib-1/ib.1n without extraneous mes-

sages, use the -x option. The -v option is useful if the source file(s) for the

lint library are just external interfaces (for example, the way the file llib-lc

is Written).

These arguments are accepted only in an ELF environment:

-Idir

—Ss

~Y

Search for included header files in the directory dir before searching the

current directory and/or the standard place.

Produce one-line diagnostics only. lint occasionally buffers messages to

produce a compound report.

Alter the behavior of /sLINTED [rmessage]s/ directives. Normally, lint will

suppress warning messages for the code following these directives. Instead of

suppressing the messages, lint prints an additional message containing the
comment inside the directive.

Specify that the file being linted will be treated as if the /sLINTLIBRARYs/

directive had been used. A lint library is normally created by using the

/sLINTLIBRARY+#/ directive.

Print pathnames of files. lint normally prints the filename without the

path.

Wnite to standard error the product name and release.

Write a .1n file to file, for use by cflow(1).

Licensed materiak—property of copyright holcer(s) 093-701055

fint (1)

083-701055

DG/UX 5.4 lint(1)

-Rfile Write a .1n file to file, for use by cxref(1).

Unrecognized options are warned about and ignored. The predefined macro lint is
defined to allow certain questionable code to be altered or removed for lint. Thus,

the symbol lint should be thought of as a reserved word for all code that is planned

to be checked by lint.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED#/ Stops comments about unreachable code. (This comment is typi-
cally placed just after calls to functions like exit(2)).

/*VARARGSN + / Suppresses the usual checking for variable numbers of arguments

in the following function declaration. The data types of the first x

arguments are checked; a missing n is taken to be 0.

/*ARGSUSEDs/ Turns on the -v option for the next function.

/*LINTLIBRARYs/ At the beginning of a file, shuts off complaints about unused func-

tions and function arguments in this file. Equivalent to using the

-v and -x options.

These comments are recognized only in an ELF environment:

/*CONSTCOND» / or /xCONSTANTCONDs/ or /*CONSTANTCONDITION«/

suppresses complaints about ccnstant operands for the next

expression.

/ EMPTY « / suppresses complaints about a null statement consequent on an if

statement. This directive should be placed after the test expres-

sion, and before the semicolon. This directive is supplied to sup-

port empty if statements when a valid else statement follows. It

suppresses messages On an empty else consequent.

/*FALLTHRU#/ Or /*FALLTEROUGH*/

suppresses complaints about fall through to a case or default

labelled statement. This directive should be placed immediately

preceding the label.

/*LINTED [message]/

suppresses any intra-file warning except those dealing with unused

variables or functions. This directive should be placed on the line

immediately preceding where the lint warning occurred. The -k

option alters the way in which lint handles this directive.

Instead of suppressing messages, lint will print an additional

message, if any, contained in the comment. This directive is use-

ful in conjunction with the -s option for post-lint filtering.

/*PRINTFLIKENs/ makes lint check the first (n-J) arguments as usual. The nth

argument is interpreted as a printf format string that is used to

check the remaining arguments.

/*PROTOLIBI*/ causes lint to treat function declaration prototypes as function

definitions if n is non-zero. This directive can be used only in

conjunction with the

/* LINTLIBRARY »#/ directive. If is zero, function prototypes

will be treated normally.

/*SCANFLIKENs/ makes lint check the first (n-J) arguments as usual. The nth

argument is interpreted as a scanf format string that is used to

check the remaining arguments.

Licensed material—property of copyright holder(s) 1 -1 2/

int (1)

FILES

DG/UX 5.4 lint (1)

Lint produces its output in three phases. In the first, it prints messages for each
source file. In the second phase, it prints messages for any files included with

#include. In the final phase, it prints messages about interrelations between files.

Question marks after filenames in this phase indicate lint could not determine

exactly what file the message refers to. The third phase is not done if the —c is

given.

The behavior of the -c and the -o options allows for incremental use of lint on a

set of C source files. You can invoke lint once for each source file with the -c

option. Each of these invocations produces a .1n file that corresponds to the .c

file, and prints all messages about that source file only. After .1n files have been

produced, for all the source files, Lint is invoked once more (without the -c

option), listing all the .1n files with the needed -1x options. This will print all] the

inter-file inconsistencies. This scheme works well with make(1); it lets you use make

to. lint only the source files that have been modified since the last time the set of

source files were linted.

Jusxr/lib . The directory where the lint libraries specified by the

~lx option must exist; usually /usr/lib

LIBDIR/lint[12]. First and second passes

LIBDIR/llib-ic.in | Declarations for C Library functions (binary format; if
| you have bought a source license, the source is in

| LIBDIR/ilib-ic)

LIBDIR/ilib-port.in Declarations for portable functions (binary format; if
you have a source license, the source is in LIBDIR/Ilib-

port)

LIBDIR/llib-lm.in Declarations for Math Library functions (binary format;

if you have a source license, the source is in

LIBDIR/llib-lm)

/usxr/tmp/xlints Temporaries

SEE ALSO

NOTES

1-128

ec(1), cpp(1), make(1), sde-target(1), sde(5),
Programmer's Guide: ANSI C and Programming Support Tools.

Exit(2), longjmp(3C), and other functions that do not return are not understood;

this causes various problems.

Licensed material—property of copyright hoider(s) 093-701055

lorder(1) DG/UX 5.4 : lorder(1)

NAME.

lorder -— find ordering relation for an object library

SYNOPSIS

lorder file ...

DESCRIPTION

Lorder reads each object or archive file and produces a list of pairs of object file or |

archive member names. The first file of each pair refers to external identifiers

defined in the second file.

The output may be processed by tsort(1) to find an ordering of a library suitable

for one-pass access by 1d(1). Note that the link editor 1d(1) can perform multiple

passes over an archive in the portable archive format (see ar(4)) and does not

require that lorder(1) be used when building an archive. Using lorder(1) may,

however, allow for a slightly more efficient access of the archive during the link edit

process.

The following example builds a new library from existing object files:

ar cr library ‘lorder *.o | tsort'

FILES

TMPDIR/*syuzeft

Temporary file of symbol references

TMPDIR/* symdeft

Temporary file of symbol definitions

TMPDIR TMPDIR is usually /usr/tmp but can be redefined by setting the

environment variable TMPDIR [see s:mpnam()] in tmpnam(3S)].

SEE ALSO

ar(1), 1da(1), tsort(1), az(4).

CAVEAT

lorder will accept as input any object or archive file, regardless of its suffix, pro-

vided there is more than one input file. If there is but a single input file, its suffix

must be .o. | |

093-701055 Licensed material—property of copyright hoider(s) 1 -1 29

NAME

m4 — macro processor

SYNOPSIS

m4 [options] [files]

DESCRIPTION

M4 is a macro processor intended as a front end for C and other languages. Each of

the argument files is processed in order; if there are no files, or if a file name is -,

the standard input is read. The processed text is written on the standard output.

The options and their effects are as follows:

—-e Operate interactively. Interrupts are ignored and the output is unbuffered.

-s Enable line sync output for the C preprocessor (#line ...)

Bint Change the size of the push-back and argument collection buffers from the
default of 4096.

-Hint Change the size of the symbol table hash array from the default of 199. The

size should be prime.

-Sint Change the size of the call stack from the default size of 100 slots. Macros

take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before anv -D or

-U flags:

~Dname[=val]

Defines name to val or to null in val’s absence.

-Uname

undefines name.

Macro calls have the form:

name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If the name of a defined

macro is not followed by a (, it is deemed to be a call of that macro with no argu-

ments. Potential macro names consist of alphabetic letters, digits, and underscore

(_), where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting arguments.

Left and right single quotes are used to quote strings. The value of a quoted string is

the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a

matching right parenthesis. If fewer arguments are supplied than are in the macro

definition, the trailing arguments are taken to be null. Macro evaluation proceeds

normally during the collection of the arguments, and any commas or right parentheses

which happen to turn up within the value of a nested call are as effective as those in

the original input text. After argument collection, the value of the macro is pushed

back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once

this is done the original meaning is lost. Their values are null unless otherwise stated.

define the second argument is installed as the value of the macro whose name

is the first argument. Each occurrence of $n in the replacement text,

where n is a digit, is replaced by the n-th argument. Argument 0 is the

1 -1 30 Licensed material—-property of copyright hoider(s) 093-701055

undefine

defn

pushdef

popdef

ifdef

shift

DG/UX §.4 m4(1)

name of the macro; missing arguments are replaced by the null string;

$# is replaced by the number of arguments; $+ is replaced by a list of
all the arguments separated by commas; $@ is like $+, but each argu-

ment is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful for renam-

ing macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previous one,

if any.

if the first argument is defined, the value is the second argument, other-

wise the third. If there is no third argument, the value is null. The

word unix is predefined on UNIX system versions of m4.

returns all but its first argument. The other arguments are quoted and

pushed back with commas in between. The quoting nullifies the effect

of the extra scan that will subsequently be performed.

changequote change quote symbols to the first and second arguments. The symbols

changecom

divert

undivert

divnum

ifelse

incr

decr

eval

may be up to five characters long. Changequote without arguments

restores the original values (i.e., ‘~).

change left and right comment markers from the default # and new-line.

With no arguments, the comment mechanism 1s effectively disabled.

With one argument, the left marker becomes the argument and the right

marker becomes new-line. With two arguments, both markers are

affected. Comment markers mav be up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final output is the

concatenation of the streams in numerical order; initially stream 0 is the

current stream. The divert macro Changes the current output stream to

its (digit-string) argument. Output diverted to a stream other than 0

through 9 is discarded. |)

causes immediate output of text from diversions named as arguments, or

all diversions if no argument. Text may be undiverted into another

diversion. Undiverting discards the diverted text.

returns the value of the current output stream.

reads and discards characters up to and including the next new-line.

has three or more arguments. If the first argument is the same string as

the second, then the value is the third argument. If not, and if there are

more than four arguments, the process is repeated with arguments 4, 5,

6 and 7. Otherwise, the value is either the fourth string, or, if it is not

present, null.

returns the value of its argument incremented by 1. The value of the

argument is calculated by interpreting an initial digit-string as a decimal

number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-bit arith-

metic. Operators include +, -, *, /, %, ~ (exponentiation), bitwise

&, |, 7, and ~; relationals; parentheses. Octal and hex numbers may be

1-131Licensed material—property of copyright hoider(s)

m4(1)

len

index

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

EXAMPLE

1-132

DG/UX 5.4 m4(1)

specified as in C. The second argument specifies the radix for the

result; the default is 10. The third argument may be used to specify the

minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second argument

begins (zero origin), or —1 if the second argument does not occur.

returns a substring of its first argument. The second argument is a zero

origin number selecting the first character; the third argument indicates

the length of the substring. A missing third argument is taken to be

large enough to extend to the end of the first string.

transliterates the characters in its first argument from the set given by

the second argument to the set given by the third. No abbreviations are

permitted.

returns the contents of the file named in the argument.

is identical to include, except that it savs nothing if the file is inaccessi-

ble.

executes the DG/UX system command given in the first argument. No

value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXXX at the end of its argument with a unique

letter and the current process ID.

causes immediate exit from m4. Argument 1, if given, is the exit code;

the default is 0.

argument 1 will be pushed back at final EOF so that it gets evaluated

Example: m4wrap(’cleanup()’)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for all if

no arguments are given.

with no arguments, turns on tracing for all macros (including built-ins).

Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros specifi-

cally traced by traceon can be untraced only by specific calls to rraceoff.

m4 filel file2 > outputfile

will run the m4 macro processor on the files filel and file2, redirecting the out-

put into outputfile.

SEE ALSO

ec(1), cpp(1).

The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.

Licensed material—property of copyright holder{s) 093-701055

make (1) DG/UX 5.4 make (1)

NAME

make - maintain, update, and regenerate groups of programs

SYNOPSIS

make [-f makefile] [-eiknpqrst] [names]

DESCRIPTION

make allows the programmer to maintain, update, and regenerate groups of computer

programs. make executes commands in makefile to update one or more target

names (names are typically programs). If the ~£ option is not present, then

makefile, Makefile, and the Source Code Control System (SCCS) files

s.makefile, and s.Makefile are tried in order. Lf makefile is -, the standard

input is taken. More than one -f makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All prere-
quisite files of a target are added recursively to the list of targets. Missing files are

deemed to be outdated.

The following list of four directives can be included in makefile to extend the options

provided by make. They are used in makefile as if they were targets:

.DEFAULT: If a file must be made but there are no explicit commands or

relevant built-in rules, the commands associated with the name

.DEFLULT are used if it exists.

. IGNORE: Same effect as the -i option.

.PRECIOUS: Dependents of the .PRECIOUS entry will not be removed when quit

Or interrupt are hit.

. SILENT: Same effect as the -s option.

The options for make are listed below:

-e Environment variables override assignments within makefiles.

-f makefile Description filename (makefile is assumed to be the name of a

description file).

~i Ignore error codes returned by invoked commands. —

-k Abandon work on the current entry if it fails, but continue on other

, branches that do not depend on that entry.

-n No execute mode. Print commands, but do not execute them.

Even command lines beginning with an @ are printed.

-p Print out the complete set of macro definitions and target descrip-
tions.

“q Question. make returns a zero or non-zero status code depending

on whether or not the target file has been updated.

-r Do not use the built-in rules.

-s Silent mode. Do not print command lines before executing.

-t Touch the target files (causing them to be updated) rather than issue

the usual commands.

Creating the makefile

The makefile invoked with the -f option is a carefully structured file of explicit

instructions for updating and regenerating programs, and contains a sequence of

entries that specify dependencies. The first line of an entry is a blank-separated,

non-null list of targets, then a _:, then a (possibly null) list of prerequisite files or

093-701055 Licensed material—property of copyright holder(s) 1 -1 33

make (1) DG/UX 54 make (1)

dependencies. Text following a ; and all following lines that begin with a tab are

shell commands to be executed to update the target. The first non-empty line that

does not begin with a tab or # begins a new dependency or macro definition. Shell

commands may be continued across lines with a backslash-new-line (\ new-line)

sequence. Everything printed by make (except the initial tab) is passed directly to the

shell as is. Thus,

echo a\

b

wil produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments including contained \ new-line

sequences.

The following makefile says that pgm depends on two files a.o and b.o, and that

they in turn depend on their corresponding source files (a.c and b.c) and a com-

mon file incl.h:

pgm: a.,o b.o

cc a.o b.o -O pom

a.o: incl.h a.c

ce -¢ a.c

b.o: incl.h b.c

ce -c b.c

Command lines are executed one at a time, each by its own shell. The SHELL

environment variable can be used to specify which shell make should use to execute

commands. The default is /usr/bin/sh. The first one or two characters in a com-

mand can be the following: @, -, @-, or -@. If @is present, printing of the com-

mand is suppressed. If — is present, make ignores an error. A line is printed when

it is executed unless the -s option is present, or the entry .SILENT: is included in

makefile, or unless the initial character sequence contains a @. The —n option speci-

fies printing without execution; however, if the command line has the string $(MAKE)

in it, the line is always executed (see the discussion of the MAKEFLAGS macro in the

“Environment” section below). The -t (touch) option updates the modified date of

a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is

present, if the entry . IGNORE: is included in makefile, or if the initial character

sequence of the command contains -, the error is ignored. If the —k option is

present, work is abandoned on the current entry, but continues on other branches

that do not depend on that entry.

Interrupt and quit cause the target to be deleted unless the target is a dependent of

the directive .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be macro definitions

and are processed as such. The environment variables are processed before any

makefile and after the internal rules; thus, macro assignments in a makefile override

environment variables. The -e option causes the environment to override the macro

assionments in a makefile. Suffixes and their associated rules in the makefile will

override any identical suffixes in the built-in rules.

1 -1 34 Licensed materiat—property of copyright holders) 093-701055

make (1) DG/UX 5.4 | make (1)

The MAKEFLAGS environment variable is processed by make as containing any legal

input option (except -f and -p) defined for the command line. Further, upon invo-

cation, make “invents” the variable if it is not in the environment, puts the current

options into it, and passes it on to invocations of commands. Thus, MAKEFLAGS

always contains the current input options. This feature proves very useful for “‘super-

makes’. In fact, as noted above, when the —n option is used, the command

$ (MAKE) is executed anyway; hence, one can perform a make —n recursively on a

whole software system to see what would have been executed. This result is possible

because the —n is put in MAKEFLAGS and passed to further invocations of $(MAKE).

This usage is one way of debugging all of the makefiles for a software project without

actually doing anything.

Include Files

If the string include appears as the first seven letters of a line in a makefile, and is

followed by a blank or a tab, the rest of the line is assumed to be a filename and will

be read by the current invocation, after substituting for any macros.

Macros

Entries of the form string] = string2 are macro definitions. string? is defined as all

characters up to a comment character or an unescaped new-line. Subsequent appear-

ances of $(string1[:subst1=[subst2]]) are replaced by string2. The parentheses are

optional if a single-character macro name is used and there is no substitute sequence.

The optional :subst]=subst2 is a substitute sequence. If it is specified, all non-

overlapping occurrences of subst] in the named macro are replaced by sudsr2.

Strings (for the purposes of this type of substitution) are delimited by blanks, tabs,

new-line characters, and beginnings of lines. An example of the use of the substitute

sequence is shown in the “Libraries” section below.

Internal Macros

There are five internally maintained macros that are useful for writing rules for build-

ing targets.

$x The macro $« stands for the filename part of the current dependent with the

suffix deleted. It is evaluated only for inference rules.

s@ The $@ macro stands for the full target name of the current target. It is

evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is

the module that is outdated with respect to the target (the ‘“‘manufactured”’

dependent file name). Thus, in the .c.o rule, the $< macro would evaluate to

the .c file. An example for making optimized .o files from .c files is:

-C.0:

cc -c -0 $se.c

or:

-C.0:

cc -c -0 $<

$2? The $? macro is evaluated when explicit rules from the makefile are evaluated.

It is the list of prerequisites that are outdated with respect to the target, and

essentially those modules that must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library member of

the form lib(file.o). In this case, $@ evaluates to liband $% evaluates

to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case Dor F is

appended to any of the four macros, the meaning is changed to “‘directory part” for

093-701055 Licensed material—property of copyright holder(s) | 1 =f 35

make (1) DG/UX 5.4 make (1)

D and “file part” for F. Thus, $(@D) refers to the directory part of the string $@.

If there is no directory part, ./ is generated. The only macro excluded from this

alternative form is $?.

Suffixes

Certain names (for instance, those ending with .o) have inferable prerequisites such

as .c, .s, etc. If no update commands for such a file appear in makefile, and if an

inferable prerequisite exists, that prerequisite is compiled to make the target. In this

case, make has inference rules that allow building files from other files by examining

the suffixes and determining an appropriate inference rule to use. The current default

inference rules are:

.£~ . .s” .sh .shTM Cc.c Cc” .f£ s s s .C

.c.a .c.0 .c’.a .c”.c¢ .c”.0 .f.a £.0 £".a .f€°.f .f

-h”.h .l.c .L.0 lTM.c .17.1 .17.0 .S.a_.S8.0 .s°.a .s

-.S”.S .sSh”.sh .y.c Y.o y.c¢ .y”.o .y .y .C.a .C.o .C

.c~.C .CTM.0 .L.C L.o .L7.C .L”.Lb L”.o .Y.C .x.0 a 4

.Y~.0 .Y.Y

The internal rules for make are contained in the source file rules.c for the make

program. These rules can be locally modified. To print out the rules compiled into

the make on any machine in a form suitable for recompilation, the following com-

mand is used: |

make -pf - 2>/dev/null </dev/null

A tilde in the above rules refers to an SCCS file [see sccsfile(4)]. Thus, the rule

.¢7.o would transform an SCCS C source file into an object file (.o). Because the
s. of the SCCS files is a prefix, it is incompatible with the make suffix point of view.

Hence, the tilde is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (for example, .c:) is the definition of how to build x
from x.c. In effect, the other suffix is null. This feature is useful for building targets

from only one source file, for example, shell procedures and simple C programs.

Additional suffixes are given as the dependency list for .SUFFIXES. Order is signifi-

cant: the first possible name for which both a file and a rule exist is inferred as a

prerequisite. The default list is:

.SUFFIXES: .0 .c .cTM .y .y~ .1l .17 .s .s7 .sh .shTM .b .h” .f Ef”

Cc .C7TM .Y .YTM LL LT

Here again, the above command for printing the internal rules will display the list of

suffixes implemented on the current machine. Multiple suffix lists accumulate; .SUF-

FIXES: with no dependencies clears the list of suffixes.

Inference Rules

1-136

The first example can be done more briefly.

pgm: a.o b.o

cc a.o b.o -o pgm

a.o b.o: incl.h

This abbreviation is possible because make has a set of internal rules for building
files. The user may add rules to this list by simply putting them in the makefile.

Certain macros are used’ by the default inference rules to permit the inclusion of

optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and

YFLAGS are used for compiler options to cc(1), lex(1), and yacc(1), respectively.

Again, the previous method for examining the current rules is recommended.

Licensed materia}—property of copyright holder(s) 093-701055

Aa” 00

make (1) DG/UX 5.4 make (1)

The inference of prerequisites can be controlled. The rule to create a file with suffix
.o from a file with suffix .c 1s specified as an entry with .c.o: as the target and no

dependents. Shell commands associated with the target define the rule for making a

.o file from a _ .c file. Any target that has no slashes in it and starts with a dot is

identified as a rule and not a true target.

Libraries)

If a target or dependency name contains parentheses, it is assumed to be an archive

library, the string within parentheses referring to a member within the library. Thus,

lib(file.o) and $(LIB)(file.o) both refer to an archive library that contains

file.o. (This example assumes the LIB macro has been previously defined.) The

expression $(LIB)(filel.o file2.o) is not legal. Rules pertaining to archive

libraries have the form .XX.a where the XX is the suffix from which the archive

member is to be made. An unfortunate by-product of the current implementation

requires the XX to be different from the suffix of the archive member. Thus, one

cannot have lib(file.o) depend upon file.o explicitly. The most common use

of the archive interface follows. Here, we assume the source files are all C tpe

source:

lib: lib(filel.o) lib(file2.o) lib(file3.o)

@echo lib is now up-to-date

-C.a:

$(CC) -c $(CFLAGS) $<

$(AR) $(ARFLAGS) $€ $*.0
rm -f $%.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this

example. A more interesting, but more limited example of an archive library mainte-

nance construction follows:

lib: lib(filel.o) lib(file2.0) 1lib(file3.o)

$(CC) -c $(CFLAGS) $(?:.0=.Cc)

$(AR) S$(ARFLAGS) lib $?

rm $?

@echo.lib is now up-to-date

-C.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined

to be the set of object filenames (inside lib) whose C source files are outdated. The

substitution mode translates the .o to .c. (Unfortunately, one cannot as yet

transform to .c~; however, this transformation may become possible in the future.)

Also note the disabling of the .c.a: rule, which would have created each object file,

one by one. This particular construct speeds up archive library maintenance consid-

erably. This type of construct becomes very cumbersome if the archive library con-

tains a mix of assembly programs and C programs.

FILES

[MmJakefile and s.[Mm)akefile

/usr/bin/sh

SEE ALSO

ee(1), lex(1), yace(1), printf(3S), secsfile(4).

ed(1), sh(1) in the User’s Reference Manual.

See the “make” chapter in the Programmer’s Guide: ANSI C and Programming Sup-

port Tools.

093-701055 Licensed materiaproperty of copyright holder(s) 1-137

make (1) DG/UX 5.4 make (1)

NOTES

Some commands return non-zero status inappropriately; use ~i or the - command

line prefix to overcome the difficulty.

Filenames with the characters = : @ will not work. Commands that are directly exe-

cuted by the shell, notably cd(1), are ineffectual across new-lines in make. The syn-

tax lib(filel.o file2.o file3.o) is illegal. You cannot build lib(file.o)

from file.o.

1 -1 38 Licensed materiat—property of copyright holder(s) 093-701055

mes(1) DG/UX 5.4 mes(1)

NAME

mes — manipulate the comment section of an object file.

SYNOPSIS |

mes [-a string] [-c] [-d] [-n name] [-p] [-v] file ...

DESCRIPTION

mcs is used to manipulate a section, by default the .comment section, in an ELF

object file. It is used to add to, delete, print, and compress the contents of a section

in an ELF object file; it can only print the contents of a section in a COFF object
file. mcs must be given one or more of the options described below. It applies each
of the options in order to each file.

These options are available:

—a String

Append string to the comment section of the ELF object files. If string con-

tains embedded blanks, it must be enclosed in quotation marks.

-c Compress the contents of the comment section of the ELF object files. All

duplicate entries are removed. The ordering of the remaining entries is not

disturbed.

-d Delete the contents of the comment section from the ELF object files. The

section header for the comment section is also removed.

—n name

Specify the name of the comment section to access if other than .comment.

By default, mcs deals with the section named .comment. This option can

be used to specify another section.

-p Print the contents of the comment section on the standard output. Each sec-

tion printed is tagged by the name of the file from which it was extracted,

using the format filename[member_name]: for archive files; and filename:

for other files.

-V Print, on standard error, the version number of mes.

If the input file is an archive [see ar(4)], the archive is treated as a Set of individual
files. For example, if the -a option is specified, the string is appended to the com-

ment section of each ELF object file in the archive; if the archive member is not an

ELF object file; then it is left unchanged.

If mcs is executed on an archive file, the archive symbol] table will be removed unless

~p is the only option specified. The archive symbol table must be restored by execut-

ing the ar command with the -ts option before the archive can be linked by the 1d

command. mes will produce eppropriate warning messages when this situation

arises.

EXAMPLES

mes —p file # Print file’s comment section

mes -a String file # Append string to file’s comment section

FILES

TMPDIR/ncs* temporary files

TMPDIR usually /usr/tmp but can be redefined by setting the environ-

ment variable TMPDIR [see tempnan() in tmpnam(3S)].

SEE ALSO

ar(1), as(1), cc(1), 1d(1), tmpnam(3S), a.out(4), ar(4).

093-701055 Licensed material—property of copyright hoider(s) 1 -1 39

mes(1) DG/UX 5.4 mes(1)

See the “Object Files” chapter in Programmer’s Guide: ANSI C and Programming

Support Tools.

NOTES

mes cannot add to, delete or compress the contents of a section that is contained

within a segment.

1 -1 40 Licensed material—property of copyright holder(s) 093-701055

mkstr(1) DG/UX 5.4 : mkstr(1)

NAME

mkstr — create an error message file by massaging C source

SYNOPSIS

mkstr [— } messagefile prefix file ...

DESCRIPTION

Mkstr is used to create files of error messages. Its use can make programs with large
numbers of error diagnostics much smaller, and reduce system overhead in running

the program as the error messages do not have to be constantly swapped in and out.

Mkstr will process each of the specified files, placing a massaged version of the input
file in a file whose name consists of the specified prefix and the original name. A typ-

ical usage of mkstr would be

mkstr pistrings xx *.c

This command would cause all the error messages from the C source files in the

current directory to be placed in the file pistrings and processed copies of the source

for these files to be placed in files whose names are prefixed with xx.

To process the error messages in the source to the message file mkstr keys on the

string ‘error("’ in the input stream. Each time it occurs, the C string starting at the °”

is placed in the message file followed by a null character and a new-line character; the

null character terminates the message so it can be easily used when retrieved, the

new-line character makes it possible to sensibly cat the error message file to see its

contents. The massaged copy of the input file then contains an lseek pointer into

the file which can be used to retrieve the message, 1.e.:

char efilname[] = "/usr/lib/pistrings";

int efil = -1;

error(al, a2, a3, a4)

{

char buf[256];

if (efil < 0) {

efil = open(efilname, 0);

if (efil < 0) {

oops:

perror(efilname) ;

exit(1);

}

}

if (lseek(efil, (long) al, 0) || read(efil, buf, 256) <= 0)
goto oops;

printf(buf, a2, a3, a4);

)

The optional - causes the error messages to be placed at the end of the specified

message file for recompiling part of a large mkstr-ed program.

093-701055 Licensed material—property of copyright holder(s) _ 1 -1 41

mkstr(1) OG/UX 5.4 mkstr(1)

EXAMPLE |

If the current directory has files "a.c" and “b.c", then

mkstr exs x *.c

would create a new file "exs" which holds all the error messages extracted from the

source files "a.c” and "b.c", as well as two new source files, "xa.c" and “xb.c", which

no longer contain the extracted error messages.

SEE ALSO

lseek(2), xstr(1).

AUTHORS

William Joy and Charles Haley

1 | 42 Licensed materiai—property of copyright holder(s) 093-701055

nm (1)

NAME

DESCRIPTION

093-701055

DG/UX 5.4 nm(1)

nm — print name list of common object file

SYNOPSIS

nm [-oxhvnefurplvT] file ...

The nm command displays the symbol table of each ELF or COFF object file speci-

fied. The file may be a relocatable or absolute ELF or COFF object file, or it may be

an archive of relocatable or absolute ELF or COFF object files.

The information reported by nm differs in the ELF and COFF environments. In an

ELF environment, nm prints the following: |

Index

Value

Size

Type

Bind

Other

Shndx

Name

The index of the symbol (the index appears in brackets).

The value of the symbol is one of the following: a section offset for defined

symbols in a relocatable file; alignment constraints for symbols whose sec- ©

tion index is SHN_COMMON; a virtual address in executable and dynamic

library files.

The size in bytes of the associated object.

A symbol is of one of the following types: NOTYPE (no type was specified),

OBJECT (a data object such as an array or variable), FUNC (a function or

other executable code), SECTION (a section symbol), or FILE (name of the

source file).

The symbol’s binding attributes. LOCAL symbols have a scope limited to

the object file containing their definition; GLOBAL symbols are visible to all

object files being combined; and WEAK symbols are essentially global sym-

bols with a lower precedence than GLOBAL.

A field reserved for future use, currently containing 0.

Except for three special values, this is the section header table index in rela-

tion to which the symbol is defined. The following special values exist:

ABS indicates the symbol’s value will not change through relocation; COMMON

indicates an unallocated block and the value provides alignment constraints;

and UNDEF indicates an undefined symbol.

The name of the symbol.

In a COFF environment, nm prints the following:

Name

Value

Class

Type

Size

The name of the symbol.

The symbol’s value expressed as an offset or an address depending on its

storage class.

The symbol’s storage class.

The symbol’s type and derived type. If the symbol is an instance of a

structure or of a union then the structure or union tag will be given follow-

ing the type (e.g., struct-tag). If the symbol is an array, then the array

dimensions will be given following the type (e.g., char[n j[m J). Note that

the file must have been compiled with the -g option of the cc(1) com-

mand for this information to appear.

The symbol’s size in bytes, if available. Note that the file must have been

compiled with the -g option of the cc(1) command for this information to

appear.

Licensed materiai—property of copyright holder(s) 1-143

am(1)

FILES

1-144

OG/UX 5.4 nm(1)

Line The source line number at which the symbol is defined, if available. Note
that the file must have been compiled with the “9 option of the cc(1)

command for this information to appear.

Section For storage classes static and external, the object file section containing the

symbol (e.g., text, data or bss).

These options control the output of nm:

-o _‘— Print the value and size of a symbol in octal instead of decimal.

—x Print the value and size of a symbol in hexadecimal instead of decimal.

~-h Do not display the output header data. |

-v Sort external symbols by value before they are printed.

~n Sort external symbols by name before they are printed.

~u Print undefined symbols only.

-x Prepend the name of the object file or archive to each output line.

—p Produce easily parsable, terse output. Each symbol name is preceded by its

value (blanks if undefined) and one of the letters U (undefined), A (abso-

lute), T (text symbol), D (data symbol), S (section symbol), R (register sym-

bol), F (file symbol), C (common symbol), or N (symbol has no type). If the

symbol is local (non-external), the type letter is in lower case.

-V Print, on standard error, the version of mm being executed.

This option is accepted only in an ELF environment:

-1 Distinguish between WEAK and GLOBAL symbols by appending a * to the key

letter for WEAK symbols.

These options are meaningful only in a COFF environment (they are ignored in an

ELF environment):

—-e Print only external and static symbols.
~f Produce full output. Print redundant symbols (.texr, .data, .lib, and .bss),

which are normally suppressed.

—T By default, nm prints the entire name of each symbol. Since object files can

have symbol] names with an arbitrary number of characters, a name that is

longer than the width of the column set aside for names will overflow its

column, forcing every column after the name to be misaligned. The -T

option causes nm to truncate every name which would otherwise overflow its

column and place an asterisk as the last character in the displayed name to

mark it as truncated.

Options may be used in any order, either singly or in combination, and may appear

anywhere in the command line. Therefore, both nm name -e -v and nm -ve

name print the static and external symbols in name, with external symbols sorted by

value.

TMPDIR/* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the

environment variable TMPDIR [see tmpnam() in tmpnam(3S)].

Licensed materia}—property of copyright holder(s) 093-701055

nm(1) DG/UX 5.4 nm(1)

DIAGNOSTICS

‘nm: name: cannot open”

if name cannot be read.

“nm: name: bad magic”

if name is not a common object file.

“nm: mame: no symbols’

if the symbols have been stripped from name.

SEE ALSO

as(1), cc(1), 1d(1), tmpnam(3S), a.out(4), ar(4).

CAVEAT

When all the symbols are printed, they must be printed in the order they appear in

the symbol table in order to preserve scoping information. Therefore, the -v and

-n options should be used only in conjunction with the ~e option.

093-701055 Licensed materia}—property of copyright holder(s) 1-145

prof(1)

NAME

DG/UX 5.4 prof(1)

prof - display profile data

SYNOPSIS

prof [-tcan] [-ox] [-g1] [-z] [-h] [-s] [-m mdatra] [prog]

DESCRIPTION

1-146

The prof command interprets a profile file produced by the monitor(3C) function.

The symbol table in the object file prog (a.out by default) is read and correlated

with a profile file (mon. out by default). For each text symbol the percentage of time

spent executing between the address of that symbol and the address of the next is

printed, together with the number of times that function was called and the average

number of milliseconds per call.

The mutually exclusive options t, c, a, and n determine the type of sorting of the

output lines: |

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

~a Sort by increasing symbol address.

—n Sort lexically by symbol] name.

The mutually exclusive options o and x specify the format (or base) for printing the

address of each symbol monitored:

-o Print each symbol address (in octal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol name.

The mutually exclusive options ~g and -1 control the tvpe of symbols to be

reported. The -1 option must be used with care; it applies the time spent in a static

function to the preceding (in memory) global function, instead of giving the static

function a separate entry in the report. If all static functions are properly located

(see example below), this feature can be very useful. If not, the resulting report may

be misleading. ,

Assume that A and B are global functions and only A calls static function Ss. If $ is
located immediately after A in the source code (that is, if S is properly located),

then, with the -1 option, the amount of time spent in A can easily be determined,

including the time spent in S. If, however, both A and B call S, then, if the -l

option is used, the report will be misleading; the time spent during B’s call to S will

be attributed to A, making it appear as if more time had been spent in A than really

had. In this case, function S cannot be properly located.

-g Include static (non-global) functions.

-1 Do not include static (non-global) functions (default).

The following options may be used in any combination: —

-2 Include all symbols in the profile range [see monitor(3C)], even if associated

with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is useful if the
report is to be processed further.)

-s Print a summary of several of the monitoring parameters and statistics on the

standard error output.

-m mdata

Use file mdata instead of mon. out as the input profile file.

Licensed material—property of copyright holder(s) 093-701055

prof(1) DG/UX 5.4 | prof(1)

-V Print prof version information on the standard error output.

A program creates a profile file if has been compiled with the -—p option of ce(1).

This option to the cc command arranges for calls to monitor(3C) at the beginning

and end of execution. It is the call to monitor at the end of execution that causes a

profile file to be written. The number of calls to a function is tallied if the -p option
was used to compile the file containing the function.

The name of the file created by a profiled program is controlled by the environment
variable PROFDIR. If PROFDIR does not exist, the file mon. out is produced in the

current directory. If PROFDIR = string, the file string/pid.progname is produced,
where progname consists of argv(0] with any path prefix removed, and pid is the

program’s process id. If PROFDIR is the null string, no profiling output is produced.

A single function may be split into subfunctions for profiling by means of the MARK

macro (see prof(5)].

FILES

mon.out default profile file

a.out default namelist (object) file

SEE ALSO

ec(1), exit(2), profil(2), monitor(3C), prof(5).

NOTES |

The times reported in successive identical runs may show variances because of vary-

ing cache-hit ratios that result from sharing the cache with other processes. Even ifa

program seems to be the only one using the machine, hidden background or asyn-

chronous processes may blur the data. In rare cases, the clock ticks initiating record-

ing of the program counter may “beat” with loops in a program, grossly distorting

measurements. Call counts are always recorded precisely, however.

Only programs that call exit or return from main are guaranteed to produce a pro-

file file, unless a final call to monitor is explicitly coded.

The times for static functions are attributed to the preceding external text symbol if

the -g option is not used. However, the call counts for the preceding function are

still correct; that is, the static function call counts are not added to the call counts of
the external function.

If more than one of the options -t, -c, -a, and —n is specified, the last option

specified is used and the user is warned.

Profiling may be used with dynamically linked executables, but care must be applied.

Currently, shared objects cannot be profiled with prof. Thus, when a profiled,

dynamically linked program is executed, only the “main” portion of the image is sam-

pled. This means that all time spent outside of the “main” object, that is, time spent

in a shared object, will not be included in the profile summary; the total time

reported for the program may be less than the total time used by the program.

Because the time spent in a shared object cannot be accounted for, the use of shared

objects should be minimized whenever a program is profiled with prof. If possible,

the program should be linked statically before being profiled.

Consider an extreme case. A profiled program dynamically linked with the shared C
library spends 100 units of time in some libe routine, say, malloc. Suppose mal-

loc is called only from routine B and B consumes only 1 unit of time. Suppose

further that routine A consumes 10 units of time, more than any other routine in the

“main” (profiled) portion of the image. In this case, prof will conclude that most of
the time is being spent in A and almost no time is being spent in B. From this it will

093-701055 Ucensed materia property of copyright holders) . 1-1 47

prof(1) DG/UX 5.4 prof(1)

be almost impossible to tell that the greatest improvement can be made by looking at

routine B and not routine A. The value of the profiler in this case is severely

degraded; the solution is to use archives as much as possible for profiling.

1-148 Licensed material—property of copyright holderts) 093-701055

prs(1) DG/UX §.4 prs(1)

NAME

prs — print an SCCS file

SYNOPSIS

prs [-d[dataspec]] [-r[SID]] [-e] [-1] [-c[dare-rime]] [-a] files

DESCRIPTION

Prs prints, on the standard output, parts or all of an SCCS file (see sccsfile(4)) in

a user-supplied format. If a directory is named, prs treats each file in the directory

as a named file, except that non-SCCS files (last component of the path name does
not begin with s.), and unreadable files are silently ignored. If a name of - is given,

the standard input is read; each line of the standard input is taken to be the name of

an SCCS file or directory to be processed; non-SCCS files and unreadable files are

silently ignored. :

Arguments to prs, which may appear in any order, consist of keyletter arguments,

and file names.

All the described keyletrer arguments apply independently to each named file:

~d[dataspec} Used to specify the output data specification. The dataspec is a

string consisting of SCCS file data keywords (see Data Key-

words) interspersed with optional, user-supplied text.

-x(SID] Specifies the SCCSrbDentification (SID) string of a delta for

which information is desired. If no SID is specified, the SID

of the most recently created delta is assumed. information for

all deltas created earlier than and including the delta designated

via the -r keyletter or the date given by the -c option. infor-

mation for all deltas created Jater than and including the delta

designated via the -x keyletter or the date given by the -c

option. Cutoff date-time, in the form:

YY[MM[DD[HH[MM{[SS]]]]]

~c[date-time] Units omitted from the date-time default to their maximum pos-

‘sible values; that is, -c7502 is equivalent to —c750228235959.

Any number of non-numeric characters may separate the vari-

ous 2-digit pieces of the curoff date in the form: °"-¢77/2/2

9:22:25". printing of information for both removed, i.e.,

delta type = R, (see rmdel(1)) and existing, i.e., delta type =

D, deltas. If the -a keyletter is not specified, information for

existing deltas only is provided.

Data Keywords

Data keywords specify which parts of an SCCS file are to be retrieved and output.

All parts of an SCCS file (see scecsfile(4)) have an associated data keyword. A

data keyword may appear in a dataspec any number of times.

Prs prints: (1) the user-supplied text; and (2) appropriate values (extracted from the

SCCS file) substituted for the recognized data keywords as they appear in the

dataspec. The format of a data keyword value is either Simple SCCS, in which key-
word substitution is direct, or Mulri-line , in which keyword substitution is followed

by a Carriage return.

User-supplied text is any text other than recognized data keywords.

A tab is specified by \t and carriage return/new-line is specified by \n. The default

data keywords are:

";Dt:\t:DL:\nMRs:\n: MR: COMMENTS: \n:C:”"

093-701055 Licensed material—property of copyright holderts) 1-149

prs(1)

Keyword

sFL:

:KV:

: BF:

:LK:

:Q:

:FB:

:CB:

:Ds:

:ND:

:FD:

:BD:

:GB:

3:W:

1-150

DG/UX 5.4

TABLE 1. SCCS Files Data Keywords

Data lem

Delta information

Delta line statistics

Lines inserted by delta

Lines deleted by delta

Lines unchanged by delta

Delta type

SCCS ID string (SID)

Release number

Level number

Branch number

Sequence number

Date delta created

Year delta created

Month delta created

Day delta created

Time delta created

Hour delta created

Minutes delta created

Seconds delta created

Programmer who created delta

Delta sequence number

Predecessor delta seq-no.

Seq-no. of deltas incl.,

excl., ignored

Deltas included (seq #)

Deltas excluded (seq #)

Deltas ignored (seq #)

MR numbers for delta

Comments for delta

User names

Flag list

Module type flag

MR validation flag

MR validation pgm name

Keyword error/warning flag

Keyword validation string

Branch flag

Joint edit flag

Locked releases

User defined keyword

Module name

Floor boundary

Ceiling boundary

Default SID

Null delta flag

File descriptive text

Body

Gotten body

A form of what(1) string

A form of what(1) string

what(1) string delimiter

Licensed material—property of copyright hoider(s)

File Section

Delta Table

3

User Names

Fiags
Rr

Comments

Body

N/A

N/A

N/A

Value

See below*

:Li:/:Ld:/:Lu:

MrRnNN

:Dy:/:Dm:/:Dd:

mn

mn

mn

:Th:::Tm:::Ts:

mn

nN

rn

logname

MrRN

mnrnnn

:Dn:/:Dx:/:Dg:

:DS: :CDS:...

:DS: :DS:..

:DS: :DS:...

text

text

text

text

text

yes or ro

text

yes or no

text

yes or no

yes or no

text

text

yes or no

text

text

text

2Z233M:\t: 1:

22::¥: 3M: :I::

@(#)

prs(1)

Format

ANNNAANAANARAAARAARAAAAANAAARnWwW

ONnNnNZZZUUUVUHHHHHHNHHNHYHZZZZHAWUY
093-701055

prs(1) DG/UX 5.4 prs(1)

:F: SCCS file name N/A text S

:PN: SCCS file path name N/A text S

® spt: = :DT: :I: :D: :T: :P: :DS: :DP:

EXAMPLES

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:

xyz

131

abc

prs -d"Newest delta for pgm :M:: :I: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a Special case:

prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000

MRs:

b178-12345

b179-54321

COMMENTS :

this is the comment line for s.file initial delta

for each delta table entry of the D type. The only keyletter argument allowed to be

used with the special case is the —a keyletter.

FILES

DIAGNOSTICS .

Use help(1) for explanations.

SEE ALSO

admin(1), delta(1), get(1), help(1).

sccsfile(4) in the Programmer’s Reference for the DG/UX System

"Source Code Control System” in Programmer's Guide: ANSI C and Programming

Support Tools.

093-701055 Licensed material—property of copyright holder(s) 1-151

ratfor(1) DG/UX 5.4 ratfor(1)

NAME

ratfor — rational FORTRAN dialect

SYNOPSIS

ratfor [options | [files]

DESCRIPTION

Ratfor converts a rational dialect of FORTRAN into ordinary irrational FOR-

TRAN. Ratfor provides control flow constructs essentially identical to those in C:

statement grouping:

{ Statement; Staternent; Statement }

decision-making:

if (condition) statement[else statement |

switch (Integer value) {

case integer: Statement

[default:] statement

loops:

while (condition) statement

for (expression; condition; expression) Statement

do limits statement

repeat statement [until (condition)]

break

next

and some syntactic sugar to make programs easier to read and write:

free form input:

multiple statements/line; automatic continuation

comments:

this is a comment.

translation of relationals:

>, >=, etc., become .GT., .GE., etc.

return expression to caller from function:

return (expression)

define:

define name replacement

include:

include file

The option -h causes quoted strings to be turned into 27H constructs. The -C
option copies comments to the output and attempts to format it neatly. Normally,
continuation lines are marked with a «& in column 1; the option -6x makes the con-

tinuation character x and places it in column 6.

Ratfor is best used with £77(1).

SEE ALSO

£77(1).

B. W. Kernighan and P. J. Plauger, Sofrware Tools, Addison-Wesley, 1976.

1 -1 52 Licensed materiat—property of copyright hoider(s) 093-701055

res(1) OG/UX 5.4 res(1)

NAME .

res — change RCS file attributes

SYNOPSIS

res [options | file ...

DESCRIPTION

Res creates new RCS files or changes attributes of existing ones. An RCS file con-

tains multiple revisions of text, an access list, a change log, descriptive text, and some

control attributes. For res to work, the caller’s login name must be on the access

list, except if the access list is empty, the caller is the owner of the file or the

superuser, or the -i option is present.

Files ending in ‘,v’ are RCS files, all others are working files. If a working file is

given, res tries to find the corresponding RCS file first in directory ./RCS and then

in the current directory, as explained in co(1).

-i creates and initializes a new RCS file, but does not deposit any revision.

If the RCS file has no path prefix, xcs tries to place it first into the sub-

directory ./RCS, and then into the current directory. If the RCS file

already exists, an error message is printed.

-alogins appends the names appearing in the comma-separated list logins to the

access list of the RCS file.

~Aoldfile appends the access list of oldfile to the access list of the RCS file.

-eflogins] erases the login names appearing in the comma-separated list logins from

the access list of the RCS file. If logins is omitted, the entire access List

is erased.

-cstring sets the comment leader to string. The comment leader is printed before

every log message line generated by the keyword $LogS during checkout

(see co). This is useful for programming languages without multi-line

comments. During res -i or initial ci, the comment leader is guessed

from the suffix of the working file.

-l[rev] locks the revision with number rev. If.a branch is given, the latest revi-

sion on that branch is locked. If rev is omitted, the latest revision on the

trunk is locked. Locking prevents overlapping changes. A lock is

removed with cior res ~—u (see below).

-u([rev] unlocks the revision with number rev. If a branch is given, the latest revi-

sion on that branch is unlocked. If rev is omitted, the latest lock held by

the caller is removed. Normally, only the locker of a revision may unlock

it. Somebody else unlocking a revision breaks the lock. This causes a

mail message to be sent to the original locker. The message contains a

commentary solicited from the breaker. The commentary is terminated

with a line containing a single ‘.’ or control-D.

-L sets locking to strict. Strict locking means that the owner of an RCS

file is not exempt from locking for checkin. This option should be used

for files that are shared.

-U sets locking to non-strict. Non-strict locking means that the owner of a

file need not lock a revision for checkin. This option should NOT be

used for files that are shared. The default is -L.

~nname|:rev]

associates the symbolic name name with the branch or revision rev. Recs

093-701055 Licensed materiat—property of copyright holders) 1 =1 53

ros(1) DG/UX 5.4 res(1)

prints an error message if mame is already associated with another

number. If rev is omitted, the symbolic name is deleted. Names must

begin with a letter, and cannot contain whitespace, period, colon, semi-

colon, or @.

-Nname[:rev]

same as -n, except that it overrides a previous assignment of name.

-orange deletes ("outdates”) the revisions given by range. A range consisting of a
single revision number means that revision. A range consisting of a

branch number means the latest revision on that branch. A range of the

form rev]—-rev2 means revisions rev] to rev2 on the same branch, —rev

means from the beginning of the branch containing rev up to and includ-

ing rev, and rev— means from revision rev to the end of the branch con-

taining rev. None of the outdated revisions may have branches or locks.

-q quiet mode; diagnostics are not printed.

-sstate[:rev]

sets the state attribute of the revision rev to state. If rev is omitted, the

latest revision on the trunk is assumed; If rev is a branch number, the

latest revision on that branch is assumed. Any string that could be a

name (see —n) is acceptable for srate. A useful set of states is Exp (for

experimental), Stab (for stable), and Rel (for released). By default,

ci sets the state of a revision to Exp.

-t[txtfile] writes descriptive text into the RCS file (deletes the existing text). If
txtfile is omitted, res prompts the user for text supplied from the std.

input, terminated with a line containing a single ‘.’ or control-D. Other-

wise, the descriptive text is copied from the file mrfile. If the -i option

is present, descriptive text is requested even if -t is not given. The

prompt is suppressed if standard input is not a terminal.

FILES

The caller of the command must have read/write permission for the directory contain-

ing the RCS file and read permission for the RCS file itself. Recs creates a sema-

phore file in the same directory as the RCS file to prevent simultaneous update. For

changes, res always creates a new file. On successful completion, rcs deletes the

old one and renames the new one. This strategy makes links to RCS files useless.

DIAGNOSTICS

The RCS file name and the revisions outdated are written to the diagnostic output.

The exit status always refers to the last RCS file operated upon, and is 0 if the opera-

tion was successful, 1 otherwise.

SEE ALSO

co(l), ci(1), ident(1), resdiff(1), resintro(1), resmerge(1), rlog(l),
scestores(1), resfile(4).

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control Sys-

tem," in Proceedings of the 6th International Conference on Software Engineering,

IEEE, Tokyo, Sept. 1982.

1 -1 54 Licensed material—property of copyright holder(s) 093-701055

resdiff(1) DG/UX 5.4 resditf(1)

NAME

resdiff - compare RCS revisions

SYNOPSIS

resdiff [-biwt] [-cefhn] [-rrevl] [-rrev2] file ...

DESCRIPTION

Resdiff runs berk_diff(1) to compare two revisions of each RCS file given. A

file name ending in ,v is an RCS file name, otherwise a working file name.

Resdiff derives the working file name from the RCS file name and vice versa, as

explained in co(1). Pairs consisting of both an RCS and a working file name may

also be specified. |

All options except -r have the same effect as described in berk_diff(1).

If both rev] and rev2 are omitted, rcsdiff compares the latest revision on the trunk

with the contents of the corresponding working file. This is useful for determining

what you changed since the last checkin. :

If revl is given, but rev2 is omitted, resdiff compares revision rev] of the RCS file

with the contents of the corresponding working file.

If both rev] and rev2 are given, resdiff compares revisions rev] and rev2 of the

RCS file.

Both rev] and rev2 may be given numerically or symbolically.

The environment variable RCS DIFF controls what diff program resdiff will run.

You can set RCS DIFF to diff(1) or to your own alternate diff program. If this

environment variable is not set, berk_diff(1) will be run.

EXAMPLES

The command

resdiff f.c

runs berk_diff on the latest trunk revision of RCS file £.c,v and the contents of

working file f£.c.

SEE ALSO

093-701055

ci(l), co(1), berk_diff(1), ident(1), res(1), resintro(1), resmerge(1),

rlog(1), resfile(4).

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control Sys-

tem,” in Proceedings of the 6th International Conference on Software Engineering,

TEEE, Tokyo, Sept. 1982.

Licensed material—property of copyright hoider(s) 1 -1 55

resintro(1) DG/UX 5.4 resintro(1)

NAME

resintro — introduction to RCS commands

DESCRIPTION

The Revision Control System (RCS) manages multiple revisions of text files. RCS
automates the storing, retrieval, logging, identification, and merging of revisions.

RCS is useful for text that is revised frequently, for example programs, documenta-

tion, graphics, papers, form letters, etc.

The basic user interface is extremely simple. The novice only needs to learn two

commands: ci and co. Ci, short for "check in", deposits the contents of a text

file into an archival file called an RCS file. An RCS file contains all revisions of a
particular text file. Co, short for "check out", retrieves revisions from an RCS file.

SEE ALSO

1-156

ci(1), co(1), ident(1), merge(1), res(1), resdiff(1), resmerge(1), rlog(1),
resfile(4). |

Walter F. Tichy, ‘“‘An Introduction to the Revision Control System”, Programmer

Supplementary Documents, Volume 1 (PS1), #13 (This document is available from

the University of California Berkeley)

Licensed material—property of copyright hoider(s) 093-701055

resmerge (1) DG/UX 5.4 resmerge (1)

NAME

rcesmerge — merge RCS revisions

SYNOPSIS

resmerge -rrevl [-rrev2] [-p] file

DESCRIPTION

Resmerge incorporates the changes between rev] and rev2 of an RCS file into the

corresponding working file. If —p is given, the result is printed on the std. output,

otherwise the result overwrites the working file.

A file name ending in ’,v’ is an RCS file name, otherwise a working file name.

Merge derives the working file name from the RCS file name and vice versa, as

explained in co(1). A pair consisting of both an RCS and a working file name may

also be specified. |

Rev1 may not be omitted. If rev2 is omitted, the latest revision on the trunk is

assumed. Both rev] and rev2 may be given numerically or symbolically.

Resmerge prints a warning if there are overlaps, and delimits the overlapping regions

as explained in co -j. The command is useful for incorporating changes into a

checked-out revision.

EXAMPLES

Suppose vou have released revision 2.8 of f.c. Assume furthermore that you just com-

pleted revision 3.4, when you receive updates to release 2.8 from someone else. To

combine the updates to 2.8 and your changes between 2.8 and 3.4, put the updates to

2.8 into file f.c and execute

resmerge -p -r2.8 -r3.4 f.c >f£.merged.c

Then examine f.merged.c. Alternatively, if you want to save the updates to 2.8 in the

RCS file, check them in as revision 2.8.1.1 and execute co -j:

ci -r2.8.1.1 f.e

co -r3.4 -32.8:2.8.1.1 f.c

As another example, the following command undoes the changes between revision 2.4

and 2.8 in your currently checked out revision in f.c.

resmerge -r2.8 -r2.4 f.¢c

Note the order of the arguments, and that f.c will be overwritten.

SEE ALSO

ci(1), co(1), merge(1), ident(1), res(1), resdiff(1), rlog(1), resfile(4).
Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision Control Sys-
tem,” in Proceedings of the 6th International Conference on Software Engineering,

IEEE, Tokyo, Sept. 1982.

NOTES

Resmerge does not work for files that contain lines with a single ‘.’.

093-701055 Licensed materiai—property of copyright holder(s) 1-157

regemp(1) DG/UX 5.4 regemp(1)

NAME

regemp — regular expression compile

SYNOPSIS

regemp [-] file...

DESCRIPTION

The regemp command performs a function similar to regemp and, in most cases,

precludes the need for calling regcmp from C programs. Bypassing regemp saves

on both execution time and program size. The command regemp compiles the regu-

lar expressions in file and places the output in file.i. If the - option is used, the

output is placed in file.c. The format of entries in file is a name (C variable) fol-

lowed by one or more blanks followed by one or more regular expressions enclosed in

double quotes. The output of regemp is C source code. Compiled regular expres-

sions are represented as extern char vectors. file.i files may thus be #included

in C programs, or file.c files may be compiled and later loaded. In the C program

that uses the regemp output, regex(abc,line) applies the regular expression

named abc to line. Diagnostics are self-explanatory.

EXAMPLES .

name "([A-Za-z] [A-Za-z0-9_] *)$0"

telno "\({0,1}([2-9] [01] [1-9])$0\) {0,1} «"
"¢{2-9] [0-9] {2})$2[-]{0,21)"

"¢ [0-9] (4) $2”

The three arguments to telno shown above must all be entered on one line.

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

applies the regular expression named telnoto line.

SEE ALSO

regemp(3G).

NOTES .

The regcmp command and the application code that calls the regex routine with

the compiled regular expression must be run in the same locale. See

setlocale(3C).

1 -1 58 Licensed material-property of copyright holder(s) 093-701055

rev(1) DG/UX 5.4 : rev(1)

NAME

rev — reverse order of characters in each line of file

SYNOPSIS

rev [file ...]

where:

file Name of input file; if no file is specified, standard input is used.

DESCRIPTION

Rev copies the named files to the standard output, reversing the order of characters

in every line.

SEE ALSO

awk(1), dd(1).

093-701055 Licensed materiai—property of copyright holder(s) . 1 | 59

riog(1) DG/UX 5.4 riog(1)

NAME

rlog — print log messages and other information about RCS files

SYNOPSIS |

rlog [options } file ...

DESCRIPTION

Rlog prints information about RCS files. Files ending in ‘,v’ are RCS files, all others

are working files. If a working file is given, xrlog tries to find the corresponding

RCS file first in directory ./RCS and then in the current directory, as explained in

co(]l).

Rlog prints the following information for each RCS file: RCS file name, working file

name, head (i.e., the number of the latest revision on the trunk), access list, locks,

symbolic names, suffix, total number of revisions, number of revisions selected for

printing, and descriptive text. This is followed by entries for the selected revisions in

reverse chronological order for each branch. For each revision, rlog prints revision

number, author, date/time, state, number of lines added/deleted (with respect to the

previous revision), locker of the revision (if any), and log message. Without options,

rlog prints complete information. The options below restrict this output.

-L ignores RCS files that have no locks set; convenient in combination with
oR, -h, or -1.

-R only prints the name of the RCS file; convenient for translating a working

file name into an RCS file name.

-h prints only RCS file name, working file name, head, access list, locks,

symbolic names, and suffix.

-t prints the same as —h, plus the descriptive text.

-ddates prints information about revisions with a checkin date/time in the ranges
given by the semicolon-separated list of dates. A range of the form dl<d2

or d2>di1 selects the revisions that were deposited between di and d2,

(inclusive). A range of the form <d or d> selects all revisions dated d or

earlier. A range of the form d< or >d selects all revisions dated d or

later. A range of the form d selects the single, latest revision dated d or

earlier. The date/time strings d, dI, and d2 are in the free format

explained in co(1). Quoting is normally necessary, especially for < and >.

Note that the separator is a semicolon.

-1{lockers] :

prints information about locked revisions. If the comma-separated list

lockers of login names is given, only the revisions locked by the given login

names are printed. If the list is omitted, all locked revisions are printed.

~rrevisions

prints information about revisions given in the comma-separated list revi-

sions of revisions and ranges. A range revJ—rev2 means revisions rev] to

rev2 on the same branch, —rev means revisions from the beginning of the

branch up to and including rev, and rev— means revisions starting with rev

to the end of the branch containing rev. An argument that is a branch

means all revisions on that branch. A range of branches means all revi-

sions on the branches in that range.

-sstates prints information about revisions whose state attributes match one of the

States given in the comma-separated list states.

1 1 60 Licensed material—property of copyright hoider(s) 093-701055

riog(1) DG/UX 5.4 rieg(1)

-w{logins] prints information about revisions checked in by users with login names
appearing in the comma-separated list logins. If logins is omitted, the

user’s login is assumed.

Rlog prints the intersection of the revisions selected with the options -d, -1, -s,

-w, and -r.

EXAMPLES

rlog -L -R RCS/*,v

rlog -L -h RCS/*,v

rlog -L -] RCS/*,v

tlog RCS/*,v

The first command prints the names of all RCS files in the subdirectory ‘RCS’ which

have locks. The second command prints the headers of those files, and the third

prints the headers plus the log messages of the locked revisions. The last command |

prints complete information.

DIAGNOSTICS

The exit status always refers to the last RCS file operated upon, and is 0 if the opera-

tion was successful, 1 otherwise.

SEE ALSO

093-701055

ci(1), co(1), ident(1), res(1), resdiff(1), resintro(1), resmerge(l),

resfile(4), scestorces(8).

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control Sys-

tem," in Proceedings of the 6th International Conference on. Software Engineering,

IEEE, Tokvo, Sept. 1982.

Licensed material—property of copyright holder(s) 1 o1 61

rmdei(1)

NAME

DG/UX 5.4 rmdel(1)

rmdel — remove a delta from an SCCS file

SYNOPSIS

rmdel -r SID files

DESCRIPTION

Rmdel removes the delta specified by the SID from each named SCCS file. The delta

to be removed must be the most recent delta in its branch in the delta chain of each

named SCCS file. In addition, the SID specified must nor be that of a version being

edited for the purpose of making a delta: if a p-file (see get(1)) exists for the named

SCCS file, the SID specified must nor appear in any entry of the p-file

If a directory is named, rmdel treats each file in the directory as a named file,

except that non-SCCS files (last component of the path name does not begin with s.)

and unreadable files are silently ignored. If a name of —~ is given, the standard input

is read; each line of the standard input is taken to be the name of an SCCS file to be

processed; non-SCCS files and unreadable files are silently ignored.

Simply stated, if you make a delta you can remove it; or if you own the file and direc-

tory you can remove a delta.

EXAMPLES

FILES

$ xrmdel ~r1.15 /work/archives/s.filel

This command specifies the removal of delta ’1.15’ of the SCCS file ’s.filel’. This

process will cause the delta’s type indicator in the "delta table" of the SCCS file to be

changed from "D" (delta) to "R" (removed).

$ rmdel ~-r1.3.1.1 s.file2

This command specifies the removal of branch delta °1.3.1.1’ from the SCCS file

’s.file2’. This will also cause the delta’s type indicator to change from "D" to "R".

x.file [see delta(1)]

z.file [see delta(1)]

DIAGNOSTICS

Use help(1) for explanations.

SEE ALSO

1-162

delta(1), get(1), help(1), prs(1).

secsfile(4) in the Programmer’s Reference for the DG/UX System

"Source Code Control System” in Programmer's Guide: ANSI C and Programming
Support Tools.

Licensed materia—property of copyright holder(s) 093-701055

scesdiff (1) DG/UX 5.4 sccsdiff(1)

NAME

scecsdiff — compare two versions of an SCCS file

SYNOPSIS

sceesdiff -xSID1 -rSID2 [-p] [-s7] files

DESCRIPTION

Sccsdiff compares two versions of an SCCS file and generates the differences
between them. Any number of SCCS files may be specified, but arguments apply to

all files.

-rSID? SIDI and SID2 specify the deltas of an SCCS file that are to be

compared. Versions are passed to bdiff(1) in the order given.

-p Pipe output for each file through pr(1).

-sn N is the file segment size that bdiff will pass to diff(1). This is

useful when diff fails due to a high system load.

EXAMPLES |

secsadiff -r1.3 -r1.4 /work/archives/s.filel

This command lists differences (if there are any) between versions 1.3’ and ’1.4’ of

the SCCS file ’s.filel’. If the versions are identical, you will get the message ’s.file1:

No differences’.

secesdiff -r1.3 -r1.4 -p s.file2

This command does the same as the previous example, except the output is format-

ted.

scesdiff -r1.5.1.1 -r1.5.1.2 -s100 s.file3

This command lists any differences between versions °1.5.1.1’ and 71.5.1.2’ of the

SCCS file ’s.file3’. The -s100 will pass 100 segments at a time from ’bdiff’ to ‘diff’.

This is useful under high system load.

FILES

DIAGNOSTICS .

You get the message

file: No differences

if the two versions are the same.

Use help(1) for explanations.

SEE ALSO

bdiff(1), get(1), help(1), pr(1). |

"Source Code Control System" in Programmer’s Guide: ANSI C and Programming

Support Tools

093-701055 Licensed materiai—property of copyright hoider(s) 1 | 63

scestorcs(1) DG/UX 5.4 seestores(1)

NAME

secstorces — build RCS file from SCCS file

SYNOPSIS |

scestorces [-t] [-v] [-cshell-crmd] s.file ...

DESCRIPTION

FILES

Secstores builds an RCS file from each SCCS file argument. The deltas and com-

ments for each delta are preserved and installed into the new RCS file in order. Also
preserved are the user access list and descriptive text, if any, from the SCCS file.

The following flags are meaningful:

~eshell-cmd

Executes shell-cmd for each revision before installing it in the RCS file.

Occurrences of $%s in shell-cmd are replaced by the name of the file contain-

ing the revision. :

-t Trace only. . Prints detailed information about the SCCS file and lists the

commands that would be executed to produce the RCS file. No commands

are actually executed and no RCS file is made.

-v Verbose. Prints each command that is run while it is building the RCS file.

For each s .somefile , Scestores writes the files somefile and somefile,v which
should not already exist. Sccstores will abort, rather than overwrite those files if

they do exist.

DIAGNOSTICS

All diagnostics are written to stderr. Errors cause a non-zero exit status.

SEE ALSO

BUGS

1-164

ci(1), co(1), res(1).

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control Sys-

tem," in Proceedings of the 6th International Conference on Software Engineering,

IEEE, Tokyo, Sept. 1982. |

Secstores does not preserve all SCCS options specified in the SCCS file. Most

notably, it does not preserve removed deltas, MR numbers, and cutoff points.

Licensed materiat—property of copyright holder(s) 093-701055

sdb(1) DG/UX 5.4 | sdb(1)

NAME.

sdb -— symbolic debugger

SYNOPSIS

sdb [-ssigno] [-v] [-W] [-w] [objfile [corfile (directory-list]]]

DESCRIPTION

Sdb is the symbolic debugger for C, F77, and assembly programs. Sdb may be used

to examine executable program files and core files. It may also be used to examine

live processes in a controlled execution environment.

The objfile argument is the name of an executable program file. To take full advan-
tage of the symbolic capabilities of sdb, this file should be compiled with the -g

(debug) option. If it has not been compiled with the -g option, the symbolic capabil-

ities of sdb will be limited, but the file can still be examined and the program

debugged.

The corfile argument is the name of a core image file. A core image file is produced

by the abnormal termination of objfile. The default for corfile is core. A core

image file need not be present to use sdb. Using a hyphen (-) instead of corfile
forces sdb to ignore an existing core image file.

The directory-list argument is a colon-separated list of directories that is used by sdb

to locate source files used to build objfile. If no directory list is specified, sdb will

look in the current directory.

The following options are recognized by sdb:

-s Signo

Where signo is a decimal number that corresponds to a signal number (see

signal(2)], do not stop live processes under control of sdb that receive the

signal. This option may be used more than once on the sdb command line.

-V Print version information. If no objfile argument is specified on the command

line, sdb will exit after printing the version information.

-W Suppress warnings about corfile being older than objfile or about source files

that are older than objfile. :

-w Allow user to write to objfile or corfile (this option is supported only when

debugging COFF files).

Sdb recognizes a current line and a current file. When sdb is examining an execut-

able program file without a core file, the current line and current file are initially set

to the line and file containing the first line of main. If corfile exists, then current

line and current file are initially set to the line and file containing the source state-

ment where the process terminated. Note that on the 88K, this may not be the

instruction which actually caused the process to terminate. The current line and

current file change automatically as a live process executes. They may also be

changed with the source file examination commands.

Names of variables are written as in C. Variables local to a procedure may be

accessed using the form procedure:variable. If no procedure name is given, the pro-

cedure containing the current line is used by default.

Structure members may be referred to as variable.member, pointers to structure

members as variable—->member, and array elements as variable(number}. Pointers

may also be dereferenced by using the form pointer [number]. Combinations of these

forms may also be used. The form number—>member may be used where number is

the address of a pointer, and mumber.member where number is interpreted as the

093-701055 Licensed materiat—property of copyright holder(s) 1 o1 65

sdb(1) DG/UX 5.4 sdb(1)

address of a structure instance. The template of the structure type used in this case

will be the last structure type referenced. When sdb displays the value of a struc-

ture, it does so by displaying the value of all elements of the structure. The address

of a structure is displayed by displaying the address of the structure instance rather

than the addresses of individual elements.

Elements of a multidimensional array may be referred to as _ variable

[number] [number]..., or as variable [number,number,...]. In place of number, the

form number ;number may be used to indicate a range of values, * may be used to

indicate all legitimate values for that subscript, or subscripts may be omitted entirely

if they are the last subscripts and the full range of values is desired. If no subscripts

are specified, sdb will display the value of all elements of the array.

A particular instance of a variable on the stack is referred to as

procedure :variable,number.. The number is the occurrence of the specified procedure

on the stack, with the topmost occurrence being 1. The default procedure is the one

containing the current line. |

Addresses may be used in sdb commands as well. Addresses are specified by

decimal, octal, or hexadecimal numbers.

Line numbers in the source program are specified by the form filename:number or

procedure:number. In either case, the number is relative to the beginning of the file

and corresponds to the line number used by text editors or the output of pr. A

number used by itself implies a line in the current file.

While a live process is running under sdb, all addresses and identifiers refer to the

live process. When sdb is not examining a live process, the addresses and identifiers

refer to objfile or corfile.

Commands

1-166

The commands for examining data in the program are:

t+ Prints a stack trace of the terminated or halted program. The function invoked

most recently is at the top of the stack. For C programs, the Stack ends with

_Start, which is the startup routine that invokes main.

T Prints the top line of the stack trace.

variable/clm

Prints the value of variable according to length / and format m. The numeric

count c indicates that a region of memory, beginning at the address implied by

variable, is to be displayed. The length specifiers are:

b one byte

h two bytes (half word)

1 four bytes (long word)

Legal values for m are:

character

signed decimal

unsigned decimal

octal]

hexadecimal*~* OF F MR A
Licensed material—property of copyright holder(s) 093-701055

sdb(1)

093-701055

DOG/UX 5.4 sdb(1)

hexadecimal (uppercase) |

32-bit single precision floating point

64-bit double precision floating point

Assumes that variable is a string pointer and prints characters starting at

the address pointed to by the variable. |

a Prints characters starting at the variable’s address. Do not use this with

register variables.

nh a eh
pointer to procedure

i Disassembles machine-language instruction with addresses printed
numerically and symbolically.

I Disassembles machine-language instruction with addresses printed

numerically only.

Length specifiers are effective with formats c, d, u, o, x. The length specif-

ier determines the output length of the value to be displayed. This value mav be

truncated. The count specifier c displavs that many units of memory, starting at

the address of the variable. The number of bytes in the unit of memory is deter-

mined by / or by the size associated with the variable. If the specifiers c, /, and

m are omitted, sdb uses defaults. If a count specifier is used with the s or a

command, then that many characters are printed. Otherwise, successive charac-

ters are printed until either a null byte is reached or 128 characters are printed.

The last variable may be redisplaved with the ./ command.

For a limited form of pattern matching, use the sh metacharacters « and ?

within procedure and variable names. (Sdb does not accept these metacharac-

ters in file names, as the function name in a line number when setting a break-

point, in the function call command, or as the argument to the e command.) If

no procedure name is supplied, sdb matches both local and global variables. If

the procedure name is specified, then sdb matches only local variables. To

match global variables only, use :pattern. To print all variables, use +: x.

linenumber?lm

variable: ?lm

Prints the value at the address from the executable or text space given by

linenumber or variable (procedure name), according to the format Im. The
default format is i.

variable=Im

linenumber=lm

number=lm

Prints the address of variable or linenumber, or the value of number. I specifies

length and m specifies the format. If no format is specified, then sdb uses 1x

(four-byte hex). m allows you to convert between decimal, octal, and hexade-

cimal.

variable ! value

Sets variable to the given value. The value may be a number, a character con-
stant, or a variable. The value must be well-defined; structures are allowed only

if assigning to another structure variable of the same type. Character constants

are denoted “character. Numbers are viewed as integers unless a decimal point

or exponent is used. In this case, they are treated as having the type double.

Registers, except the floating point registers, are viewed as integers. Register

Licensed materia}—property of copyright holder(s) 1 of 67

sdb(1)

1-168

DG/UX 5.4 sdb(1)

31, as well as the special-function register names (such as fp and
names are r0-

sp) recognized by the assembler. Sdb recognizes register names by a

prepended or appended %, as in %r6 or fp%. When debugging a COFF

object, only the form with appended &% is accepted.

If the address of a variable is given, it is regarded as the address of a variable of

type int. C conventions are used in any type conversions necessary to perform

the indicated assignment. If sdb is invoked with the -w flag, writing to text

addresses before the execution of the program, or after its completion, will

change the actual values in the objfile. Writing to these addresses during pro-

gram execution will change only the image in memory.

x Prints the machine registers and the current machine-language instruction.

X Prints the current machine-language instruction.

The commands for examining source files are:

e

e procedure

e filename

e directory/

e, without arguments, prints the name of the current file. The second form sets

the current file to the file containing the procedure. The third form sets the

current file to filename. The current line is set to the first line in the named

procedure or file. Source files are assumed to be in the directories in the direc-

tory list. The fourth form adds directory to the end of the directory list.

/regular expression/

Searches forward from the current line for a line containing a string matching

regular expression, asin ed. The trailing / may be omitted, except when asso-

ciated with a breakpoint.

?regular expression? |

Searches backward from the current line for a line containing a string matching

regular expression, asin ed. The trailing > may be omitted, except when asso-

ciated with a breakpoint.

Prints the current line.

z Prints the current line and the following nine lines. Sets the current line to the
last line printed.

ws Prints the 10 lines (the window) around the current line.

number

Specifies the current line. Prints the new current line.

count+

Advances the current line by counr lines. Prints the new current line.

count—

Resets the current line by count lines back. Prints the new current line.

The commands for controlling the execution of the source program are:

count x args

count R

Runs the program with the given arguments. The r command with no argu-

ments reuses the previous arguments to the program. The R command runs the

program with no arguments. An argument beginning with < or > redirects the

Licensed material—property of copyright holder(s) 0$3-701055

sdb(1)

093-701055

OG/UX 5.4 sdb(1)

standard input or output, respectively. Full sh syntax is accepted. If count is
given, sdb stops when it encounters count breakpoints.

linenumber c count

linenumber C count

Continues execution. Sdb stops when it encounters count breakpoints. The

signal that stopped the program is reactivated with the C command and ignored

with the c command. If a line number is specified, then a temporary break-

point is placed at the line and execution continues. The breakpoint is deleted
when the command finishes.

linenumber g count

Continues with execution resumed at the given line. If count is given, sdb

stops when it encounters count breakpoints. Results are undefined if linenumber

is in a different context (e.g. another procedure).

Ss count

S count

s single steps the program through count lines; or if no count? is given, the pro-

gram runs for one line. ss will step from one function into a called function.

S also steps a program, but it will not step into a called function. It steps over

the function called.

i count

I count

Single steps by count machine-language instructions. The signal that caused the

program to stop is reactivated with the I command and ignored with the i

command.

variable$m count

address:m count a

Single steps (as with s) until the specified location is modified with a new value.

If count is omitted, it is, in effect, infinity. Variable must be accessible from

the current procedure. This command can be very slow.

level v :

Toggles verbose mode. This is for use when single stepping with S, s, or m.

If level is omitted, then just the current source file and/or function name is
printed when either changes. If level is 1 or greater, each C source line is

printed before it executes. If level is 2 or greater, each assembler statement 1s

also printed. A v turns verbose mode off.

k Kills the program being debugged.

procedure (argl,argd,...)

procedure (argl,arg2,...)/m

Executes the named procedure with the given arguments. Arguments can be

register names, integer, character, or string constants, or names of variables

accessible from the current procedure. The second form causes the value

returned by the procedure to be printed according to format m. If no format is
given, it defaults to d.

linenumber b commands |

Sets a breakpoint at the given line. If a procedure name without a line number

is given (e.g., proc:), a breakpoint is placed at the first line in the procedure

even if it was not compiled with the -g option. If no linenumber is given, a

breakpoint is placed at the current line. If no commands are given, execution

stops at the breakpoint and control is returned to sdb. Otherwise the

Licensed materia—property of copyright holder(s) 1 = 1 69

sdb(1) DG/UX 5.4 sdb(1)

commands are executed when the breakpoint is encountered. Multiple com-

mands are specified by separating them with semicolons. Nested associated

commands are not permitted; setting breakpoints within the associated environ-

ments is permitted.

B Prints a list of the currently active breakpoints.

linenumber a

Deletes a breakpoint at the given line. If no linenumber is given, then the break-

points are deleted interactively. Each breakpoint location is printed and a line

is read from the standard input. If the line begins with a y or d, then the

breakpoint is deleted. |

D Deletes all breakpoints.

1 __—swPrints the last executed line.

linenumber a |
Announces a line number. If linenumber is of the form proc:number, the com-

mand effectively does a linenumber:b 1;c. If linenumber is of the form proc:,

the command effectively does a proc:b T;c. |

Miscellaneous commands:

#rest-of-line

The rest-of-line represents comments that are ignored by sdb.

!command

The command is interpreted by sh.

new-line

If the previous command printed a source line, then advance the current line by

one line and print the new current line. If the previous command displayed a

memory location, then display the next memory location. If the previous com-

mand disassembled an instruction, then disassemble the next instruction.

end-of-file character |

Scrolls the next 10 lines of instructions, source, or data depending on which was

printed last. The end-of-file character is usually control-d.

< filename

Read commands from filename until the end of file is reached, and then con-

tinue to accept commands from standard input. Commands are echoed, pre-
ceded by two asterisks, just before being executed. This command may not be

nested; < may not appear as a command in a file.

M ‘Prints the address maps.

" string “

Prints the given string. The C escape sequences of the form \character,

\octaldigits, or \xhexdigits are recognized, where character is a nonnumeric

character. The trailing quote may be omitted.

q Exits the debugger.

V ‘Prints version stamping information.

SEE ALSO

ec(1), signal(2), a.out(4), core(4), syms(4).

ed(1), sh(1) in the User’s Reference Manual.

The “sdb” chapter in the Programmer’s Guide: ANSI C and Programming Support

Tools.

1 o1 70 Licensed material—property of copyright holder(s) 093-701055

sdb(1)

NOTES

093-701055

DG/UX 5.4 sdb(1)

When sdb prints the value of an external variable for which there is no debugging

information, a warning is printed before the value. The size is assumed to be int

(integer).
|

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some information

may be missing.

Arguments in function calls are limited in size to 32 bits (pointers are allowed).

When debugging COFF executables, function calls from within sdb cannot be made

before main is reached.

If objfile is a dynamically linked executable, variables, function names, and so on that

are defined in shared objects may not be referenced until the shared object in which

the variable, etc., is defined is attached to the process. For shared objects attached

at startup (e.g. libc.so.1, the default C library), this implies that such variables

may not be accessed until main is called.

The objfile argument is accessed directly for debugging information while the process

is created via the PATH variable.

Licensed materia}—property of copyright holder(s) 1 @1 71

sde-target(1) DG/UX 5.4 sde-target(1)

NAME

sde-target — print commands to reset software development environment target

SYNOPSIS |
sde-target [-sh | -csh] [targer }

DESCRIPTION

The sde-target command prints the shell command lines that you execute to reset

your environment so that the software development tools produce code for a specified

target (see sde(5)). The command lines reset your environment by setting the

TARGET BINARY_INTERFACE environment variable to the validated pathname com-

ponent of a directory in /uszr/sde.

The easiest way to use sde-target is to embed it in an eval command that you

invoke via a C shell alias or a Bourne shell function (see sh(1) and csh(1)).

For example, the following csh(1) command creates an alias targ that invokes

sde-target and executes the commands it returns:

alias targ ‘eval ~sde-target -csh \!*~’

The following sh(1) command creates a shell function that does the same:

targ () eval ~sde-target -sh "$¢"~

After you create targ or a similar alias or function, vou can set your software

development environment by invoking targ with the proper environment name.

OPTIONS

-sh Print commands in Bourne shell syntax.

-csh Print commands in C shell syntax.

target Specify the target system, for example m88kbcs. If you specify default,

the environment is reset to the default environment. If you omit target,

the current environment is printed on standard error.

You may specify either -sh or -csh on a single sde~target invocation, but not

both. If you specify neither, sde-target reads the environment variable SHELL

(defined under login(1)) to determine which shell to use. If this method fails, an

error is reported.

Target names a directory in /usr/sde.

EXAMPLES

sde-target Print the current SDE target.

sde-target -csh default

: Output csh(1) commands to reset the SDE target to the
default environment.

sde-target -sh m88kbcs

Output sh(1) commands to set the SDE target to the

environment named m88kbes.

FILES

/usr/sde/$TARGET_BINARY_INTERFACE

Root of the target SDE domain.

~/.eshre User’s C shell alias for sde-target.

1-1 72 Licensed material—property of copyright holder(s) 093-701055

ede-target (1) DG/UX 5.4 sde-target(1)

SHOME/. profile User’s Bourne shell function for sde-target.

DIAGNOSTICS

unknown shell The shell was not specified and could not be determined.

no such target The given target does not exist.

SEE ALSO

esh(1), sh(1), 1d(1), sdetab(4), sde(5).

NOTE

It is not possible to establish an environment from make(1) directly. Sde-target

must be used before invoking make. It is possible when using super-makes to do this
automatically.

093-701055 Licensed material—property of copyright holders) 1 =f 73

sifitter(1)

NAME

DG/UX 5.4 | sifitter(1)

sifilter — preprocess MC88100 assembly language

SYNOPSIS

sifilter [options] [input] [output]

DESCRIPTION

Sifilter manipulates MC88100 assembly language source code from input to work

around known problems in the MC88100 silicon. Sifilter is normally invoked

transparently by the assembler /bin/as but can be used directly for testing pur-

poses. The program can be expected to disappear when silicon is sufficiently mature.

Input and output are normally omitted, defaulting to standard input and output paths.

Filenames may be specified for either path, and a dash (—), denoting standard input,

may be used as a place holder for input.

The translations performed by sifilter are controlled by the switches listed below.

The assembler /bin/as sets the “standard” option, —r. Since each revision of the

silicon requires a different set of workarounds, the actual behavior of the "standard"

option may vary.

Switches

1-174

Insert 2 trap-not-taken (tbl 0,r0,511) after each 1d or ld.d.

Split each st.d into an equivalent sequence of two st instructions.

Do not pass comment lines through to the output.

Issue each stor st.d twice.0 a a wD Synthesize immediate operands of div instructions.

Enable literal synthesis. See Literal Synthesis below.@

| Warn about use of double precision source operands in floating point

instructions.

h Produce code that converts double-precision floating-point operands to

single-precision operands before performing floating-point operations. The

conversion checks for values outside the range representable in single pre-

cision and simulates an illegal instruction trap when conversion is not pos-

sible.

Split each 1d.d into an equivalent sequence of two 1d instructions.

Split each 1d.d into an equivalent sequence of two 1d instructions.

Insert a trap-not-taken before each stor st.d.

Insert a dummy 1d before each 1d. A dummy load is a load in which the

destination register is r0. The source operands in a dummy load are the

same as those in the actual load which follows.

r Perform a “standard” set of fixes for current silicon. Check the DG/UX

release notice to determine the behavior of the current sifilter on the

system.

Produce a statistics dump on the standard error path on termination.

Synthesize immediate operands of div and mul instructions which have

any of the high 5 bits set.

V Displays a version identification message and exits immediately.

gd Fr

Licensed material—property of copyright holders) 093-701055

Sifilter(1) DG/UX 5.4 sifitter(1)

v A single v enables “verbose” mode, in which various messages detailing

actions taken by sifilter are output as comment lines. Two or more

instances of v in the option string generates a comment line containing the

current location counter value before each source line.

y Insert a no-op after each trap-not-taken generated by the z option.

If z has not been specified, this option has no effect.

z Insert a trap-not-taken after each st or st.d.

Defaults

All switches default to "off'. Sifilter performs the following transformations

regardless of the option switches specified.

- addu and subu instructions with operands r31,r31,lit82 where “lits2” is a con-

stant whose value is greater than 64K are replaced with an equivalent sequence.

- Floating point instructions involving double operands may be moved if they

would otherwise fall at the end of a cache line.

Literal Synthesis

Since sifilter must maintain an accurate location counter, it must perform the

same fixups for “litl6" operands that would normally be done by a linker performing

literal synthesis.

Instructions with litl6 operands whose value cannot be determined by sifilter (for

example, a label), or whose value would require more than 16 bits, are replaced with

an equivalent sequence. This is called "literal synthesis", since a 32-bit value is "syn-

thesized” in a register from the literal.

There are two forms of literal synthesis. The short form:

or.u 1r29,r0,hil6(Lit16)

op _rd,1r29,1016(1it16)

is used for the add, addu, ld, lda, or, st, xmem, and xor instructions (in all

their variations) when the source register is r0. When the source register is other than

r0, these instructions are expanded into the long form:

or.u r29,r0,hil6(1iti6é)

or . r29,r29,1016(1it16)

op rd,rs,r29

Instructions which always are expanded with the long form are all the variations on

and, cmp, div, divu, mask, mul, sub, subu, and tbnd.

No literal synthesis is done unless the e option has been specified.

Scratch Registers

Some of the fixups performed by sifilter require one or two scratch registers

(split ld.d or st.d, addu, subu, and floats).

Scratch registers are taken from the set r26-r29.

SEE ALSO

as(1), cc(]).

NOTE

Use of sifilter should be coordinated with the revision of silicon on the target

machine and the revision of the DG/UX kernel. See the DG/UX release notice for

details.

693-701055 Licensed material—property of copyright hoider(s) 1-175

size (1) DG/UX 5.4 size(1)

NAME

size - print section sizes of object files

SYNOPSIS

size [-n] [-£] [-o] [-x] [-v] [-F] [-a] file ...

DESCRIPTION

The size command produces section or segment size information in bytes (decimal)

for each loaded section in the specified object files. Size prints out the size of the

text, data, and bss (uninitialized data) segments (or sections) and their total. For an

archive file, size displays this information for each member of the archive.

When calculating segment information, size prints out the total file size of the non-

writable segments, the total file size of the writable segments, and the total] memory

size of the writable segments minus the total file size of the writable segments.

If it cannot calculate segment information, size calculates section information.

When calculating section information, it prints out the total size of sections that are

allocatable, non-writable, and not NOBITS, the total size of the sections that are allo-

catable, writable, and not NOBITS, and the total size of the writable sections of type

NOBITS. (NOBITS sections do not actually take up space in the file.)

If size cannot calculate either segment or section information, it prints an error

message and stops processing the file.

Options are:

—n Include sections not loaded when calculating the sizes.

-f Produce full output; print the size of every loaded section, followed by the

section name in parentheses.

—o Print numbers in octal, not decimal.

—X Print numbers in hexadecimal, not decimal.

-V Print, on standard error, the version information about the size command

being executed. |

-F Print the size of each loadable segment, the permission flags of the segment,

then the total of the loadable segment sizes; this option is accepted only for

ELF objects. If there is no segment data, size prints an error message and

stops processing the file.

~a Print a variety of information about components of a common object (COFF)

file, including sizes of the file header, optional header, section headers, debug

symbols, compiler-generated symbols, local symbols, global symbols, string

table, and padding. |

EXAMPLES

The examples below are typical size output.

size file 2724 + 88 +0 = 2812

size -f file 26(.text) + 5(.init) + 5(.fini) = 36

size -F file 2724(xr-x) + 88(rwx) + O(rwx) = 2812

DIAGNOSTICS

Size: mame: cannot open

if name cannot be read.

Size: mame: bad magic
if name is not an appropriate object file.

1 -1 76 Licensed material—property of copyright holder(s) 093-701055

size (1) DOG/UX 5.4 size (1)

SEE ALSO

as(1), ec(1), 1d(1), a.out(4), ar(4).

CAVEAT :
Since the size of bss sections is not known until link-edit time, size wil] not give the

true total size of pre-linked objects.

093-701055 Licensed material—property of copyright holders) 1-177

sno (1)

NAME

DG/UX 5.4 sno(1)

sno - SNOBOL interpreter and compiler .

SYNOPSIS

sno [files]

DESCRIPTION

Sno is a SNOBOL compiler and interpreter (with slight differences). sno obtains

input from the concatenation of the named files and the standard input. All input

through a statement containing the label end is considered program and is compiled.

The rest is available to syspit.

Sno differs from SNOBOL in the following ways:

SEE ALSO

awk(1).

1-178

There are no unanchored searches. To get the same effect:

a «x b | unanchored search for b.

aaxe b=xec unanchored assignment

There is no back referencing.

X = "abc"

@ 4X« X 1s an unanchored search for abc.

Function declaration is done at compile time by the use of the (non-unique)

label define. Execution of a function call begins at the statement following

the define. Functions cannot be defined at run time, and the use of the

name define is preempted. There is no provision for automatic variables

other than parameters. Examples:

define f()

define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In particular,

the non-empty statement on end cannot merely name a label.

If start is a label in the program, program execution will start there. If not,

execution begins with the first executable statement; define is not an execut-

able statement.

There are no built-in functions.

Parentheses for arithmetic are not needed. Normal precedence applies.

Because of this, the arithmetic operators / and »* must be set off by spaces.

The right side of assignments must not be empty.

Either ° or “TM may be used for literal quotes.

The pseudo-variable sysppt is not available.

Licensed material—property of copyright holder(s) 093-701055

strip(1) DG/UX 5.4 strip(1)

NAME

strip — strip non-executable information from an object file

SYNOPSIS

strip [-1] [-x] [-b] [-r] [-e] [-v] filename ...

DESCRIPTION

The strip command strips the symbol table, string table, and line number informa-
tion from object files, including archives. [See a.out(4)].

After stripping, no symbolic debugging is possible for that file, although a core file

produced by a stripped executable can be symbolically debugged if an unstripped copy

of the executable is also available. [See sdb(1)]. Normally this command is run only
on production modules that have already been debugged and tested.

If strip is executed on a common archive file (see ar(4)) the archive symbol table

will be removed. The archive symbol table must be restored by executing ar(1) with

the -ts option before the archive can be link-edited by 1d(1). Strip generates ©

appropriate warning messages when this situation arises.

Strip takes these options:

-vV Print, on the standard error output, the version of strip being executed.

-1 Strip only line number information.

-x _ Do not strip the symbol table from an ELF object file; do not strip static or
external symbol information from a COFF object file.

These options are meaningful only when stripping a COFF object file (they are

ignored when stripping an ELF object file):

-b Same as the -x option, but also do not strip scoping information (e.g., begin-

ning and end of block delimiters).

-r Do not strip static or external symbol information or relocation information.

-c Strip only compiler-generated symbols.

If there are any relocation entries in a COFF object file and any symbol table infor-

mation is to be stripped, except by -c, strip complains and terminates without

stripping filename unless the -r flag is used. If -c is used and there are relocation

entries in the COFF object file for compiler generated symbols, strip complains

and terminates without stripping.

This command reduces the file storage overhead taken by the object file.

FILES

TMPDIR/strps temporary files

TMPDIR usually /usr/tmp, but can be redefined by setting the environ-

| ment variable TMPDIR [see tempnan() in tmpnan(3S)].

DIAGNOSTICS

strip: name: cannot be read

if name cannot be opened or is too short to be an object file.

strip: name: bad magic

if name is not an appropriate object file.

strip: name: relocation entries present; cannot strip

if narne contains relocation entries and the -r flag is not used, the symbol

table information cannot be stripped.

093-701055 Licensed material—property of copyright holder(s) 1 -1 79

strip(1) DG/UX 5.4 strip(1)

SEE ALSO

NOTES

1-180

ar(1), as(1), cce(1), size(1), a.out(4), ar(4).

The symbol table section will not be removed if it is contained within a segment, or

the file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are contained

within a segment, or their associated relocation section is contained within a segment.

Licensed material—property of copyright holder(s) 093-701055

tsort(1) DG/UX 5.4 tsort(1)

NAME

tsort — topological sort

SYNOPSIS

tsort [file]

DESCRIPTION

Tsort produces on the standard output a totally ordered list of items consistent with

@ partial ordering of items mentioned in the input file. If no file is specified, the stan-

dard input is used.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of
different items indicate ordering. Pairs of identical items indicate presence, but not

ordering.

DIAGNOSTICS

Odd data: the input file has an odd number of fields.

SEE ALSO

lorder(1).

093-701055 Licensed material—property of copyright holder(s) 1 -1 81

unget(1) DG/UX 5.4 unget(1)

NAME

unget — undo a previous get of an SCCS file

SYNOPSIS

unget [-rSID] [-s] [-n] files

DESCRIPTION

Unget undoes the effect of a get -e done before creating the intended new delta.

If a directory is named, unget treats each file in the directory as a named file,

except that non-SCCS files and unreadable files are silently ignored. If a name of - is

given, the standard input is read with each line taken as the name of an SCCS file to

be processed.

Options apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intended. get would

specify this as the new delta. The use of this option is necessary

only if two or more outstanding gets for editing on the same

SCCS file were done by the same person (login name). A diagnos-

tic results if the specified SJD is ambiguous, or if it is necessary

and omitted on the command line.

-s -- Suppresses the printout, on the standard output, of the intended

_ delta’s SID.

—n Retains the retrieved file, which would normally be removed from

the current directory.

DIAGNOSTICS

Use help(1) for explanations.

SEE ALSO

delta(1), get(1), help(1), sact(1).

1 - 1 82 Licensed materiai—property of copyright holder(s) 093-701055

val(1) DG/UX 5.4 | vai(1)

NAME -

val — validate SCCS file

SYNOPSIS

val -

val [-s] [-rSID] [-mame] [-ytype] files

DESCRIPTION

val determines if the specified file is an SCCS file meeting the characteristics speci-

fied by the optional argument list. Arguments to val may appear in any order. The

arguments consist of options and named files.

val has a special argument, -, that reads the standard input until an end-of-file con-

dition is detected. Each line read is independently processed as if it were a command

line argument list.

val generates diagnostic messages on the standard output for each command line and

file processed, and also returns a single 8-bit code upon exit as described below.

The options are listed below. The effects of any option apply independently to each

named file on the command line.

-s Silences the diagnostic message normally generated on the

standard output for any error that is detected while processing

each named file on a given command line.

-rSID The argument value SJD (SCCS JDentification String) is an

SCCS delta number. A check is made to determine if the SID

is ambiguous (e. g., -rl1 is ambiguous because it physically

does not exist but implies 1.1, 1.2, etc., which may exist) or

invalid (e. g.. -r1.0 or -r1.1.0 are invalid because neither

case can exist as a valid delta number). If the SID is valid and

not ambiguous, a check is made to determine if it actually

exists.

~m1ame The argument value name is compared with the SCCS %M%
keyword i in file. |

—ytype The argument value rype is compared with the SCCS %“Y%

keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e., can be
interpreted as a bit string where (moving from left to right) set bits are interpreted as
follows:

bit O = missing file argument

bit 1 = unknown or duplicate option

bit 2 = corrupted SCCS file

bit 3 = cannot open file or file not SCCS

bit 4 = SID is invalid or ambiguous

bit 5 = SID does not exist

bit 6 = %Y%, -y mismatch

bit 7 = %M%, -m mismatch

Note that val can process two or more files on a given command line and in turn
can process multiple command lines (when reading the standard input). In these
cases an aggregate code - a logical OR of the codes generated for each command line

and file processed - 1s returned.

093-701055 Licensed material—property of copyright holder(s) 1-183

val(1) OG/UX 5.4 val(1)

DIAGNOSTICS

Use help(1) for explanations.

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1).

BUGS

val can process up to 50 files on a single command line. Any number above 50 will

trigger an error.

1-184 Licensed materiat—property of copyright holder(s) 093-701055

valttoois(1) DG/UX 5.4 vaitools(1)

NAME

valtools -— introduction to validation tools

DESCRIPTION

The valtool commands are generally used in shell programming. These commands

will prompt for and validate user input. They generally define, among other things, a

prompt message, text for help and error messages, and a default value (which will be

returned if the user responds with a carriage return). All valtool commands begin

with a ck prefix.

Visual tool modules are generally linked to the valtool commands. They have err

(which formats and displays an error message), help (which formats and displays a

help message), and val (which validates a response) prefixes. For example, the

ckpath(1) command has the following links: errpath, helppath, and valpath,

which are used to display an error message, help message, and validate a path.

The following is a list of the available valtool commands with a short description:

ckdate prompt for, validate and return a date in the specified format.

ckgid prompt for, validate and return an existing group name.

ckint prompt for, validate and return an integer value.

ckitem build a menu; prompt for, validate and return a menu item.

ckkeywd prompt for, validate and return a keyword from a list of specified key-
words.

ckpath prompt for, validate and return a pathname that meets the specified cri-

teria.

ckrange prompt for, validate and return an integer value between lower and upper

bounds.

ekstrx prompt for, validate and return a string that matches a regular expression.

cktime prompt for, validate and return a time value in the specified format.

ckuid _ prompt for, validate and return an existing user login name.

ckyorn prompt for, validate and return a yes or no value.

EXIT CODES

All valtool commands exit with code 0 upon successful execution.

SEE ALSO

sh(1), ckdate(1), ckgid(1), ckint(1), ckitem(1), ckkeywd(1), ckpath(1),
ckrange(1), ckstr(1), cktime(1), ckuid(1), ckyorn(l).

093-701055 Licensed material—property of copyright holder(s) 1 “1 85

ve(1)

NAME

DG/UX 5.4 ve(1)

ve — version control

SYNOPSIS

ve [-a] [-t] [-cchar] [-s] [keyword=value ... keyword=value]

DESCRIPTION

1-186

The ve command copies lines from the standard input to the standard output under

control of its arguments and control statements encountered in the standard input.

User-declared keywords may be replaced by their string value when they appear in

plain text and/or control statements.

The copying of lines from the standard input to the standard output is conditional,
based on tests (in control statements) of keyword values specified in control state-

ments or as ve command arguments.

A control statement is a single line beginning with a control character, except as

modified by the -t keyletter (see below). The default control character is colon (:),
except as modified by the -c keyletter (see below). Input lines beginning with a

backslash (\) followed by a control character are not control lines and are copied to

the standard output with the backslash removed. Lines beginning with a backslash

followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or fewer alphanumerics; the first must be alphabetic. A

value is any ASCII string that can be created with ed(1); a numeric value is an

unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by con-

trol characters is encountered on a version control statement. The -a kevletter (see

below) forces replacement of keywords in all lines of text. You can include an unin-

terpreted contro] character in a value by preceding it with \. Ifa literal \ 1s desired,

then it too must be preceded by \.

Keyletter Arguments

a Forces replacement of keywords surrounded by control charac-

ters with their assigned value in ail text lines, not just in ve

statements.

—t All characters from the beginning of a line up to and including

the first rab character are ignored for the purpose of detecting a

contro] statement. If one is found, all characters up to and

including the tab are discarded.

-cchar Specifies a control character to be used in place of :.

-s Silences warning messages (not error) that are normally printed

on the diagnostic output.

Version Control Statements

:dcl keyword[, ..., keyword]

Declares keywords. All keywords must be declared.

:asg keyword=value

Assigns values to keywords. An asg statement overrides the assignment for

the corresponding keyword on the ve command line and all previous asg’s for

that keyword. Keywords declared, but not assigned values, have null values.

:if condition

Licensed material—-property of copyright holder(s) 093-701055

ve(1)

093-701055

OG/UX 5.4 ve(1)

Skips lines of the standard input. If the condition is true all lines between the if

statement and the matching end statement are copied to the standard output. If

the condition is false, all intervening lines are discarded, including control state-

ments. Note that intervening if statements and matching end statements are

recognized only for maintaining the proper if-end matching.

The syntax of a condition is:

cond ::=["not"] or

or ::wandiand"lor —

and ::= exp lexp "&" and

exp ::="(" or ")" | value op value

op pee Men | Mle Ph

value ::TM= <arbitrary ASCII string> | <numeric string>

The available operators and their meanings are:

= Equal

ad Not equal

& And

[Or

> Greater than

< Less than

() Used for logical groupings

not May occur only immediately after the if, and

when present, inverts the value of the

entire condition

The > and < operate only on unsigned integer values (e.g., : 012 > 12 is false).

All other operators take strings as arguments (e.g., : 012 != 12 is true). The

precedence of the operators (from highest to lowest) is:

xsl=e>< All of equal precedence
& .

i ;

Use parentheses to alter the order of precedence.

Separate values from operators or parentheses by at least one blank or tab.

: : text .

Replaces keywords on lines that are copied to the standard output. The two

leading control characters are removed, and keywords surrounded by control

characters in text are replaced by their value before the line is copied to the out-

put file. This action is independent of the —-a keyletter.

Turns on or off keyword replacement on all lines.

:ctl char

Changes the control character to char.

:msg message

Prints the given message on the diagnostic output.

:€rr message

Prints the given message followed by:

Licensed materiat—property of copyright hoider(s) 1 -1 87

ve(1) DOG/UX 5.4 ve(1)

ERROR: err Statement on line ... (915)

on the diagnostic output. ve halts execution, and returns an exit code of 1.

DIAGNOSTICS

Use help(1) for explanations.

EXIT CODES

0—Normal

1—Any error

SEE ALSO

ed(1), help(1).

1-1 88 Licensed material—property of copyright holder(s) 093-701055

what(1)

NAME

DG/UX 5.4 | what(1)

what — identify SCCS files

SYNOPSIS

what [-s] files

DESCRIPTION

What searches the given files for all occurrences of the pattern that get(1) substi-
tutes for %Z% (this is @(#) at this printing) and prints out what follows until the

first “, >, new-line, \, or null character. For example, if the C program in file £.c

contains

char ident[) = " Q(#)identification information";

and f£.c is compiled to yield £.0 and a.out, then the command

what f.c £.0 a.out

will print identification information for f.c, f.0, and a.out.
What is for use with the SCCS command get(1), which automatically inserts identi-

fying information; but you can also use it where the information is inserted manually.

Only one option exists:

-s Quit after finding the first occurrence of the pattern in each

file.

DIAGNOSTICS

Exit status is 0 if any matches are found, otherwise it’s 1. Use help(1) for explana-

tions.

SEE ALSO

BUGS

093-701055

get(1), help(1).

An unintended occurrence of the pattern @(#) could be found by chance, but this

usually causes no harm.

Licensed materia\—property of copyright holder(s) 1-189

xstr(1) DG/UX 5.4 xstr(1)

NAME

xstr — extract strings from C programs to implement shared strings

SYNOPSIS

xstr [-c][-] [file]

DESCRIPTION

Xstr maintains a file strings into which strings in component parts of a large pro-

gram are hashed. These strings are replaced with references to this common area.

This serves to implement shared constant strings, which are most useful if they are

also read-only.

The command

xstr -c name

will extract the strings from the C source in name, replacing string references by

expressions of the form (&xstr[number]) for some number. An appropriate declara-

tion of xstr is prepended to the file. The resulting C text is placed in the file x.c,

to then be compiled. The strings from this file are placed in the strings data base

if they are not there already. Repeated Strings and strings which are suffixes of exist-
ing strings do not cause changes to the data base.
After all components of a large program have been compiled, a file xs.c declaring
the common xstr space can be created by a command of the form

xstr

This xs.c file should then be compiled and loaded with the rest of the program. If

possible, the array can be made read-only (shared), saving space and swap overhead.

Xstr can also be used on a single file. A command

xstr name

creates files x.c and xs.c as before, without using or affecting any strings file in

the same directory.

It may be useful to run xstr after the C preprocessor if any macro definitions yield

strings or if there is conditional code which contains strings which may not, in fact,

be needed. Xstr reads from its standard input when the argument ‘~’ is given. An

appropriate command sequence for running xstr after the C preprocessor is:

ce -Ename.c | xstr -c-

cc -cX.c

mv X.O name.o

Xstr does not touch the file strings unless new items are added, thus make can

avoid remaking xs.o unless truly necessary.

FILES

strings Data base of strings

X.C Massaged C source

xs.c C source for definition of array ‘xstr’

/tmp/xs* Temp file when xstr name’ doesn’t touch strings

SEE ALSO

mkstr(1).

NOTE

If a string is a suffix of another string in the data base, but the shorter string is seen

first by xstr both strings will be placed in the data base, when just placing the

longer one there will do.

1 1 90 Licensed material—property of copyright holder(s) 093-701055

yace(1) DG/UX 5.4 yace(1)

NAME

yacc — yet another compiler-compiler

SYNOPSIS

yace [-vvdalt] [-Q[y|n]] file

DESCRIPTION

The yacc command converts a context-free grammar into a set of tables for a simple

automaton that executes an LALR(1) parsing algorithm. The grammar may be ambi-

guous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a pro-

gram yyparse. This program must be loaded with the lexical analyzer program,

yylex, as well as main and yyerror, an error handling routine. These routines

must be supplied by the user; the lex(1) command is useful for creating lexical

analyzers usable by yacc.

-v Prepares the file y.output, which contains a description of the parsing

tables and a report on conflicts generated by ambiguities in the grammar.

-d Generates the file y.tab.h with the #¢define statements that associate

the yacc-assigned “token codes” with the user-declared “token names.”

This association allows source files other than y.tab.c to access the token

codes. :

-l Specifies that the code produced in y.tab.c will not contain any #line
constructs. This option should only be used after the grammar and the

associated actions are fully debugged.

-Qfy|n] The -Qy option puts the version stamping information in y.tab.c. This

allows you to know what version of yacc built the file. The -Qn option

(the default) writes no version information.

-t Compiles runtime debugging code by default. Runtime debugging code is

always generated in y.tab.c under conditional compilation control. By

default, this code is not included when y.tab.c is compiled. Whether or

not the -t option is used, the runtime debugging code is under the control

of YYDEBUG, a preprocessor symbol. If YYDEBUG has a non-zero value,

then the debugging code is included. If its value is zero, then the code will

not be included. The size and execution time of a program produced

without the runtime debugging code will be smaller and slightly faster.

-V Prints on the standard error output the version information for yacc.

FILES

y.output

y.tab.c

y.tab.h defines for token names

yacc.tmp,

yace.debug, yacc.acts temporary files

LIBDIR/yaccpar parser prototype for C programs

LIBDIR usually /usr/ecs/lib

SEE ALSO

lex(1).

The “yacc”’ chapter in the Programmer’s Guide: ANSI C and Programming Support

Tools.

DIAGNOSTICS

The number of reduce-reduce and shift-reduce conflicts is reported on the standard

093-701055 Licensed materiat—property of copyright holder's) 1-191

yace(1) DG/UX 5.4 yace(1)

error output; a more detailed report is found in the y.output file. Similarly, if

some rules are not reachable from the start symbol, this instance is also reported.

NOTES

Because file names are fixed, at most one yace process can be active in a given

directory at a given time.

End of Chapter

1-192 Licensed material—property of copyright holder(s) 093-701055

Chapter 2

System Calls

This chapter contains in printed form the online manual entries for DG/UX system calls.

The first entry, intro(2), gives an introduction to DG/UX system calls. The rest of the

entries are in alphabetical order.

093-701055 Licensed material—property of copyright holder(s)

intro (2) OG/UX 5.4 intro (2)

NAME

intro — introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>

DESCRIPTION

This chapter describes all of the system calls. This introduction is divided into two

parts: DEFINITIONS and DIAGNOSTICS.

The DEFINITIONS section identifies important system abstractions and describes

them briefly in terms of their representation in the system (that is, the superuser

abstraction is described in terms of its identity within the system: a superuser process

is one with an effective user id of 0; it has special privileges). A summary of defini-

tions appears at the head of the section; both the summary and the individual entries

are grouped into categories. The categories are: processes, files, messages, sema-

phores, shared memory, interprocess communications primitives, UNIX communica-

tions domain, and Internet communications domain. Most entries are short and do

not suggest the programming contexts in which you use the system calls mentioned;

they generally refer you to one or more individual system call descriptions in the

manual. However, the Interprocess Communications Primitives section is a rather

extensive discussion. It is taken from the 4.2BSD System Manual by Joy, Cooper,

Fabry, Leffler, McKusick, and Mosher, University of California, Berkeley, Berkeley

CA.

The DLAGNOSTICS section lists the entire set of error conditions by number, name,

and description. At the end of the DIAGNOSTICS section is a discussion of

implementation-dependent constants that are referenced in the discussions of indivi-

dual calls. |

DEFINITIONS

Processes

Process ID

A positive integer used to identify a process; each process in the system has a unique

process ID. The range of this ID is from 0 to PID.MAX (30,000).

Parent Process ID

A new process is created by a currently active process; see fork(2). The parent pro-
cess ID of a process is the process ID of its creator.

Process Group ID

Each active process is a member of a process group that is identified by a positive

integer called the process group ID. This ID is the process ID of the group leader.

This grouping permits the signaling of related processes; see kill(2).

Process Group Leader

A process group leader is a process that creates a new process group. The process

group ID of a process group is equal to the process group ID of the process group

leader.

Tty Group ID

Each active process can be a member of a terminal group that is identified by a posi-

tive integer called the tty group ID. The group ID can be used to terminate a group of

related processes when one of the processes in the group is terminated; see exit(2)

and signal(2).

2-2 Licensed material—property of copyright holder(s) 093-701055

intro (2) DG/UX 5.4 . intro (2)

Real User ID and Real Group ID

Each user allowed on the system is identified by a positive integer called a user ID.

Each user is also a member of a group. The group is identified by a positive integer |
called the group ID.

An active process has a rea] user ID and real group ID that are set to the user ID and

group ID, respectively, of the user who created the process.

Effective User ID and Effective Group ID

Each active process has an effective user ID and an effective group ID that are used

to determine file access permissions (see below). The effective user ID and effective

group ID are equal to the process’s real user ID and real group ID respectively, unless

the process or one of its ancestors evolved from a file that had the set-user-ID bit or

set-group-ID bit set; see exec(2).

Superuser

A process is recognized as a superuser process and is granted special privileges if its

effective user ID is 0.

Special Processes

Processes with a process ID of 0 or 1 are special processes and are referred to as
procoO and procl. :

ProcoO is the scheduler. Proci is the initialization process (init). Procil is the

ancestor of every other process in the system; it controls the process structure.

Files

Descriptor

An integer assigned by the svstem when a file is referenced by creat(2), open(2),

dup(2), fentl(2), or pipe(2) or a socket is referenced by socket(2) or socket-

pair(2). It uniquely identifies an access path to that file or socket from a given pro-

cess or any of its children.

A process may have no more than OPEN_MAX descriptors (0 to (OPEN_MAX-1))

open simultaneously, unless the RLIMIT_NOFILE command of setrlimit(2) has

been used to increase the limit.

The descriptor is used as an argument by calls such as read(2), write(2),

ioctl(2), send(2), recv(2), and close(2).

The descriptor is known as the file descriptor in System V.

Filename

A filename is a character string that names an ordinary file, special file or directory.

Filenames can be up to 255 characters.

These characters may be selected from the set of all character values excluding \0

(null) and / (slash).

Avoid using *, ?, @, #, $; ") & (,), ”y l, a9 "5 <, >; [, \e }; , ~ { or
) as part of filenames, since the shells attach special meaning to them. Avoid using
- as the first character of a filename, since ~ is used to begin an option in a com-
mand line. Also avoid using unprintable characters in filenames. See sh(1) and

csh(1).

093-701055 Licensed materiai—property of copyright holders) - 2-3

intro (2)

2-4

DG/UX 5.4 intro (2)

Path Name and Path Prefix

A path name is a null-terminated character string starting with an optional slash (/),

followed by zero or more directory names separated by slashes, optionally followed by

a filename.

If a path name begins with a slash, the path search begins at the root directory (/).

Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a

non-existent file.

Directory

Directory entries are called links. By convention, a directory contains at least two

links, . and .., referred to as dot and dot-dot respectively. Dot refers to the

directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory

Each process has associated with it a concept of a root directory and a current work-

ing directory for the purpose of resolving path name searches. The root directory of

a process need not be the root directory of the root file system; see chroot(2).

File Access Permissions

Every file in the file system has a set of access permissions, which determine whether

a process may perform a requested operation on the file. For example, opening a file

for writing is an operation subject to file access permissions.

Every file has three classes of access permissions: owner (user), group, and other.

The classes identify types of users: the owner of a file, a defined group of users, and

all other users.

Each class has its own set of three types of access permissions: read (r), write (w),

and execute (x). A file’s access permissions are set when the file is created. They

can be masked upon creation if umask(2) is in effect, and they can be changed expli-

citly with chmod(2), chown(2), or chgrp(2). When an access check is made, the

system decides if permission should be granted by comparing the file’s access permis-

sions and the calling process’s access information.

All three permissions (read, write, and execute/search) on a file are granted to a cal-

ling process if one or more of the following are true:

The effective user ID of the calling process is superuser.

The effective user ID of the calling process matches the user ID of the owner

of the file and the appropriate access bits of the owner portion (0700) of the

file mode is set.

The effective user ID of the calling process does not match the user ID of the

owner of the file, the effective group ID of the calling process matches the

group of the file, and the appropriate access bits of the group portion (070)

of the file mode is set.

The effective user ID of the calling process does not match the user ID of the

owner of the file, the effective group ID of the calling process does not match

the group ID of the file, and the appropriate access bits of the other portion

(07) of the file mode is set.

Licensed material-—property of copyright hoider(s) 093-701055

intro(2) | DG/UX 5.4 intro(2)

Otherwise, permissions are denied on the basis of permission values in the file mode.

Messages

Message Queue Identifier

A message queue identifier (msqid) is a unique positive integer created by a
msgget(2) system call. The maximum number of msqids allowed is configurable.

The default is 50. Each msqid has a message queue and a data structure associated

with it. The data structure is referred to as msgid_ds and contains the following

members:

struct ipce_perm msg_perm; /* operation permission struct +/

ushort msg_qnun; /* number of msgs on gq */

ushort msg_qbytes; /* max number of bytes on q */

pid_t msg_lspid; /* pid of last msgsnd operation «/

pid_t msg_lrpid; /* pid of last msgrcev operation «/

.time_t msg_stime; /* last msgsnd time +*/

time t msg _rtime; /* last msgrcev time «/

time t msg_ctime; /* last change time */

/* all times are in secs since *«/

/* 00:00:00 GMT, Jan. 1, 1970 «/

Msg_perm is an ipc_perm structure, as declared in ipc.h, that specifies the mes-

sage operation permission (see below). This structure includes the following
members:

uid_t cuid; /* creator user id «/

gid_t egid; /* creator group id +«/

uid_t uid; /* user id «/

gid_t gid; /* group id x/

unsigned long mode; /# r/w permission +*/

Msg_qnum is the number of messages currently on the queue. Msg_qbytes is the

maximum number of bytes allowed on the queue. Msg_lspid is the process ID of

the last process that performed a msgsnd operation. Msg_lrpid is the process ID

of the last process that performed a msgrev operation. Msg_stime is the time of

the last msgsnd operation, msg_rtime is the time of the last msgrev operation,

and msg_ctime is the time the msgid was created by msgget(2) or of the last

msgctl(2) operation that changed a member of the above structure.

Message Operation Permissions

In the msgop(2) and msget1(2) system call descriptions, the permission required for

an operation is given as token. Token is the type of permission needed interpreted as

follows:

00400 Read by user

00200 Write by user

00060 Read, write by group

00006 Read, write by others

Read and write permissions on a msgid are granted to a process if one or more of the

following are true:

The effective user ID of the process is superuser.

The effective user ID of the process matches msg_perm. [c]uid in the data

structure associated with msgid and the appropriate bit of the user portion

(0600) of msg_perm.mode is set.

093-701055 Licensed material—property of copyright heider(s) 2-5

intro (2) DG/UX 5.4 intro(2)

The effective user ID of the process does not match msg_perm. [c) uid, the

_ effective group ID of the process matches msg_perm. [c] gid, and the

appropriate bit of the group portion (060) of msg_perm. mode is set.

The effective user ID of the process does not match msg_perm. (c]uid, the

effective group ID of the process does not match msg_perm. [c] gid, and

the appropriate bit of the other portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphores

2-6

Semaphore Identifier

A semaphore identifier (semid) is a unique positive integer created by a semget(2)

system call. The maximum numbers of identifiers is configurable; the default is 10.

Each has a set of semaphores and a data structure associated with it. The data struc-

ture is referred to as semid_ds and contains the following members:

struct ipce_perm sem_perm; /* operation permission struct x/

ushort sem_nsems; /* number of sems in set «/

time t sem otime; /* last operation time +/

time_t sem_ctime; /* last change time *«/

/* all times are in secs since +#/

/* 00:00:00 GMT, Jan. 1, 1970 «/

Sem_perm is an ipc_perm structure (as defined in ipc.h) that specifies the sema-

phore operation permission (see below). This structure includes the following

members:

uid_t cuid; /* creator user id */

gid_t egid; /«* creator group id «/

uid_t uid; /* user id +/

gid t gid; /* group id */

unsigned long mode; /«* r/fa permission +/

The value of sem_nsems is equal to the number of semaphores in the set. Each

semaphore in the set is referenced by a positive integer referred to as a sem_num.

Sem_num values run sequentially from 0 to the value of sem_nsems minus 1. _

Sem_otime is the time of the last semop(2) operation, and sem_ctime is the time

the sern_id was created by semget(2) or of the last semct1(2) operation that
changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort semval; /* semaphore value +/

pid_t sempid; /* pid of last operation +#/

ushort semncnt; /* # awaiting semval > current value +/

ushort semzcent; /* # awaiting semval = 0 #/

Semval is a non-negative integer in the range 0 to PID.MAX (30,000). Sempid is
equal to the process ID of the last process that performed a semaphore operation on

this semaphore. Semncnt is the number of processes waiting for this semaphore’s

semval to exceed its current value. Semzent is a count of the number of processes

that are currently suspended awaiting this semaphore’s semval to become zero.

Semaphore Operation Permissions

In the semop(2) and semct1(2) system call descriptions, the permission required for

an operation is given as token. Token is interpreted as follows:

Licensed materia\—prope-ty of copyright holcer(s) 093-701055

intro(2) OG/UX 5.4 intro(2)

00400 : Read by user

00200 Alter by user |

00060 Read, alter by group

00006 Read, alter by others

Read and alter permissions on a semid are granted to a process if one or more of the

following are true:

The effective user ID of the process is superuser.

The effective user ID of the process matches sem_perm. [c] uid in the data

structure associated with semid, and the appropriate bit of the user portion

(0600) of sem_perm.mode is set.

The effective user ID of the process does not match sem_perm. [c] uid, the

effective group ID of the process matches sem_perm. [c] gid, and the

appropriate bit of the group portion (060) of sem_perm.mode is set.

The effective user ID of the process does not match sem_perm. [c]uid, the

effective group ID of the process does not match sem_pern. [c] gid, and

the appropriate bit of the other portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory

Shared Memory Identifier

A shared memory identifier (shmid) is a unique positive integer created by a

shmget(2) system call. Each shmid has a segment of memory (referred to as a

shared memory segment) and a data structure associated with it. The data structure Is

referred to as shmid_ds and contains the following members:

struct ipc_perm shm_perm; /* operation permission struct */

int shm_ segsz; /* size of segmert +«/

pid_t shm_cpid; /* creator pid +*/

pid_t shm_lpid; /* pid of last operation «/

ushort shm_nattch; /* number of current attaches «/

time t shm_atime; /* last attach time +«/.

time t shm dtime; /«* last detach time «/

time t shm_ctime; /* last change time +/

4 /* all times are in secs since */

/* 00:00:00 GMT, Jan. 1, 1970 #/

Shm perm is an ipce_perm structure that specifies the shared memory operation per-

mission (see below). This structure includes the following members:

uid t cuid; /* creator user id +#/

gid_t egid; /* creator group id «/

uid t uid; /* user id +/

gid t gid; /* group id +/

unsigned long mode; /# r/w permission +*/

Shm_segsz specifies the size in bytes of the shared memory segment. Shm_cpid is

the process ID of the process that created the shared memory identifier. Shm_lpid

is the process ID of the last process that performed a shmat(2) or shmdt(2) opera-
tion. Shm_nattch is the number of processes that currently have this segment

attached. Shm atime is the time of the last shmat operation, shm_dtime is the

time of the last shmdt operation, and shm_ctime is the time the sin_id was

created by shmget(2) or of the last shmct1(2) operation that changed one of the

members of the above structure.

093-701055 Licensed material—property of copyright holder{s) 2-1

intro (2) DG/UX 54 intro(2)

Shared Memory Operation Permissions

In the descriptions for the shmsys(2) family of system calls, the permission required

for an operation is given as token, where token is interpreted as follows:

00400 Read by user

00200 Write by user

00060 Read, write by group

00006 Read, write by others

Read and write permissions on a shmid are granted to a process if one or more of the

following are true:

The effective user ID of the process is superuser.

The effective user ID of the process matches shm_perm. [c]uid in the data

structure associated with shmid, and the appropriate bit of the user portion

(0600) of shm_perm.mode is set.

The effective user ID of the process does not match shm_perm. [c]uid, the

effective group ID of the process matches shm_perm. [c] gid, and the

appropriate bit of the group portion (060) of shm_perm.mode is set.

The effective user ID of the process does not match shm_perm. [c]uid, the

effective group ID of the process does not match shm_perm. [ce] gid, and

the appropriate bit of the other portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Interprocess Communication Primitives

2-8

This section (up to the DIAGNOSTICS section) describes the DG/UX IPC facilities,

which are based on the Berkeley UNIX IPC facilities.

Communication Domains

The system provides access to an extensible set of communication domains. A com-

munication domain is identified by a manifest constant defined in the file

<sys/socket.h>. Important standard domains supported by the system are the

"unix” domain, AF_UNIX, for communication within the system, and the "internet"

domain for communication in the DARPA internet, AF_INET. Other domains can

be added to the system.

NOTE: The “internet” domain is not provided on the standard DG/UX system. This

domain is provided only with the DG/UX TCP/IP product.

Socket Types and Protocols

Within a domain, communication takes place between communication endpoints

known as sockets. Each socket has queues for sending and receiving data; it may

exchange data with other sockets within its domain.

Sockets are typed according to their communications properties. These properties

include whether messages sent and received at a socket require the name of the

partner, whether communication is reliable, what format is used in naming message

recipients, whether duplication is prevented, etc.

Each kernel supports some collection of socket types; consult socket(2) for more

information about the types available and their properties. The basic set of socket

types is definedin <sys/socket.h>:

/* Standard socket types */

Licensed materia—property of copyright hoider(s) 093-701055

intro(2) DG/UX 5.4 : intro(2)

#define SOCK_DGRAM 1 /* datagram */

#define SOCK_STREAM 2 /* virtual circuit */

#define SOCK_RAW 3 /* raw socket */

#define SOCK_RDM 4 /* reliably-delivered message */

#define SOCK_SEQPACKET 5 /* sequenced packets */

The SOCK_DGRAM type models the semantics of datagrams in network communi-

cation: messages may be lost or duplicated and may arrive out-of-order. The
SOCK_RDM type models the semantics of reliable datagrams: messages arrive undu-

plicated and in-order, the sender is notified if messages are lost. The send and

receive operations (described below) generate reliable/unreliable datagrams. The

SOCK_STREAM type models connection-based virtual circuits: two-way byte

streams with no record boundaries. The SOCK_SEQPACKET type models a

connection-based, full-duplex, reliable, sequenced packet exchange; the sender 1s

notified if messages are lost, and messages are never duplicated or presented out-of-

order. Users of the last two abstractions may use the facilities for out-of-band

transmission to send out-of-band data. SOCK_RAW is used for unprocessed access

to internal network layers and interfaces; it has no specific semantics.

Other socket types can be defined.

NOTE: The DG/UX system does not support the SOCK_RDM and

SOCK_SEQPACKET types.

Each socket may have a concrete protocol associated with it. This protocol is used

within the domain to provide the semantics required by the socket type. For exam-

ple, within the “internet” domain, the SOCK_DGRAM type may be implemented by

the UDP user datagram protocol, and the SOCK_STREAM type may be imple-

mented by the TCP transmission control protocol, while no standard protocols to

provide SOCK.RDM or SOCK_SEQPACKET sockets exist.

Each kernel] supports some number of sets of communications protocols. Each pro-

tocol set supports addresses of a certain format. An Address Family is the set of

addresses for a specific group of protocols. Each socket has an address chosen from

the address family in which the socket was created.

Socket Creation, Naming and Service Establishment

Sockets may be connected or unconnected. An unconnected socket descriptor is

obtained by the socket call:

s = socket(domain, type, protocol);

result int s; int domain, type, protocol;

An unconnected socket descriptor may yield a connected socket descriptor in one of

two ways: either by actively connecting to another socket, or by becoming associated

with a name in the communications domain and accepting a connection from

another socket.

To accept connections, a socket must first have a binding to a name within the com-

munications domain. Such a binding is established by a bind call:

bind(s, name, namelen) ;

ints; char *name; int namelen;

A socket’s bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen) ;

ints; result caddr_t name; result int *namelen;

093-701055 Licensed materiat—property of copyright holder(s) 2-9

intro (2)

2-10

DG/UX 5.4 intro(2)

while the peer’s name can be retrieved with getpeername:

getpeername(s, name, namelen) ;

ints; result caddr_t name; result int *namelen;

Domains may support sockets with several names.

Accepting Connections

Once a binding is made, it is possible to listen for connections:

listen(s, backlog);

int 5s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously

queued awaiting acceptance.

_An accept call:

t= accept(s, name, anamelen) ;

result ints’; ints; result caddr_tmame; result int

*anamelen ; 7

returns a descriptor for a new, connected, socket from the queue of pending connec-

tions on S$. | |

Making Connections

An active connection to a named socket is made by the connect call:

connect(s, name, namelen);

ints; caddr_t mame, int namelen;

It is also possible to create connected pairs of sockets without using the domain’s

name space to rendezvous; this is done with the socketpair call (only in the “unix”

communication domain):

socketpaixr(d, type, protocol, sv);

int d, type, protocol; result int [2];

Here the returned sv descriptors correspond to those obtained with accept and

connect.

Sending and Receiving Data

Messages may be sent from a socket by:

cc = sendto(s, buf, len, flags, to, tolen);

result intcc; ints; caddr_t buf; int len, flags; caddr_tto; int

tolen;

if the socket is not connected or:

cc = send(s, buf, len, flags);

result intcc; ints; caddr_t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);

result int msglen; int s; result caddr_t buf; int len, flags;

result caddr_t from; result int *fromlenaddr;

and

msglen = recv(s, buf, len, flags);

result in msglen; int s; result caddr_t buf; int len, flags;

Licensed material—property of copyright holder(s) 093-701055

intro(2) | DG/UX 5.4 intro(2)

In the unconnected case, the parameters fo and folen specify the destination or source

of the message, while the from parameter stores the source of the message, and from-

lenaddr initially gives the size of the from buffer and is updated to reflect the true

length of the from address.

All calls cause the message to be received in or sent from the message buffer of

length len bytes, starting at address buf. The flags specify peeking at a message

without reading it or sending or receiving high-priority out-of-band messages, as fol-

lows:

#define MSG _PEEK Oxi /* peek at incoming message */

#define MSG_OOB Ox2 /* process out-of-band data */

Scatter/Gather and Exchanging Access Rights

It is possible to scatter and gather data and to exchange access nights with messages.

When either of these operations is involved, the number of parameters to the call

becomes large. Thus the system defines a message header structure, in

<sys/socket.h>, which can be used to conveniently contain the parameters to the

calls:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iov *msg_iov; /* scatter/gather array */

int msg_iovien; /* #elements in msg_iov */

eaddr_t msg_accrights; /* access rights sent/received */

int msg_accrightslen;/* size of msg _accrights */

};

Here msg_name and msg_namelen specify the source or destination address if the

socket is unconnected; msg_name may be given as a null pointer if no names are

desired or required. The msg_iov and msg_iovlen describe the scatter/gather

locations.

This structure is used in the operations sendmsg and recvmsg:

sendmsg(s, msg, flags);

int S$; struct msghdr *msg; int flags;

msglen = xecvmsg(s, msg, flags);

result in msglen; int s; result struct msghdr *msg;

int flags;

Using Read and Write with Sockets

The normal DG/UX read and write calls may be applied to connected sockets and
translated by the system into send and receive. A process may operate on a vir-

tual circuit socket, a terminal or a file with blocking or non-blocking input/output
operations without distinguishing the descriptor type.

Shutting Down Halves of Full-duplex Connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes
to read from or write to this socket can give the call:

shutdown (s, direction) ;

int s, direction;

093-701055 Licensed material—-property of copyright holders) 2-1 1

intro(2) DG/UX 5.4 intro(2)

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut

the connection down.

Socket and Protocol Options

Sockets and their underlying communication protocols may support oprions. These

options may be used to manipulate implementation specific or non-standard facilities.

The getsockopt and setsockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen)

int s, level, optname; result caddr_t optval;

result int *optlen;

setsockopt(s, level, optname, optval, optlen)

int s, level, optmame; caddr_t optval; int optlen;

The option opmame is interpreted at the indicated protocol level for sockets. If a

value is specified with optval and optlen, it is interpreted by the software operating at

the specified level. The level SOL_.SOCKET indicates options maintained by the

socket facilities. Other Jevel values indicate a particular protocol which is to act on

the option request; these values are normally interpreted as a "protocol number”.

UNLX Communications Domain

This section describes briefly the properties of the UNIX communications domain.

Types of Sockets

In the UNIX domain, the SOCK.STREAM abstraction provides pipe-like facilities,

while SOCK_DGRAM provides reliable message-style communications.

Naming

Socket names are strings and appear in the UNIX file system name space. (The

DG/UX implementation of the UNIX domain embeds bound sockets in the UNIX

file system name space; this is a side effect of the implementation.)

INTERNET Communications Domain

2-12

This section describes briefly how the INTERNET domain is mapped to the model

described in this section.

Socket Types and Protocols

SOCK_STREAM is supported by the INTERNET TCP protocol; SOCK _DGRAM

by the UDP protocol. The SOCK_SEQPACKET has no direct INTERNET family

analogue; a protocol layered on top of IP could be implemented to fill this gap.

Socket Naming

Sockets in the INTERNET domain have names composed of the 32 bit internet

address, and a 16 bit port number. Options may be used to provide source routing

for the address, security options, or additional addresses for subnets of INTERNET

for which the basic 32 bit addresses are insufficient.

Access Rights Transmission

No access rights transmission facilities are provided in the INTERNET domain.

Raw Access

The INTERNET domain allows the super-user access to the raw facilities of the vari-

ous network interfaces and the various internal layers of the protocol implementation.

This allows administrative and debugging functions to occur. These interfaces are

Licensed material—property of copyright holder(s) 0$3-701055

intro (2) DG/UX 5.4 intro (2)

modeled as SOCK_RAW sockets.

DIAGNOSTICS

Most system calls have one or more error returns. An error condition is generally

indicated by an otherwise impossible returned value. This value is almost always -1;

the individual descriptions specify the details of each error. When an error occurs,

an error number is recorded and made available in the external variable errno.

Errno is not cleared on successful calls, so it should be tested only after an error has

been indicated.

Each system call description in this manual lists the possible error numbers that the

call could return. The descriptions listed in the individual sections may not be identi-

cal to the ones listed here; they try to be specific to the particular call’s context. The
following is a complete general reference list of all error numbers and their names;

they are defined in <errno.h>. |

Numbering

1 EPERM Not owner

This error usually indicates an attempt to modify a file in some way forbidden

except to its owner or to the super-user. It also indicates attempts by ordi-

nary users to do things allowed only to the super-user.

2 ENOENT No such file or directory

This error occurs when you try to use a pathname that is too long, refer to a

file that doesn’t exist, or use a path name that includes an invalid directorv

name (e.g., the directory doesn’t exist).

ESRCH No such process

No process can be found corresponding to that specified by the search cri-

teria.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected
to catch, occurred during a system call. If execution resumes after processing
the signal, the interrupted system call will return this error condition.

5 EIO LO error

Some physical I/O error has occurred.

6 ENXIO No such device or address

V/O on a special file refers to a subdevice that does not exist, or that extends

beyond the limits of the device. It may also occur when a device is not on-

line or no disk pack is loaded on a drive.

7 E2BIG Argument list too long

An argument list longer than ARG_MAX (10240) bytes is presented to a

member of the exec family.

8 ENOEXEC Exec format error

A request is made to execute a file which, although it has the appropriate per-

missions, does not start with a valid format (see a.out(4)).

9 EBADF Bad file number

Occurs under any of three conditions: a file descriptor refers to no open file;

a read request is made to a file that is open only for writing; a write request is

made to a file that is open only for reading.

10 ECHILD No child processes

A wait was executed by a process that had no existing or unwaited-for child

processes.

&

093-701055 Licensed material—property of copyright holder(s) 2-1 3

intro(2)

2-14

11

14

15

16

17

18

19

20

21

24

DG/UX 5.4 intro(2)

EAGAIN or EWOULDBLOCK Resource temporarily unavailable

A fork failed because the system’s process table is full or the user is not

allowed to create any more processes. Or a system call, such as a brk or

sbrk, failed because of insufficient memory or swap space. Or, an operation

that would cause a process to block was attempted on a object in non-

blocking mode (see ioct1(2)).

ENOMEM Not enough space

The system could not supply the memory required to complete the system

call.

EACCES Permission denied

Access was attempted to an object for which the caller lacked the required

access privilege(s).

EFAULT Bad address |

The system encountered a hardware fault in attempting to use an argument of

a system call.

ENOTBLK Block device required

A non-block file was mentioned where a block device was required, e.g., in

mount.

EBUSY Device or resource busy

You tried to mount a device that was already mounted or to dismount a dev-

ice on which there is an active file (open file, current directory, mounted-on

file, active text segment). This error will also occur if you try to enable

accounting when it is already enabled, or if device or resource requested is

currently unavailable.

EEXIST File exists

An existing file was mentioned in an inappropriate context; e.g., link(2).

EXDEV Cross-device link |

You tried to link to a file on another device, or rename a file across devices.

ENODEV No such device

You tried to apply an inappropriate system call to a device; e.g., read a write-

only device.

ENOTDIR Not a directory

You gave a non-directory reference where a directory reference is required:

for example, in a path prefix or as an argument to chdir(2).

EISDIR Is a directory

An attempt was made to open a directory file for writing.

EINVAL Invalid argument

Some invalid argument; e.g., dismounting a non-mounted device, mentioning

an undefined signal in signal or kill, reading or writing a file for which

lseek has generated a negative pointer. Also set by the math functions

described in the (3M) entries of this manual.

ENFILE File table overflow

The system file table is full, and no more opens can be accepted now.

EMFILE Too many open files

No process may have more than OPEN_MAX (by default, 64) file descriptors

open at a time.

Licensed material—property of copyright holder(s) 093-701055

intro (2)

093-701055

25

26

27

29

30

37

38

39

40

41

42

43

44

45

46

DG/UX 5.4 | intro (2)

ENOTTY Not a character device

You tried to ioct1(2) a file that is not a character-special device.

ETXTBSY Open Intent conflict

You attempted to do unbuffered I/O on a buffered I/O channel or the con-

verse of that situation.

EFBIG File too large

A file exceeded the maximum file size (1,082,201,088 bytes) or ULIMIT; see

ulimit(2).

ENOSPC No space left on device

During a write to an ordinary file, there is no free space left on the device.

ESPIPE Illegal seek

An lseek was issued to a pipe or socket.

EROFS Read-only file system

You tried to modify a file or directory on a device mounted read-only.

EMLINK Too many links

You tried to make more than the maximum number of links (LINK_MAX) to

a file.

EPIPE Broken pipe

A write on a pipe for which there is no process to read the data. This condi-

tion normally generates a signal; the error is returned if the signal is ignored.

EDOM Math argument

The argument of a function in the math package (3M) is out of the domain of

the function.

ERANGE Result too large

The value of a function in the math package (3M) is not representable within

machine precision.

ENOMSG No message of desired type

An attempt was made to receive a message of a type that does not exist on

the specified message queue; see msgop(2).

EIDRM Identifier removed

This error is returned to processes that resume execution due to the removal

of an identifier from the file system’s name space (see msgctl(2),

semctl(2), and shmct1(2)).

ECHRNG Channel number out of range

EL2NSYNC Level 2 not synchronized

EL3HLT Level 3 halted

EL3RST Level 3 reset

ELNRNG Link number out of range

EUNATCH Protocol driver not attached

ENOCSI No CSI structure available

EL2HLT Level 2 halted

EDEADLK Deadlock in lockf

ENOLCK No record locks available

Licensed materiat—property of copyright holder's) 2-1 5

intro (2)

2-16

50

51

52

53

34

55

56

57

60

61

62.

63

65

66

67

68

69

70

71

74

77

78

80

SFE R8 R
86

87

89

90

91

DG/UX 5.4 intro(2)

EBADE Invalid exchange

EBADR Invalid request descriptor

EXFULL Exchange full

ENOANO No anode

EBADRQC Invalid request code

EBADSLT Invalid slot

EDEADLOCK File locking deadlock error

EBFONT Bad font file format |

ENOSTR A streams-only operation was attempted on a non-stream file

ENODATA No data (for no-delay I/O)

ETIME Operation timed out

ENOSR Streams resources are not available

ENONET Machine is not on the network

ENOPKG Package not installed

EREMOTE Cannot mount a file system onto a remote directory

ENOLINK The link has been severed

EADV Advertise error

ESRMNT SRmount error

ECOMM Communication error on send

EPROTO Protocol error

EMULITHOP Multihop attempted

EBADMSG Bad message type

ENAMETOOLONG File name too long

ENOTUNIQ Given logname not unique

EBADFD File descriptor invalid for this operation

EREMCHG Remote address changed

ELIBACC Cannot access a needed shared library

ELIBBAD Accessing a corrupted shared library

ELIBSCN The .lib section in an executable is corrupted

ELIBMAX Attempting to link in too many shared libraries

ELIBEXEC Attempting to execute a shared library

ENOSYS Function not implemented

ELOOP Too many levels of symbolic links

ERESTART Restartable system call

128 EINPROGRESS Operation now in progress

An operation that takes a long time to complete (such as a connect(2)) was

attempted on a non-blocking object (see ioct1(2)).

129 EALREADY Operation already in progress

Licensed material—property of copyright hoider(s) 093-701055

intro (2)

130

093-701C55

131

132

133

140

141

142

143

144

145

146

147

DG/UX §.4 intro (2)

ENOTSOCK Socket operation on non-socket

A socket-specific operation (such as bind(2)) was attempted on a non-socket

file. |

EDESTADDRREQ Destination address required

A required address was omitted from an operation on a socket.

EMSGSIZE Message too long

A message sent on a socket was larger than the internal message buffer.

EPROTOTYPE Protocol wrong type for socket

You specified a protocol] that does not support the semantics of the socket

type requested. For example, you cannot use the DARPA Internet UDP pro-

tocol with type SOCK_STREAM.

ENOPROTOOPT Bad protocol option

You specified a bad option in a getsockopt(2) or setsockopt(2) call.

EPROTONOSUPPORT Protocol not supported

The protocol has not been configured into the system or no implementation

for it exists.

ESOCKTNOSUPPORT Socket type not supported

The support for the socket type has not been configured into the system or no

implementation for it exists.

EOPNOTSUPP Operation not supported on socket

For example, trying to accept a connection on a datagram socket.

EPFNOSUPPORT Protocol family not supported

The protocol family has not been configured into the system or no implemen-

tation for it exists.

EAFNOSUPPORT Address family not supported by protocol family

You used an address incompatible with the requested protocol. For example,

you can’t always use PUP Internet addresses with DARPA Internet protocols.

EADDRINUSE Address already in use

Only one usage of each address is normally permitted.

EADDRNOTAVAIL Cannot assign requested address

This error usually results from an attempt to create a socket with an address

not on this machine.

ENETDOWN Network is down

A socket operation encountered a dead network.

ENETUNREACH Network is unreachable

A socket operation was attempted to an unreachable network.

ENETRESET Network dropped connection on reset

The host you were connected to crashed and rebooted.

ECONNABORTED Software caused connection abort

A connection abort was caused internal to your host machine.

ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This normally results from the

peer executing a shutdown(2) call.

ENOBUFS No buffer space available

An operation on a socket or pipe was not performed because the system

lacked sufficient buffer space.

2-17Licensed materiai—property of copyright holders)

intro (2)

148

149

150

151

152

156

157

158

159

160

161

162

163

SEE ALSO

OG/UX 5.4 intro (2)

EISCONN Socket is already connected

A connect request was made on an already connected socket; or, a sendto

or sendmsg request on a connected socket specified a destination other than

the connected party.

ENOTCONN Socket is not connected

An request to send or receive data was disallowed because the socket was not

connected.

ESHUTDOWN Cannot send after socket shutdown
A request to send data was disallowed because the socket had already been

shut down with a previous shutdown(2) call.

ETOOMANYREFS

Too many references; cannot splice.

ETIMEDOUT Connection timed out

A connect request failed because the connected party did not properly

respond after a period of time. (The timeout period depends on the commun-

ication protocol.)

ECONNREFUSED Connection refused

No connection could be made because the target machine actively refused it.

This usually results from trying to connect to a service that is inactive on the

foreign host.

EHOSTDOWN Host is down

EHOSTUNREACH No route to host

ENOTEMPTY Directory not empty

EPROCLIM (Not used in DG/UX)

EUSERS Too many users

EDQUOT Disk quota exceeded

ESTALE Stale NFS file handle

EPOWERFAIL Power failure occurred

close(2), connect(2), ioctl(2), open(2), pipe(2), read(2), shutdown(2),

ulimit(2), write(2), imtro(3), lockf£(3C), perror(3C).

2-18 Licensed materiat—property of copyright holder(s) 093-701055

accept(2) DG/UX 5.4 accept(2)

NAME

accept — accept a connection on a socket

SYNOPSIS

#include <sys/socket.h>

int accept (5, addr, addrlen)

int S;

struct sockaddr * addr;

int * addrlen;

where: |

S File descriptor of socket listening for connection requests

addr Structure to receive the address of newly connected peer

addrien On input contains the number of bytes available for the peer address;

" updated to indicate the number of bytes returned

DESCRIPTION

The argument s is the file descriptor of a socket that has been:

e Created with the socket system call.

e Bound to an address with bind(2).

e Made to listen for connections with listen(2).

Accept extracts the first connection on the queue of pending connections, creates a

new socket of the same type (e.g. SOCK_STREAM) as s, and.allocates a new file

descriptor, ns, for the socket. If no pending connections are present on the queue

and the socket is not marked as non-blocking, accept blocks the caller until a con-

nection is present. If the socket is marked non-blocking and no pending connections

are present on the queue, accept returns an error as described below. The

accepted socket, ms, will be in the connected state. The original socket s remains

open listening for more connections.

The argument addr is a result parameter that is filled in with the address of the con-

necting entity, as known to the communications layer. The exact format of the addr

parameter is determined by the domain in which the communication is occurring. See

related documentation for a descripton of address formats for each domain. addrlen

is a value/result parameter; it should initially contain the amount of space pointed to

by addr; on return it will contain the actual length (in bytes) of the address returned.

If addrlen is zero, the pointer will be ignored. If the address buffer is too small to

hold all of the address, the address will be truncated.

This call is used with connection-based socket types, currently with

SOCK_STREAM.

A select system call can be issued on a listening socket for notification of connnec-
tion requests.

ACCESS CONTROL

None.

RETURN VALUE

ns The call was successful. ns is a non-negative integer that is a descriptor for
the accepted socket.

-] An error occurred. errno is set to indicate the error.

083-701055 Licensec material—property of copyright holder(s) 2-1 9

accept(2)

DIAGNOSTICS

DG/UX 5.4 accept(2)

Errno may be set to one of the following error codes:

EBADF

ENOTSOCK

EMFILE

ENFILE

EINVAL

EOPNOTSUPP

EFAULT

ECONNABORTED-:

EAGAIN

EINTR

SEE ALSO

unix _ipce(6F).

2-20

The argument s is not an active, valid descriptor.

The descriptor references a file, not a socket.

No more user file descriptors available, the per-process limit

has been reached.

No more system file descriptors available, the system limit has

been reached.

The socket s is not in the listen state.

The referenced socket is not of type SOCK_STREAM.

The addr parameter is not in a writable part of the user address |

space.

Listen operation aborted by system.

The, socket is marked non-blocking and no connections are

present to be accepted.

The call was interrupted by a signal.

bind(2), connect(2), listen(2), select(2), socket(2), inet(3N), inet(6F),

Licensed materiat—property of copyright holder(s) 093-701055

access(2) DG/UX 5.4 access(2)

NAME

access — determine the accessibility of a file

SYNOPSIS

#include <sys/file.h>

int access (path, amode)

char * path;

int amode;

where:

path Address of a pathname naming a file of type ordinary, directory, FIFO,
block special, character special, or symbolic link.

amode Access mode bit pattern

DESCRIPTION

Access checks that the calling process has specified access rights to the file. If park

refers to a symbolic link, the target of the symbolic link is checked, not the symbolic

link. The types of access requested are indicated by amode, which can have the fol-

lowing values:

F_OK 0

Check the existence of a file.

XOK 1.
Check for execute access. Applied to a directory, execute permission allows

the directory to be used in a pathname.

WOK 2

Check for write access. Applied to a directory, write permission allows the

creation and deletion of links in the directory.

ROK 4

Check for read access. Applied to a directory, read permission allows the

contents of the directory to be listed.

Some combination (logical OR) of X.OK, W_OK, and R_OK.

Write access is categorically denied when the file is of type ordinary, directory, or

FIFO and resides on a read-only file system device. In this case, errno is set to

EROFS.

In all other situations, a process with a real user id of superuser is granted all access

rights. Other processes are granted access only if the file’s mode gives them all types

of access requested.

When determined by the file’s mode, access is checked with respect to only one of

the owner, group, and other subsets of the mode. If the process’s real user id

matches the file’s user id, the owner bits of the file mode determine access. If the

process’s real user id doesn’t match, but its real group id matches the file’s group id
or one of the group ids in its group set matches the file’s group id, the group bits of

the file mode determine access. In all other cases, the ’other’ mode bits determine
access.

Note that this cal] does not guarantee that a file is writable or executable if write or
execute access is granted. For instance, a directory’s mode may give the caller write

access, indicating that files may be created in it, but an open of the directory for write

intent will fail. :

093-701055 Licensed material—property of copyright holder(s) 2-21

access(2) DG/UX §.4 access(2)

ACCESS CONTROL

The caller must have permission to resolve path. This call differs from others in that

the process’s real] user id is used to determine permission to resolve a pathname,

rather than its effective user id.

RETURN VALUE

0 The requested access is permitted.

-1 Access to the file is denied. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EACCES Permission bits of the file mode do not permit the requested
access.

EROFS Write access is requested for a file of type ordinary, directory,

or FIFO that resides on a file system device mounted read-only.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR _.. ‘A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

set.

EFAULT The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

SEE ALSO

chmod(2), fstat(2), stat(2), stat(5).

2-22 Licensed materiak—property of copyright holder(s) 093-701055

acect(2)

NAME

DG/UX 5.4 | acct(2)

acct — enable or disable process accounting

SYNOPSIS

#include <unistd.h>

int acct (path)

char * path;

where:

path Address of a pathname

DESCRIPTION

This function provides capabilities that are inherently implementation dependent.

Acct enables or disables process accounting. If process accounting is enabled, an

accounting record will be written on an accounting file for each process that ter-

minates.

~ Path points to the path name of the accounting file. The accounting file format and
the information it contains are implementation dependent.

Process accounting is disabled if path is NULL and enabled if path is non-NULL.

If errors occur during the acct operation, the status of process accounting is not

changed. If errors occur when an accounting record is written, the record may be

lost.

ACCESS CONTROL

The effective-user-id of the calling process must be super-user.

RETURN VALUE

0 The accounting file was successfully changed.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM Permission to enable or disable process accounting is denied to
the calling process.

EACCES The file named by park is not an ordinary file.

EISDIR The named file is a directory.

EROFS The named file resides on a read-only file system.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

093-701055

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

Licensed materiai—property of copyright holder{s) 2-23

acct(2) DG/UX 5.4 acct(2)

EPERM The pathname contains a character not in the allowed character
set.

EFAULT The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

SEE ALSO

acct(1M). signal(2), exit(3C), acct(4).

2-24 Licensed material—property of copyright holder(s) 0$3-701055

adjtime (2) DG/UX 5.4 adjtime (2)

NAME

adjtime — correct the time to allow synchronization of the system clock

SYNOPSIS

#include <sys/time.h>

adjtime(delta, olddelta)

struct timeval *delta;

struct timeval *olddelta;

where:

delta The name of a structure containing a number of seconds

olddelta The name ofa structure containing a number of seconds

DESCRIPTION

Adjtime makes small adjustments to the system time, as returned by gettimeof-

day(2), advancing or retarding it by the amount of time specified by the struct

timeval pointed to by delta. The adjustment is gradual. If *delra represents a nega-

tive adjustment, the clock is slowed down by incrementing it more slowly than normal

until the correction is complete. If *delra represents a positive adjustment, the

correction is achieved by using a larger than normal increment.

Specify a positive adjustment by placing a non-negative number of seconds in

delta—>tv_sec.and a number of microseconds between 0 and 999999 (inclusive) in

delta->tv_usec. Specify a negative adjustment by placing a negative number of

seconds in delta->tn_sec and a number of microseconds between 0 and 999999

(inclusive) in delra->tv_usec. Note that the number of microseconds must always be

non-negative and always acts to widen an advancement or to shorten a delay. For

instance, to indicate a delay of 0.7 seconds, place -1 into delta—>mn_sec and 300000

into delta—>tv_usec. To indicate an advancement of 7.22 seconds, place 7 into

delta—>tv_sec and 220000 into delta—>n_usec.

A time correction from an earlier call to adjtime may not be finished when adj-

time is called again. In this case, the previous time correction is aborted. Further,

if olddelrta is not NULL, then the struct timeval it points to will contain, upon return,

the number of microseconds which were still to be corrected from the earlier call.

Note also that setting the time of day does not cancel any time adjustments in pro-

oress. .

This call may be used by time servers that synchronize the clocks of computers in a

local area network. Such time servers would slow down the clocks of some machines

and speed up the clocks of others to bring them to the average network time.

ACCESS CONTROL

The effective user id of the calling process must be superuser.

RETURN VALUE

0 The call succeeded.

-1 An error occurred; an error code is stored in the global variable errno.

DIAGNOSTICS

The following error codes may be set in errno:

EFAULT - An argument points outside the process’s allocated address space.

EPERM The process’s effective user id is not that of the super-user.

093-701055 Licensed material—property of copyright holder(s) 2-25

adjtime (2) DG/UX 5.4 adjtime (2)

SEE ALSO

date(1), gettimeofday(2).

2-26 Licensed materiakproperty of copyright holder(s) 093-701055

alarm(2) DG/UX 5.4 alarm(2)

NAME

alarm — set a process alarm clock

SYNOPSIS

#include <unistd.h>

unsigned int alarm (Sé€c)

unsigned int Sec;

where:

SeC The number of real-time seconds to wait before sending SIGALRM

to the caller

DESCRIPTION

Alarm sets the caller’s per-process real-time alarm clock to send the signal

SIGALRM to the calling process after the number of real-time seconds specified by

sec have elapsed. Alarm requests are not stacked; successive calls reset the calling

process’s alarm clock. If sec is 0, any previous alarm request is canceled. Alarm

uses the ITIMER_REAL interval timer as is used by the setitimer system call.

The fork system call resets the alarm clock in the child to 0. A process created by

exec(2) inherits the time left on the old process’s alarm clock.

RETURN VALUE

Alarm returns the amount of time remaining on the process’s alarm clock from a pre-

vious call. If zero, no previous alarm was set.

DIAGNOSTICS

None.

SEE ALSO

getitimer(2), pause(2), setitimer(2), signal(2), sigpause(2), sigset(2).

093-701055 Licensec material—property of copyright hoider(s) 2-27

asyne_daemon(2) DOG/UX 5.4 asyne_daemon(2)

NAME

asynce_daemon - start a BIOD server for asynchronous I/O requests

SYNOPSIS

int asyncec_daemon ()

DESCRIPTION

This system call does not normally return; instead, the process becomes a system pro-

cess that asynchronously transfers blocks between memory and I/O devices. Nor-

mally, some number of BIOD processes are created when the system is brought to

init level] 1 or higher.

ACCESS CONTROL

Must be superuser to execute.

RETURN VALUE

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |
Errno may be Set to one of the following error codes:

EPERM The process has no permission to make the call.

EINTR -The process was terminated by a signal.

SEE ALSO

biod(1M).

2-28 Licensed materia}—property of copyright holder(s) 093-701055

berk_sigpause (2) | DG/UX 5.4 | berk_sigpause (2)

NAME

berk_sigpause — set blocked signals and suspend process until a signal is caught

SYNOPSIS

#include <sys/signal.h>

int berk_sigpause (signalunask)

int signalmask;

where:

signal_mask Set of signals to be blocked while waiting

DESCRIPTION

Berk sigpause assigns the set of signals specified in signal_mask to the set of sig-

nals blocked from presentation and then suspends the calling process until it is

presented with a signal that is set to be caught. Changing the signa] mask may cause

previously pended signals to be presented immediately.

. Neither the presentation of signals that are ignored, nor the presentation of signals

that cause the termination of the calling process, nor the existence of pended signals

cause berk_sigpause (to return.

When a signal is caught by the calling process and control is returned from the signal

handler, berk_sigpause returns. On return, the previous set of signals blocked

from presentation is restored.

Signal "s" is represented by the value "SIGBIT(s)" in signal_mask.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT. It may or may not be

possible to block signals that are not defined by the system. An attempt to block

these signals will not produce an error.

ACCESS CONTROL |

None.

RETURN VALUE

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINTR A signal interrupted the berk_sigpause operation.

SEE ALSO

sigblock(2), sigpause(2), sigvec(2).

2-29
093-701055 Licensed material—property of copyright holder(s)

bind (2) OG/UX 5.4 bind(2)

NAME

bind — bind a name to a socket

SYNOPSIS

#include <sys/socket.h>

int bind (s, name, namelen)

int S;

struct sockaddr * name;

int namelen ;

where:

S Socket to bind

name Name to bind to socket

namelen Length of name (bytes)

DESCRIPTION

Bind requests that address name be bound to socket s.

The rules for name binding vary between communication domains. Consult the

related documentation for a specific domain for details about that domain.

Binding a name in the UNIX domain creates a file of type S_IFSOCK (socket spe-
cial) in the file system that the caller must delete when it is no longer needed (using

unlink). The file created is a side-effect of the current implementation, and may not

be created in future versions of the UNIX IPC domain.

ACCESS CONTROL

None. (See related domain specific information for restrictions on names.)

RETURN VALUE

0) The call was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF s iS not an active valid descriptor.

ENOTSOCK s is not a socket.

EADDRNOTAVAIL The address is not a valid address for the local machine.

EADDRINUSE The address is already in use.

EINVAL The socket is already bound to an address.

EACCES The requested address is protected, and the current user has
inadequate privilege to access it. Privilege is determined by

the euid of the process when the socket was created.

EFAULT The name parameter is not in a valid part of the user address
space.

ENOBUFS No internal buffers available.

EISCONN Socket is already connected.

SEE ALSO

connect(2), listen(2), select(2), socket(2), inet(3N), inet(6F),

unix_ipce(6F).

2-30 Licensed material—property of copyright holder(s) 093-701055

brk(2) DG/UX 5.4 brk(2)

NAME

brk — change data segment space allocation

SYNOPSIS

#include <unistd.h>

int brk(void *endds);

where:

endds The address of the first byte beyond the new end of the data area

DESCRIPTION

The brk() system call dynamically changes the amount of space allocated for the
calling process’s data segment; see exec(2). The change is made by resetting the
process’s break value and allocating or deallocating the appropriate amount of space.

The break value is the address of the first byte beyond the end of the data segment.

The amount of allocated space increases as the break value increases.

If endds is greater than the current break value, any newly allocated pages will be ini-

tialized with zero bvtes; i.e., if these bytes are read before they are written, the con-

tents will be zero. If endds is less than the current break value, space is deallocated

from the data segment. The contents of addresses from endds to the prior break

value become undefined.

There is a maximum possible break value for a process; this value may be obtained by

calling the ulimit(2) function. There is also a program-dependent minimum break
value for a process; this minimum is greater than or equal to the address of the first

byte in the data segment, and less than or equal to the program’s initial break value.

The brk() system call will fail without making any change in the allocated space if

an error occurs.

ACCESS CONTROL

No access check is made.

RETURN VALUE |

Upon successful completion, brk() returns a value of 0. Otherwise, it returns the

value -1, and sets errno to indicate an error. | . 7

DIAGNOSTICS

Under the following conditions, brk() fails and sets errno to:

ENOMEM if the change would allocate more space than is allowed by a system-
imposed maximum (see ulimit(2)).

ENOMEM if the change would allocate more space than Is allowed by the

current data resource limit (see getrlimit(2)).

ENOMEM if the change would make the break value greater than or equal to the
start address of an attached shared memory segment (see shmat(2)).

EFAULT if the change would make the break value less than the system-

imposed minimum.

EAGAIN if the change would allocate more space than the available physical

memory and swap space.

EAGAIN _ if the MCL_FUTURE memory locking option is in effect for the calling
process (see memcnt1(2)), and the system-imposed limit on space

locked into physical memory would be exceeded.

093-701055 Licensed material—property of copyright holder(s) 2-3 1

brk(2) DG/UX 5.4 brk(2)

SEE ALSO

exec(2), getrlimit(2), memcnt1(2), ulimit(2).

2-32 Licensed materiai—property of copyright holders) 093-701055

ehdir(2) DG/UX 5.4 ehdir(2)

NAME

chdir — change the working directory of the calling process

SYNOPSIS

int chdir (path)

char * path;

where:

path Address of a pathname

DESCRIPTION

Path points to a pathname naming a directory that is made the current working direc-

tory of the calling process. If path refers to a symbolic link, the target of the sym-

bolic link is made the current working directory. The current working directory is the

starting point of subsequent searches for pathnames that do not begin with ’/’.

If the call fails, the current working directory is not changed.

ACCESS CONTROL

The calling process must have execute permission to the named directory.

The process must have permission to resolve path.

RETURN VALUE

0 The current directory was successfully changed.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EACCES Execute permission to the directory is denied.

ENOTDIR_.. The named file is not a directory.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

set.

EFAULT The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

SEE ALSO

chroot(2).

093-701055 Licensed material—property of copyright holders) 2-33

chmod(2)

NAME

chmod - change mode of file

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

int chmod (path, mode)

DG/UX 5.4 chmod (2)

char * path;

int mode;

where:

path Address of a pathname

mode File’s new mode

DESCRIPTION

2-34

The chmod system call changes the mode (including permissions) associated with a

file. path points to a pathname naming a file of type ordinary, directory, FIFO, block
special, character special, or symbolic link. If parh refers to a symbolic link, the tar-

get of the symbolic link is handled, not the symbolic link. The file must reside on a

file system device mounted read-urite. Chmod sets the protection rights, sticky bit,

set-user-id bit, and set-group-id bit of the file’s mode according to mode.

Values of mode are constructed by joining one or more of the following flags with a

logical OR: _

S_ISUID (04000)

S_ISGID (02000)

S_ISVTX (01000)

S_IREAD (00400)

S_IWRITE (00200)

S_IEXEC (00100)

(S_IREAD >> 3) (00040)

(S_IWRITE >> 3) (00020)

(S_IEXEC >> 3) (00010)

(S_IREAD >> 6) (00004)

(S_IWRITE >> 6) (00002)

(S_IEXEC >> 6) (00001)

Licensed material—property of copyright holder(s)

Set user id on execution.

Set group id on execution. If the (S_IEXEC >> 3)

bit is not set and the file is an ordinary file, this bit

enables mandatory record locking for the file.

Sticky bit. Some versions of the UNIXTM system

attempt to optimize access to executable files (that

have this bit set) by maintaining a copy of the pro-

gram image in a memory- or disk-based file system

cache. The DG/UX system attempts this optimiza-

tion for all executable images. For files of type ‘direc-

tory’ and ‘control point directory’, the sticky bit has a

further meaning. If the sticky bit is set, then the

directory is considered append only. Processes

without appropriate permissions cannot delete or

rename files owned by other users in such a directory.

Read by owner.

Write by owner.

Execute (search, if a directory) by owner.

Read by group.

Write by group.

Execute (search) by group.

Read by others.

Write by others.

Execute (search) by others.

093-701055

chmod (2) DG/UX 5.4 | chmod(2)

For each flag set in mode, the corresponding attribute bit or protection right is set.

The other attribute bits and protection rights are cleared. If the calling process

attempts to set the sticky bit or the set-group-id bit but does not meet the require-

ments for doing so (see access control), that bit is cleared, but the process is not noti-
fied of the failed attempt. One of the access requirements to perform this call (the

effective user id of the process must be superuser or match the file’s user id) coin-
cides with the access needed to set the set-user-id bit, hence the process may always

set that bit if it chooses.

The time of last change to the file’s attributes is set to the current time.

If chmod fails, the file’s attributes remain unchanged.

ACCESS CONTROL

The effective user id of the calling process must be superuser or match the user id of
the file.

The process’s effective user id must be superuser to set the sticky bit.

To set the set-group-id bit, either

e the process’s effective user id must be superuser,

e the process’s effective user id must match the user id of the file and the

process’s effective group id must match the file’s group id.

Failure to meet the requirements for setting one of these bits does not produce an

error. Note that meeting the first access requirement Is sufficient to allow a process

to set the set-user-id bit.

The process must have permission to resolve path.

RETURN VALUE

0 The file’s mode was successfully changed.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes: |

EROFS -The named file resides on a file system device mounted read-

only.

EPERM The file’s user id does not match yours, and you are not the

superuser.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

| or symbolic link.

093-701055

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

Licensed material—property of copyright holder(s) 2-35

chmod(2) DG/UX 5.4 chmod(2)

EPERM The pathname contains a character not in the allowed character

set.

EFAULT The pathname does not completely reside in the process’s

address space, or the pathname does not terminate in the

process’s address space.

SEE ALSO

chmod(1), chown(2), creat(2), fehmod(2), fchown(2), fentl(2), fstat(2),

mknod(2), open(2), read(2), stat(2), write(2).

2-36 Licensed materiat—property of copyright holder(s) 0$3-701055

chown(2) DG/UX 5.4 chown(2)

NAME .

chown, lchown - change user id and group id of a file

SYNOPSIS

#include <unistd.h>

int chown (path, user, group)

char * path;

int user;

int group;

int lchown (path, user, group)

char * path;

int user;

int group;

where: :
path Address of a pathname

user File’s new user id

group File’s new group 1d

DESCRIPTION

Chown sets the file’s user id (st_uid) and group id (st_gid) to the numeric values

user and group, respectively. path points to a pathname naming a file of type ordi-

nary, directory, FIFO, block special, character special, or symbolic link. The file

cannot reside on a file system device mounted read-only.

If the value of user is -1, the user id of the file is left unchanged. Similarly, if the

value of group is -1, the group id of the file is left unchanged.

The set-user-id ‘and set-group-id bits of the file mode (st_mode) are left unchanged

unless the effective user id of the calling process is not superuser, in which case they

are cleared.

The file’s time of last attribute change (st_ctime) is set to the current time.

If chown fails, the user id, group id, and attributes of the file remain unchanged.

Chown and lchown operate identically except for their handling of symbolic links. If

the call is to lehown and path refers to a symbolic link, the symbolic link is handled,

not the target ofthe symbolic link. chown will handle the target of the symbolic

link.

ACCESS CONTROL

The effective user id of the calling process must be superuser or match the user id of

the file.

The process must have permission to resolve path.

RETURN VALUE
0 The user id and group id of the file were successfully changed.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM | Permission to change the file’s user and group id is denied.

EROFS The named file resides on a file system device mounted read-

Only.

093-701055 Licensed material—property of copyright hoider(s) 2-37

chown(2)

ENOENT

ENOENT

ENOTDIR

OG/UX 5.4 chown(2)

The file the pathname resolved to does not exist.

A non-terminal component of the pathname does not exist.

A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EPERM

EFAULT

SEE ALSO

2-38

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

The pathname contains a character not in the allowed character

" get.

The pathname does not completely reside in the process's

address space or the pathname does not terminate in the

process’s address space.

chmod(1), fehmod(2), fchown(2).

Licensed materiaproperty of copyright hoider(s) 093-701055

chroot(2) DG/UX 5.4 chroot(2)

NAME

chroot — change the root directory of the calling process

SYNOPSIS

#include <unistd.h>

int chroot (path)

char * path;

where:

path Address of a pathname

DESCRIPTION

Path points to the pathname of a directory. chroot makes that directory the root

directory of the calling process, the starting point of searches for pathnames begin-

ning with ’/’. If path refers to a symbolic link, the target of the symbolic link is made

the root directory. The process’s working directory is unaffected by the chroot sys-

tem call.

The ’..’ entry in the root directory means the root directory itself; the root is treated

as having no parent directory. Thus, the process cannot access files outside the sub-

tree whose topmost node is the root directory, unless the process’s current working

directory is located outside of that subtree.

If chroot fails, the root directory remains unchanged.

ACCESS CONTROL

The effective user id of the calling process must be superuser.

RETURN VALUE

) The root was successfully changed.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

ENOENT The named directory does not exist. _

EPERM Permission to change the root directory is denied.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for
filenames.

ENOMEM There are not enough system resources to resolve the pathname
or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

set.

EFAULT The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

093-701055 Licensed material—-property of copyright holder(s) 2-39

chroot(2) DG/UX 5.4 chroot(2)

process’s address space.

SEE ALSO

chdir(2).

2-40 Licensed materia}—property of copyright holder(s) 093-701055

close (2) DG/UX 5.4 : close (2)

NAME

close — close an object associated with a file descriptor

SYNOPSIS

int close (fildes)

int fildes;

where:

fildes A valid, active file descriptor

DESCRIPTION

If fildes is a valid, active descriptor, close breaks the connection between the

descriptor indicated by fildes and the object to which it refers. If fildes is the last

descriptor that refers to an object pointer, the object pointer is "closed" by invoking

the type-specific close operation.

Thus, the type manager is informed only of the last close operation of an object

_ pointer. These managers (and specifically, the device driver close operations) should
not expect to be invoked during each close system call.

Upon completion of the close operation, fildes will be inactive. Until fildes is reallo-
cated, subsequent operations using fildes will result in an EBADF error condition.

Ifa STREAMS-based fildes is closed, and the calling process had previously registered

to receive a SIGPOLL signal for events associated with that stream in, the calling pro-

cess will be unregistered for events associated with the stream. The last close for a

stream causes the stream associated with fildes to be dismantled. If O_NDELAY and

O NONBLOCK are clear and there have been no signals posted for the stream, and if

there are data on the module’s write queue, close waits up to 15 seconds (for each

module and driver) for any output to drain before dismantling the stream. The time

delay can be changed via an I_SETCLTIME ioctl. If O_NDELAY or O_NONBLOCK

is set, or if there are any pending signals, close does not wait for output to drain,

and dismantles the stream immediately.

If fildes is associated with one end of a pipe, the last close causes a hangup to

occur on the other end of the pipe. In addition, if the other end of the pipe has been

named [see fattach(3C)], the last close forces the named end to be detached [see

fdetach(3C)]. If the named end has no open processes associated with it and

becomes detached, the stream associated with that end is also dismantled.

Objects are also subject to implicit close operations via the exit and exec operations.

When a process terminates, all active descriptors are closed. When a process per-

forms a successful exec operation, all active descriptors with the ‘close-on-exec’ attn-

bute are closed. These implicit close operations are equivalent to an explicit close

operation.

On each close of an object, all outstanding locks owned by the calling process on the

object are released.

ACCESS CONTROL

None.

RETURN VALUE

0 The object was successfully closed.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

093-701055 Licensed material—property of copyright holder(s) 2-41

2-42

close (2)

EBADF

EINTR

EIO

SEE ALSO

accept(2), creat(2), dup(2),

DG/UX 5.4
close (2)

fildes is not a valid, active descriptor.

Close call was interrupted.

An i/o error occurred while reading from or writing to the file sys-tem. The fildes is inactived.

exec(2), fcnt1(2), open(2), pipe(2), signal(2),Sigset(2), socket(2), socketpair(2).

Licensed materiai—property of copyright hoider(s) 093-701055

connect(2) DG/UX 5.4 connect(2)

NAME

connect — initiate a connection on a socket

SYNOPSIS

#include <sys/socket.h>

int connect (Ss, name, namelen)

int S;

struct sockaddr * name;

int namelen ;

where: :

$ The file descriptor of a socket to connect

name Name of peer or listening socket through which the connection will be

made

namelen Length of name (bytes)

DESCRIPTION

The parameter s is a socket. If it is of type SOCK_DGRAM, then this call specifies

the peer to which datagrams are to be sent; if it is of ype SOCK_STREAM, then

this call tries to make a connection through a listening socket specified by name,

which is an address in the communications space of the socket.

ACCESS CONTROL
None. See the related documentation on the individual communication protocol for

specific domain interpretations.

RETURN VALUE

0 Completed successfully, a connection has been established.

-l An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF s is not active, valid descriptor. -

ENOTSOCK s is a descriptor for a file, not a socket.

EADDRNOTAVAIL The specified address is not available on the specified host.

EAFNOSUPPORT Addresses in the specified address family cannot be used with
this socket. |

EISCONN The socket is already connected.

ETIMEDOUT Connection establishment timed out without establishing a
connection.

ECONNREFUSED The attempt to connect was rejected by foreign host.

ENETUNREACH The network isn’t reachable from this host.

EADDRINUSE The address is already in use.

EFAULT The name parameter specifies an area outside the process
address space.

EAGAIN The socket is non-blocking and the connection cannot be

completed immediately.

ENOBUFS No internal buffers available.

093-701055 Licensed material—property of copyright holder(s) 2-43

connect(2) DG/UX 5.4 connect(2)

EINVAL Invalid system call argument (probably name length).

EALREADY The connect operation has already been started on this socket

and has not yet finished. (An earlier cal] must have returned

EAGAIN or EINTR.)

EINTR System call returned due to interrupt.

EOPNOTSUPP The socket is in the listen state.

SEE ALSO

accept(2), listen(2), select(2), socket(2), getsockname(2).

2-44 Licensed material—property of copyright holder(s) 093-701055

creat(2) DG/UX 5.4

NAME

creat — create a new file or rewrite an existing one

SYNOPSIS

#include <sys/types.h>

include <sys/stat.h>

int creat (path, mode)

char * path;

int mode;

where:

path Address of a pathname

mode Protection mode of the new file

DESCRIPTION

Creat(2) is equivalent to:

open(path, O_WRONLY | O_CREAT | O_TRUNC, mode).

See open(2) for more details.

ACCESS CONTROL |

Same as for the open system Call.

RETURN VALUE

See open(2).

DIAGNOSTICS

See open(2).

SEE ALSO

creat(2)

chmod(2), close(2), dup(2), fentl(2), lseek(2), open(2), read(2), umask(2),

write(2), stat(5).

093-701055 Licensed material—property of copyright holder(s) 2-45

dg_allow_shared_descriptor_attach(2) OG/UX 5.4 dg_allow_shared_descriptor_attach(2)

NAME

dg_allow_shared_descriptor_attach — let processes attach shared descriptor

array

SYNOPSIS

#include <sys/types.h>

int dg_allow_shared_descriptor_attach (pid_t pid)

where:

pid The process identifier of the process to be given permission to attach.

DESCRIPTION |

Allow the process identified by pid to attach to the shared descriptor array of the cal-

ling process. This will enable process pid to do a successful

dg_attach_to_shared_descriptors(2) on the current process.

The right to attach to a shared descriptor array is inherited across forks and execs of

process pid.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

0 Process pid may now attach to the shared descriptor array of the calling pro-

cess.

-1 Ap error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

ESRCH _ pid does not exist.

SEE ALSO

open(2), dg_attach_to_shared_descriptors(2).

2-46 Licensed materia—property of copynght holder(s) 093-701055

dg_attach_to_shared_descriptors(2) DG/UX 5.4 dg_attach_to_shared_deseriptors(2)

NAME

dg_attach_to_shared_descriptors - attach another process’s shared descriptor

array

SYNOPSIS

#include <sys/types.h>

int dg_attach_to_shared_ descriptors (pid_t pid)

where:

pid The process identifier of the process whose shared descriptor array is to

be attached.

DESCRIPTION

File descriptors fall into two classes based on their process access and permanance

semantics. The first class of file descriptor is a per-process file descriptor. A per-

process descriptor is accessible only from the current process. A per-process

' descriptor is closed only as a by-product of some action taken by the current process.

This class of file descriptor is never shared by other processes.

The second class of file descriptor is a shared descriptor. Shared descriptors are col-

lected into a shared descriptor array, which is the granularity upon which anv process

sharing of descriptors is done. The shared descriptor array and all shared descriptors

in that array persist onlv as long as the shared descriptor array is attached to at least

one process. If a shared descriptor arrav is no longer referenced by any process then

it will be destroved and all remaining descriptors in the array will be closed. Refer-

ences to the shared descriptor array are lost either when a process exits and when it

attaches to another shared descriptor array.

A shared descriptor is accessible from all processes that have attached to the same

descriptor array. A shared descriptor may be closed by any process to which it 1s

attached. Dg_attach_to_shared_descriptors(2) attaches the shared process

array of process pid to the calling process. The attach operation will fail if the attach

would cause the per-process soft limit on the maximum number of descriptors to be

exceeded. When the attach is completed, the shared descriptor arrary (if any) previ-

ously attached to the calling process is no longer attached (the individual descriptors

may or may not be closed) and the shared descriptor array of pid is now attached to

the calling process.

Shared descriptors should be used only by processes that are prepared to cooperate in

their use. Since shared descriptors may be closed by any process that have access to

it, process must be prepared to lose access to a descriptor because of the action of

another process.

ACCESS CONTROL

The process identified by pid must have previously issued a successful

dg_allow_shared_descriptor_attach(2) on the pid of the calling process for

this call to be successful.

RETURN VALUE

0 All descriptors in the shared descriptor array of process pid may now be

accessed by the calling process.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

093-701055 Licensed material—property of copyright holder(s) 2-47

dg_attach_to_shared_descriptors(2) DG/UX 5.4

ESRCH

EMFILE

EPERM

SEE ALSO

dg_attach_to_shared_descriptors(2)

pid does not exist.

The attach operation would exceed the soft limit on the number
of descriptors per process.

The calling process does not have permission to attach to the
shared descriptor array of process pid.

open(2), dg_allow_shared_descriptor_attach(2).

2-48
Licensed materialh—property of copyright hoider(s) 093-701055

dg_decryptsessionkey(2) OG/UX 5.4 dg_decryptsessionkey(2)

NAME

ag_decryptsessionkey — decrypt conversation key with the client/server common

key

SYNOPSIS

int dg_decryptsessionkey (nemame, deskey)

char * mefname;

des_ block * deskey;

where:

netname Netname of the server

deskey __ Pointer to the DES key to decrypt

DESCRIPTION

This call is used to request the user keyserver process to decrypt a conversation key

with the common key for this user and the server machine.

ACCESS CONTROL

None.

RETURN VALUE

0 The operation was successful.

-] An error occurred. errno indicates the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL Secure RPC is not configured. Secure RPC using DES Authentica-

tion is an additional feature that must be purchased separately from

the DG/UXTM ONCTM/NFS® product.

ENOMEM' _ Kernel memory could not be allocated to read in the nemame.

EFAULT Some part of the string pointed to by nemame lies outside the

process’s readable address space.

EFAULT Some part of the string pointed to by deskey lies outside the process's

writable address space. :

SEE ALSO . ,

dg_encryptsessionkey(2), dg_getrootkey(2), dg_setsecretkey(2).

2-49093-701055 Licensed materia}—property of copyright holders)

dg_devetl(2) DG/UX 5.4 dg_devetl(2)

NAME

dg_devctl — perform device-control functions

SYNOPSIS

#include <sys/dg_devctl.h>

int dg_devctl (cmd, arg)

unsigned int cmd;

void * arg;

where:

cmd One of the following command names:

DG_DEVCTL_CONFIGURE_DEVICE,

DG_DEVCTL_DECONFIGURE_DEVICE,

DG_DEVCTL_NAME_TO_DEVICE, DG_DEVCTL_DEVICE_TO_NAME

arg Pointer to a packet of information used and/or filled in by the command

DESCRIPTION

Dg_devctl1(2) can be used to perform a variety of device-related tasks on the system.

The specific task to be executed is indicated by the cmd parameter, and the address

of an information packet used to store information for that command is passed in the

arg parameter. The various command values, and the types of their accompanying

argument packets, are defined and described in <sys/dg_devctl.h>.

The DG_DEVCTL_CONFIGURE_DEVICE command is used to configure a device

into the system, given only its name in DG/UX common device specification format.

The DG_DEVCTL_DECONFIGURE_DEVICE command is used to deconfigure a

device out of the system, given only its name in DG/UX common device specification

format.

The DG_DEVCTL_NAME_TO_DEVICE command is used to find out the device

number of a device, given only its name in DG/UX common device specification for-

mat.

The DG_DEVCTL_DEVICE_TO_NAME command is used to find out the canonical

DG/UX common device specification format name of a device, given only its device

number.

ACCESS CONTROL

Any user may execute the DG_DEVCTL_NAME_ TO_DEVICE and

DG_DEVCTL_DEVICE_TO_NAME commands.

Only the superuser may execute the DG_DEVCTL_.CONFIGURE_DEVICE and

DG_DEVCTL_DECONFIGURE_DEVICE commands.

RETURN VALUE

0 The dg_devctl operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM A process called dg_devetl() without having an effective user ID
of 0.

EINVAL cmd is not one of the valid commands described above.

2-50

EFAULT arg points to an invalid address.

Licensed material—property of copyright holder{s) 0$3-701055

dg_deveti(2)

ENXIO

EBUSY

ENXIO

ENXIO

EINVAL

SEE ALSO

DG/UX 5.4 dg_devetl(2)

An attempt was made to configure a device that was already config-

ured.

An attempt was made to deconfigure a busy or undeconfigurable dev-

ice.

An attempt was made to deconfigure, get the name, or get the device

number of a device that is not configured. |

An attempt to configure or deconfigure a device failed for an

unknown reason.

An attempt was made to get the name of a device, but not enough

string storage was allocated to receive the name.

disknan(1M), dg_sysctl(2).

NOTE

This system call exists only for backwards compatibility with prior versions of

DG/UX. It will be removed in a future revision. Use the dg_syscti(2) svstem call

instead.

093-701055 Licensed material—property of copyright holder(s) 2-51

dg_encryptsessionkey(2) DG/UX 5.4 dg_encryptsessionkey(2)

NAME

dg_encryptsessionkey — encrypt conversation key with the client/server common

key

SYNOPSIS

int dg_encryptsessionkey (netmame, deskey)

char * nefname;

des_ block * deskey;

where:

netname Netname of the server

deskey Pointer to the des key to encrypt

DESCRIPTION

This call is used to request the user keyserver process to encrypt a conversation key

with the common key for this user and the server machine.

ACCESS CONTROL

None.

RETURN VALUE

0 The operation was successful.

-1 An error occurred. errno indicates the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL Secure RPC is not configured. Secure RPC using DES Authentication

is an additional feature that must be purchased separately from the

DG/UXTM ONCTM/NFS€ product.

ENOMEM Kernel memory could not be allocated to read in the netname.

EFAULT Some part of the string pointed to by netmame lies outside the process’s

readable address space.

EFAULT Some part of the string pointed to by deskey lies outside the process’s
writable address space.

SEE ALSO

dg_decryptsessionkey(2), dg_getrootkey(2), dg_setsecretkey(2).

2-52 Licensed material—property of copyright holder(s) 093-701055

dg_ext_ermo(2) DG/UX 5.4 : dg_ext_errno(2)

NAME

dg_ext_errno — return the extended errno for the current process

SYNOPSIS |
long dg_ext_errno ()

DESCRIPTION

This function returns the extended errno which is set on return from a system call.

The high order word contains the subsystem-id of the extended errno. The low

order word contains the specific error in the specified subsystem. The high order bit

of the extended errno is always set.

RETURN VALUE

extended_errno Returns the extended_errno.

DIAGNOSTICS

None.

SEE ALSO

perror(3C).

093-701055 Licensed material—property of copyright holders) — 2-53

dg_file_info(2) DG/UX 5.4 dg_file_info(2)

NAME

dg file info — get file usage information for process identified by process key

SYNOPSIS

#include <sys/dg_file_info.h>

int dg_file info (process_key,

descriptor_ptr,

file_info_buffer_size_ptr,

file_info_buffer_ptr,

version)

long process_key;

long * descriptor_ptr;

long * file_info_buffer_size_prr;

struct dg_file_info * file_info_buffer_pr7;

long version;

where:

process.key ° The key obtained from a previous dg_process_info

call; used to identify the process of interest

descriptor_ptr The type of file usage information to return

file_info_buffer_size_ptr On input, the maximum number of "file info” structures
to be returned; on output, the number of "file info" struc-

tures returned

file_info_buffer_ptr A pointer to an area of least *file_info_buffer_size_ptr
*sizeof (struct dg _file_info) bytes. The area

you pass a pointer to can be as large as you want. Infor-

mation about files is put here.

version DG_FILE_INFO_VERSION. If version is not this, no

information will be returned.

DESCRIPTION

2-54

Version specifies the version of information the user is interested in.

DG_FILE_INFO_VERSION always means the “current version”. Process_key indi-

cates a process whose file information is to be returned. *descriptor_ptr indicates

the starting point for a linear search through the following objects:

e Process’s descriptor table |

e Process’s current working directory

e Process’s current root directory

e File currently being executed by the process.

Information about up to *file_info_buffer_size_ptr entities is returned in the area indi-

cated by file_info_buffer_ptr. *file_info_buffer_size_ptr is set to indicate the number

of entities for which information is returned.

Always, information about the first *file_info_buffer_size_ptr active entities is

returned.

The data is put into the buffer as a series of dg_file_info structures. The

“file_info” structure is defined as:

struct dg_file info [{

int version;

Licensed materia}—property of copyright hoider(s) 093-701055

dg_file_into (2) DG/UX 5.4 dg_file_info(2)

int descriptor;

struct stat stat_pkt;

);

The version field indicates the version and, therefore, the format of the information
that follows. The descriptor field indicates the object the stat information refers to.

If descriptor is DG_FILE_LINFO_CWD, the stat information refers to the process’s

current working directory. If descriptor is DG_FILE_LINFO_ROOT_DIR, the stat

information refers to the process’s current root directory. If descriptor is
DG_FILE_INFO_COMMAND, the stat information refers to the file currently
being executed by the process. Otherwise, descriptor is a descriptor currently active
in the process indicated by process_key. Only the first *file_buffer_size_pr entries

contain valid information.

Upon return, the actual number of file_info structures put into the area pointed to by

file_info_buffer_pr is returned in *file_info_buffer_size._ptr. *descriptor_pir is set to

the starting point for the next dg_file_infocall. If *descriptor_pr is -1, there

are no more entities for which information can be returned.

ACCESS CONTROL

No access control is provided.

RETURN VALUE

0 Successful completion.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT Either file_info_bufjer_size_ptr, descriptor_prr or file_info_buffer_ptr

points to an invalid address.

EINVAL version requested is not supported.

EINVAL *descriptor_ptr is not one of the following: DG_FILE_LINFO_CWD,
DG_FILE_LINFO_ROOT_DIR, DG_FILE_LINFO_COMMAND, or 0

through NOFILE-1 inclusive.

SEE ALSO

€g_process_info(2).

4

093-701055 Licensed materiai—property of cepynight holders) 2-55

dg_ftstat(2) DG/UX 5.4 dg_fstat(2)

NAME

dg_fstat - get extended file stars information

SYNOPSIS

#include <sys/types.h>

#include <sys/dg_stat.h>

int dg fstat (fildes, buffer_ptr, version)

int fildes;

struct dg_stat * buffer_ptr;

unsigned short version;

where:

fildes A valid, active file descriptor

buffer_ptr Address of a dg_stat buffer to fill

version Version of the struct do_stat packet that buffer_pzr refers to;
should be set to DG_LSTAT_VERSION_NUMBER

DESCRIPTION

Dco_fstat(2) returns the current extended attributes of the file referenced by fides

into the de_stat buffer at the location specified by buffer_pir. If dg_fstax fails,

the contents of the buffer are undefined.

The size and composition of the structure referred to by buffer_prr is determined by

the version parameter. All calls to this function should use

DG_STAT_VERSION_NUMBER for this parameter. version allows for future revi-

sions of struct dg_stat to be handled in a compatible way.

The interpretation of the file’s attributes depends on the file’s type (see dg_stat(5)

and stat(5)).

ACCESS CONTROL

Read, write, or execute permission of the open file is not required. However, for

fildes to be active, the file must be open for reading or wniting.

RETURN VALUE

0 The dg_fstat operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL version is not a supported version of struct dg_stat.

EFAULT buffer_ptr points to an invalid address.

EBADF Fildes is not a valid, active file descriptor.

SEE ALSO

chmod(2), chown(2), creat(2), dg_mstat(2), dg_stat(2), fchmod(2),
fchown(2), fstat(2), link(2), lstat(2), mknod(2), pipe(2), read(2), stat(2),
time(2), unlink(2), utime(2), utimes(2), write(2), dg_stat(5), stat(5).

2-56 Licensed materiai—property of copyright holder(s) €93-701055

dg_getrootkey(2) DG/UX 5.4 dg_getrootkey(2)

NAME

dg_getrootkey — get root’s secret key

SYNOPSIS

int dg_getrootkey (secretkey)

char * secretkey;

where:

secretkey The root secret key.

DESCRIPTION

This call is used to read the root’s decrypted secret key from battery backed-up

RAM. Itis used by the keyserv(8C) process to initialize its database. In this way,

the keyserver can get the root key without operator intervention, as in the case of a

power failure in the middle of the night.

ACCESS CONTROL

None.

RETURN VALUE

0 The operation was successful.

-1 An error occurred. errno indicates the error.

DIAGNOSTICS

rrno may be set to one of the following error codes:

EPERM The process’s effective user id is not superuser.

EFAULT Some part of the string pointed to by secrerkey lies outside the

process’s writable address space.

SEE ALSO

dg_decrvptsessionkey(2), dg_encryptsessionkey(2), dg_setsecretkey(2),

keyserv(&C).

2-57
093-701055 Licensed material—property of copyright holder(s)

dg_ipe_info (2) DG/UX 5.4 d¢_ipe_intfo (2)

NAME

dg_ipce_info — get information about current IPCs state

SYNOPSIS

#include <sys/dg_ipce_info.h>

int dg_ipe_info(ipc.component, buffer.ptr, key_ptr, version)

int ipc.component;

char * buffer_prr;

key _t * key_ptr;

long version;

where:

ipc.component The IPC component: IPC_MSQ (message queues), IPC_SETM (sema-

phores), or IPC_SHM (shared memory).

buffer_ptr A pointer to a user buffer for returned information. The buffer
should be of struct msqid_ds, semid_ds or shmid_ds type,

depending on the value of ipc_component.

key_ptr The value of *key_prr should be set to

DG_IPC_INFO_LINITIAL_KEY on the first call for each IPC com-

ponent. On return, *key_pfr contains a value to which *key_prr

should be assigned on a subsequent call to dg_ipe_info.

version _ The version of this call (the most recent version is

DG_IPC_INFO_CURRENT_VERSION). See Gg_ipe_info.h.

DESCRIPTION

This is an alternative interface to /dev/kmem. This svstem call returns information

about the current state of the IPC components—shared memory, message queues, and

semaphores, as selected by ipc_component.

The dg_ipce_info call searches the ipc_component data structures. The first valid

entry it finds is copied into the user buffer pointed to by buffer_ptr. *key_prr is

assigned to the value that should be used by the next dg_ipce_info call to get the

next valid entry of ipc_component. If no valid entry is found, the dg_ipe_info call

returns with errno set to an appropriate value.

RETURN VALUE

1 This value indicates a successful return of information about an IPC struc-

ture, but more structures may still be available. ,

0 Successful completion. This means that there are no more IPC structures of

type ipc_component to return. The contents of buffer are undefined.

~1 Error. errno is set to indicate the error.

DIAGNOSTICS

2-58

Errno may be set to one of the following error codes:

EINVAL Invalid argument—ipc_component is not IPC_SHM, IPC_MSQ, or

IPC_SEM.

EINVAL Invalid argument—version is not a valid version number.

EINVAL Invalid argument—key_prr points to an invalid index key.

EFAULT buffer_ptr or key_ptr is an invalid address.

Licensed materia—property of copyright holde-(s) 093-701055

dg_ipe_into (2) OG/UX 5.4 | dg_ipe_into(2)

SEE ALSO

exec(2), ulimit(2).

093-701055 Licensed material—property of copyright holder(s) . 2-59

dg_Jenti(2) DG/UX 5.4 dg Jent!(2)

NAME

dg_lentl - process a record lock request on a filehandle

SYNOPSIS

include <sys/fentl.h>

#include <sys/nfs.h>

int dg_lentl(cmd, file_ptr, clientid, client_id_inuse_ptr, flock_ptr)

int cmd;

fhandle t * file.pi7;

int client_id ;

int * client_id_inuse_p? ;

struct flock * flock_ptr;

where:

cmd A lock command

file_ptr An nfs file handle

client_id A client id for the lock

client_id_inuse_pir Whether lock client id is in use

flock_ptr Lock parameters

DESCRIPTION

2-60

Dg_lentl processes the cmd lock request on the file given by the file handle file_prr

and lock client identifier client_id with the lock parameters given in flock_prr. Upon

return, the value of client_id_inuse_pt equals 1 if the client_id currently holds any

locks or lock requests, otherwise the value of clien!_id_inuse_p¢r equals 0.

Dg_lentl provides a variety of lock operations on file handles. It is similar to

fent1(2), but takes a file handle argument rather than a file descriptor, and a lock

client identifier rather than using the process id of the caller. A lock client id is a

small integer specified by the caller. Cmd is the lock command to be performed on

file_ptr with client_id and flock_ptr specifying the lock parameters. The flock_pir

parameters are treated the same as the fent1(2) lock parameters. On return,

client_id_inuse_ptr specifies whether client_id holds any locks or pending lock

requests. The commands available are:

DG_LCNTL_SETLK Set or clear a file lock according to flock_prr.

DG_LCNTL_SETLE is used to set read and write locks,

or remove either type of lock. .If a read or a write lock

cannot be set, dg_lentl returns immediately with the

value -1 and errno set to EACCES. [See the fent1(2)

command F_SETLK.]

DG_LCNTL_SETLKD This command is the same as DG_LCNTL_SETLE

except if a read or write lock is blocked by other locks,

dg_lentl queues a delayed lock request and returns with

the value -1, and errno set to EINPROGRESS. The

lock request is attempted when the blocking lock is

released. The results of the delayed request are returned

by the dg_lock_wait(2) call. If clientid already owns a

delayed lock request, then dg_lentl returns —1 and

errno is set to ENOLOCK.

DG_LCNTL_GETLK Get the first lock that blocks the lock description speci-

fied by flock_ptr. The information retrieved overwrites

the information passed to dg_lentl in flock_prr. If no

lock is found that would prevent this lock from being set,

Licensed materiat—property of copyright holcer(s) C$3-701055

dg_icnt!(2) DG/UX 5.4 dg_Jent!(2)

then flock_ptr is unchanged, except for the lock type,

which is set to DG_LCNTL_UNLCK. [See the fent1(2)

command F_GETLEK.]

DG_LCNTL_CANCEL Remove the delayed lock request specified by flock_prr.
If there is no delayed lock request, then this command

removes the lock specified by flock_prr. This is the only

command that may be issued for client_id while a delaved

lock request exists for client_id.

DG_LCNTL_RECLAIM § Set or clear a file lock according to flock_prr.
DG_LCNTL_RECLAIM is used during the system restart

grace period to reclaim read and write locks. If a read or

a write lock cannot be set, dg_lentl returns immediately

with the value -1, and errno is set to ENOLINK.

The only process that uses this function is the network lock server, rpc. locké.

ACCESS CONTROL

The caller must be super-user.

RETURN VALUE

0 The d&g _lcentl operation was successful.

-1 An error occurred. erzno indicates the error.

DIAGNOSTICS |
Exzrno mav be set to one of the following error codes regardless of the value of cma:

EPERM Must be super-user to use this system call.

EINVAL cmd is not one of the known values.

EACCES The cmd is DG_LCNTL_SETLK and the type of lock sought is
a read lock (DG_LCNTL_RDLCK) or wnite lock

(DG_LCNTL_WRLCRBK), and either the segment of a file to be

locked is already write-locked by another process, or the tvpe 1s

a write lock and the segment of a file to be locked is already

read-locked or write-locked by another process..

EFAULT One of the arguments points outside of the process’s readable

address space.

ESTALE The filehandle specified in the request is no longer valid.

EINTR The process received a signal while processing the lock request.

EDEADLK The cmd is DG_LLCNTL_SETLEW or DG_LCNTL_SETLEKD
and a deadlock would exist if the lock were granted or allowed

to pend.

EINPROGRESS The cmd is DG_LCNTL_SETLKD and the lock request can

not be granted immediately, but has been queued for later com-

pletion. When the lock currently blocking the request is

released, the request will be retried. The results of the delayed

request are returned by the dg_lock_wait(2) call.

ENOLCK The cmd can not be satisfied because there are no more record

locks available.

ENOLCK The cmd is DG_LCNTL_SETLED and the client_id already

093-701055

has a pending lock request.

Licensec materiai—property of copyright hoiders, 2-61

dg_Jentl(2) DG/UX 5.4 dg_Jent!(2)

ENOLCK The cmd is DG_LLCNTL_RECLAIM but the lock specified by

flock_ptr can not be granted.

SEE ALSO

fentl(2), dg_lock_reset(2), dg_lock_wait(2), lock£(3C), fent1(5).

2-62 Licensed material—property of copyright holders) 093-701055

dg_Jock_kill(2) DOG/UX 5.4 dg _Jock_kill(2)

NAME

d@g_lock_kill - remove locks held by remote lock clients

SYNOPSIS

#include <sys/fcntl.h>

#include <sys/nfs.h>

int dg_lock_kill (counr, client_id_list_ptr)

int count;

int * client_id_list_ptr;

where:

count Count of client id’s in the list

client_id_list_ptr A list of client id’s to free

DESCRIPTION

Remove all locks and lock requests owned by the client in client_list_ptr. count gives

the number of entries in the List.

The only process that uses this function is the network lock server, rpc.locké.

ACCESS CONTROL

The caller must be super-user.

RETURN VALUE

0 The dc_lock_kill operation was successful.

-1 An error occurred. exrno indicates the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM Must be super-user to use this system call.

EINVAL Count is less than or equal to zero.

ENOMEM There is not enough memory to process the request.

EFAULT One of the arguments points outside of the process’s readable

address space. a

EINTR The process received a signal while processing the request.

ENOLOCK . The command can not be satisfied because there are no more record

| locks available.

SEE ALSO

fentl(2), dg_lentl(2), dg_lock_reset(2), dg_lock_wait(2), lock£(3C),

fenti(5).

093-701055 Licensed materiah—property of copyrigh! holders) 2-63

dg_tock_reset(2) DG/UX 5.4 dg_lock_reset(2)

NAME

dg_lock_reset — reset remote file lock database, start lock reclaim grace period

SYNOPSIS

int dg_lock_reset (grace)

time t grace;

where:

grace The number of seconds in the grace period

DESCRIPTION

The dc_lock_reset system call removes all (remote) locks set by the network lock

server. It pends all lock requests, and deny all remote lock requests, for grace

seconds in order to allow remote clients to reclaim their locks.

The only process that uses this function is the network lock server, rpe.lockd.

ACCESS CONTROL

The caller must be super-user.

RETURN VALUE

0 The dg_lock_reset operation was successful.

-] An error occurred. ezrno indicates the error.

DIAGNOSTICS

Errno mav be set to one of the following error codes:

EPERM Must be super-user to use this system call.

EINVAL The grace period is invalid.

SEE ALSO

dg_lenti(2), dg_lock_wait(2), fent1(2), lock£(3C), fent1(5).

2-64 Licensec matena'—property of copyright holders: 0$3-701C55

dg_Jock_wait(2) DG/UX 5.4 | dg_lock_wait(2)

NAME

dg_lock_wait — wait for previously delayed lock requests to complete

SYNOPSIS

int dg_lock_wait (client_id_prr, clientid_in_use_prr)

int * clientid_ptr;

int * client_id_in_use_pi7;

where:

client_id_ptr Space to return the client id of the completed request

client_id_in_use_pir Space to return whether the lock client id is in use

DESCRIPTION

Dg_lock_wait(2) suspends the calling process until either a signal is received, or a

previously issued lock request that has been delayed completes.

If-a previously issued lock request completes, the client_id_pt argument identifies the ©
. client of the completed request, and client_id_in_use_prm indicates whether client

currently holds any locks or lock requests. The return value may be 0 or -1, depend-
ing upon whether the request was successful.

If a signal is received before anv requests complete, then Gc_lock_wait returns and

both client_id_prr and client_id_in_use_ptr are invalid. In this case, the return value is

-1, and errno is set to EINTR.

The only process that uses this function is the network lock server, rpc.lockd.

ACCESS CONTROL

The caller must be super-user.

RETURN VALUE

0 The dg_lock_wait operation was successful. The clienrid_pir lock request

was granted.

-1 An error occurred. errno indicates the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM Must be super-user to use this system call. The content of both
client_id_pt and client_id_in_use_ptr are invalid.

EFAULT One of the arguments points outside the process’s readable address
space. The content of both client_id_ptr and client_id_in_use_prr are

invalid.

EDEADLK _ The client_id_ptr lock request is refused because it would cause a

deadlock. Both client_id_pr and client_id_in_use_pfr are valid.

EINTR A signal was received. The content of both client_id_pr and

client_id_in_use_ptr are invalid.

SEE ALSO

dg_lentl(2), dg_lock_reset(2), fentl(2), lockf£(3C), fent1(5).

083-701055 lucensed materialt—property of copynght holder(s) . 2-65

dg_minod(2) DG/UX 5.4 dg_mknod(2)

NAME

dg_mknod - create a file system node

SYNOPSIS

#include <sys/types.h>

#include <sys/dg_mknod.h>

#include <sys/dg_stat.h>

int dg_mknod (path, buffer.ptr, version)

char * path;

struct dg_mknod * buffer_ptr;

unsigned short version;

where:

path Address of pathname to create

buffer_prr Address of a dg_mknod buffer which describes the node to be
created

version _ Version of the struct dg_mknod packet that buffer_prr refers to;

‘ should be set to DG_LMKNOD_VERSION_NUMBER

DESCRIPTION

2-66

Dg_mknod(2) creates a new ordinary file, directory, control-point directory, block-

special file, character-special file, FIFO file, or symbolic link file. The new file will

be named path, and its attributes will be set according to the struct dg_mknod packet

represented by buffer_prr:

e The file’s type and mode will be set according to the extended_mode field.

Note that the file’s mode is modified bv the process’s file mode creation

mask; all bits set in the mask are cleared (see umask(2)). Note also that only

the superuser may set the sticky bit (S_ISVTX), as explained below.

e If the file is of type block-special (S_IFBLK) or character-special

(S_IFCHR), then the file’s represented device (st_rdev) will be set to

device_number.

e If the file is of type FIFO (S_IFIFO), then the indicated FIFO (named pipe)

file will be created.

e If the file is of type symbolic link (S_IFLNR), then the pathname denoted by

the symbolic_link_target field will be used as the target of the link file. Note

that there is no requirement that symbolic_link_target actually exist. °

e If the file is of type ordinary file (S_IFREG), directory (S_IFDIR) or CPD
(DG_IFCPD), then the file’s data and index element sizes will be set accord-

ing to the information in buffer_prr, using the following algorithm: Each

integer between desired_data_element_blocks and data_element_blocks_limit,

Starting at the former, will be examined in order. The first number that is

discovered to be a valid data element size is the number that will be used as

the data element size. If no number in the specified range is a valid element

size, an error will be returned (see below) and no node will be created. The

file’s index element size will be set in exactly the same manner, .=cept that

the range will start at desired_index_element_blocks and work towards

index_element_blocks_limit.

@ If the file is of type socket (S_IFSOCK), or if the file type is invalid, an error
will be returned (see below) and no node will be created.

Licensed materiah—property of copyright holcer(s) 093-701055

dg_mkno

ACCES

d(2) DG/UX 5.4 dg_mknod(2)

The file’s other attributes are initialized as follows:

e The file’s inode number (st_ino) is set to refer to the per-file database allo-

cated. |

e The file’s size (st_size) is set to zero.

e The number of links to the file (st_nlink) is set to one, unless the file is of

type directory (S_IFDIR) or CPD (DG_IFCPD), in which case it is set to

two.

e The file’s user-ID (st_uid) is set to the effective user-ID of the calling process.

e The file’s group-ID (st_gid) is set to the effective group-ID of the calling pro-

cess.

e The file’s time fields (st_atime, st_ctime and st_mtime) are all set to the

: current time.

Path is created in the containing directory and is made to identify the newly created

file. The attributes of the parent directory change as follows:

e The file size (st_size) is updated if the new directory entry caused the direc-

tory to change size.

e The time last modified (st_mtime) and time of last attribute change (st_ctime)

are set to the current time.

If the call to dg_mknod() fails, no file is created, and the attributes of the directory

intended to contain the file remain unchanged.

The size and composition of the structure referred to by buffer_pm are determined by

the version parameter. All calls to this function should use

DG_MKNOD_VERSION_NUMBER for this parameter. Version allows for future

revisions of struct dg_mknod to be handled in a compatible way.

S CONTROL

The process must have write access to the containing directory of path, and it must

have permission to resolve path.

The process’s effective user-ID must be superuser in 1 order to create files of type
block-special or character-special.

The process’s effective user-ID must be superuser in order to set the sticky-bit

(S_ISVTX). However, failure to meet this requirement will not produce an error

when setting the sticky bit is s requested; the file will merely be created without that bit

being set.

RETURN VALUE

0 The dg_mknod operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS
Errno may be set to one of the following error codes:

EEXIST The named file path already exists.

EINVAL version is not a supported version of struct dg_mknod.

EINVAL An invalid file type was specified in the buffer_p

extended_mode.

EROFS The directory in which path is to be created is located on a file

093-701055

system device that is mounted read-only.

2-67Licensed materiai—property of copyright holder(s)

dg_mknod(2)

ENOSPC

EFAULT

ENOENT

ENOTDIR

OG/UX 5.4 dg_mknod(2)

There is not enough contiguous space available to allocate file

space or an inode.

buffer_ptr points to an invalid address, or the pathname does

not completely reside in the process’s address space or the

pathname does not terminate in the process’s address space.

A non-terminal component of the pathname does not exist.

A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname of the target of the symbolic link being created

ENOMEM

ELOOP

EPERM

EACCES

SEE ALSO

exceeds the length limit for pathnames, or A component of the

pathname of the target of the symbolic link being created

exceeds the length limit for filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

Permission to create a character-special file or a block-special

file is denied, or the pathname contains a character not in the

allowed character set.

The calling process does not have permission to resolve theSP Pp
pathname.

chmod(2), chown(2), ecreat(2), dg_fstat(2), dg_mstat(2), fehmod(2),

fchown(2), fstat(2), link(2), lstat(2), mknod(2), pipe(2), read(2), stax(2),

time(2), unlink(2), utime(2), utimes(2), write(2), dg_mknod(5),

dg_stat(5), stat(5).

2-68 Licensed materialt—property of copyright holders) 093-701055

dg_mount(2) DG/UX 5.4 dg_mount(2)

NAME

dg_mount — mount a file system

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/nfs.h>

#include <sys/dg_mount.h>

int dg_mount (type, path, flags, data)

char * ype;

char * path;

int flags;

char * data;

where:

type Address of a type string (must be nfs or dg/ux)

path Address of a pathname of a file to mount upon

flags Mount options flags

data Type-specific argument structure

DESCRIPTION

The dg_mount system call] is used to mount all file system twpes. The dg_mount

call attaches a file system to a file. When mounting a dg/ux or nfs file svstem, path

must refer to a directory or CPD. After a successful return, references to path will

refer to the root directory on the newly mounted file svstem. When mounting a

namefs file system, path mav be anv type of file. After a successful return, refer-

ences to path will refer to the named stream.

The following option flags are supported when mounting dg/ux and nfs file systems:

M_RDONLY Mount the file system read-only.

M_NOSUID Ignore set-uid bits on files in this file system.

M REMOUNT Change the options on an existing mount. For NFS file systems, the

following mount options may have their values changed by this flag:

wsize , rsize, fimeo, retrans, acregmin, acregmax, acdirmin, acdir-

max, honoring of set-uid bits on files on this filesystem, and how the

‘file svstem is mounted (that is, hard or soft).

M_NOSUB Disallow mounts beneath this filesystem.

Physically write-protected file systems must be mounted read-only; otherwise, errors

will occur when access times are updated, whether or not any explicit write is

attempted.

These flags are ignored when mounting a namefs file system.

The type string indicates the type of the filesystem. dara is a pointer to a structure

that contains the type-specific arguments to dg_mount. Below is a list of the filesys-

tem types supported and the type-specific arguments to each:

“dag/ux"

struct dgux_args [{

int version;

char *fspec;

int flags;

int file_nodes;

093-701055 Licensec matena—property of copyright holcer(s) 2-69

dg_mount(2) DG/UX 5.4

int

mode _t

int

char

);

et e

nfs

struct nfs_args [{

int

struct sockaddr_in

fhandle t

int

int

inot

int

int

char

int ~-

int

int

int

char

int

);

"namefs”

struct namefs_args {

int

);

dg_mount(2)

file space;

permissions;

log_size;

*cachespec;

version;

taddr;

*fh;

flags;

wsize;

rsize;

timeo;

retrans;

xhostname;

acregmin;

acregmax;

accirmin;

acdirmax;

*netrame;

securewin;

fd;

For dg/ux file systems, the version must be DG_MOUNT_DGUX_VERSION, and fspec

points to a character string that names the block special device being mounted. If the

variant of the dg/ux mount is for a memory file system, three additional flags come

into plav. A memorv file system is one that has no underlying media. Files created

in a memory file svstem will not persist across system instantiations. Memory file svs-

tems are useful for storing temporary files and for accelerating executable images.

Permissions is the mode to assign to file systems that emulate DG/UX file systems on

top of other file systems (not currently used).

The additional flags for the memory file system variant are:

DGUXMNT_MEMORY_FS

The mount is for a file system that does not have any backing media, that is,

one whose file information and data exist in the virtual memory of the system.

If this is set, the next two flags may also be defined. If this flag is not set, the

following two flags are ignored.

DGUXMNT_WIRED_MEMORY |

This instructs VM to use wired memory for the data in the memory file sys-

tem instead of unwired memory, which is the default.

DGUXMNT_FILE_COUNT

The file. nodes member of the structure contains the maximum number of

files allowed to be allocated to the particular memory file system. file_nodes

must be a positive integer. If this is not specified, the default file count for

2-70 Licensec materia—property of copyright holder(s) 083-701C055

dg_mount(2) DG/UX 5.4 | dg_mount(2)

the memory file system is 16384.

DGUXMNT_FILE_SPACE

The file_space member of the structure contains the maximum amount of file

space allowed to be allocated in the particular memory file system. file_space

must be a positive integer. If this is not specified, the default amount of file

space for the memory file system is 2048 blocks, where a block is 512 bytes.

For NFS file systems, the version must also be DG_MOUNT_NFS_VERSION. The addr

socket contains the UDP address of the NFS file server. The fh file handle contains

the file handle on the server of the root of the file system being mounted. The fiags
word is the logical OR of any of these flags:

NFSMNT_SOFT The requested mount should be a soft mount.

NFSMNT_WSIZE The wsize member of the structure contains the maximum

- transfer size (in bytes) to use when writing files. If no value is

specified, §192 is used. :

NFSMNT_RSIZE The rsize member of the structure contains the maximum
transfer size (in bytes) to use when reading files. If no value is

specified, 8192 is used.

NFSMNT_RETRANS The retrrans member of the structure contains a retransmission

count for NFS retrys. If no value is specified, 3 is used.

NFSMNT_NOAC Disable attribute caching for all files and directories.

NFSMNI_ACREGMIN The acregmin member of the structure contains a minimum

number of seconds to keep attributes cached for regular files.

If no value is specified, 5 seconds is used.

NFSMNI_ZACREGMZX The acregmax member of the structure contains a maximum

number of seconds to keep attributes cached for regular files.

If no value is specified, 60 seconds is used.

NFSMNI_ZACDIRMIN The acdirmin member of the structure contains a minimum

number of seconds to keep attributes cached for directory

files. If no value is specified, 30 seconds is used.

NFSMNT_ACDIRM2X The acdirmax member of the structure contains a maximum

number of seconds to keep attributes cached for directory

files. If no value is specified, 60 seconds is used.

For namefs file systems, fd is an open file descriptor that refers to a STREAMS-

based pipe or a STREAMS device driver. The mount attaches the stream to path so

that all subsequent operations on path will operate on the named stream. The flags
word is ignored.

ACCESS CONTROL

The effective user id of the calling process must be superuser to mount a dg/ux or nfs

file system. When mounting a namefs file system, the effective user id of the callins

process must be superuser, or the the effective user id must be the owner of parh and

have write access to path.

RETURN VALUE

0 Completed successfully.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Exrxrno may be set to one of the following error codes:

€$3-701055 Licensed material—property of copyright nolcer(s) . 2-71

dg_mount(2)

2-72

ENOTDIR

EPERM

EBUSY

EBUSY

EINVAL

ENODEV

DG/UX 5.4 dg_mount(2)

path is not a directory.

Permission to mount a file system device is denied to the calling pro-
cess.

Another process is using path as its home or root directory.

Another file system is already mounted here.

The version number in the filesystem specific packet is not correct.

Kernel support for the requested file system type is not present.

Any of the pathname resolution errors.

SEE ALSO

mount(1M), getfh(2), mount(2), umount(2).

Licensed material—property of copyright holders) 093-709CE5

dg_mstat(2) OG/UX 5.4 dg_mstat(2)

NAME

dg_mstat — get file status

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

int dg_mstat (path, buffer_ptr)

char * path;

struct stat * buffer_ptr;

where:

path Address of a pathname

buffer_ptr Address ofa stat buffer to fill

DESCRIPTION

De_mstat returns the current attributes of the file pointed to by path into the status

buffer at the location specified by buffer_prr. If path refers to a symbolic link, file

status for the target of the svmbolic link is returned. Furthermore, if park (after svm-

bolic link resolution, if anv) refers to a mount point for a file system, status informa-

tion for the mounted on directory is returned.

The interpretation of the file’s attributes depends on the file’s type [see stat(5) for

details]. The subject file must be of type ‘ordinarv-disk-file’, ‘directory’, ‘block-

special-file’, ‘character-special-file’, or ‘fifo-special-file’.

If dg_mstat fails, the contents of the buffer are undefined.

ACCESS CONTROL

Read, write, or execute permission of the named file is not required, but the process

must have permission to resolve path.

RETURN VALUE

0 The dg_mstat operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

093-701055

Errno may be set to one of the following error codes:

EFAULT ‘ Buffer_ptr points to an invalid address.
4

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

set.

Licensec materia'—property of copyright holder(s) 2-73

dg_mstat(2) DG/UX 5.4 dg_mstat(2)

EFAULT The pathname does not completely reside in the process’s
address space or the pathname does not terminate in the

process’s address space.

SEE ALSO

chmod(2), chown(2), ecreat(2), fchmod(2), fchown(2), fstat(2), link(2),

lstat(2), mknod(2), pipe(2), read(2), stat(2) time(2), unlink(2), utime(2),

utimes(2), write(2), stat(5).

2-74 Licensed materiab—preperty of copyr.ght holder(s) 0$3-70°055

dg_paging_info(2) DG/UX 5.4 dg_paging_into(2)

NAME

dg_paging_info — determine residency of memory pages

SYNOPSIS |
#include <sys/dg_paging_info.h>

int dg_paging_info(int version, pid_t pid,

struct dg_paging_info *paging_info);

where:

version Desired version of the function interface

pid Process id of the process whose address space is to be queried

paging_info Pointer to a structure which further describes the queried memory

region and the array used for reporting paging status

DESCRIPTION
The dg_pasing_info() function returns the primary memory residency status for

pages in a region of the address space specified by pid.

The version parameter must have the value DG_PAGING_INFO_VERSION_1, as this is

the only supported version of the function interface.

The pid parameter must be either a legal process id value, to query the address space

of the process with that process id, or one of two special values:

DG_PAGING_INFO_KERNEL_SPACE_PID

Query a region of the kernel address space.

DG _PAGING_INFO_CALLING_PROCESS_PID

Query a region of the caller’s address space.

Upon invocation of dg_paging_info(), the members of the structure given by

paging_info further define the query:

dpi_flags This member is reserved for future use and must be 0.

dpi_start_address This member defines the lower bound within the queried

address space for which the caller is requesting paging

info; its value must be a page aligned address. (The sys-

tem page size is available by calling getpagesize(2) or

" sysconf(2) with the _SC_PAGESIZE parameter; both

calls return identical values.)

dpi_byte_count This member contains the maximum number of bytes of

address space for which the caller is requesting paging

info. In the event that the value is not a multiple of the

system page size, it will be treated as if it were rounded up

to the next page size muluple.

dpi_birmap_bits_per_page This member contains the number of bits of paging info
requested by the caller for each page of the queried

address space. The legal values for this member are 1

and 8. In either case, the low order bit of paging info

recorded for each page indicates whether it is resident in

primary memory (a bit value of 1 represents a resident

page). In the case of one bit per page, the pages with

lower addresses are represented in the higher order bits

within each byte.

2-75
093-701055 Licersed materia—property of copyright holder(s)

dg_paging_info(2) DG/UX 5.4 dg_paging_info(2)

dpi_bitmap_ptr This member specifies the location within the caller’s
address space of the bitmap to contain the recorded pag-

ing info for the queried address space. The caller’s

address space must be writable starting at the specified

address, for the number of bits of paging info requested.

(This number of bits can be computed by multiplying the

number of pages implied by dpi_byte_counr times the value

of dpi_birmap_bits_per_page.)

The function will report on the first contiguous range of mapped pages at or above

address dpi_start_address within the queried address space, up to the maximum

number of pages implied by dpi_byte_count.

Upon successful return from dg_paging_info, the following members of the

paging_info structure will be updated to reflect what status information has been

reported:

dpi_start_address ' This member contains the address of the first mapped

page within the queried address space which has an

address greater than or equal to the requested start

address. This page’s status is also represented by the first

element in the bitmap at dpi_birmap_prr.

dpi_byte_count This member contains the actual] number of bytes of
address space for which paging info has been reported in

the bitmap. This value will be identical to its value upon

invocation unless the memory segment starting at

dpi_start_address (as returned) is smaller than the value of

dpi_byte_count specified upon invocation. If

dpi_byte.count is 0 on return, then there were no mapped

pages in the queried address space at or above

dpi_start_address.

The dg_paging_info() function returns residency information that 1s accurate at a

different instant in time for each page. Because the system may frequently adjust the

set of pages in memory, this information may quickly be outdated, not necessarily

even self-consistent.

Pages which are direct mapped to a memory-mapped device will be reported by

dg_paging_info() to be memory resident. —

ACCESS CONTROL

If the queried address space is that of a process, then the caller’s real user id or saved

set user id must equal the real user id or saved set user id of the queried process.

Failing that, the caller’s effective user id must be superuser.

If the queried address space is the kernel address space, then the caller’s effective

user id must be superuser.

RETURN VALUE

Upon successful completion, dg_paging_info() returns a value of 0. Otherwise,

it returns the value -1, and sets errno to indicate the error.

DIAGNOSTICS

Under the following conditions, dg_paging_info() fails and sets errno to:

2-76 Licensed materia'\—property of copyright holderts) C§3-701055

dg_paging_info(2)

EACCES

EFAULT

EFAULT

EINVAL

EINVAL

EINVAL

EINVAL

EINVAL

ESRCE

SEE ALSO

getpagesize(2), mincore(2), sysconf(2).

093-701055

OG/UX 5.4 | dg_paging_info(2)

if the calling process lacks access to query the address space speci-

fied by pid.

if some portion of the structure pointed to by paging_info is not

mapped in the caller’s address space or lacks write access.

if some portion of the bitmap pointed to by dpi_bitmap_prr is not

mapped in the caller’s address space or lacks write access.

if version is not DG_PAGING_INFO_VERSION_1.

if dpi_flags is not 0.

if dpi_start_address is not a page aligned address.

if dpi_byte_countis 0.

if dpi_bitmap_bits_per_page is neither 1 nor 8.

if no process was found with a process id matching pid.

?

Licensed material—property of copyright holoer(s) 2-17

dg_process_info(2) OG/UX 5.4 dg_process_jnfo(2)

NAME

dg_process_info — get information about the system’s currently active processes

SYNOPSIS

#include <sys/dg_process_info.h>

int dg_process_info (selector,

| selector_value ,

cmd_mname_format,

key_pir,
buffer_ptr,

version)

long _ selector;

long selector_value;

leng cmd_name_format;

long * key_ptr;

struct dg_process_info * buffer_prr;

long version;

where:

selector A condition for determining which process to report informa-

tion about

selector_value A value for the select condition above

cmd_name_format One of three values

(DG_PROCESS_LINFO_.CMD_NAME_NULL,

DG_PROCESS_INFO_CMD_NAME_ONLY, or

DG_PROCESS_INFO_CMD_NAME_AND_ARGS) specifying

whether the command name alone is sufficient, or if the com-

mand name with its arguments is needed.

key_ptr On the first call, a pointer to a variable containing the value

DG_PROCESS_INFO_LINITIAL_KEY;; on return, a handle

that should be used on subsequent calls to this system call

buffer_ptr A pointer to a buffer of structure dg_process_info where

the process information will be returned

version To use the most recent version, version should be set to

DG_PROCESS_INFO_CURRENT_VERSION.

DESCRIPTION

The dg_process_info system call searches the process table for valid (non-free

non-initializing) table entries and based on the selecror determines whether or not to

return information about that process. Searching continues until a process is found

(return value (1)), or until the process table is completely searched (return value (0)).

Only one search through the process table is made. If a process exists in a particular

slot in the process table when that slot is looked at, information on that process will

be returned. If the slot is empty, no information will be returned.

ACCESS CONTROL

There are no checks for access contro]. All users can access this system call.

RETURN VALUE

1 Successful search, but not done. The buffer was filled with information about

a process. key_prr is given a handle which subsequent calls to this routine will

use to continue the search through the process table.

2-78 Licensed materiai—property of copyright holderts) 0$3-701055

dg_process_info(2) DG/UX 5.4 dg_process_into(2)

0 Successful completion, that is, no more processes. The contents of buffer are

undefined.

-1 An error occurred. errno Is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINTR An interrupt occurred during the system call

EINVAL A bad argument was passed in.

EFAULT The key_ptr argument specifies a bad address

EFAULT The buffer_ptr argument specifies a bad address

SEE ALSO

killall(1M), dg_sys_info(2), fork(2), vfork(2).

2-79
093-701055 Licensed materiat—property of copyzight helde:(s)

dg_set.epdJimits(2) OG/UX 5.4 dg_set_epd_Jjimits(2)

NAME

dco_set_cpd_limits ~ change the resource limits of a control point directory

SYNOPSIS

#include <sys/dg_cpd.h>

int dg _set_epd_limits (path, blocks, file.nodes)
char * path;

unsigned long blocks;

unsigned long filenodes;

where:
|

path Pathname of the CPD to be changed

blocks New block allocation ceiling

file_nodes New file node allocation ceiling

DESCRIPTION

The dg_set_cpd_limits system call changes the limits associated with a control

point directory. The path parameter points to a pathname naming a control point

directory (terminal symbolic links are followed in path). If the calling process has the

appropriate access to path (see below), the CPD limits of path are set to blocks disk

blocks and file_nodes file nodes. The new CPD limits will be visible in subsequent

dg_stat calls on path: the max_cpd_blocks field will be blocks and the

max_cpd_file_nodes field will be file_nodes.

The effects of a CPD’s limits on its space descendants (those files and directories

which are below path and not across a file system mount point boundary from it) are

as follows: If the current number of disk blocks used by path and all its space des-

cendants equals or exceeds blocks, all attempts to allocate blocks to path or one of its

space descendants will fail with the error ENOSPC. Likewise, if the total number of

file nodes used by path and all its space descendants equals or exceeds file_nodes, all

attempts to allocate more file nodes below path will fail with the error ENOSPC. The

only exception to these rules is that the superuser may override the CPD limits of the

root directory of a file system (which is always a CPD), though obviously not in

excess of the actual physical resources in the file system.

The blocks parameter can be set to any number between 0 and

DG_CPD_NO_BLOCK_LIMIT, inclusive. Likewise, the file.nodes parameter can be

set to any number between 0 and DG_CPD_NO_FILE_NODE_LIMIT, inclusive.

Note that it is not required that blocks be greater than the current number of blocks

in use by path and its space descendants, or that file_nodes be greater than the

current number of file nodes in use by path and its space descendants.

The last component of path may not be ".” or ”..". Use an absolute pathname

instead.

ACCESS CONTROL

The calling process must have write access to the parent directory of path, unless

path is the root of a file system. In that case, only the superuser may make this call.

The process must have permission to resolve path .

RETURN VALUE

0 The limits of the control-point directory path were successfully modified.

~] An error occurred. errno is set to indicate the error.

2-80 Licensed materiai—property of cepyright holders) 093-701055

dg_set_epd_Jimits(2) DG/UX 5.4 dg_set_epd_Jimits(2)

DIAGNOSTICS

Errno may be set to one of the following error codes: |

EINVAL The named file path exists but it is not a contro] point direc-
tory; or the blocks parameter is not in the range 0 to :

DG_CPD_NO_BLOCK_LIMIT;; or the file_nodes parameter is

not in the range 0 to DG PO NOE NODELIMITs or

the last component of the path is ".” or *..”.

ENOTSUPPORTED The operation is not supported because the referenced file is an
NFS file.

EPERM The CPD denoted by path is the root of a file system, and the

process’s effective user-ID is not superuser.

EACCES The CPD denoted by path is not the root of a file system, and

: the process does not have write permission in the parent direc-
tory of path.

EROFS The named file resides on a file system device mounted read-

only.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR — A non-terminal component of the pathname was not a directory
or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough svstem resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

. set.

EFAULT The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

EACCES The calling process does not have permission to resolve the

pathname.

SEE ALSO

mkdir(1), rmdir(1), dg_mknod(2), rmdir(2), dg_stat(5).

083-701055 Licensed materiai—property of copyright holder(s) 2-81

dg_setsecretkey(2) OG/UX 5.4 dg_setsecretkey(2)

NAME

dg_setsecretkey — store a client’s secret key in the keyserver

SYNOPSIS

int dg_setsecretkey (Secretkey)

char * secretkey;

where:

secretkey The secret key

DESCRIPTION

This call is used to store a user’s decrypted secret key in the database maintained by

the keyserver process.

ACCESS CONTROL

None.

RETURN VALUE

0 The operation was successful.

-] An error occurred. errno indicates the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL Secure RPC is not configured. Secure RPC using DES Authentica-

tion is an additional feature that must be purchased separately from

the DG/UXTM ONCTM/NFS@ product.

EFAULT Some part of the string pointed to by secretkey lies outside the

process’s readable address space.

SEE ALSO

dg_decryptsessionkey(2), dg_encryptsessionkey(2), dg_getrootkey(2).

2-82 Licensed materiai—property of copyright holder's) 093-701C055

dg_stat(2) DG/UX 5.4 | dg_stat(2)

NAME

dg_stat — get extended file status information

SYNOPSIS

#finclude <sys/types.h>

#include <sys/stat.h>

#include <sys/dg_stat.h>

int dg_stat (path, buffer.ptr, link_intent, version)

char * path;

struct dg_stat * bufferprr;

int link_intent;

unsigned short version;

where:

path Address of a pathname

buffer_p:r Address of a dg_stat buffer to fill

linkLintent Instructions on what to do if the component of path is a symbolic

link

version Version of the struct dg_stat packet that buffer_pir refers to;

should be set to DG_STAT_VERSION_NUMBER

DESCRIPTION

Dg_stat(2) returns the current extended attributes of the file named by path into the

dg_stat buffer at the location specified by buffer_prr. If path refers to a symbolic

link and link_inrenr is DG_LSTAT_FOLLOW_SYMLINK, then file status for the tar-

get of the svmbolic link is returned. If path refers to a symbolic link and link_intent

is DG_STAT_EXAMINE_SYMLINK, then file status for the symbolic link itself is

returned. If park does not refer to a symbolic link, then the value of link_inzenr is

irrelevant, but it must be one of the aforementioned constants. If dc_stax fails, the

contents of the buffer are undefined.

The size and composition of the structure referred to by buffer_prir is determined by

the version parameter. All calls to this function should use

DG_STAT_VERSION_NUMBER for this parameter. version allows for future revi-

sions of struct dg_stat to be handled in a compatible way.

The interpretation of the file’s attributes depends on the file’s type [see dg_stat(5)
and stat(5)].

ACCESS CONTROL

Read, write, or execute permission of the named file is not required, but the process

must have permission to resolve path.

RETURN VALUE

4) The dg_stat operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL version is not a supported version of struct dg_stat.

EINVAL link_intent is not one of DG_STAT_EXAMINE_SYMLINK or

DG_STAT_FOLLOW_SYMLINKE.

EFAULT buffer_ptr points to an invalid address.

093-701055 Licensed material—property of copyright holder(s) 2-83

dg_stat(2) DG/UX 5.4 dg_stat(2)

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A svmbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character
set.

EFAULT The pathname does not completely reside in the process's

address space or the pathname does not terminate in the

process’s address space.

EACCES | The calling process does not have permission to resolve the

pathname.

SEE ALSO

chmod(2), chown(2), creat(2),-dg_fstat(2), dg_mstat(2), fcehmod(2),

fchown(2), fstat(2), link(2), lstat(2), mknod(2), pipe(2), read(2), stat(2),

time(2), unlink(2), utime(2), utimes(2), write(2), dg_stat(5), stat(5).

Licensed material—property of copyright holder(s) 0$3-701055

dg_sys_info(2) DG/UX 5.4 dg_sys_info(2)

NAME

dg_sys_info — get system information

SYNOPSIS

#include <sys/dg_sys_info.h>

int dg _sys_info (info_ptr,

info_type,

version)

long * info_pt7;

long injoftype;

long version;

w :

ne fo_pm A pointer to the location in user space where the information will be
. wnitten

info_npe The type of structure pointed to by info_ptr. See svs/dg_sys_info.h.

version The version of the particular sys_info structure being used

DESCRIPTION

Based on the info_type of info_ptr, gather information from certain kernel databases

and return the information to the caller. See svs/dg_sys_info.h for explanations fo

the types of information returned.

RETURN VALUE

0 The call succeeded.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

xzrno may be set to one of the following error codes:

EINVAL A bad argument was passed.

EFAULT The info_prr argument specifies a bad address.

EONOTSUPP Kernel support for NFS is not present.

ENOMEM Not enough memory for internal kernel structure.

SEE ALSO

dg_ process info(2), uname(2).

093-701055 Licensed materia-—preperty of copyright holder(s) 2-85

NAME

dg_sysctl — perform system configuration and contro} functions

SYNOPSIS

#include <sys/dg_sysctl.h>

int dg_ sysctl (cmd, arg)

unsigned int cmd;

void * arg;

where:

cmd The task to be performed. |

arg - A pointer to a packet of information used by and/or filled in by the task.

DESCRIPTION

The dg_ sysctl system call can be used to perform a variety of system configuration

and system control tasks. The specific task to be executed is indicated by the cmd

parameter, and the address of an information packet used by and/or filled in by that

command is passed in the arg parameter. The various command values and the types

of their accompanying argument packets are defined and described in

<sys/dg_sysctl.h>.

Commands

2-86

The DG_SYSCTL_CONFIGURE_DEVICE command is used to configure a device into

the system, given only its name in DG/UX common device specification format.

The DG_SYSCTL_DECONFIGURE_DEVICE command is used to deconfigure a device

out of the system, given only its name in DG/UX common device specification for-

mat.

The DG_SYSCTL_NAME _TO_DEVICE command js used to find out the device number

of a device, given only its name in DG/UX common device specification format.

The DG_SYSCTL_DEVICE_TO_NAME command is used to find out the canonical

DG/UX common device specification format name of a device, given only its device

number. |

The DG_SYSCTL_SET_BOOT_PATH command is used to set the boot command line

that will be used to reboot the system if the reboot(2) or uadmin(2) system call is

invoked appropriately, or if the system is automatically rebooted after a panic. The

default is the boot path used when the system was last booted. If the boot path is set

to an empty String or a string of spaces, the boot path saved by the System Control

Monitor (SCM) will be used. The boot path will be used for all future automatic

reboots of the system until you change the boot path or reboot the system manually

from the SCM. Do not include the SCM boot command in the string itself.

The DG_SYSCTL_GET_BOOT_PATH command is used to get the current boot com-

mand line so that you can see what it is.

The DG_SYSCTL_SET_DUMP_DEVICE command is used to set the name of the dump
device that will be used to write a system dump when a panic occurs. The default

dump device is the device specified for the DUMP variable in the system configuration

file.

The DG_SYSCTL_GET_DUMP_DEVICE command is used to get the the current dump

device name so that you can see what it is.

The DG_SYSCTL_SET_AUTOREBOOT command is used to set the state that controls

whether the svstem will be automatically rebooted after a panic occurs. The default

state is DG_SYSCTL_HALT_AFTER_PANIC. The other state that it can be set to

Licensed material—property of copyright holders) 0$3-701055

dg_sysctl(2) OG/UX 5.4 dg_sysctl(2)

is DG_SYSCTL_REBOOT_AFTER_PANIC.

The DG_SYSCTL_GET_AUTOREBOOT command is used to get the current state setting
that controls whether the system will be automatically rebooted after a panic occurs
so that you can see what It 1s.

The DG_SYSCTL_SET_DUMP_START command is used to set the state that controls

how a system dump is to be started when a panic occurs. The default state is

DG_SYSCTL_ASK_FOR_DUMP. The other states that it can be set to are

DG_SYSCTL_AUTO_DUMP and DG_SYSCTL_SKIP_DUMP.

The DG_SYSCTL_GET_DUMP_START command is used to get the current state setting

that controls how a system dump is to be started when a panic occurs so that you can

see what it is.

Automatic Panic Dumps

If-you set the dump start state to DG_SYSCTL_AUTO_DUMP, you need to be

aware of these things:

e You must ensure that the dump medium is always available and ready to be

used. For tape drives, this means that you must have a write-enabled tape in

the drive at all times.

If you need to use the dump medium for some other purpose, you should first

disable automatic panic dumps or change the dump device to some other

available device. After you are finished using the device, you can re-enable

automatic panic dumps or switch the dump device back. If vou do not make

either of these temporary changes and a panic occurs, the medium in the

dump device will be overwritten.

e If a panic occurs and the dump device cannot be opened (e.g., no tape in the

drive), the dump will be skipped instead.

e As long as the dump starts and completes successfully with the available

medium, no operator intervention is required.

However, if there are any further problems with the dump (e.g., hard error on

the tape, new tape volume required for a multi-volume dump), the operator

will be prompted to mount a new tape and respond once the tape is ready.

Operator Shutdowns

If you use the hot key sequence to cause a system panic or use the "s 1000" SCM

command to initiate an operator shutdown, the autoreboot and dump Start states will

be reset to their default values of DG_SYSCTL_HALT_AFTER-PANIC and

DG_SYSCTL_ASK_FOR_DUMP, respectively. This will give the operator complete

control over the system during the panic processing.

Skipping Panic Dumps

If you set the dump start state to DG_LSYSCTL_SKIP_DUMP and the autoreboot

state is set to DG_SYSCTL_HALT_AFTER_PANIC and a panic occurs, the panic

dump will be skipped and the system will be halted just as expected. After the system

has halted, if you change your mind and decide that you do want to take a system

dump, type "s 1000" at the SCM prompt and you will then be asked whether you want

to take a system dump.

String Lengths

The maximum string length for a device name returned by the

DG_SYSCTL_DEVICE_TO_NAME and DG_SYSCTL_GET_DUMP_DEVICE
commands is 256 characters, including the trailing null.

093-701055 Licensed materiai\—property of copyright holder(s) | 2-87

dg_syscetl(2) DG/UX 5.4 dg_syset!(2)

The maximum string length for a boot path returned by the

DG_SYSCTL_GET_BOOT_PATH command is 256 characters, including the trailing

null.

EXAMPLES

For the DG_SYSCTL_CONFIGURE_DEVICE, DG_SYSCTL_DECONFIGURE_DEVICE,

DG _SYSCTL_SET_BOOT_PATH, and DG_SYSCTL_SET_DUMP_DEVICE commands, you

specify the address of a string as the arg parameter. Here are some examples of using

these commands:

include <sys/dg_sysctl.h>

int status;

status = dg_sysctl (DG_SYSCTL_CONFIGURE_DEVICE,

“duart(1)");

Status = dc_sysctl (DG_SYSCTL_DECONFIGURE_DEVICE,
"inen()");

status = dg_sysctl (DG_SYSCTL_SET_BOOT_PATH,

“sd(cise(),0)/dgux -3");

status = dg_sysctl (DG_SYSCTL_SET_DUMP_DEVICE,

"st(inse(),4)");

For the DG_SYSCTL_NAME TO DEVICE command, allocate and fill ina

dg_sysctl_name to device packet and pass its address as the arg

parameter. The device number will be returned in the device_number

field of the packet. Here is an example of using this command:

#include <sys/dg_sysctl.h>

int status;

struct dg_sysctl_name to device name_to_device_pkt;

name_to_device_pkt.device_name = "sd(insce(),0)";

status = dg_sysctl (DG_SYSCTL_NAME _TO_DEVICE,

&name_to device_pkt);

printf ("device number is %d\n",

name_to_device_pkt.device_number) ;

For the DG_SYSCTL_DEVICE_TO_NAME command, allocate and fill in a

dg_sysctl_device_to_name packet and pass its address as the arg

parameter. The device name will be returned in a string you allocate.

Pass the address of that string in the device_name

field of the packet. Here is an example of using this command:

f#finclude <sys/dg_sysctl.h>

int status;

char returned _device_name [256];

2-88 Licensed materiai—property of copyright no!der(s! 093-701055

dg_sysct!(2) DG/UX 5.4 | dg_syseti(2)

struct dg_sysctl_device_to_name device_to_name_pkt;

device_to_name_ pkt.device_number = 393216;

device _to_name_pkt.device_name = returned_device_name;

device_to_name_pkt.max_name_length = 256;

status = dg_sysctl (DG_SYSCTL_DEVICE_TO_NAME,

&device_to_ name pkt);

printf ("device name is ’%s’\n",

returned _device_name);

For the DG_SYSCTL_GET_BOOT_PATH command, allocate and fill in a

dg_sysctl_get_boot_path packet and pass its address as the arg

parameter. The boot path will be returned in a string you allocate.

Pass the address of that string in the boot_path

- field of the packet. Here is an example of using this command:

093-701055

#include <sys/dg_sysctl.h>

int status;

char returned _boot_path [256];

struct dg_sysctl_get_boot_path get_boot_path_pkt;

get_boot_path_ pkt.boot_path = returned_boot_path;

get_boot_path_pkt.max_name_length 256;

status = dg_sysctl (DG_SYSCTL_GET_BOOT_P2ATH,

&set_boot_path_pkt);

printf ("boot path is ’%s’\n",

returned boot_path);

For the DG_SYSCTL_GET_DUMP_DEVICE command, allocate and fill ina

dq_sysctl_get_dump_device packet and pass its address as the arg

parameter. The dump device will be returned in a string you allocate.

Pass the address of that string in the dump_device_name

field of the packet. Here is an example of using this command:

#include <sys/dg_sysctl.h>

int status;

char returned dump device [256];

struct dg_sysctl_get_dump device get_dump_device _pkt;

get_dump_device_pkt.dump_device_name = returned_dump_device;

get_dump device _pkt.max_name_length = 256;

status = dg_ sysctl (DG_SYSCTL_GET_DUMP_DEVICE,

&get_dump_device_pkt);

printf ("dump device name is ’%s’\n",

returned dump device);

Licensed materia\—property of copyright holder's) 2-89

dg_sysctl(2) DG/UX 5.4 dg_sysct!(2)

For the DG_SYSCTL_SET_AUTOREBOOT,

DG_SYSCTL_GET_AUTOREBOOT, DG_SYSCTL_SET_DUMP_START,

and DG_SYSCTL_GET_DUMP_START commands, you

specify the address of an unsigned int as the arg parameter.

For the two "set" commands, fill in the unsigned int with the value

you want to set the system option to before calling dg_sysctl.

For the two "get” commands, dg_sysct1 will return the current

setting of the system option in the unsigned int. Here are some

examples of using these commands:

#include <sys/dg_sysctl.h>

int status;

unsigned int option_value;

option_value.= DG_SYSCTL_REBOOT_AFTER_PANIC;

status =:dg_sysctl (DG_SYSCTL_SET_AUTOREBOOT,

&S0ption_value) ;

option value = DG_SYSCTL_AUTO_DUMP;

status dg_sysctl (DG_SYSCTL_SET_DUMP_START,

soption_value) ;

status = dg_sysctl (DG_SYSCTL_GET_AUTOREBOOT,

Soption_value);

printf ("autoreboot option value is %u\n",

option_value);

status = dg_sysctl (DG_SYSCTL_GET_DUMP_START,

&0ption_ value);

printf ("dump start option value is %u\n",

option_value);

For more details on the dg_sysctl system call input and output

arguments for each command, see the <sys/dg_sysctl.h> include file.

ACCESS CONTROL

Any user may execute the DG_SYSCTL_.NAME_TO_DEVICE,

DG_SYSCTL_DEVICE_TO_NAME, DG_SYSCTL_GET_BOOT_PATH,
DG_SYSCTL_GET_DUMP_DEVICE, DG_SYSCTL_GET_AUTOREBOOT,, and
DG_SYSCTL._.GET._DUMP_START commands.

Only the superuser may execute the DG_SYSCTL_.CONFIGURE_DEVICE,
DG_SYSCTL_DECONFIGURE_DEVICE, DG_SYSCTL_SET_BOOT_PATH,
DG_SYSCTL_SET_DUMP_DEVICE, DG_SYSCTL_SET_AUTOREBOOT, and

DG_SYSCTL_SET_DUMP_START commands.

RETURN VALUE

0 The dg_sysctl operation was successful.

-] An error occurred. errno is set to indicate the error.

2-90 Licensed materiai—property of copyright holder(s) 0$3-701055

dg_syset!(2)

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM

ENXIO

ENXIO

ENXIO

ENOMEM

EFAULT

EFAULT

EBUSY

EINVAL

EINVAL

EINVAL

EINVAL

SEE ALSO

dg_sysct1(1M), diskman(1M), reboot(1M), reboot(2), uadmin(2).

093-701055

OG/UX 5.4 dg_sysct!(2)

A process called dg_sysctl and attempted to execute a restricted

command without being the superuser.

An attempt was made to configure a device that was already config-

ured.

An attempt was made to deconfigure, get the name of, or get the

device number of a device that is not configured.

An attempt to configure or deconfigure a device failed for an

unknown reason.

There was insufficient kernel memory available to execute cmd.

arg or a pointer in the packet points to an invalid address.

An attempt was made to configure or deconfigure a device, get the

device number of a device from its name, set the boot command line.

or to set the dump device name, but the string specified was too

long.

An attempt was made to deconfigure a busy or undeconfigurable dev-

ice.

cmd is not one of the valid commands described above.

An attempt was made to configure or deconfigure a device, get the

device number of device from its name, or to set the dump device

name, but the device name did not conform to the DG/UX Common

Device Specification Format.

An attempt was made to get the name of a device from its device

number, the boot command line, or the dump device name, but not

enough string storage was allocated to receive the name.

An attempt was made to set the auto-reboot or dump Start state, but

the value pointed to by arg was not one of the valid values for the

commands which are specified in <sys/dg_sysctl.h>.

Licensed material—property of copyright holder(s) 2-91

dg_unbuffered_read(2) DG/UX 5.4 dg_unbutfered_read(2)

NAME

dg_unbuffered_read — synchronously read data from a file without system buffer-

ing

SYNOPSIS

int dg_unbuffered_read (fildes, buffer, start_block, num_blocks)
int fildes ;

char buffer();

unsigned start_block;

unsigned nmum_blocks;

where:

fildes A valid descriptor

buffer User data buffer

start_block Starting logical block number

num_blocks Size (in blocks) of the read

DESCRIPTION

The dg_unbuff ered_read system call transfers mum_blocks blocks of data from the
file associated with fildes into the buffer pointed to by buffer. The starting block

number of the transfer is given by the start_block parameter.

The file position attribute of fildes is ignored by this interface. The starting block

position of the read must be specified in the call. The file position attribute of fildes

remains unchanged by the execution of this call.

If mandatory record locking is enabled for the file, this call will faul.

ACCESS CONTROL

The fildes must have been opened for unbuffered I/O with the

O_DG_UNBUFFERED flag, and fildes must also have been opened for read access.

RETURN VALUE

0. .mum_blocks

Completed successfully. The number of blocks actually read is returned.

The value 0 indicates EOF (end-of-file).

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF fildes is not opened for unbuffered reading.

EFAULT buffer points outside the allocated address space.

EINTR A signal was caught during the system call.

SEE ALSO

open(2), dg_unbuffered_write(2).

2-92 Licensed materiakproperty of copynght holder's) 093-701055

dg_unbutfered_write (2) DG/UX 5.4 dg_unbuffered_write(2)

NAME

dg_unbuffered_write — synchronously wnite data to a file without system buffering

SYNOPSIS |

int dg_unbuffered_write(fildes, buffer, start.block, num_blocks)

int fildes ;

char buffer();

unsigned start_block;

unsigned num_blocks;

where:

fildes An active descriptor

buffer User data buffer

start_block Starting logical block of request

nium_blocks Size (in blocks) of the request

DESCRIPTION

The de_unbuffered_write svstem call transfers num_blocks blocks of data from

the buffer pointed to bv buffer into the object associated with fildes. The starting

position of the request is given by start_block.

The file position attribute of fildes is ignored by this interface. The starting block

position of the write must be specified in the call. The file position attribute of fildes

remains unchanged by the execution of this call.

If the operation is successful, the inode is flushed out before control is returned to

the user if anv attribute other than time_last_accessed, time_lastmodified, or

time_last_changed of the file has changed. Index blocks modified by this operation

are also flushed before returning control to the user.

If mandatory record locking is enabled for the file, this call will fail.

ACCESS CONTROL

The process must have write access to the descriptor fildes, and it must have been

opened with the O.DG_UNBUFFERED open flag to allow for unbuffered /O

access. |

RETURN VALUE

O..mum_blocks .

Completed successfully. The number of blocks actually written is returned.

-] Ap error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF fildes is not opened for unbuffered writing.

EFBIG An attempt was made to write a file that exceeds the process’s file

size limit or the maximum file size.

EFAULT Buffer points outside the allocated address space.

EINTR A signal was caught during the system call.

SEE ALSO

dg_unbuffered_read(2), open(2), write(2).

2-93093-701055 Licensed materia—property of copyright holder(s)

dg_xtrace(2) DG/UX 5.4 dg _xtrace (2)

NAME

dg_xtrace — extended process trace

SYNOPSIS

#include <sys/dg_xtrace.h>

int dg_xtrace (request, data)

int request;

union dg_xtrace_u * data;

where:

request Process trace command of the form DG_XT_name, where name is a unique

suffix indicating the action to be taken

data Pointer to union used for completing the process trace command

DESCRIPTION

Xtrace lets a process (debugger process) contro] the execution of another process

(target process). Its primary use is to implement breakpoint debugging; see séb(1)

and dbx(1). It is an extended version of ptrace that has been added to remedy two

of the major shortcomings of ptrace:

e the mandatory parent/child relationship between the tracing-process and the

process-being-traced, and

e the very small (32-bit) interface between the two processes.

Since the relationship between the two processes is no longer mandated to be

parent/child some terms defining this new relationship are needed so that discussion

of their interaction is possible. The process controlling the tracing of another process

will be referred to as the “controlling process" or “controller.” The process being

traced will be referred to as the "target process” or "target."

Tracing Relationships

2-94

Three valid tracing relationships exist between the controlling and target processes:

e the controler is the PARENT of the target,

e the controller is the CHILD of the target, or

e the controller is NOT RELATED to the target (and is not the target itself).

Some restrictions exist concerning the specifics of the tracing relationship. In gen-

eral, a target can become a controller, but a controller can not become a target. This

avoids a cycle in the controller-target relationship which could result in a deadlock

condition. A controller can trace multiple targets, but when the controler ter-

minates, all of its targets are sent SIGKILL. Finally, if a controller (who is not a tar-

get) is the child of a process being traced then job control stop signals sent to the

controller will be ignored. This restriction is necessary because the parent process is

usually responsible for any stopped children (which is impossible in this scenario).

In all configurations, the target process behaves normally until it encounters a signal

(see signal(2) for the list) or until it exits; it then stops for tracing and its controller

is notified via dg_xtrace using the request XT.WAIT_FOR_TARGET (defined

below). (A signal that is blocked does not cause the process to stop for tracing until

the signal is unblocked. If a job control stop signal is held because the target process

has performed vfork(2) but not exec(2) or exit(3C), such a signal does not cause

the process to stop for tracing until the process has performed exec or exit.)

When the target is stopped, its controller can examine and modify its address space

using dg_xtrace. Also, the controller can cause the target either to terminate or

Licensed materiat—property of copyright hoider(s) €93-7071C55

dg_xtrace (2) DG/UX 5.4 | dg_xtrace (2)

continue, with the possibility of ignoring the signal that caused it to stop.

In the first tracing relationship, the sequence of events required to trace a process is
as follows:

1. The target process is created by fork(2) or vfork(2).

2. The target process performs a dg_xtrace operation with request
DG_XT_TRACE_ME.

3. The target’s address space is changed by the exec(2) operation. This causes
the target to be stopped for tracing before executing the first instruction of
the new image as if the signal SIGTRAP had occurred.

4. The controlling process waits for the target to stop for tracing using

dg_xtrace with request DG_XT_WAIT_FOR_TARGET.

5. The controller may now cause the target to continue execution using

dg_xtrace with request DG_XT_CONTINUE_TARGET.

In the second tracing relationship, the sequence of events required to trace a process
is as follows:

1. The controlling process is created by fork(2) or vfork(2).

2. The controlling process performs a dg_xtrace operation with reques!

DG_XT_TRACE_PID specifving the parent process’s process id. If the

parent process is stopped due to a job control signal (e.g., SIGSTOP) at the

time DG_XT_TRACE_PID is issued, DG_XT_TRACE_PID completes nor-

mally but tracing does not actually occur until the parent process leaves the

stopped state (due to a signal that continues it or terminates it).

The controlling process waits for the target to stop for tracing using

dg_xtrace with request DG_XT_.WAIT_FOR_TARGET.

4, The controller may now cause the target to continue execution using

dg_xtrace with request DG_XT_CONTINUE_TARGET.

In the third tracing relationship, the sequence of events required to trace a process 1s

as follows: |

1. The controlling process performs a dg_xtrace operation with request

DG_XT_TRACE_PID specifying the process id of the process to be traced.

If the target is stopped due to a job control signal (e.g., SIGSTOP) at the

time DG_XT_TRACE_PID is issued, DG_XT_TRACE_PID completes nor-

mally but tracing does not actually occur until the target process leaves the

stopped state (due to a signal that continues it or terminates it).

GU)

2. The controlling process waits for the target to stop using dg_xtrace with
request DG_XT_WAIT_FOR_TARGET.

3. The controller may now cause the target to continue execution using
dg_xtrace with request DG_XT.CONTINUE_TARGET.

Tracing Requests and Macros

The request argument determines the precise action to be taken by dg_xtrace. For
each request a macro invocation of dg_xtrace exists that initializes the supplied

dg_xtrace_u union pointer with the appropriate values. Each macro name if of the

form

DG_XTRACE_name ([arguments])

093-701055 Licensed materiai—property of copyright holder(s) 2-95

dg_xtrace (2)

2-96

DG/UX 5.4 dg_xtrace(2)

where name is the same as the corresponding name in request. arguments includes

various combinations of the following:

process-id The process id of the target

target_addr A byte address in the target process

conrrolling_buf A byte address in the controlling process,

nchar The number of bytes to transfer between the two processes

signal A signal to be sent when continuing a target

wait_ptr A pointer to an integer that receives information about the traced

process

larger_space The subspace of the process’s address space (Visible Address Space
or User Area) to which a read/write operation is directed:

DG_XT_USER_SPACE or DG_XT_ADDRESS_SPACE

The xtrace_union_ptr argument is the only argument from the macro interface which

1S passed to dg_xtrace. The other argument values in the interface are placed into
the union at which xtrace_union_ptr points. (See the actual dg_xtrace interface

above.)

Users should only access d¢_xtrace through the macro invocations. The requests

and their macros are as follows:

DG_XT_TRACE_ME

macro: DG_XTRACE_TRACE_ME()

In the first configuration, the target process must issue this request if it is to

be traced by its controller (its parent). This operation marks the target as

being traced so that it will be stopped for tracing upon receipt of a signal

rather than the state specified by its signal handler. A return value of 0 is

always returned with this request. (Unexpected results may ensue if the con-

troller (in this case the parent) does not expect to trace the target. For exam-

ple, the controller may not cause the target to continue after a signal. Also,

the target will be terminated if the controller terminates.]

The other requests can be used only by the controller process.

DG_XT_TRACE_PID

macro: DG_XTRACE_TRACE PID (process-id,
xtrace_union_ptr)

With this request, the controlling process issues a request to establish a trac-

ing relationship with a target process (specified by process id). This request

will fail if:

e the effective-user-id of the controlling process does not match the

real-user-id and saved-user-id of the target process, and the effective-

group-id of the controlling process does not match the real-group-id

and saved group id of the target process, OR

e the user id of the controlling process is not the superuser. If the trac-

ing relationship is successfully established, it turns on the target’s

trace flag. This stipulates that the target should stop for tracing upon

receipt of a signal rather than the state specified by its signal handler.

Note that this request does NOT cause a signal to be sent to the tar-

get or otherwise cause the target to stop. If the relationship cannot

be established the request will fail, in which case the error condition

ESRCH is asserted. Under no circumstances may a process trace

Licensed materiai—property of copyright holder(s) 093-701055

dg_xtrace (2) DG/UX 5.4 dg_xtrace(2)

itself!

DG_XT_UNTRACE_PID

macro: DG_XTRACE_UNTRACE_PID(process-id,

target_addr,

xtrace_union_ptr)

This request allows a controller to end the tracing session it has with the pro-

cess specified by process-id. By setting rarger_addr, the controller can specify

the address that the target continues from when it first begins executing again.

If rarget_addr is set to 1, then the target will continue from where it was when

it stopped for tracing.

DG_XT_READ_TARGET

macro: DG_XTRACE_READ_ TARGET (process-id,

targer_space

target_addr,

controlling_buf,

nchar,

xtrace_union_ptr)

With this request, the nchar bytes beginning at location target_cudr in

target_space of the target’s address space are placed in the location

conrrolling_buf in the controller’s address space. This request will fail when

either rarger_addr or controlling_buf is not a valid byte address, nchar bytes

cannot be read or target_addr is not a valid address in rarger_space, in which

case the error condition EIO is asserted. The request will also fail with EIO

if the caller is not the controller of the target or the target is not stopped for

tracing, though the stop need not have been acknowledged with

DG_XTRACE_WATT_FOR_TARGET.

DG_XT_WRITE_TARGET

macro: DG_XTRACE_WRITE_TARGET (process-id,

target_space,

target_addr,

controlling_buf,

. nchar,

‘ xtrace_union_ptr)

With this request, the nchar bytes beginning at location controlling_buf in the

controller’s address space are placed in the location target_addr in

target_space of the target’s address space. This request will fail when either

target_addr or controlling_buf is not a valid byte address, nchar bytes cannot

be written or target_addr is not a valid address in targer_space, in which case

the error condition EIO is asserted. The request will also fail with EIJO if the

caller is not the controller of the target or the target is not stopped for trac-

ing, though the stop need not have been acknowledged with

DG_XTRACE_WAITT_FOR_TARGET.

0$3-701055 Licensed material—propety of copyright holders) 2-97

dg_xtrace (2) OG/UX 5.4 dg_xtrace(2)

DG_XT_WAIT_FOR_TARGET

macro: DG_XTRACE_WAIT_FOR_TARGET (process-id-prr,

wall_pir,

oprions,

xtrace_union_pir)

2-98

With this request, the controlling process waits for one of his traced

processes. This request works like wait3(2) except that it waits only for a

traced process that has received a signal (the wait3(2) WUNTRACED
option is ignored). When one of the controller’s targets receives a signal, this

function returns the pid of that process and "acknowledges" that the target has

stopped so that subsequent calls to this function will not return that same pid

until the target has been continued and it receives another signal. If none of

the targets have received a signal, then the caller is pended unless the

WNOHANG option is specified, in which case pid 0 is returned and the

caller is not pended. EJO is returned if the caller is not the controller for anv

traced process.

Note: When a process terminates or an untraced process receives one of the

job contro] stop signals, the status is always reported via wait3(2) performed

by the parent, never via DG_XTRACE_WAIT_FOR_TARGET. When a

traced process stops for tracing, the status is always reported onlv to the con-

troller process. If the controller is not the parent, then the status is only

reported via DG_XTRACE_WAIT_FOR_TARGET and the traced state of

the process will be invisible as far as any wait3(2) calls made by the parent.
If the controller is the parent, the status is reported through either wait3(2)

or DG_XTRACE_WAIT_FOR_TARGET, but not both. The receipt of sig-

nal status will be reported by whichever call is made first; but if the other call

is then made the process will already have been acknowledged and will not be

reported again.

DG_XT_CONTINUE_TARGET

macro: DG_XTRACE_CONTINUE_TARGET (process-id,

signal,

xtrace_union_ptr)

This request causes the target to resume execution. If the signal argument is a

valid signal number, the target resumes execution as if it had incurred that sig-

nal. This request will fail if signal is not 0 or a valid signal number, in which

case the error condition EIO is asserted. The request will also fail with EIO

if the caller is not the controller of the target or the target is not stopped for

tracing, though the stop need not have been acknowledged with

DG_XTRACE_WAIT_FOR_TARGET.

DG_XT_TERMINATE_TARGET

macro: DG_XTRACE_TERMINATE_TARGET (process-id,

xtrace_Uunion_ptr)

This request causes the target to terminate with the same consequences as

exit, except that the target will not stop for tracing again as part of exit. The

request will fail with EIO if the caller is not the controller of the target or the

target is not stopped for tracing, though the stop need not have been ack-

nowledged with DG_XTRACE_WAIT_FOR_TARGET.

Licensed materia-=property of copyright holder(s) 093-701055

dg_xtrace (2) DG/UX 5.4 dg_xtrace(2)

DG_XT_INHERIT._.TRACE_ON_FORK

macro: DG_XTRACE_INHERIT_TRACE_ON_FORK(process-id,

xtrace_union_ptr) |

This request sets the inherit_trace_on_fork flag for the target. Having

this flag set will cause any processes forked by the target to be traced with the

same controller.

DG_XT_SINGLESTEP_TARGET

macro: DG_XTRACE_SINGLE_STEP_TARGET (process-id,

signal,

xtrace_union_ptr)

This request will cause the target to continue execution for one instruction.

The target will be allowed to run with the signal specified by signal and will

take an exception after executing its next instruction. This exception wil

cause it to stop again for tracing. This request will fail if signal is not a valid

signal number.

DG_XT_STOP_ON_STORE

macro: DG_XTRACE_STOP_ON_STORE(process-id,

address,

length,

stop_on_store_id,

xtrace_union_ptr)

This request causes the target to set a watch point at the memory location

specified by address for the length in bytes specified by length. The address

does not need to be a valid part of the target’s address space. Also, a length

of zero bytes is a legal parameter. This call returns to the controller a unique

stop on store id. The maximum number of watch points that may be set is

governed by the value of PT.NUM_STOP_ON_STOREL_IDS, which 1s

defined in user.h. If this limit is exceeded, dg_xtrace will return EIN-

VAL. When the target writes to an area marked for stop on store, it will

report this event by sending a SIGTRAP signal without arguments to itself.

Then, when the process stops to handle the signal, it will alert its controller

that it has stopped and can be debugged. The controller can then read the

target’s address space to determine which stop on store requests were hit.

The requests will be identified by a bit map returned in the DG value added

structure of the ptrace_user structure. The bits corresponding to the stop on
store ids that were hit will be set. See user.h for a complete definition of

the bit map. The stop on store requests that the controller set are cleared

when the controller sends the message

DG_XT_REMOVE_ALL_STOP_ON_STORE to the target. This will also

remove the record of which stop on store requests were hit. Because of this,

the controller should read the target’s user area before it clears the requests.

DG_XT_REMOVE_ALL_STOP_LON_STORE

macro: DG_XTRACE_REMOVE_ALL_STOP_ON_STORE(process-id,

xtrace_union_pir)

This request removes all stop on store requests. In doing so, it also removes

the record of which requests have been hit. This request will always succeed,

even if no stop on store requests have been made.

093-701055 Licensed materia}—prope-ty of copyright hoider{s) 2-99

dg_xtrace (2) DG/UX 5.4 dg_xtrace (2)

To forestall possible fraud, dg_xtrace inhibits the set-user-id facility on subsequent

exec Calls. If a traced process calls exec, it will stop before executing the first

instruction of the new image showing signal SIGTRAP.

ACCESS CONTROL

None.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EIO Request is an illegal number.

ESRCH Process-id identifies a target that does not exist.

ESRCH No tracing relationship can be established.
EINVAL One of the arguments is invalid

EFAULT One of the arguments specifies a bad address.

SEE ALSO

exec(2), ptrace(2), signal(2), wait(2).

2-1 00 Licensed materia'—property of copyright holder(s) 093-701055

dup(2) DG/UX 5.4 | dup(2)

NAME

dup — duplicate an open file descriptor

SYNOPSIS

int dup (fildes)

int fildes;

where:

fildes A valid, active file descriptor

DESCRIPTION

If fildes is a valid, active descriptor, then this call returns a new file descriptor with
both descriptors sharing the same object pointer. The new descriptor is set to remain

open across exec system calls. This call is identical to new_filedes = fentl

(filedes, F_DUPFD, 0).

The new descriptor belongs to the same descriptor class as filedes. That is, if filedes

is a shared descriptor, the new descriptor 1s in the same shared descriptor array, and

if filedes is a per-process descriptor, then so is the new descriptor.

ACCESS CONTROL

None.

RETURN VALUE

0..NOFILE-1 The value of the new file descriptor.

~] - An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid, active descriptor.

EMFILE All descriptors are open.

SEE ALSO

accept(2), close(2), creat(2), dup2(2), exec(2), fentl(2), getdta-

blesize(2), open(2), pipe(2), socket(2), socketpair(2),

dg_attach_to_shared_descriptors(2).

STANDARDS |

When using m88kbes as the Software Development Environment target, the cup

function will be‘emulated using the fent1(2) system call. Since this is an emulation,

a slight performance degradation may be noticed in comparison to using dup in

f/iib/libc.a. "

093-701055 Licensed material—property of copyright holder(s) 2-1 01

dup2(2) DG/UX 5.4 dup2(2)

NAME

dup2 — duplicate an open file descriptor onto a specific descriptor

SYNOPSIS

int dup2 (old_fildes, new_fildes)

int old_fildes;

int new_fildes;

where:

old_fildes A valid, active file descriptor

new_fildes Another file descriptor

DESCRIPTION |
Dup2 combines the functionality of the dup and close operations.

If old_fildes is an active, valid descriptor and new_fildes is a valid descriptor (active

of not), new_fildes is made a duplicate of old_fildes. If old_fildes and new_fildes

already refer to the same object pointer, no changes occur. In all other situations in

which new_fildes is active, it is closed before being made a duplicate of old_fildes.

The close-on-exec flag is set so the descriptor remains open across exec(2) opera-

tions. For a further discussion of the semantics of duplication and closing, see the

dup and close operations respectively.

If old_fildes equals new_fildes, no changes occur. However, an error will be returned

if old_fildes is not an active, valid descriptor.

Per-process descriptors are numbered from 0 to the system upper limit on per-process

descriptors, MAX_PP_DESCRIPTORS. They are also bounded above by the hard

and soft file descriptor limits for the calling process (see open(2)). Shared file

descriptors are numbered from MAX_PP_DESCRIPTORS+1 to

MAX _SHARED_DESCRIPTORS. Dup2(2) can duplicate a descriptor of one class

into a descriptor of another class.

ACCESS CONTROL

None.

RETURN VALUE

new_fildes The value of the new file descriptor given by new_fildes.

-1 An error occurred. errno Is set to indicate the error.
DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Old_fildes is not a valid, active descriptor.

EBADF New_fildes is not a valid descriptor.

SEE ALSO

accept(2), close(2), creat(2), dup(2), exec(2), fentl(2), getdta-

blesize(2), open(2), pipe(2), socket(2), socketpair(2),

dg_attach_to_shared_descriptors(2).

STANDARDS

When using m88kbes as the Software Development Environment target, the dup2

function will be emulated using BCS system calls. Since this is an emulation requir-

ing several BCS system calls, a slight performance degradation may be noticed in

comparison to using dup2in /lib/libc.a.

2-1 02 Licensed materiai—property of copyright hoider(s) 093-701055

exec(2) DG/UX 5.4 exec(2)

NAME

exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS

#include <unistd.h>

int execl (const char «path, const char sarg0, ..., const char
sargn, (char *)0);

int execv (const char «path, char *const sargy);

int execle (const char «path, const char sarg0, ..., const char

sargn, (char *0), const char senvp[));

int execve (const char +path, char sconst sargy, char *const senvp);

int execlp (const char sfile, const char sarg0, ..., const char
. sargn, (char *)0);

int exeevp (const char +sfile, char *const *QTQV) ;

where:

path <A pointer to a pathname that identifies the new process file.

file A pointer to the new process file. If file does not contain a slash character,

the path prefix for this file is obtained by a search of the directories passed in

the PATH environment variable [see environ(5)]. The environment is sup-

plied typically by the shell [see sh(1)]. If the new process file is not an exe-

cutable object file, execlp and execvp use the contents of that file as stan-

dard input to sh(1).

arg (0 through nm) Pointers to null-terminated character strings. These strings con-

stitute the argument list available to the new process image. Minimally, arg0

must be present. It will become the name of the process, as displaved by the

ps command. Conventionally, arg0 points to a string that is the same as path

(or the last component of path). The list of argument strings is terminated by

a (char «*)0 argument.

argv An array of character pointers to null-terminated strings. These strings con-

Stitute the argument list available to the new process image. By convention,

argv must have at least one member, and it should point to a string that is the

same as path (or its last component). argv is terminated by a null pointer.

envp An array of character pointers to null-terminated strings. These strings con-

Stitute the environment for the new process image. envp is terminated by a

null pointer. For execl, execv, execvp, and execlp, the C run-time

start-off routine places a pointer to the environment of the calling process in

the global object extern char **environ, and it is used to pass the

environment of the calling process to the new process.

DESCRIPTION

Exec in all its forms overlays a new process image on an old process. The new pro-

cess image is constructed from an ordinary, executable file. This file is either an exe-

cutable object file, or a file of data for an interpreter. There can be no return from a

successful exec because the calling process image is overlaid by the new process

image.

An interpreter file begins with a line of the form

#! pathname [arg]

093-701055 Licensed materia!—property of copyright holder(s) 2-1 03

exec(2)

2-104

DG/UX 5.4 exec(2)

where pathname is the path of the interpreter, and arg is an optional argument.

When an interpreter file is exec’d, the system execs the specified interpreter. The

pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg

was specified in the interpreter file, it is passed as arg] to the interpreter. The

remaining arguments to the interpreter are argQ through argn of the originally exec’d

file.

When a C program is executed, it is called as follows:

int main (int argc, char sargv[], char senvp[]);

where argc is the argument count, argv is an array of character pointers to the argu-

ments themselves, and envp is an array of character pointers to the environment

Strings. As indicated, argc is at least one, and the first member of the array points to

a string containing the name of the file.

File descriptors open in the calling process remain open in the new process, except

for those whose close-on-exec flag is set; [see fent1(2)]. For those file descriptors

that remain open, the file pointer is unchanged.

Signals that are being caught by the calling process are set to the default disposition in

the new process image [see signal(2)]. Otherwise, the new process image inherits

the signal dispositions of the calling process.

If the set-user-ID mode bit of the new process file is set [see chmod(2)], exec sets

the effective user ID of the new process to the owner ID of the new process file.

Similarly, if the set-group-ID mode bit of the new process file is set, the effective

group ID of the new process is set to the group ID of the new process file. The real

user ID and real group ID of the new process remain the same as those of the calling

process.

If the effective user-ID is root or super-user, the set-user-ID and set-group-ID bits

will be honored when the process is being controlled by ptrace.

The shared memory segments attached to the calling process will not be attached to

the new process [see shmop(2)].

Any user specified page locking properties [see mementl(2) with the MCL_FUTURE

option] are not inherited. In in affect, these will be reset for the new process.

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the calling process:

nice value [see nice(2)]

process ID

parent process ID

process group ID

supplementary group IDs

semadj values [see semop(2)]

session ID [see exit(2) and signal(2)]

trace flag [see ptrace(2) request 0]

time left until an alarm clock signal [see alarm(2)]

current working directory

root directory

file mode creation mask [see umask(2)]

resource limits [see getrlimit(2)]

utime, stime, cutime, and cstime [see times(2)]

file-locks [see fent1(2) and lock£(3C)}

Licensed materiai—property of copyright holder(s) 093-701C55

exec(2) DG/UX 5.4 | exec(2)

controlling terminal

process signal mask [see sigprocmask(2)]

pending signals [see sigpending(2)]

Upon successful completion, exec marks for update the st_atime field of the file.

Should the exec succeed, the process image file is considered to have been

open()-ed. The corresponding close() is considered to occur at a time after this

open, but before process termination or successful completion of a subsequent call to

exec.

exec will fail and return to the calling process if one or more of the following are

true:

EACCES

E2BIG

EZCCES

EACCES

EAGAIN

EFAULT

EINTR

ELIBACC

ELIBEXEC

ELOOP

EMULTIHOP

ENAMETOOLONG

ad

ENOENT

ENOTDIR

ENOEXEC

ETXTBSY

ENOMEM

ENOLINK

093-701055

Search permission is denied for a directory listed in the new

process file’s path prefix.

The number of bytes in the new process’s argument list is

greater than the system-imposed limit of 5120 bytes. The argu-

ment list limit is sum of the size of the argument list plus the

size of the environment’s exported shell variables.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

Total amount of system memory available when reading via raw

I/O is temporarily insufficient.

Path, argv, or envp point to an illegal address.

A signal was caught during the exec system call.

Required shared library does not have execute permission.

Trying to exec(2) a shared library directly.

Too many symbolic links were encountered in translating path

or file.

Components of path require hopping to multiple remote

machines and the file system type does not allow it.

The length of the file or path argument exceeds {PATH_M2Xx},
or the length of a file or path component exceeds {NAME_MAX}

while _POSIX_NO_TRUNC is in effect.

One or more components of the new process pathname of the

file do not exist or is a null pathname.

A component of the new process path of the file prefix is not a

directory.

The exec is not an execlp or execvp, and the new process

file has the appropriate access permission but an invalid magic

number in its header.

The new process file is a pure procedure (shared text) file that

is currently open for writing by some process.

The new process requires more memory than is allowed by the

system-imposed maximum MAXMEM.

path points to a remote machine and the link to that machine is

no longer active.

Licensed materiai—property of copyright holder(s) 2-1 05

exec(2) DG/UX 5.4 exec(2)

SEE ALSO

alarm(2), exit(2), fentl(2), fork(2), getrlimit(2), mement1(2), nice(2),
ptrace(2), semop(2), signal(2), sigpending(2), sigprocmask(2), times(2),

umask(2), lock£(3C), system(3S), a.out(4), environ(5).

2- 1 06 Licensed materiat—property of copyright holder(s) 093-701055

@xit(2)

NAME

DG/UX 5.4 , exit(2)

exit, _exit — terminate process

SYNOPSIS

#include <stdlib.h>

void exit(int Status);

#include <unistd.h>

void _exit(int Stafus);

where:

Status An integer indicating the status to be returned

DESCRIPTION

The functions exit() and _exit() terminate the calling process. The function

exit() may cause addition processing to be done before the process exits [see

| atexit(3C) and fclose(3S)}.

093-701055

In addition, termination will have the following consequences: ’

All of the file descriptors, directory streams and message catalogue descrip-

tors open in the calling process are closed.

A SIGCHLD signal is sent to the calling process’s parent process.

If the calling process’ parent process is executing either wait(), waitpid(),

or waitid() see [wait(2), waitpid(), waitid()],and has not set its

SA_NOCLDWAIT flag [see sigaction(2)], it is notified of the calling process’

termination, the calling process’ status is made available to it, and the lifetime

of the calling process ends.

If the calling process’ parent process is not executing either wait(), wait-

pid(), or waitid(), and has not set its SA_NOCLDWAIT flag, the calling pro-

cess is transformed into a zombie process. The status of the child process

will be available to the parent process when the parent process subsequently

executes a wait function. At that time, the lifetime of the calling process will

end. :

If the parent process of the calling process has set its SA_NOCLDWAIT flag,

the status will be discarded, and the lifetime of the calling process will end

immediately.

The parent process ID of all of the calling process’ child processes is. set to

the process ID of a the initialization process, which has a process ID of 1.

This means the initialization process [see intro(2)] inherits each of these

processes.

Each attached shared memory segment is detached and the value of

shm_nattach in the data structure associated with its shared memory identif-

ler is decremented by 1.

For each semaphore for which the calling process has set a semadj value

[see semop(2)], that semadj value is added to the semval of the specified

semaphore.

An accounting record is written on the accounting file if the system’s account-

ing routine is enabled [see acct(2)].

If the process is a controlling process, SIGHUP is sent to the foreground pro-

cess group of its controlling terminal and its controlling terminal is deallo-

cated.

Licensed material—property of copyright holderis) 2-1 07

exit (2) DG/UX §.4 e@xit (2)

If the calling process has any stopped children whose process group will be
orphaned when the calling process exits, or if the calling process is a member

of a process group that will be orphaned when the calling process exits, that

process group will be sent SIGHUP and SIGCONT signals.

The C function exit(3C) calls any functions registered through the atexit function

in the reverse order of their registration. The function _exit circumvents all such

functions and cleanup.

The symbols EXIT_SUCCESS and EXIT_FAILURE are defined in stdlib.h and

may be used as the value of status to indicate successful or unsuccessful termination,

respectively.

SEE ALSO

NOTES

2-108

acct(2), intro(2), semop(2), sigaction(2), signal(2), times(2), wait(2),

atexit(3C).

See signal(2).

Licensed material—property of copyright holder(s) 0$3-701055

exportis(2)

NAME

DG/UX 5.4 exportfs(2)

exportfs — make a directory available for mounting via NFS

SYNOPSIS

#include <sys/export.h>

int exportfs (directory_name, exportentry_ptr)

char * directoryname;

struct export * expori_eniry_pi7;

where:

directory_name

export_entry_ptr

-

DESCRIPTION

The exportfs system call makes a local directory (or file) available for mounting via

NFS by NFS clients. The way the entry is exported is contained in the structure

pointed to by export_entry_ptr. See <sys/export.h> for details. If direcrory_name

has already been exported, it is logically re-exported with a new entry constructed per

export_entry_ptr. No attempt is made to insure that either the parent of

directory_name or a child of directory_name has been exported already. Such enforc-

ment is left to the invoking code.

ACCESS CONTROL

The calling process’s effective user id must be superuser.

RETURN VALUE

0 Successful completion.

093-701055

The local directory or file to be made available for mounting over

NFS from NFS clients

A pointer to a struct export that describes how this entry should

be exported

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM

EINVAL

EFAULT

EOPNOTSUPP

ENOENT

The process’s effective user id is not superuser; or

directory_name contains a character not in the allowed charac-

ter set.

The ex_flags field of the structure pointed to by export_entry_ptr

was non-zero and was not EX_RDONLY or EX_RDMOSTLY;

or the ex_auth field of the structure pointed to by

export_entry_ptr was not AUTH_UNIX; or more than

EXMAXROOTADDRS were indicated to be part of this

export entry or EX_RDMOSTLY was set in the ex_flags field

of the structure and more than EXMAXADDRS were indicated

to be part of this export entry.

Some part of the structure pointed to by expori_entry_prr lies

outside the process’s readable address space; or directory_name

does not completely reside in the process’s address space or

directory_name does not terminate in the process's address

space.

Kernel support for NFS is not present.

directory_name does not exist; or a non-terminal component of

directory_name does not exist.

Licensed material—property of copyright holder(s) 2-1 09

exportts(2) DG/UX §.4 exportts(2)

ENOTDIR A non-terminal component of directory_name was not a direc-

tory or symbolic link.

ENAMETOOLONG directory_name or a component of directory_name exceeds the

length limit for pathnames.

ENOMEM There are not enough system resources to resolve

directory_mame or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected. |

SEE ALSO

exportfs(1M), mount(2).

#
.

2-1 1 0 Licensed materiaproperty of copyright holderis) 083-701055

{chdir(2) DG/UX 5.4 fehdir(2)

NAME

fchdir - change the working directory of the calling process

SYNOPSIS

#include <unistd.h>

int fchdir (int /fildes)

where:

filedes | The open file descriptor of the desired working directory

DESCRIPTION

Filedes refers to a directory that is made the current working directory of the calling

process. If filedes refers to a symbolic link, the target of the symbolic link is made

the current working directory.

If-the call fails, the current working directory is not changed.

ACCESS CONTROL

The calling process must have execute permission to the named directory.

RETURN VALUE

0 The current directory was successfully changed.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |
Errno may be set to one of the following error codes:

EACCES Execute permission to the directory is denied.

EBADF The filedes is not an open file descriptor.

ENOTDIR The open filedes does not reference a directory.

SEE ALSO

chroot(2).

093-701055 Licensed materia—property of copyright hoider(s) 2-1 11

fchmod(2) | DG/UX 5.4 fchmod(2)

NAME

fchmod -— change mode of file

SYNOPSIS

int fchmod (fildes, mode)

int fildes;

int mode;

where:

fildes File descriptor

mode File’s new mode

DESCRIPTION

Fildes is a valid, active descriptor referring to an open file of type ordinary, directory,

block special, or character special, or symbolic link. The file must reside on a file

system device mounted read-write. Fehmod changes the file’s mode (st_mode) in a

manner semantically identical to the way chmod does.

ACCESS CONTROL

The effective user id of the calling process must be superuser or match the user id of

the file.

The process’s effective user id must be superuser to set the sticky bit. To set the set-

group-id bit, the process’s effective user id must be superuser or its effective group 1d

must match the file’s group id. Failure to meet the requirements for setting one of

these bits does not produce an error. Note that meeting the first access requirement

is sufficient to allow a process to set the set-user-id bit.

RETURN VALUE

0 The file’s mode was successfully changed.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid, active file descriptor.

EINVAL The file descriptor refers to a pipe or an object that is not a file.

EPERM The process is denied permission to change the file’s mode.

EROFS The named file resides on a file system device mounted read-only.

SEE ALSO

chmod(1), chmod(2), chown(2), creat(2), fchown(2), fentl(2), fstat(2),

mknod(2), mknod(2), open(2), read(2), stat(2), write(2).

2-1 1 2 Licensed material—property of copyright holder(s) 0$3-701055

fchown(2) DG/UX 5.4 | tchown(2)

NAME

fchown — change user id and group id of a file

SYNOPSIS

#include <unistd.h>

int fchown (fildes, user, group)

int fildes;

int user;

int group;

where:

fildes Descriptor of the file

user File’s new user id

group File’s new group id

DESCRIPTION

Fildes is a valid, active descriptor referring to an open file of type ordinary, directory,

block special, block character, or symbolic link. The file must reside on a file system

device mounted read-write. Fchown changes the file’s user id (st_uid) and group

id (st_gid) to the values contained in user and group, respectively.

The semantics of changing the user and group ids are the same as those described in

chown. |

ACCESS CONTROL

The effective user id of the calling process must be superuser or match the file’s user

id.

RETURN VALUE

0 The user id and group id of the file were successfully changed.

~1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The descriptor does not refer to an open file.

EINVAL The descriptor refers to a pipe or an object that is not a file.

EPERM Permission to change the file’s user and group ids is denied.

EROFS The named file resides on a file system device mounted read-only.

SEE ALSO

chgrp(1), chmod(1), chown(1), chmod(2), chown(2), fchmod(2).

093-701055 | Licensed material—property of copyright hoider(s) | 2-1 13

fentl(2)

NAME

OG/UX 5.4 fentl(2)

fentl - file descriptor control

SYNOPSIS

#include <fcntl.h>

int fentl (fildes, command, argument)

int fildes;

int command;

int argument;

where:

fildes A valid, active file descriptor

command A file control command

argument An argument, either an integer (when command is one of F.DUPFD,

F_GETFD, F_SETFD, F_SETFL, F_GETOWN, F_LSETOWN or

F_CHKFL) or a pointer toa struct flock (when command is one of

F_GETLK, F_SETLK, F_LSETLKW or F_LFREESP)

DESCRIPTION oo |

The fcentl call provides a variety of operations on descriptors. fildes is an active,
valid descriptor. command is a file control command to be performed on fildes using

argument as an argument. Not all commands require an argument. The commands

- 2-114

available are:

F_DUPFD

F_SETFD

F_GETFD

F_SETOWN

F_GETOWN

F_SETFL

The first (lowest numbered) inactive descriptor of the calling process,

greater than or equal to argument, is made a duplicate of fildes.

Thus, both descriptors refer to the same object pointer. The new

descriptor’s close-on-exec attribute is set to remain open across

exec operations.

This operation is equivalent to dup if argument is zero and dup2 if

argument is an inactive descriptor. |

Set the close-on-exec attribute of fildes to the low-order bit of

argument. If the low-order bit is 0, the file will remain open across

exec operations; otherwise, the file will be closed upon execution of

the exec operation.

Return the close-on-exec attribute of fildes.

Invoke the type manager of the object to which fildes refers to set the

process id or process group id receiving the SIGIO and SIGURG sig-

nals for the object. Process group ids are specified by supplying

argument as negative, otherwise argument is interpreted as a process

id.

Query the type manager of the object to which fildes refers for the

process id or process group id currently receiving SIGIO and

SIGURG signals for the object. Process group ids are returned as

negative values.

Invoke the type manager of the object to which fildes refers to set the

object pointer status flag bits to argument. Only the following flag

bits may be set: O.NONBLOCK, O_NDELAY, O_APPEND,

O_SYNC, and O_ASYNC.

Licensed materiai—property of copyright holder(s) 093-701055

fenti(2) DG/UX 5.4 fentl(2)

F_GETFL Query the type manager of the object ‘to which fildes refers for the

object pointer status flag. The following flags will be returned if set

in the object pointer status fla: OLNONBLOCK, O_NDELAY,

O_APPEND, O_SYNC, O_ASYNC, O_RDWR, O_RDONLY, and

O_WRONLY.

F_SETLK Set or clear a file lock according to argument, which is interpreted to
be a pointer toa struct flock. F_SETLK is used to set read

locks, set write locks, or remove either type of lock. If a read or a

write lock cannot be set, fcntl returns immediately with a value of

-1.

F_SETLKW This command is the same as F_SETLK except if a read or write

lock is blocked by other locks, the process will pend until the seg-

ment to be locked is free.

. FLGETLK Get the first lock that blocks the lock description specified by argu-

ment, which is interpreted to be a pointer toa struct flock. The

information retrieved overwrites the information passed to fentl in

argument. If no lock is found that would prevent this lock from

being set, argument is unchanged, except for the lock type, which is

set to FLUNLCK.

F_CHKFL — Check argument to see if it would be valid if passed as the argument
toa F.SETFL fentl command. Return 0 if valid, -1 if not.

F_FREESP Free storage space associated with the file descriptor according to the

struct flock pointed to by argument. The portion to be freed is

specified by |_whence, l_start and l_len. If the /_len field is 0, the file

is truncated. Currently, the only supported operation is truncation

(that is, len must be 0).

ACCESS CONTROL

None.

RETURN VALUE | | ,

The value returned may be one of the following regardless of the value of command:

-1 An error occurred. errno is set to indicate the error.

If command is F.GETFD, the value returned may be one of the following:

Oorl Completed successfully. The value of the close~on-exec flag is

returned.

If command is F.SETFD, F_SETFL, F_CHKFL, F_FREESP or F_SETOWN:

0 Completed successfully.

If command is F_DUPFD, the value returned may be one of the following:

argument..NOFILE—1

Completed successfully. A new file descriptor is returned.

If command is F.GETOWN, the value returned may be one of the following:

owner Completed successfully. If the value is negative, -owner is the process

group id returned. Otherwise owner is a process id. Note that the process

group may be 1, in which case, —1 will be returned.

If command is F_GETFL, the value returned may be one of the following:

083-701055 Licensed materia—property of copyright holders) 2-115

fentl(2) OG/UX 5.4 fentl(2)

file_flags Completed successfully. The value of the file flags is returned.

If command is F.GETLK, F_SETLK, or F_SETLKW, the value returned may be the

following:

0 Completed successfully.

DIAGNOSTICS

Errno may be set to one of the following error codes regardless of the value of com-

mand:

EBADF Fildes is not a valid, active descriptor.

EINVAL Command is not one of the known values; or argument is not a valid

descriptor; or the flock structure pointed to by argument is outside

the process’s readable address space.

If.command is FLDUPFD, errno may be set to one of these values:

EMFILE All descriptors are currently open.

If command is FLSETLK, F_SETLKW, or F_.GETLK, errno may be set to one of

these values: _

EBADF . The caller requested a read lock, and the channel does not provide
_read access, or the caller requested a write lock and the channel does

not provide write access.

EINTR The command was F_LSETLKW and the process was interrupted

while pending on a lock.

EDEADLK The command was F_LSETLKW and a deadlock would exist if the

lock were granted.

EACCES The command was F_SETLK and the type of lock sought is a read

lock (F_RDLCK) or write lock (F_WRLCK), and the segment of a

file to be locked is already write-locked by another process, or the

type is.a write lock and the segment of a file to be locked is already

read-locked or write-locked by another process.

Additional errors may be given by the type managers.

SEE ALSO

close(2), creat(2), dup(2), dup2(2), exec(2), fork(2), getdtablesize(2),

open(2), pipe(2), sigvec(2), socket(2), socketpair(2), fernt1(5).

2-1 1 6 Licensed material—property of copyright holder(s) 093-701055

fetch_and_add(2) DG/UX 5.4 fetch_and_add(2)

NAME .

fetch _and_add — indivisible fetch and add to memory location

SYNOPSIS

tbo 0,r0,401

DESCRIPTION

Fetch_and_add is a extended operation (XOP) that indivisibly fetches the value of a

user memory location and adds to that memory location.

Input registers are:

r2 Address of 32 bit user memory location to be fetched and added to. This

address must be aligned on a 4 byte boundary.

r3 32 bit integer to add to the user memory location.

Return registers are:

rl Unchanged

r2 Unchanged

r3 Unchanged

r4 Undefined

r5 New value of the memory location

r6 Undefined

x7 Status: O means success (memory location was set to the new value), 1 means
some fault occurred when accessing the memory location.

rg Old value of the memory location

r9 Undefined

r10 through r31

Unchanged

The value of the memory location pointed to by r2 is read, the value in r3 1s added

to it using unsigned arithmetic (no overflow exceptions are generated), and the result

is stored back into the same memory location. The old and new values of the
memory location are returned. If any fault (including a page fault) occurs when

accessing the memory location, an error code is returned and the memory location is
not modified. |

The fetch_and_add XOP executes indivisibly with respect to all other

fetch_and_add operations running on any processor in the system that may be

going on simultaneously to the same physical memory location. It does not neces-

sarily execute indivisibly with respect to fetch_and_add operations to other

memory locations, or with respect to other XOPs to the same memory location, or

with respect to normal loads and stores or I/O traffic to the memory location.

While the XOP is being executed, the user process will not be descheduled, will not

page fault, and will not be terminated. If a fault of any kind (page fault, protection

fault, misaligned access fault, for example) occurs when the XOP references user

data, the XOP terminates and returns an error. User code is responsible for catching

the error, touching the data item so that the fault can be handled, and then retrying

the XOP. The execution time of the XOP is charged to user mode, not kernel mode.

User profiling ticks that occur while the XOP is in progress are accounted to the

instruction following the trap instruction.

093-701055 Licensed materiai—property of copyright holder's) 2-1 17

fetch_and_add(2) DG/UX 5.4 fetch_and_add(2)

Fetch_and_add must be invoked with an assembly language trap instruction. Typi-

cally the trap instruction is done from an assembly language routine that is linked with

the application and called as a standard subroutine in the high level language in which

the application is written.

EXAMPLE

global _fetch_and_add

; routine is entered with the memory address in r2 and the

; amount to add in r3. The following "C" statement invokes

; this routine correctly:

; int location, amount, old_value;

old_value = fetch_and_add(&location, amount);

_fetch_and_add:

tbo 0,r0,401 ; trap to the fetch-and-add xop (#401)

bend ne0Q,r7,_fault ; had a data access fault

jmp.n rl ; back to the caller

or r2,r0,r8 ; old value is function return value

; if a data access fault occurred during the XOP, control will

; come here. A data access fault could just be a page fault,

; or it could be a real error such as a protection violation.

; Hence we do a simple load of the memory location so that

; whatever the fault is, it will occur on the load. If it is

; a page fault, the page fault will be handled by bring the

; page into memory. If it is a protection fault, an

; appropriate signal will be sent. If the load succeeds (as

; on a page fault), then we try the XOP over again.

_fault:

ld rxr8,r0,r2 ; read memory location. We really

; G@on’t care care where the data goes.

; r8 is convenient.

br _fetch_and_add; try the XOP again

Note that the above routine is just an example. Applications can and should modify

the routine to get exactly the desired interface. For example, the new value can be

returned instead of the old value by moving r5 instead of r8 into rz.

SEE ALSO

store_conditional(2).

2-1 1 8 Licensed material—property of copyright hoider(s) 093-701055

fork(2)

NAME

OG/UX 5.4 | fork(2)

fork - create a new process

SYNOPSIS

#include <sys/types.h>

pid t fork ()

DESCRIPTION

Fork creates a new process with its own address space that is initialized to the con-

tents of the calling process’s address space at the time the fork call is made. The

new process is entered into the process tree as a child of the calling process.

The following attributes in the new process are set to the values the parent process

had at the time of the fork call:

Environment

Signal handling settings

(i.e., SIG_DFL, SIG_IGN, function address)

Real- and effective-user-id

Real- and effective-group-id

Tty group id

Group list

Profiling on/off status

Nice value (see nice)

All attached shared memory segments (see shmat)

Process group ID

Current working directory

Root directory

File mode creation mask (see umask)

Resources utilization limits (see ulimit, setrlimit)

Controlling terminal device

Close on exec flag

Attached shared descriptor array

The child process differs from the parent process in the following ways:

083-701055

The child process has a unique process ID.

The child process has a different parent process ID (the process ID of its

parent).

The child process has its own copy of each of the parent’s per-process object

descriptors, with the close-on-exec flag in each set to the value from the

corresponding object descriptor in the parent. Each of the child’s object

descriptors shares a common object pointer with the corresponding object

descriptor of the parent.

File locks set by the parent are not inherited by the child.

The set of signals pending for the child process is cleared.

All semaphore adjustment values are cleared [see semop(2)].

Process locks, text locks, data locks, and locks on any other regions of the

parent process’s address space are not inherited by the child [see plock(2)

and mement1(2)].

The child process’s current resources consumed and cumulative resources

consumed by its children are set to zero. This includes the child’s utime,

Stime, cutime, and cstime [see setrlimit(2)].

Licensed material—property of copyright holder(s) —. 2-1 19

fork(2) OG/UX 5.4 fork(2)

e The value of ITIMER_REAL (used by alarm and setitimer) is set to 0 so that

SIGALRMsSs are disabled. ITIMER_ VIRTUAL and ITIMER_PROF (used
by setitimer) are also set to 0 (ie. all pending alarms are cleared in the child).

e Unless specifically set, the child process does not inherit tracing [see
ptrace(2) and dg_xtrace(2)].

ACCESS CONTROL

If the new process would cause the system-imposed limit on the total number of

processes in the system to be reached, an error is returned and the new process is not

created, unless the calling process has an effective-user-id of 0. In other words, only

the superuser is allowed to create a process that causes the limit to be reached.

RETURN VALUE

Upon successful completion, fork returns a value of 0 to the child process and

returns the process ID of the child process to the parent process. Otherwise, a value

of -1 is returned to the parent process, no child process is created, and errno is set

to indicate the error.

DIAGNOSTICS

Fork will fail and no child process will be created if one or more of the following are

true: re

EAGAIN _ The system-imposed limit on the total number of processes under

execution would be exceeded.

EAGAIN The system-imposed limit on the total number of processes under

execution by a single user would be exceeded.

ENOMEM The process requires more memory than the system is able to supply.

SEE ALSO :

dg_xtrace(2), exec(2), mementl(2), nice(2), plock(2), ptrace(2), semop(2),

shmat(2), signal(2), sigset(2), times(2), ulimit(2), umask(2), vfork(2),

wait(2).

. 2-1 20 Licensed material—property of copyright holder(s) 093-701055

fstat(2) DG/UX 5.4 fstat(2)

NAME

fstat — get file status

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

int fstat (fildes, buffer_ptr)

int fildes ;

struct stat * bufferptr;

where:

fildes A valid, active file descriptor

buffer_ptr Address of a stat buffer to fill

DESCRIPTION

Fstat returns the current attributes of the file referenced by fildes into the status
' buffer at the location specified by buffer_prr.

The interpretation of the file’s attributes depends on the file’s type [see stat(5) for

details]. The subject file must be of type ‘ordinary-disk-file’, ‘directory’, ‘block-

special-file’, ‘character-special-file’, ‘fifo-special-file’ ‘pipe’, or ‘socket’.

If fstat fails, the contents of the stat buffer are undefined.

ACCESS CONTROL
Read, write, or execute permission of the file is not required. However, for fildes to

be active, the file must be open for reading or writing.

RETURN VALUE

0 The fstat operation was successful.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid, active file descriptor.

EFAULT buffer_pointer points to an invalid address.

SEE ALSO

chmod(2), chown(2), creat(2), dg_mstat(2), fehmod(2), fchown(2), link(2),

lstat(2), mknod(2), pipe(2), read(2), stat(2), time(2), unlink(2), utime(2),

utimes(2), write(2).

093-701055 Licensed material—property of copyright holder(s) 2-1 21

tstatfs(2) DG/UX 5.4 fstatfs(2)

NAME

fstatfs — get information about a mounted file system

SYNOPSIS

#include <sys/types.h>

#include <sys/statfs.h>

int fstatfs (fildes, statfs_buffer, len, fstype)

int fildes ;

struct statfs * statfs_buffer;

int len;

int fstype;

where:

filedes File descriptor for any file within the file system to be reported on

starfs.buffer A statfs structure where information about the file system is

returned

len _Length of the user’s buffer

fstype Type of the file system [see statfs(2)]

DESCRIPTION — .

Fildes is a valid, active descriptor referring to an open file of any type (ordinary,

directory, FIFO, block special, character special, or symbolic link). Terminal sym-

bolic links are resolved in the system call that returned filedes. Fstatfs returns the

same information about the mounted file system that contains the file that statfs

does.

ACCESS CONTROL

None.

RETURN VALUE

0 The file system information was successfully returned.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid, active file descriptor.

EFAULT Some part of the statfs structure pointed to by statfs_buffer lies out-

side of the process’s writable address space. .

EINVAL Fildes refers to a pipe or socket.

SEE ALSO

chmod(2), chown(2), creat(2), fchmod(2), fchown(2), link(2), mknod(2),

pipe(2), read(2), statfs(2), time(2), times(2), ustat(2), write(2), £s(4),

statfs(5).

2-1 22 Licensed material——property of copyright holder(s) 093-701055

fstatvfs(2) DG/UX 5.4 {statvfs(2)

NAME

fstatvfs — return information about a file system

SYNOPSIS

#include <sys/types.h>

#include <sys/statvfs.h>

int fstatvfs (int fildes, struct statvfs *buffer)

where:

filedes | The open file descriptor of any file in the file system to be reported on.

buffer Address of a statvfs buffer where file system information will be returned

DESCRIPTION

Filedes is a valid, active descriptor refering to an open file of any type. The informa-

tion returned concerns details about file system where the filedes resides and is the

same as that of statvfs:

ulong f_bsize; /* file system block size */

ulong f.frsize; /* file system fragment size */

ulong f_blocks; /* total number of blocks of f_frsize

contained in the file system */

ulong f_bfree;; /* total number of free blocks */

ulong f_bavail; /* number of .rce blocks available to

the non-super-user */

ulong f.fsid; _//* file system identifier */

char f_basetype[FSTYPSZ]; /* null-terminated fs type

name */

ulong f_flag; /* bit mask of flags */

ulong f. namemax; /* maximum file name length */

char f_fstr[32]; /* file system specific string */

{_basetype contains the file system type name and is null-terminated. The value for

the constant FSTYPSZ is defined in the <statvfs.h> file.

The f_flag can return the following:

ST_RDONLY , /* a read-only file system */

ST_NOSUID /* file system does not support the
setuid or setgid semantics */

ACCESS CONTROL

None.

RETURN VALUE

0 The information was successfully returned in the statvfs buffer.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The filedes is not an open file descriptor.

SEE ALSO

chmod(2), chown(2), create(2), dup(2), fent1(2), link(2), mknod(2), open(2),
pipe(2), read(2), time(2), unlink(2), ustat(2), utime(2), write(2).

093-701055 Licensed material—property of copyright holder(s) 2-123

fsyne(2) DG/UX 5.4 fsyne (2)

NAME

fsync — synchronize a file’s in-core state with that on disk

SYNOPSIS

#include <unistd.h>

int fsyne (fildes)

int fildes;

where:

fildes A valid, active file descriptor that refers to an open file.

DESCRIPTION

The fsync system call causes all modified data and attributes of the file to be written

to disk. Write operations performed by the write or writev system calls are

atomic, so it is not possible for fsync to record the results of a partial write. Also,

while the fsync is being performed, further writes to the file are blocked. Thus,

fsync ensures that a snapshot of the file’s state is on physical disk.

Upon successful completion of all writes, the file’s time of last file attribute change

(st_ctime) is set to the current time.

ACCESS CONTROL

None.

RETURN VALUE

0 The synchronization was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid descriptor.

EINVAL Fildes refers to an object other than a file.

EIO An I/O error occurred while reading from or writing to the file sys-

tem.

SEE ALSO

synce(1M), syne(2).

2- 1 24 Licensed materiat—property of copyright hoider(s) 093-701055

ftruncate (2) OG/UX 5.4 ftruncate (2)

NAME

ftruncate - truncate a file

SYNOPSIS

#include <unistd.h>

int ftruncate (fildes, length)

int fildes;

long length;

where:

fildes A valid, active file descriptor

length Maximum length of file after truncation

DESCRIPTION

This call is similar to the truncate system call, except that ftruncate takes a file

descriptor iastead of a pathname to identify the file.

Otherwise, the semantics of this call are identical to those of truncate.

ACCESS CONTROL

Fildes must be open for writing.

RETURN VALUE

0 The file was successfully truncated.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF _ Fildes is not a valid, active descriptor.

EINVAL Fildes is not open for writing.

EINVAL Fildes references a socket, not a file.

EINTR Fontl was interrupted while waiting for a lock.

SEE ALSO

creat(2), open(2), truncate(2).

093-701055 Licensed materiai—property of copyright holders) 2-1 25

getcontext(2) DOG/UX 5.4 getcontext(2)

NAME

getcontext, setcontext — get and set current user context

SYNOPSIS

#include <ucontext.h>

int getcontext(ucontext_t s«ucp);

int setcontext(ucontext_t «ucp);

where:

ucp The name ofa structure to contain user context information

DESCRIPTION

These functions are useful for implementing user level context switching between mul-

tiple threads of control within a process.

getcontext initializes the structure pointed to by ucp to the current user context of
the calling process. The user context is defined by ucontext(5) and includes the

contents of the calling process’s machine registers, signal mask and execution stack.

setcontext restores the user context pointed to by ucp. Thecallto setcontext

does not return; program execution resumes at the point specified by the context

structure passed to setcontext. The context structure should have been one

created either by a prior call to getcontext or passed as the third argument to a

signal handler {see sigaction(2)]. If the context structure was one created with

getcontext, program execution continues as if the corresponding call of getcon-

text had just returned.

ACCESS CONTROL |

No access checking is performed.

RETURN VALUE

On successful completion, setcontext does not return and getcontext returns 0.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

DIAGNOSTICS

Under the following conditions, getcontext and setcontext fail and set errno

to:

EFAULT ucp points to an invalid address.

NOTES

When a signal handler is executed, the current user context is saved and a new con-

text is created by the kernel. If the process leaves the signal handler via

longjmp(3C) the original context will not be restored, and future calls to getcon-

text will not be reliable. Signal handlers should use siglongjmp(3C) or setcon-

text instead.

SEE ALSO

sigaction(2), sigaltstack(2), sigprocmask(2), ucontext(5).

. 2- 1 26 Licensed material—property of copyright holder(s) 093-701055

getdents(2) DG/UX 5.4 ge tdents(2)

NAME

getdents — get directory entries in a filesystem-independent format

SYNOPSIS

#include <sys/dirent.h>

int getdents (fildes, buffer, nbyte)

int fildes;

char *buffer;

unsigned nbyte;

where:

fildes File descriptor of the directory to list

buffer Buffer to hold the directory entries

nbyte Size of the buffer in bytes

DESCRIPTION

Getdents attempts to read nbyre bytes from the directory associated with fildes and

then format them as filesystem-independent directory entries in the buffer pointed to

by buffer. Since the filesystem-independent directory entries are of variable length, in

most cases the actual number of bytes returned will be strictly less than nbyve.

The filesystem entry is specified by the dirent structure. The dirent structure is

defined as

struct dirent {

long d_ino;

off_t d_off;

unsigned short d_reclen;

char a_name[1];

};

The d_ino entry is a number that is unique for each file in the filesystem. The

d_off is the offset of that directory entry in the actual filesystem directory. The field

d_name is the beginning of the character array giving the name of the directory entry.
This name is null terminated and may have at most MAXNAMLEN characters. The

variable length of filenames makes the file system independent variable length. The

value d_reclen is the record length of this entry.

On devices capable of seeking, getdents starts at a position in the file given by the file

pointer associated with fildes.

Upon return, the actual number of bytes transferred is returned. The current position

pointer associated with fildes is set to point to the next block of entries.

ACCESS CONTROL

None.

RETURN VALUE

>0 The number of bytes actually transferred.

0 The end of the directory has been reached.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid file descriptor for reading.

093-701055 Licensed materia'—property of copyright holder(s) 2-1 27

getdents(2) DG/UX 5.4 getdents(2)

EFAULT Buf points outside the allocated address space.

EINVAL nbyte is not large enough for one directory entry.

ENOENT The current file pointer for the directory is not located at a valid
entry.

ENOTDIR Fildes is not a directory.

EIO An V/O error occurred while accessing the file system.

SEE ALSO

lseek(2), open(2), dirent(4).

2-1 28 Licensed material—property of copyright holder(s) 093-701055

getdomainname (2) DG/UX 5.4 getdomainname (2)

NAME

getdomainname — get name of current domain

SYNOPSIS

int getdomainname (name, namelen)

char * name;

int namelen;

where:

name Buffer to receive domain name

namelen Buffer length in bytes

DESCRIPTION

Getdomainname returns the name of the network domain of the host system, as pre-

viously set by setdomainname. The parameter namelen specifies the size of the

name array. The returned name is null-terminated unless insufficient space 1s pro-

vided.

The purpose of domains is to enable two distinct networks that may have hostnames

in common to merge. Each network would be distinguished by having a different

domain name. At the current time, only the Yellow Pages service makes use of

domains.

Domain names are limited to MAXDOMAINNAMELEN characters, which 1s

defined in <user/param.h>.

Calling getdomainname before calling setdomainname produces undefined results.

ACCESS CONTROL

None.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT The name parameter gave an invalid address, or the namelen parame-

ter specified a length less than zero.

SEE ALSO

gethostid(2), gethostname(2), setdomainname(2).

093-701055 Licensed material—property of copyright holder(s) 2-1 29

getdtablesize (2) DG/UX 5.4 getdtablesize (2)

NAME

getdtablesize — return the number of open files the current process can have

SYNOPSIS

int getdtablesize ()

DESCRIPTION

The getdtablesize call returns the number of open files the current process can

have. This can be changed via the setrlimit(2) and ulimit(2) system calls.

ACCESS CONTROL

None.

RETURN VALUE

NOFILE The number of open files that the current process may have.

DIAGNOSTICS

None.

SEE ALSO

close(2), dup(2), fent1l(2), open(2), select(2), setrlimit(2), ulimit(2).

2-1 30 Licensed material—property of copyright holder(s) 093-701055

getegid(2) DG/UX 5.4 . getegid(2)

NAME

getegid — get the effective-group-id

SYNOPSIS

#include <sys/types.h>

gid t getegid ()

DESCRIPTION

Getegid returns the effective-group-id of the calling process.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

0..MAXUID The return value is always the effective-group-id of the calling pro-

cess.

DIAGNOSTICS
None.

SEE ALSO

getuid(2), geteuid(2), getgid(2), setuid(2), setgid(2), setregid(2),

setreuid(2).

093-701055 Licensed material—property of copyright holderis) 2-131

geteuid(2) OG/UX 5.4 geteuid(2)

NAME

geteuid — get the effective-user-id

SYNOPSIS

#include <sys/types.h>

uid t geteuid ()

DESCRIPTION

Geteuid returns the effective-user-id of the calling process.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

0..MAXUID The return value is always the effective-user-id of the calling process.

DIAGNOSTICS

None.

SEE ALSO

getuid(2), getgid(2), getegid(2), setuid(2), setgid(2), setregid(2),

setreuid(2).

- 2-132 Licensed materiai—property of copyright holder's) 093-701055

getth(2) DG/UX 5.4 getfh(2)

NAME

getfh - return the file handle of the export entry containing filename

SYNOPSIS

#include <sys/types.h>

#include <sys/nfs.h>

int getfh (filename, filehandle_ptr)

char * filename;

fhandle_ t * filehandle_ptr;

where:

filename The filename to get the filehandle of

filehandle_ptr Where to put filehandle for the file specified by filename

DESCRIPTION

‘If filename has been exported via exportfs(2), then the filehandle for the filesystem

that is exported is returned. This system call is normally used only by the NFS mount

daemon.

ACCESS CONTROL

The calling process’s effective user id must be superuser.

RETURN VALUE

0 Successful completion. The file handle for descriptor is returned in

filehandle_prr.

-1 An error occurred. exrno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL No export entry exists for this filename.

EFAULT Some part of the space pointed to by filehandle_ptr lies outside

the process’s readable address space.

EPERM ‘The caller is not superuser.

EOPNOTSUPP Kernel support for NFS is not present.

SEE ALSO

dg_mount(2).

093-701055 Licensed material—property of copyright holder(s) 2-1 33

getgid(2) DG/UX 5.4 getgid(2)

NAME
getgid — get the real-group-id

SYNOPSIS

#include <sys/types.h>

uid t getgid ()

DESCRIPTION

Getgid returns the real-group-id of the calling process.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

0..MAXUID The return value is always the real-group-id of the calling process.

DIAGNOSTICS

None.

SEE ALSO |

getuid(2), geteuid(2), getegid(2), setuid(2), setgid(2), setregid(2),

setreuid(2). 7

2-1 34 Licensed material—property of copyright hoider(s) 093-701055

getgroups(2) DG/UX 5.4 getgroups(2)

NAME
.

getgroups, setgroups -— get or set supplementary group access list IDs

SYNOPSIS

#include <unistd.h> #include <sys/types.h>

int getgroups(int gidsetsize, gid_t »*grouplist)

int setgroups(int ngroups, const gid_t sgrouplist)

where:

gidsersize The number of entries currently in grouplist

grouplist An array of group IDs |

ngroups The number of entries to be in grouplist

DESCRIPTION

getgroups gets the current supplemental group access list of the calling process and

stores the result in the array of group IDs specified by grouplist. This array has gid-

setsize entries and must be large enough to contain the entire list. This list cannot be

greater than {NGROUPS_MAX}. If gidsetsize equals 0, getgroups will return the

number of groups to which the calling process belongs without modifying the array

pointed to by grouplist.

setgroups sets the supplementary group access list of the calling process from the

array of group IDs specified by grouplist. The number of entries is specified by

ngroups and can not be greater than {NGROUPS_MAX}. This function may be invoked

only by the super-user.

RETURN VALUE

Upon successful completion, getgroups returns the number of supplementary group

IDs set for the calling process and setgroups returns the value 0. Otherwise, a

value of -1 is returned and errno is set to indicate the error.

DIAGNOSTICS

getgroups Will fail if:

EINVAL The value of gidsetsize is non-zero and less than the number of sup-

plementary group IDs set for the calling process.

setgroups will fail if: :

EINVAL ‘The value of ngroups is greater than {NGROUPS_MAX}.

EPERM The effective user ID is not super-user.

Either call will fail if: |

EFAULT A referenced part of the array pointed to by grouplist is outside of

the allocated address space of the process. See groups(1) in the

User’s Reference Manual.

SEE ALSO

chown(2), getuid(2), setuid(2),

2-135
093-701055 Licensed materia\—property of copyright holder(s)

gethostid(2) DG/UX 5.4 gethostid(2)

NAME

gethostid — get unique identifier of current host

SYNOPSIS

long gethostid ()

DESCRIPTION

Gethostid returns the 32-bit identifier for the host system.

Calling gethostid before calling sethostid produces undefined results.

ACCESS CONTROL

None. (Call always succeeds.)

RETURN VALUE

hostid Completed successfully.

DIAGNOSTICS

None.

SEE ALSO

getdomainname(2), gethostname(2), sethostid(2).

2-1 36 Licensed material—property of copyright hoider(s) 093-701055

gethostname (2) DG/UX 5.4 , gethostname(2)

NAME

gethostname — get name of current host

SYNOPSIS

int gethostname (name, namelen)

char * name;

int namelen;

where:

name Buffer to receive hostname

namelen Buffer length in bytes

DESCRIPTION

Gethostname returns the standard hostname for the host system, as previously set by

sethostname. The parameter namelen specifies the size of the name string. The

returned name is null-terminated unless insufficient space is provided. Insufficient

space will truncate the name.

Hostnames are limited to MAXHOSTNAMELEN characters, which is defined in

<sys/param.h>.

Calling gethostname before calling sethostname returns a zero-length hostname.

ACCESS CONTROL

None.

RETURN VALUE

0 Completed successfully.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to the following error code:

EFAULT The name parameter gave an invalid address, or the namelen parame-

ter specified a length less than zero.

SEE ALSO

getdomainname(2), gethostid(2), sethostname(2).

093-701055 Licensed material—property of copyright holder(s) 2-1 37

getitimer(2) OG/UX 5.4 getitimer(2)

NAME

getitimer, setitimer -— get or set value of interval timer

SYNOPSIS

#include <sys/time.h>

int getitimer(int which, struct itimerval value);

int setitimer(int which, struct itimerval «value, struct itimerval sovalue);

where:

which ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF

value Name of pointer to structure for storing timer value

ovalue Name of pointer to structure for storing old timer value

DESCRIPTION

The system provides each process with three interval timers, defined in

sys/time.h. The getitimer call stores the current value of the timer specified by

which into the structure pointed to by value. The setitimer call sets the value of

the timer specified by which to the value specified in the structure pointed to by

value, and if ovalue is not NULL, stores the previous value of the timer in the struc-

ture pointed to by ovalue.

A timer value is defined by the itimerval structure [see gettimeofday(3C) for

the definition of timeval], which includes the following members:

struct timeval it_interval; /* timer interval +/

struct timeval it_value; 7* current value +/

If it_value is non-zero, it indicates the time to the next timer expiration. If

it_interval is non-zero, it specifies a value to be used in reloading it_value

when the timer expires. Setting it_value to zero disables a timer, regardless of the

value of it_interval. Setting it_interval to zero disables a timer after its next

expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this

resolution.

The three timers are:

ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered when

this timer expires.

ITIMER_VIRTUAL Decrements in process virtual time. It runs only when the pro-

cess is executing. A SIGVTALRM signal is delivered when it

expires.

ITIMER_PROF Decrements both in process virtual time and when the system is

running on behalf of the process. It is designed to be used by

interpreters in statistically profiling the execution of interpreted

programs. Each time the ITIMER_PROF timer expires, the SIG-

PROF signal is delivered. Because this signal may interrupt in-

progress system calls, programs using this timer must be prepared

to restart interrupted system calls.

RETURN VALUE

If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is

returned, and an error code is placed in the global variable errno.

DIAGNOSTICS

Under the following conditions, the functions getitimer and setitimer fail and

set errno to:

2-1 38 Licensed material—property of copyright holder(s) 093-701055

getitimer(2) DG/UX 5.4 getitimer(2)

EFAULT value or ovalue specified a bad address

EINVAL The specified number of seconds is greater than 100,000,000, the number

of microseconds is greater than or equal to 1,000,000, or the which param-
eter is unrecognized.

SEE ALSO

alarm(2), gettimeofday(2).

NOTES

The microseconds field should not be equal to or greater than one second.

setitimer is independent of the alarm system call.

Do not use setitimer with the sleep routine. A sleep following a setitimer

wipes out knowledge of the user signal handler.

093-701055 Licensed materia}—property of copyright hoider(s) 2-1 39

getmsg(2) DG/UX 5.4 getmsg(2)

NAME

getmsg, getpmsg — get a message from a stream

SYNOPSIS

#include <stropts.h>

int getmsg (filedes, control_info_ptr, data_info_ptr, flags_ptr)

int filedes;

struct strbuf * control_info_ptr;

struct strbuf * data_info_pir;

int * flags_ptr;

int getpmsg (filedes, control_info_ptr, data_info.ptr, band_ptr, flags_ptr)

int filedes;

struct strbuf * controlinfo_ptr;

struct strbuf * data_info_pir;

int * band_ptr;

int * flagspir;

where:

filedes — File descriptor

control_info_ptr A pointer to a structure describing the control buffer or NULL, if

there is no control buffer

data_info_ptr A pointer to a structure describing the data buffer or NULL, if

there is no data buffer

band_ptr On input, specifies the minimum band message to retrieve. On

output, the band of the message retrieved.

flags_ptr On input, the type of message desired; on output, the type of

message retrieved

DESCRIPTION

2-140

getmsg retrieves the contents of a message [see intro(2)] located at the stream

head read queue from a STREAMS file, and places the contents into user specified

buffer(s). The message must contain either a data part, a contro] part, or both. The

data and control parts of the message are placed into separate buffers, as described

below. The semantics of each part is defined by the STREAMS module that gen-

erated the message.

The function getpmsg does the same thing as getmsg, but provides finer control

over the priority of the messages received. Except where noted, all information per-

taining to getmsg also pertains to getpmsg.

filedes specifies a file descriptor referencing an open stream. control_info_ptr and

data_info_ptr each point to a strbuf structure, which contains the following

members:

buf Pointer to the first byte of the control or data buffer.

maxlen The maximum size, in bytes, of the buffer or a negative number, if informa-

tion of that type is not requested.

len Ignored on input. On output, contains the number of bytes of control or

data information placed in the buffer or -1, if there is no information of that

type present in the message or that type of information was not requested.

This field is valid on output only if the status OK is returned.

Licensed material—property of copyright holder(s) 093-701055

getmss(2) DG/UX 5.4 getmsg(2)

The control buffer is used to hold the control part of the message (those message

blocks before the first block of type M_DATA; typically either M_PCPROTO or

M_PROTO blocks). The data buffer is used to hold the data part of the message

(any blocks after and including the first MLDATA block). If a strbuf pointer is

NULL or "maxlen” is negative, the corresponding part of the message is not pro-

cessed and is left on the stream. If the control (or data) "maxlen" is 0 and the first

control (or data) block has a data buffer of length 0, that block is removed from the

message and the control (or data) “len” is set to 0. If “maxlen” is 0 and the first block

of the corresponding type has a non-zero buffer, however, the block is left on the

message and “len” is set to 0. If "“maxlen” is less than the length of the corresponding

portion of the message, "“maxlen” bytes are retrieved and placed in the caller’s buffer.

The remainder of the message is left on the stream and a non-zero return value is pro-

vided as described under RETURN VALUE.

By default, getmsg processes the first available message on the stream head read

queue. However, a user may choose to retrieve only high priority messages by setting

the integer pointed by flags_pty to RS_HIPRI. In this case, getmsg processes the

next message only if it is a high priority message. If the integer pointed by flags_ptr is

0, getmsg retrieves any message available on the stream head read queue. In this

case, on return, the integer pointed to by flags_ptr will be set to if a high priority mes-

sage was retrieved, or 0 otherwise.

For getpmsg, the flags are different. flags_ptr points to a bitmask with the following

mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like

getmsg, getpmsg processes the first available message on the-stream head read

queue. A user may choose to retrieve only high-priority messages by setting the

integer pointed to by flags_ptr to MSG_HIPRI and the integer pointed to by band_pir

to 0. In this case, getpmsg will only process the next message if it is a high-priority

message. In a similar manner, a user may choose to retrieve a message from a partic-

ular priority band by setting the integer pointed to by flags_ptr to MSG_BAND and the

integer pointed to by band_ptr to the priority band of interest. In this case, getpmsg

will only process the next message if it is in a priority band equal to, or greater than,

the integer pointed to by band_pry, or if it is a high-priority message. If a user just

wants to get the first message off the queue, the integer pointed to by flags_prr should

be set to MSG_ANY and the integer pointed to by band_pir should be set to 0. On

return, if the message retrieved was a high-priority message, the integer pointed to by

flags_ptr will be set to MSG_HIPRI and the integer pointed to by band_prr will be set
to 0. Otherwise, the integer pointed to by flags_ptr will be set to MSG_BAND and the

integer pointed to by band_prr will be set to the priority band of the message.

If O_NDELAY and O_NONBLOCK are clear, getmsg blocks until a message of the type

specified by flagsp is available on the stream head read queue. If O_NDELAY or

O_NONBLOCK has been set and a message of the specified type is not present on the

read queue, getmsg fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, getmsg

continues to operate normally, as described above, until the stream head read queue

is empty. Thereafter, it returns 0 in the len fields of ctlptr and dataprr.

ACCESS CONTROL

Fildes must be open for reading.

RETURN VALUE

-1 An error occurred. errno is set to indicate the error.

0 An entire message was successfully read.

093-701055 Licensed materiai—property of copyright holder(s) 2-1 41

getmsg(2) DG/UX 5.4 getmsg(2)

MORECTL A message was partially read. More control information is waiting
for retrieval.

MOREDATA A message was partially read. More data information is waiting for

retrieval.

MORECTL | MOREDATA

A message was partially read. More control and data information is

waiting for retrieval.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EAGAIN The OLNDELAY or O_LNONBLOCK flag was set and a message of

the requested type was not available.

EBADF Fildes is not a valid, active descriptor open for reading.

EBADMSG _ The message at the head of the stream is not a type that is retrievable

by getmsg(2).

EFAULT The arguments pointed to by control_info_ptr, data_info_ptr, and

flags_ptr do not lie entirely within the caller’s readable and writable

address space.

EINTR A signal was caught during the getmsg call.

EINVAL An illegal value was specified by *flags_ptr

EINVAL The stream referred to by fildes is linked under a multiplexor.

ENOSTR Fildes does not refer to a stream.

SEE ALSO

putmsg(2).

NOTE

The user should avoid using O_NDELAY and instead use O_NONBLOCK.

2- 1 42 Licensed material—property of copyright hoider(s) 093-701055

getpagesize (2) DG/UX 5.4 getpagesize (2)

NAME

getpagesize — get the system page size

SYNOPSIS

int getpagesize()

DESCRIPTION

The getpagesize() function returns the number of bytes in a page. Some memory

management calls require knowledge of this page size. The page size is a system page

size and may not be the same as the underlying hardware page size.

ACCESS CONTROL

No access check is made.

RETURN VALUE

The getpagesize() function returns the system page size, in bytes.

DIAGNOSTICS

No errors are returned.

SEE ALSO

sysconf(2).

093-701055 Licensed material—property of copyright holder(s) 2-1 43

getpeername (2) , DG/UX 5.4 getpeername(2)

NAME

getpeername — get name of connected peer

SYNOPSIS

#include <sys/socket.h>

int getpeername (Ss, name, namelen)

int S;

struct sockaddr * name;

int * namelen;

where:

S File descriptor of socket whose name is requested

name Structure to receive the name of connected peer

namelen On input contains the number of bytes available for the peer name;

updated to indicate the number of bytes returned

DESCRIPTION

Getpeername returns the name of the peer connected to socket s. The namelen

parameter should be initialized to indicate the amount of space pointed to by name.

On return it contains the actual size of the name returned (in bytes).

ACCESS CONTROL

None. (See domain information [inet(3N), unix_ipce(6F)] for domain-specific res-

trictions.)

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The argument s is not a valid descriptor.

ENOTSOCK The argument s is not a file of type S_IFSOCK (socket special).

ENOTCONN The socket is not connected.

ENOBUFS Insufficient resources were available in the system to perform the

operation.

EFAULT The name parameter points to memory not in a valid part of the pro-

cess address space, or the namelen parameter is < 0.

SEE ALSO

bind(2), connect(2), getsockname(2), socket(2), inet(3N), unix_ipc(6F).

‘ 2-1 ; Licensed material—property of copyright holder(s) 093-701055

getpgrp(2) DG/UX 5.4 | getpgrp(2)

NAME

getpgrp — get process group ID

SYNOPSIS

#include <sys/types.h>

gid t getpgrp ()

DESCRIPTION

The getpgrp() function returns the process group ID of the calling process.

RETURN VALUE

See DESCRIPTION.

DIAGNOSTICS

The getpgrp() function is always successful, and no return value is reserved to indi-

cate an error.

SEE ALSO

setpgid(2), setpgrp(2), setsid(2), sigaction(2)

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

093-701055 Licensed material—property of copyright hoider(s) 2-1 45

getpgrp2(2) DG/UX 5.4 getpgrp2(2)

NAME

getpgrp2 — get process group

SYNOPSIS

#include <sys/types.h>

gid_t getpgrp2 (pid)

pid _t pid;

where:

pid The process whose process group is to be returned. If zero, the pro-

cess group of the calling process is returned.

DESCRIPTION

The process group of the specified process is returned by getpgrp2. If pid is zero

the process group of the calling process is returned.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

process group id The call succeeded. The process group id is returned.

-1 The specified process does not exist. errno is set to indicate

the error.

DIAGNOSTICS

Errno may be set to the following error code:

ESRCH The process specified by pid does not exist.

SEE ALSO

getpgrp(2), setpgrp(2), setpgrp2(2).

2-1 46 Licensed material——property of copyright holder(s) 093-701055

getpid(2) DG/UX 5.4 getpid(2)

NAME

getpid, getpgrp, getppid, getpgid — get process, process group, and parent

process IDs

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void) ;

pid_t getppid(void);

pid_t getpgid(pid_t pid);

DESCRIPTION

getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.

getppid returns the parent process ID of the calling process.

getpgid returns the process group ID of the process whose process ID is equal to

pid, or the process group ID of the calling process, if pid is equal to zero.

RETURN VALUE _

getpid, getpgrp, and getppid return the values given above.

Upon successful completion, getpgid returns a process group ID. Otherwise, a

value of (pid_t) -1 is returned and errno is set to indicate the error.

DIAGNOSTICS

getpid, getpgrp, and getppid always succeed.

getpgid will fail if one or more of the following is true:

EPERM The process whose process ID is equal to pid is not in the same ses-

sion as the calling process, and the implementation does not allow

access to the process group ID of that process from the calling pro-

cess. SO -

ESRCH There is no process with a process ID equal to pid.

SEE ALSO ‘

exec(2), fork(2), getpid(2), getsid(2), intro(2), setpgid(2), setsid(2)

setpgrp(2), signal(2). |

093-701055 Licensed materiai—property of copyright holders) 2-1 47

getppid(2) DG/UX 5.4 getppid(2)

NAME

getppid — get parent process-id

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

pid t getppid ()

DESCRIPTION

Getppid returns the process-id of the calling process’s parent.

ACCESS CONTROL |

No access checking is performed.

RETURN VALUE

process-id The process-id of the calling process’s parent is always returned.

DIAGNOSTICS

None.

SEE ALSO .

exec(2), fork(2), setpgrp(2), signal(2).

2-1 48 Licensed material—property of copyright holder(s) 093-701055

getpriority(2) DG/UX 5.4 getpriority(2)

NAME

getpriority — get process scheduling priority

SYNOPSIS

f#finclude <sys/resource.h>

int getpriority (which, who)

int which;

int who;

where:

which How the argument who is to be interpreted: PRIO_PROCESS,
PRIO_PGRP, or PRIOLUSER

who One or more process IDs, process group IDs, or user IDs, depending on

the value of which

DESCRIPTION

One or more processes are identified by the combination of the arguments which and

who. If which is PRIO_PROCESS, who is interpreted as a process ID and a single

process identified. If which is PRIO_PGRP, who is interpreted as a process group

ID, and all processes that are members of that group are identified. If which is

PRIO_USER, who is interpreted as a user ID, and all processes with effective-user-id

of who are identified.

A who value of 0 is interpreted as the calling process’s process ID, process group ID,

and effective-user-id, respectively, for the three cases listed. For example, all

processes in the calling process’ process group may be identified with which set to

PRIO_PGRP and who set to zero.

The getpriority call returns the highest priority (lowest numerical value) enjoyed

by any of the identified processes.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE | |

If no errors occur, getpriority returns the highest priority (lowest numerical

value) enjoyed by any of the identified processes. If an error occurs, —1 is returned

and errno is set to identify the error.

Since getpriority can legitimately return the value —1, it is necessary to clear the

external variable errno prior to the call, then check it afterward to determine if a -1

is an error or a legitimate value.

DIAGNOSTICS

Errno may be set to one of the following error codes:

ESRCH No process(es) were located using the which and who values speci-

fied.

EINVAL Which was not one of PRIO_LPROCESS, PRIO_PGRP, or

PRIO_USER.

SEE ALSO

fork(2), nice(2).

093-701055 Licensed materialt—property of copyright nolder(s) 2-1 49

getpsr(2) DG/UX 5.4 getpsr(2)

NAME

getpsr — return the current contents of the processor status register

SYNOPSIS |

#include <sys/m88kbcs.h>

unsigned int getpsr ()

DESCRIPTION

The getpsr system call returns the processor status register for the calling process.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

processor status register

The processor status register of the calling process.

DIAGNOSTICS

None.

SEE ALSO

setpsr(2).

“2-1 90 Licensed materia!—property of copyright holder(s) 093-701055

getriimit(2) DG/UX 5.4 | getriimit(2)

NAME

getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS

#include <sys/time.h>

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit s«rlp);

int setrlimit(int resource, const struct rlimit srlp);

where:

resource The resource for which the limits are to be returned or set.

rp A pointer to a structure into which the limit values are to be placed or

read from

DESCRIPTION

- Limits on the consumption of a variety of system resources by a process and each

process it creates may be obtained with getrlimit and set with setrlimit.

Each call to either getrlimit or setrlimit identifies a specific resource to be

operated upon as well as a resource limit. A resource limit is a pair of values: one

specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits may
be changed by a process to any value that is less than or equal to the hard limit. A

process may (irreversibly) lower its hard limit to any value that is greater than or

equal to the soft limit. Only a process with an effective user ID or superuser can

raise a hard limit. Both hard and soft limits can be changed in a single call to

setrlimit subject to the constraints described above. Limits may have an infinite

value of RLIM_INFINITY. rip is a pointer to struct rlimit that includes the fol-

lowing members:

rlim_t rlim_cur; /* current (soft) limit */

rlimt rlim_max; /* bard limit */

rlim t is an arithmetic data type to which objects of type int, size_t, and

off_t can be cast without loss of information.

The possible resources, their descriptions, and the actions taken when current limit is

exceeded, are summarized in the table below:

Resources Description Action

RLIMIT CORE The maximum size ofa The writing of a core file will

core file in bytes that may terminate at this size.

be created by a process.

A limit of 0 will prevent

the creation of a core file.

RLIMIT_CPU The maximum amount of SIGXCPU is sent to the process.

CPU time in seconds used _If the process is holding or

by a process. ignoring SIGXCPU, the behavior
is scheduling class defined.

RLIMIT DATA The maximum size of a brk(2) will fail with errno set to

process’s heap in bytes. ENOMEM.

093-701055 Licensed material—property of copyright holders) ~ 2-1 51

getriimit(2) DG/UX 5.4 getriimit(2)

Resources Description Action

RLIMIT FSIZE The maximum size ofafile SIGXFSZ is sent to the process.

in bytes that may be If the process is holding or

RLIMIT_NOFILE

RLIMIT STACK

RLIMIT_AS

RLIMIT_RS

created by a process. A

limit of 0 will prevent the

creation of a file.

The maximum number of

open file descriptors that

the process can have.

The maximum size of a

process’s stack in bytes.

The system will not

automatically grow the

stack beyond this limit.

The maximum size of a

process’s mapped address

space in bytes. This same

resource may be accessed

by setting resource to

RLIMIT_VMEM.

S The maximum size in bytes

that a process’ resident set

size my grow to.

ignoring SIGXFSZ, continued

attempts to increase the size of a

file beyond the limit will fail

with errno set to EFBIG.

Functions that create new file

descriptors will fail with errno

set to EMFILE. Or, when

attempting an fentl()

"F_DUPFD", return EINVAL.

SIGSEGV is sent to the process.

If the process is holding or

ignoring SIGSEGV, or is catch-

ing SIGSEGV and has not made

arrangements to use an alternate

stack [see sigaltstack(2)],

the disposition of SIGSEGV will

be set to SIG_DFL before it is

sent.

brk(2) and mmap(2) functions

will fail with errno set to

ENOMEM. Also, attempting an

exec(2) on an image greater

than this limit will fail, setting

ermmo to ENOMEM.

Because limit information is stored in the per-process information, the shell builtin

ulimit must directly execute this system call if it is to affect all future processes

created by the shell. .

The value of the current limit of the following resources affect these implementation

defined constants:

RETURN VALUE

Limit

RLIMIT_FSIZE

RLIMIT_NOFILE

Implementation Defined Constant

FCHR_MAX

OPEN_MAX

Upon successful completion, the function getrlimit returns a value of 0; other-

wise, it returns a value of -1 and sets errno to indicate an error.

DIAGNOSTICS

Under the following conditions, the functions getrlimit and setrlimit fail and

set errno to:

EINVAL _ if an invalid resource was specified; or ina setrlimit call, the new

rlim_cur exceeds the new rlim_max.

2-152 Licensed materiaproperty of copyright holder(s) 093-701055

getriimit(2) DG/UX 5.4 ge triimit(2)

EPERM if the limit specified to setrlimit would have raised the maximum limit

value, and the caller is the superuser

SEE ALSO |

open(2), sbrk(2), sigaltstack(2), ulimit(2), malloc(3C), signal(5).

2-153
093-701055 Licensed materialt—property of copyright holder's)

getrusage (2) DG/UX 5.4 getrusage (2)

NAME

getrusage — get information about resource utilization

SYNOPSIS

#include <sys/time.h>

#include <sys/resource.h>

int getrusage (who, rusage)

int who;

struct rusage * rusage;

where:

who RUSAGE_SELF and RUSAGE_CHILDREN, identifying whether to

return information about the calling process or about the calling process’s

acknowledged terminated children

rusage A pointer to an area in the calling process’s address space where the

resource usage information is to be written

DESCRIPTION

Getrusage returns information describing the resources utilized by the current pro-
cess, or the sum of the resources utilized by each of its acknowledged terminated chil-

dren, depending on the value of who. The rusage structure pointed to by rusage is

filled in with the information. See the description of the rusage structure for the

details of each field.

If an error occurs, rusage is unmodified.

ACCESS CONTROL

The argument rusage must point to an area in the calling process’s address space that

is valid and has write access.

RETURN VALUE

) Successful completion.

-l An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL The who argument was not RUSAGE_SELF or

RUSAGE_CHILDREN.

EFAULT The rusage argument specifies an invalid area of the calling process’s

address space or an area which does not have read/write access.

SEE ALSO

gettimeofday(2), wait(2).

2-1 04 Licensed material—property of copyright hoider(s) 093-701055

getsid(2) DG/UX 5.4 getsid(2)

NAME

getsid - get session ID

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

pid t getsid (pid_t pid)

where:

pid A process identifier

DESCRIPTION

The function getsid returns the session ID of the process whose process ID is

equal to pid. If pid is equal to (pid_t)0, getsid returns the session ID of the cal-

ling process.

RETURN VALUE

Upon successful completion, the function getsid returns the session ID of the

specified process; otherwise, it returns a value of (pid_t)-1 and sets errno to

indicate an error.

ACCESS CONTROL

No access checking is performed.

DIAGNOSTICS

Under the following conditions, the function getsid fails and sets errno to:

ESRCH if there is no process with a process ID equal to pid.

SEE ALSO

exec(2), fork(2), getpid(2), setpgid(2), setsid(2).

083-701055 Licensed material—property of copyright holder(s) 2-1 55

getsockname(2) OG/UX 5.4 getsockname (2)

NAME

getsockname — get socket name

SYNOPSIS

#include <sys/socket.h>

int getsockname (Ss, name, namelen)

int S;

struct sockaddr * name;

int * namelen;

where:

S File descriptor of socket whose name is requested

name Structure to receive the socket name

namelen On input contains the number of bytes available for the name; updated to

indicate the number of bytes returned

DESCRIPTION

Getsockname returns the current name for the specified socket. The namelen

parameter should be initialized to indicate the amount of space pointed to by name.

On return it contains the actual size of the name returned (in bytes).

ACCESS CONTROL

None. See domain specific information [unix_ipce(6F) and inet(3N)] for restric-

tions per domain.

RETURN VALUE

0 Completed successfully.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument s is not a file of type S_IFSOCK (socket special).

ENOBUFS Insufficient resources were available in the system to perform the

operation.

EFAULT The name parameter points to memory not in a valid part of the pro-

cess address space, or the nmamelen parameter is < 0.

SEE ALSO

bind(2), socket(2), inet(3N), unix_ipce(6F).

2-1 56 Licensed material—property of copyright holder(s) 093-701055

getsockopt(2) DG/UX 5.4 : getsockopt(2)

NAME

getsockopt — get options on a socket

SYNOPSIS

#include <sys/socket.h>

int getsockopt (5s, level, optname, optval, optlen)

int S;

int level;

int opimame;

char * optval;

int * optlen;

where:

S File descriptor of socket to get options from

level Level in socket that the options apply to

- opmame Name of option to return (options are defined in socket .h)

optval Buffer to receive options

optlen On input contains the number of bytes available for the options; updated

to indicate the number of bytes returned

DESCRIPTION

Getsockopt retrieves options associated with a socket. Options may exist at multi-

ple protocol levels; they are always present at the uppermost socket level.

When getting socket options, the caller must specify the level at which the option

resides and the name of the option. To retrieve options at the socket level, level is

specified as SOL_.SOCKET. To get options at any other level, the protocol number

of the appropriate protocol] controlling the option is supplied. Consult domain

specific documentation for more information related to a specific protocol.

The parameters optval and optlen identify a buffer in which the value for the

requested option(s) are to be returned. optlen is a value/result parameter, initially

containing the size of the buffer pointed to by oprval, and modified on return to indi-

cate the actual size of the value returned. If no option value is to be returned, optval

may be supplied as 0. If the buffer isn’t large enough for the options, they will be 7
truncated.

Optname and any specified options are passed uninterpreted to the appropriate proto-

col module for interpretation. The include file <sys/socket.h> contains defini-

tions for socket level options; see socket. Options at other protocol levels vary in

format and name; consult the related documentation for the domain of the socket.

ACCESS CONTROL

SOL_SOCKET has no access restrictions. (See domain-specific documentation for

any domain restrictions.)

RETURN VALUE

0 Completed successfully.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument s is not a file of type S_IFSOCK (socket special).

093-701055 Licensed material—property of copyright holder(s) 2- 1 57

getsockopt(2) DG/UX 5.4 getsockopt(2)

ENOPROTOOPT The option is unknown.

EFAULT The oprval is not in a valid part of the process address space, or
optlen < 0. :

ENOBUFS No internal buffers available.

SEE ALSO

setsockopt(2), socket(2), inet(3N), inet(6F), tcp(6P), udp(6P),
unix_ipe(6F).

2-158
Licensed materiat—property of copyright holder(s) 093-701055

gettimeofday(2) DG/UX 5.4 gettimeofday(2)

NAME

gettimeofday — get date and time

SYNOPSIS

#include <sys/time.h>

int gettimeofday (fime_value, timezone)

struct timeval * fime value;

struct timezone * fime zone;

where:

timevalue Address of a structure that will be set to the current time.

time_zone NULL or address of a structure that will be set to the current time

zone.

DESCRIPTION

Gettimeofday returns the system’s notion of the current Greenwich time and the

current time zone to the structures at the locations specified by time_value and

time_zone.

If time_zone is NULL, the current time zone is not returned.

The time value returned is Greenwich time expressed in seconds and microseconds

since midnight January 1, 1970.

The local time zone is expressed in minutes of time westward from Greenwich

(tz_minuteswest), and a value (tz_dsttime) that indicates the type of daylight savings

time that applies locally during the appropriate part of the year. The daylight savings

time correction flag (rz_dsttime) further indicates the type of daylight savings time

correction to apply. The accepted values are:

DST_NONE DST does not apply.

DST_USA USA DST correction.

DST_AUST Australian DST correction.

DST_WET Western European DST correction.

DST_MET Middle European DST correction.
DST_EET Eastern European DST correction.

The current local time may be computed using the current time zone by the following

calculation:

local_usec = fime_value->tv_usec;

local_sec = time_value->tv_sec — fime_zone->tzminuleswest * 60 .

| + (is_dst(time_value,time_zone) ? 60 * 60 : 0);

where is_dst(fv,!z) is some function that returns TRUE if daylight savings time is

currently in effect.

ACCESS CONTROL

None.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

093-701055 Licensed materiai—property of copyright hoider(s) 2-1 59

gettimeofday(2) DG/UX 5.4 gettimeofday(2)

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT An argument address referenced invalid memory.

SEE ALSO

date(1), settimeofday(2), ctime(3C).

2-160 Licensed material—property of copyright holder(s) 093-701055

getuid(2) _ DG/UX 5.4 getuid(2)

NAME

getuid - get the real-user-id

SYNOPSIS

#include <sys/types.h>

uid t getuid ()

DESCRIPTION

Getuid returns the real-user-id of the calling process.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

O..MAXUID ~~ The return value 1s always the real-user-id of the calling process.

DIAGNOSTICS

None.

SEE ALSO

geteuid(2), getgid(2), getegid(2), setuid(2), setgid(2), setregid(2),

setreuid(2).

093-701055 Licensed material—property of copyright holder(s) 2-1 61

toct!(2) DG/UX 5.4 ioctl(2)

NAME

ioctl -— control a device

SYNOPSIS

#include <sys/ioctl.h>

#include <unistd.h>

int ioctl (fildes, command, argument)

int fildes;

int command;

int argument;

where:

fildes A valid, active file descriptor

command A device control command

argument A pointer to the argument for the control command

DESCRIPTION

Ioctl provides a variety of operations on descriptors. Fildes is an active, valid

descriptor. Command is an I/O control command to be performed on fildes using

argument as an argument. Not all commands require an argument.

The 880pen BCS version of ioctl accepts values for command only as specified in

the BCS.

The following two commands apply to any open file. In both cases, argument is

ignored.

FIOCLEX Set the ‘close-on-exec’ attribute of fildes. This causes the file to be

closed upon execution of the exec operation.

FIONCLEX _ Clear the ‘close-on-exec’ attribute of fildes. This causes the file to

remain open across exec operations.

All other commands invoke the type manager of the object to which fildes refers to

perform the I/O contro] operation. Usually, the object must be a character-special

device.

ACCESS CONTROL

None.

RETURN VALUE

0 Completed successfully.

—1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid, active descriptor.

ENOTTY Fildes does not refer to a character-special device and command

only operates on character-special devices.

EINVAL Command or Argument is not valid.

EINTR The cal] was interrupted by a signal.

Additional errors may be given by the type managers.

SEE ALSO

stty(1), exec(2), fentl(2), socket(2), termio(7).

° 2-1 62 Licensed material—property of copyright hoider(s) 093-701055

kill(2) DG/UX 5.4 | kill(2)

NAME

kill — send a signal to a process

SYNOPSIS

#include <sys/types.h>

#include <signal.h>

int kill (pid, sig)

pid_t pid;

int sig;

where:

pid An integer (positive, negative, or zero) indicating a process or a group of

processes to be sent the signal

sig A signal number that is either one from the list given in <signal.h> or zero

DESCRIPTION

The kill() function sends a specified signal to a specified process or group of

processes. If sig is zero (the null signal), error checking is performed but no signal is

actually sent. The null signal can be used to check the validity of pid.

For a process to have permission to send a signal to a process designated by pid, the

real or effective user ID of the sending process must match the real or effective user

ID of the receiving process, unless the sending process has appropriate privileges. If

{_POSIX_SAVED_IDS} is defined, the saved set-user-ID of the receiving process

shall be checked in place of its effective user ID. If a receiving process’s effective

user ID has been altered through use of the S_ISUID mode bit (see <sys/stat.h)>),

the implementation may still permit the application to receive a signal sent by the

parent process or by a process with the same real user ID.

If pid is greater than zero, sig shall be sent to the process whose process ID is equal
to pid.

If pid is zero, sig shall be sent to all processes (excluding an implementation-defined
set of system processes) whose process group ID is equal to the process group ID of
the sender, and for which the process has permission to send a signal.

If pid is -1, the behavior of the kil1l() function is unspecified.

If pid is negative, but not —1, sig shall be sent to all processes whose process group

ID is equal to the absolute value of pid, and for which the process has permission to

send a signal.

If the value of pid causes sig to be generated for the sending process, and if sig is not

blocked, either sig or at least one pending unblocked signal shall be delivered to the

sending process before the kill() function returns.

If the implementation supports the SIGCONT signal, the user ID tests described

above shall not be applied when sending SIGCONT to a process that is a member of

the same session as the sending process.

An implementation that provides extended security controls may impose further

implementation-defined restrictions on the sending of signals, including the null sig-

nal. In particular, the system may deny the existence of some or all of the processes

specified by pid.

The kill() function is successful if the process has permission to send sig to any of

the processes specified by pid. If the kil1() function fails, no signal shall be sent.

093-701055 Licensed material—property of copyright holder(s) | 2-1 63

kil}(2) DG/UX 5.4 kill(2)

RETURN VALUE

0 Successful completion.

~j An error occurred. errno is set-to indicate the error.

DIAGNOSTICS

If any of the following conditions occur, the kill() function shall return -1 and set

errno to the corresponding value:

EINVAL The value of the sig argument is an invalid or unsupported signal

number.

EPERM The process does not have permission to send the signal to any

receiving process.

ESRCH No process or process group can be found corresponding to that

specified by pid.

SEE ALSO

getpid(2), setsid(2), sigaction(2), <signal.h>

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal] and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

STANDARDS

Since _POSIX_SAVED_LIDS is defined in the DG/UX System, the saved set-user-ID

of the receiving process shall be checked in place of it effective user ID.

If a receiving process’s effective user ID has been altered through the use of the

S_ISUID mode bit, the system permits the application to receive a signal sent by the

parent process or by a-process with the same real user ID.

If pid is -1, the behavior of kil1Q) depends on the effective user ID of the calling

process. If that ID is 0 (superuser), the signal will be sent to all processes except for

the initialization process (PID 1). Otherwise, the signal will be sent to all processes

(again excluding init) whose real user ID is equal to the effective user ID of the

sending process.

There is one special system process that is unaffected by all calls of the form

kil1(0, sig). This is the system initialization process, which has PID 1.

The SIGCONT signal is supported.

The DG/UX System does not provide extended security controls, so no further res-

trictions are placed on the sending of signals.

The signal SIGKILL cannot be successfully sent to the system initialization process

(PID 1).

2- 1 64 Licensed material——property of copyright holder(s) 083-701055

killpg(2)

NAME

DG/UX 5.4 killpg (2)

killpg —- send signal to a process or a process group

SYNOPSIS

int killpg (pgrp, signal_number)

int pgp;

int signal_number;

where:

P&Tp Process-group-id of the processes being sent the signal

signal_number Type of signal being sent

DESCRIPTION

Killpg sends the signal signal_number to all processes in the process group identified

by perp.

The sending process must have permission to send a signal to the process group

members. The signal is sent to all those processes for which the caller has permis-

sion.

The process group identified by pgrp falls into one of four categories depending on

the value of perp:

pgrp > 0

perp = 0

pgrp=-1

perp <-1

Signal all processes in a specified process group.

Signal_number will be sent to all processes in the process group whose

process-group-id is equal to perp. System processes are never selected.

Signal all processes in the sender’s process group.

Signal_number will be sent to all processes, excluding system processes,

whose process-group-id is equal to the process-group-id of the sender. It

is an error for the process-group-id of the sender to be zero.

Signal all processes.

If the effective-user-id of the sender is super-user, signal_number is sent

to all processes excluding system processes. Otherwise, signal_number

is sent to all processes, excluding system processes, whose process-

group-id is -1 (i.e., no processes will be sent signal_number).

Signal all processes in a specified process group.

Signal_number will be sent to all processes, excluding system processes,

whose process-group-id is equal to pgrp. [This selects no processes.]

ACCESS CONTROL

Permission to send a signal is granted in three ways:

® The sending and receiving processes have the same effective-user-id.

e The sending process is the super-user.

e The sending process is an ancestor of the receiving process and the signal

being sent is SIGCONT.

RETURN VALUE

0 Completed successfully.

~1 An error occurred. errno is set to indicate the error.

093-701055 Licensed material—property of copyright holder(s) 2-1 65

killpg(2) DG/UX 5.4 killpg(2)

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL Signal_number is not a valid signal number.

EINVAL pgrp is zero and the caller’s process-group-id is zero.

ESRCH No process can be found in the process group identified by pgrp.

EPERM The sending process does not have permission to signal all members
of the specified process group. This error code is not set by the

Berkeley implementations.

SEE ALSO

2-166

esh(1), kill(1), kill(2), signal(2), jobs(3C).

Licensed material—property of copyright holder{s) 093-701055

bink(2) DG/UX 5.4 link(2)

NAME

link —- create a new link to a file

SYNOPSIS

int link (old_path, new_path)

char * old_path;

char * new path;

where:

old_path Address of a pathname to an existing file

new_path Address of a pathname to be added

DESCRIPTION

Link adds the pathname pointed to by new_path to the filesystem. The file named by

new_path is made to identify the same file as that named by old_path. Terminal sym-

bolic links are not followed for new_path, but are followed for old_path.

The subject file must be of type ‘ordinary-disk-file’, ‘block-special-file’, ‘character-

special-file’, or ‘fifo-special-file’.

It is illegal to link to a file of type ‘directory’, ‘control point directory’, ‘socket’, or

‘symbolic link’.

If link fails, no changes are made. Otherwise, the following changes are made to the

subject file:

e The subject file’s link count attribute (st_nlink) is incremented.

e The subject file’s time of last attribute change (st_ctime) is set to the

current time.

ACCESS CONTROL

The calling process must have permission to resolve old_path and new_path.

The calling process must have write permission to the directory containing the entry

to be added.

RETURN VALUE

0 The new path was successfully created.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

ENOENT The file named by old_path does not exist.

EEXIST The link named by new_path exists.

EPERM Permission to link to the given file type is denied to the calling

process.

EXDEV The link named by new_path and the file named by old_path are

on different file system devices.

EACCES The requested link requires writing in a directory with a mode

that denies write permission.

EROFS The requested link requires writing in a directory on a file sys-

tem device mounted read-only.

EMLINK Too many links to one file. There can only be MAXLINK

links to one file. See <sys/param.h>.

093-701055 Licensed material—property of copyright hoider(s) 2-1 67

fink(2)

ENOSPC

ENOENT

ENOTDIR

DG/UX §.4 link(2)

No more contiguous space for file space or inodes.

A non-terminal component of the old_path or new_path does

not exist.

A non-terminal component of the old_path or new_path was not

a directory or symbolic link.

ENAMETOOLONG old_path or new_path exceeds the length limit for pathnames.

ENAMETOOLONG A component of the old_path or new_path exceeds the length

ENOMEM

-ELOOP

EPERM

EFAULT

SEE ALSO

2-168

symlink(2),

limit for filenames.

There are not enough system resources to resolve old_parth or

new_path or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

old_path or new_path contains a character not in the allowed

character set.

. Old_path or new_path does not completely reside in the

process’s address space or the pathname does not terminate in

the process’s address space.

unlink(2), stat(5).

Licensed material—property of copyright hoider(s) 093-701055

listen(2) DG/UX 5.4 | listen(2)

NAME

listen - listen for connections on a socket

SYNOPSIS

int listen (s, backlog)

int S;

int backlog;

where:

S File descriptor of socket to listen on.

backlog Maximum number of waiting connections.

DESCRIPTION

To accept connections, a socket is first created with socket(), a backlog for incom-

ing connections is specified with listen(), and then the connections are accepted

With accept(). The listen call applies only to sockets of type SOCK_STREAM

- or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length to which the queue of pending

connections may grow. If a connection request arrives with the queue full, the client

will receive the error ECONNREFUSED.

In the DG/UX system the backlog is currently limited to SOMAXCONN. Ifa back-

log greater than SOMAXCONN is specified, the backlog will be sett SOMAXCONN;

however no error notification will be returned. SOMAXCONN is defined in

<sys/socket.h>.

ACCESS CONTROL

None. (See domain-specific restrictions in related documentation.)

RETURN VALUE _

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument s is not a socket.

EOPNOTSUPP The socket is not of a type that supports the operation listen.

EINVAL Invalid argument.

SEE ALSO

accept(2), connect(2), socket(2), inet(3N), inet(6F), unix_ipc(6F).

093-701055 Licensed material—property of copyright holders) — 2-1 69

tseek(2) DG/UX 5.4 tseek(2)

NAME

lseek — change object pointer’s current position

SYNOPSIS

#include <sys/file.h>

#include <sys/types.h>

#include <unistd.h>

off t lseek (fildes, offset, whence)

int fildes ;

off t offset;

int whence ;

where:

fildes A valid, active file descriptor

offset The new position of the file pointer

whence _ A value that changes the interpretation of offset (see DESCRIPTION)

DESCRIPTION

If fildes is a valid, active descriptor that refers to an object pointer having a current

position attribute, the object pointer’s current position is modified according to the

offset and whence parameters as follows: |

If whence is SEEK_SET, the current position is set to offset bytes.

If whence is SEEK_CUR, the current position is set to its current location

plus offset.

If whence is SEEK_END, the current position is set to the size of the object

plus offset. The size of character special files and block special files is always

zero. Hence, this option is equivalent to whence being SEEK_SET for these

files.

If whence is equal to any other value, the user is sent the signal SIGSYS and

errno returns EINVAL.

It is an error for the new current position attribute to be negative.

If 1seek fails, the object pointer is not changed.

ACCESS CONTROL

None.

RETURN VALUE

position Completed successfully. The object pointer’s new position is returned.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid, active descriptor.

ESPIPE Fildes is associated with a pipe or a socket.

EINVAL with SIGSYS signal

Whence is not SEEK_SET, SEEK_CUR, or SEEK_END.

EINVAL The resulting file pointer would be negative.

SEE ALSO

creat(2), dup(2), dup2(2), fent1(2), open(2).

2-1 70 Licensed material—property of copyright hoider(s) 093-701055

tstat(2)

NAME

DG/UX 5.4 istat(2)

lstat — get file status

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

int lstat (path, buffer_ptr)

char * path;

struct stat * buffer_ptr;

where:

path Address of a pathname

buffer_ptr Address of a stat buffer to fill

DESCRIPTION

Lstat returns the current attributes of the symbolic link or file named by the path-

name pointed to by path into the stat buffer at the location specified by buffer_ptr.

lstat is equivalent to stat except that it will return the file attributes of a symbolic

link, instead of the file attributes of the target of the symbolic link.

The interpretation of the file’s attributes depend on the file’s type [see stat(5) for

details). The subject file must be of type ‘ordinary-disk-file’, ‘directory’, “control

point directory’, ‘block-special-file’, ‘character-special-file’, ‘fifo-special-file’, or

‘symbolic-link’.

If lstat fails, the contents of the stat buffer are undefined.

ACCESS CONTROL

Read, write, or execute permission of the named file is not required, but the process

must have permission to resolve path.

RETURN VALUE

0 The Istat operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS -

093-701055

Errno may be set to one of the following error codes:

EFAULT ‘ Status_buffer points to an invalid address.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory
or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

set.

Licensed materiaproperty of copyright holders) 2-1 71

DG/UX 5.4 tstat(2)
istat(2)

EFAULT The pathname does not completely reside in the process’s
address space or the pathname does not terminate in the

process’s address space.

SEE ALSO

chmod(2), chown(2), creat(2), dg_mstat(2), fchmod(2), fchown(2), fstat(2),
link(2), mknod(2), pipe(2), read(2), stat(2), time(2), unlink(2), utime(2),
utimes(2), write(2), stat(5).

2-1 72 Ucensed material—property of copyright holder(s) 093-701055

mement!(2) DG/UX 5.4 mement!(2)

NAME

memcntl —- memory management control

SYNOPSIS

#include <sys/types.h>

#include <sys/mman.h>

int mementl(caddr_t addr, size_t len, int cmd, caddr_t arg,

int attr, int mask);

where:

addr Starting address of the target region

len Length in bytes of the target region

cmd Operation to perform on the target region

arg Optional command arguments

attr Optional page selection criteria

mask Reserved for future use. Must be 0.

DESCRIPTION

The function memcnt1 allows the calling process to apply a variety of control opera-

tions over some or all of its address space. For most of these operations, the

affected portion of the address space is constrained to the address range (addr, addr
+ len).

The parameter addr must be a page aligned address. Note that the system page size

can be obtained by calling either getpagesize(2) or sysconf(2) with the

_SC_PAGESIZE parameter; both calls return identical values.

The Jen parameter need not be a multiple of the system page size. However, the

implementation of mement1() internally rounds Jen up to the next page size multiple

to determine the address range for the target region. All further references to len

refer to this rounded quantity.

The control operation is specified by cmd. All of the following values are legal:

MC_SYNC Write back any modified pages in the target region to their backing
storage, and optionally purge pages in the target region from primary

memory.

MC_LOCK Lock pages of the target region into primary memory.

MC_UNLOCK Unlock pages of the target region from primary memory.

MC_LOCKAS Lock the caller’s entire address space into primary memory.

MC_UNLOCKAS Unlock the caller’s entire address space from primary memory.

The value of the arg parameter may affect the operation specified by cmd. Such

behavior is defined individually for each possible value of cmd and is described

further below. The descriptions of the remaining parameters apply equally for all

legal values of cmd.

The scope of the control operations can be further constrained with selection criteria

regarding the properties of the appropriate address range. The bit patterns of the artr

parameter define these additional criteria, which include page protections and map-

ping type. If the operation is desired for all pages in the target address range, then

the additional selection criteria should be disabled by setting aftr to 0.

093-701055 Licensed material—property of copyright holder(s) 2-1 73

mement!(2) DG/UX 5.4 mement!l(2)

If attr is not 0, then the operation will affect only pages whose page protections and

mapping type exactly match those specified by attr. The mapping type is selected by

specifying one of the following values in attr:

SHARED Select pages mapped shared, e.g., shared memory segments and file

pages mapped using MAP_SHARED.

PRIVATE Select pages mapped private, e.g., text, data, and stack segments.

If attr is not 0, but neither of these values is specified, then only private pages are

selected.

The desired page protection selection criterion is formed by ORing zero or more of

the following protection flags together with the mapping type selection in arrr. Only

pages whose page protection exactly matches the specified combination of protection

flags will be selected.

PROT READ Page can be read.

PROT_WRITE Page can be written.

PROT_EXEC Page can be executed.

The following shorthand selection criteria are provided for the default page protec-

tions associated with a program’s initial memory segments. One of these may be

ORed with the mapping type instead of using the individual protection flags.

PROC_TEXT Text segment’s default page protection.

PROC_DATA Data and stack segments’ default page protection.

The mask parameter is reserved for future use and must have the value 0.

Each section below describes in detail the specific operations which may be applied

by memcntl() to the process’s address space.

MC_SYNC

Write to backing storage locations all modified pages in the range which satisfy the

selection criteria given by atrr. Optionally, purge all pages in the range with attributes

attr from primary memory. The backing storage for a modified file page mapped

using MAP_SHARED is the file’s backing storage. The backing storage for all other

modified pages is within the system’s swap areas.

The arg parameter is used to alter the behavior of the operation, and may include the

following flags, ORed together:

MS_ASYNC Do not wait for writebacks to complete.

MS_SYNC Wait for writebacks to complete.

MS_INVALIDATE Purge pages from primary memory.

When MS_ASYNC is specified, the call returns immediately after all required write

operations are scheduled; with MS_SYNC the call will not return until all required

write operations have completed. Only one of these flags should be specified; if nei-

ther is specified, MS_SYNC is assumed.

If MS_INVALIDATE is specified, then all selected pages which are memory resident

will be purged from primary memory. Subsequent accesses to those pages will fault

and cause the pages to be read in from backing storage. The operation will fail if any

of the selected pages are locked into primary memory.

2-1 74 Licensed materiat—property of copyright holder(s) 093-701055

mementi(2) DG/UX 5.4 mement!(2)

The MS_INVALIDATE option overrides the standard page replacement algorithms

used by the system; it should be used with caution, as the system has knowledge of

paging demands system-wide, while the application does not. Application and system

performance may suffer when this option is used.

Note that modified pages whose backing storage is within the swap areas will not

necessarily be written to backing storage unless MS_INVALIDATE is specified. Also,

modified pages which are locked into memory will not necessarily be written to back-

ing storage.

All addresses specified by the interval [addr, addr + len) must be mapped within the
caller’s address space. All addresses in the range which satisfy the optional selection

criteria specified by the attr parameter will be processed.

Note that the system will write modified file pages back to the file store periodically,

so use of MC_SYNC for that purpose is rarely needed unless the application needs to

- confirm that its modifications have been written to stable storage. There is a system

configuration variable used to control the maximum age a modified file page can

reach before the system writes it back.

MC_LOCK

This operation makes memory resident and locks into primary memory all pages in

the range [addr, addr + len) which satisfy the additional selection criteria in attr (if

any). Locked pages are forced to stay memory resident, 1.e., they cannot be purged

from primary memory.

All addresses specified by the interval [addr, addr + len) must be mapped within the

caller’s address space. All addresses in the range which satisfy the optional selection

criteria specified by the arty parameter will be processed.

The arg parameter is reserved for future use, and must be 0.

A given page may be locked multiple times through one mapping or multiple map-

pings (e.g., by multiple processes) of that page. However, within a given mapping, a

single unlock operation on a page will negate the effect of all previous lock operations

on that page. |

The specified range should not include any mapped file pages which lie beyond the

end of the file. Calls to mmap(2) may succeed which map pages beyond the end of

the file, but attempts to access or lock such pages will fail.

Page locks are removed either explicitly, via mement1l(), or implicitly, when the

locked mappings are destroyed, e.g., by _exit(2), exec(2), or munmap(2). Locks

established with the lock operations are not inherited by a child process during

fork(2).

Locking a significant fraction of primary memory may negatively affect system perfor-

mance. Therefore, the system enforces a configurable limit on the total number of

primary memory pages that may be locked at any time.

If a page locking operation fails, part of the operation may have been completed

before the failure, possibly locking some pages which were not locked prior to the

call.

MC_LOCKAS

This operation makes memory resident and locks into primary memory all mapped

pages in the address space which satisfy the selection criteria in aftr and arg.

093-701055 Licensed materiai—property of copyright holder(s) 2-1 75

mement!(2) OG/UX 5.4 mementl(2)

The addr and len parameters are unused, and must both be 0. The arg parameter is

used to specify selection criteria, and must contain one or both of the following flags:

MCL_CURRENT Lock all current mappings in the caller’s address space which satisfy

the selection criteria in aftr (if any).

MCL_FUTURE Lock all future mappings in the caller’s address space, regardless of

the selection criteria in attr. Future mappings include future exten-

sions of the data and stack segments, as well as future mappings esta-

blished via mmap(2) and shmat(2). However, future locking is reset

when a process replaces its address space using exec(2). Once

future locking has been established, there is no way to clear this state

for the address space except to invoke the MC_UNLOCKAS operation,

which will also unlock all currently locked pages.

Please refer to above discussion of MC_LOCK to understand the remaining functional

details of page locking.

MC_UNLOCK

This operation removes page locks on all pages in the range [addr, addr + len) which

satisfy the additional selection criteria in attr (if any).

The treatment of all other parameters besides cmd is identical to that of MC_LOCK.

Please refer to the discussion above of that operation.

Performing this operation on unlocked pages will not cause an error to occur. Also,

a given page may be locked multiple times through one mapping or multiple mappings

(e.g., by multiple processes) of that page. However, within a given mapping, a single

unlock operation on a page will negate the effect of all previous lock operations on

that page.

If this operation fails, part of it may have been completed before the failure, possibly

unlocking some pages which were locked prior to the call.

MC_UNLOCKAS

This operation removes page locks on all locked pages in the caller’s address space,

and resets the future locking attribute of the address space.

A given page may be locked multiple times through one mapping or multiple map-

pings (e.g., by multiple processes) of that page. However, within 2 given mapping, a

single unlock operation on a page will negate the effect of all previous lock operations

on that page.

The addr, len, and arg parameters are unused, and must all be 0. If the parameters

are correct, this operation will not fail.

ACCESS CONTROL

Any user process may invoke an MC_SYNC operation.

Due to their impact on system resources, all the other operations require the caller’s

effective user id to be superuser.

RETURN VALUE |

Upon successful completion, mement1() returns the value 0. Otherwise it returns

~1, and sets errno to indicate an error.

DIAGNOSTICS

Under the following conditions, the mement1() fails and sets errno to:

2-1 76 Licensed materia\—property of copyright holder(s) 093-701055

mement!(2)

EINVAL

EINVAL

EINVAL

EINVAL

EINVAL

EINVAL

EINVAL

ENOMEM

ENOMEM

EPERM

EAGAIN

EBUSY

EIO

EIO

SEE ALSO . oe . -

brk(2), exec(2), fork(2), getpagesize(2), mmap(2), mprotect(2), munmap(2),

OG/UX 5.4 mementl(2)

if the mask parameter isnot 0.

if the addr parameter is not a page aligned address.

if the attr parameter contains invalid selection criteria.

if MC_LOCK, MC_UNLOCK, or MC_UNLOCKAS is specified and the arg

parameter is not 0.

if MC_LOCKAS is specified and the arg parameter is 0 or contains

flags other than MCL_FUTURE or MCL_CURRENT.

if MC_LOCKAS or MC_UNLOCKAS is specified and the addr parameter

is not 0.

if MC_LOCKAS or MC_UNLOCKAS is specified and the Jen parameter is

not 0.

if MC_SYNC, MC_LOCK, or MC_UNLOCK is specified and the len

parameter is 0.

if MC_SYNC, MC_LOCK, or MC_UNLOCK is specified and some

address in the target region is not mapped in the caller’s address

space.

if MC_LOCK, MC_LOCKAS, MC_UNLOCK, or MC_UNLOCKAS is speci-

fied and the calling process’s effective user ID is not superuser.

if MC_LOCK or MC_LOCKAS is specified and the limit on primary

memory available for locking would be exceeded.

if MC_SYNC with the MS_INVALIDATE option is specified and one or
more pages in the target region is locked.

- if MC_SYNC was specified and an I/O error occurred in writing a

page.

if MC_LOCK or MC_UNLOCK was specified and an I/O error occurred

in reading a non-resident page.

shmat(2), sysconf(2), mlock(3C), mlockall(3C), msyne(3C).

4

The DG/UX system’s memcnt1 () implementation does not presently support locking
pages of files which have been mapped with the MAP_SHARED attribute.

The DG/UX system’s memcnt1() implementation presently forces a private copy to

be made when a privately mapped page (e.g., a text, data, or stack page) is locked.

Both of these variances from typical System V behavior will be corrected in an

upcoming revision of the DG/UX system.

Licensed material—property of copyright holders) 2- 1 77

memceti(2) OG/UX 5.4 memeti(2)

NAME

memctl — set protection of memory mapping

SYNOPSIS

#include <sys/m88kbcs.h>

int memctl(void *base, int length, int State);

where:

base Starting address of the memory region to be modified

length The length in bytes of the memory region to be modified

state The new memory protection state to which the region should be set

DESCRIPTION

The memctl() system call is used to set the state of a region of memory. At any

one time, a valid region of memory may be in one of three states:

State Readable Writable Executable

MCT_TEXT yes no yes

MCT_DATA yes yes no

MCT_RONLY yes no no

For COFF format programs, the exec(2) functions initialize the text segment’s state

to MCT_TEXT, and initialize the data and stack segments’ states to MCT_DATA.

Applications should not attempt memory accesses other than those designated above

for memory in a given state. The behavior of an improper access attempt to a

mapped page is unspecified.

After the last reference (load or store) and before the first execution of any region of

shared memory, all processes that have referenced or will execute the region must call

memctl() to set the state of the given region to MCT_TEXT. Similarly, after the last

execution and before the first reference of any region of a shared memory, all

processes that have executed or will reference the region must issue a memctl() call
to set the state of the given region to MCT_DATA or MCT_RONLY; thus, when changing

from MCT_TEXT the process may set the region to either of the non-executable

modes, depending on whether it will write to the shared memory.

The region of memory is defined by the base and length parameters. The base param-
eter is the starting address of the region, and must be aligned on a memory control

unit boundary within the address space. The length parameter is the length of the

region in bytes, and must be an integral multiple of the memory control unit size.

The system’s memory control unit size can be obtained using the sysconf(2) func-

tion. The memory region must be fully mapped within the caller’s address space.

The state parameter must be one of the following values: MCT_TEXT, MCT_DATA, or

MCT_RONLY.

ACCESS CONTROL

If the range is part of a shared memory segment which was attached using the

SHM_RDONLY flag, then state must be either MCT_TEXT or MCT_RONLY.

If any pages in the region have been mapped using mmap(2) with the MAP_SHARED

option, then state must be MCT_TEXT or MCT_RONLY unless the file was open for

writing at the time mmap(2) was called.

RETURN VALUE

Upon successful completion, memct1() returns a value of 0. Otherwise, it returns

2- 1 78 Licensed material—property of copyright holder(s) 093-701055

memeti(2) DG/UX 5.4 memet!(2)

the value -1, and sets errno to indicate an error.

DIAGNOSTICS |

Under the following conditions, memct1(2) fails and sets errno to:

EACCES if a mapping within the memory region lacks the required permission

to change its memory to the requested state.

EFAULT if the memory region is not fully mapped in the caller’s address

space.

EINVAL if the state parameter is invalid.

EINVAL if the base address parameter is not aligned on a memory control unit

boundary.

EINVAL if the length parameter is not an integral multiple of the memory con-

trol unit for the system.

SEE ALSO

mmap(2), mprotect(2), shmat(2), sysconf(2).

093-701055 Licensed material—property of copyright holder(s) 2-1 79

mincore (2) DG/UX 5.4 mincore(2)

NAME

mincore — determine residency of memory pages

SYNOPSIS

#include <unistd.h>

int mincore(caddr_t addr, size_t len, char *vec);

where:

addr Starting address of the memory region to query

len Length in bytes of the memory region to query

vec. Pointer to the byte array used to report page status

DESCRIPTION

The mincore() function returns the primary memory residency status of pages in

the address space covered by mappings in the range [addr, addr + len). The addr

parameter must be a page aligned address. The len parameter is not required to be a

multiple of the system page size. However, len is rounded up to the next page size

multiple before computing the ending address of the range to check. Note that the

system page size can be obtained by calling either getpagesize(2) or sysconf(2)

with the _SC_PAGESIZE parameter; both calls return identical values.

The status is returned as a byte-per-page in the byte array referenced by vec. The

byte array must therefore contain one byte for each page in the queried memory

region. The least significant bit of each byte is set to 1 to indicate that the refer-

enced page is in primary memory, orto 0 if itis not. The contents of the other bits

in each byte are unspecified and reserved for future use; programs should not depend

on their values.

The mincore() function returns residency information that is accurate at a different

instant in time for each page. Because the system may frequently adjust the set of

pages in memory, this information may quickly be outdated, and not necessarily even

self-consistent. Only locked pages are guaranteed to remain in memory (see

mementl(2)). |

Pages which are direct mapped to a memory-mapped device will be reported by min-

core() to be memory resident.

ACCESS CONTROL

No access check is made.

RETURN VALUE

Upon successful completion, mincore() returns a value of 0. Otherwise, it returns

the value -1, and sets errno to indicate the error.

DIAGNOSTICS

Under the following conditions, mincore() fails and sets errno to:

EINVAL if the addr parameter is not a page aligned address.

ENOMEM if the len parameter is 0.

ENOMEM if some portion of the memory region to query is not mapped in the

caller’s address space.

EFAULT if some portion of the byte array pointed to by vec is not mapped in

the caller’s address space or lacks write access.

SEE ALSO

dg_paging_info(2), getpagesize(2), mementl(2), sysconf(2).

; 2-1 80 Licensed material—property of copyright holder(s) 093-701055

mkdir(2)

NAME

OG/UX 5.4 mkdir (2)

mkdir —- create a directory file

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

int mkdir (path, mode)

char * path;

int mode;

where:

path Address of a pathname

mode File mode of the new directory

DESCRIPTION

Path points to a pathname naming a file. If the file does not already exist, a directory

of that name is created. The indicated file must be on a file system device mounted

read-write. Terminal symbolic links are followed in path.

The directory is initialized to contain two entries: ’.’ and ’..’, referring to itself and its

parent directory. The directory’s attributes are set as follows:

The inode number (st_ino) refers to the per-file database allocated.

The device number (st_dev) is set to the device code of the containing logical

disk unit.

The represented device (st_rdev) is undefined.

The number of links (st_nlink) is set to two. (One for the directory’s own ’.’

entry, and one for the entry in the directory’s parent.)

The file size (st_size) is set to reflect the presence of the ’.’ and ’..’ entries.

The file mode (st_mode) is set as follows: The file type is directory. The

protection rights are set to the low-order 9 bits of mode modified by the .

process’s file mode creation mask; all bits set in the process’s creation mask

are cleared in the directory’s mode (see umask). The set-user-id, set-group-

id, and sticky bits are cleared; they have no meaning for a directory.

The user id (st_uid) is set to the process’s effective user id. The group id

(st_gid) is set to the process’s effective group id.

The time last accessed (st_atime), time last modified (st_mtime), and time of

last attribute change (st_ctime) are set to the current time.

Path is added to the directory’s parent and is made to identify the newly created

directory. The attributes of the parent directory change as follows:

The number of links (st_nlink) is incremented, reflecting the ’..’ entry in the

new directory.

The time last modified (st_mtime) and time of last attribute change (st_ctime)

are set to the current time.

The file size (st_size) is updated.

If the call fails, the directory is not created, and the attributes of the parent remain

unchanged.

ACCESS CONTROL

The calling process must have write permission to the parent directory.

083-701055 Licensed material—property of copyright holder(s) 2-1 81

mkdir(2) DG/UX 5.4 mkdir (2)

The process must have permission to resolve path.

RETURN VALUE

0 The new directory was successfully created.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EEXIST The named file exists.

EIO An I/O error occurred while writing to the file system device.

EACCES Permission to add an entry to the parent directory is denied.

EROFS The named file resides on a file system device mounted read-

only. —

EMLINK The maximum number of links to the parent directory would be

exceeded by the directory creation.

ENOSPC No more contiguous space for file space or inodes.

ENOENT The file the pathname resolved to does not exist.

ENOENT. A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EPERM

EFAULT

SEE ALSO

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

The pathname contains a character not in the allowed character

Set.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

mkdir(1), rmdir(1), rmdir(2), stat(5).

2-182 Licensed material—property of copyright holder(s) 093-701055

mknod(2) DG/UX 5.4 mknod(2)

NAME

mknod — create a file entry in the file system

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

int mknod (path, mode, device)

char * path;

int mode;

int device;

where:

path Address of a pathname

mode Access mode of the new file

device Device specifier

DESCRIPTION

Path points to a pathname naming a file. Terminal symbolic links are not followed if

found in path. The file must not exist. The indicated file must be on a file svstem

device mounted read-urite.

Device is only pertinent if the file being created is a block or character special file, in

which case it is a configuration-dependent specification of a block or character I/O

device.

The file’s mode (st_mode) is initialized from mode. The values of mode are con-
structed by or-ing flags from the following list:

file type: (only one may be specified)

S_IFIFO

S_IFCHR

S IFDIR

S_IFBLK

S_IFREG

execution mode

S_ISUID

S_ISGID

S_ISVTX

protection rights:

S_IRUSR

S_IWUSR

S_IXUSR

S_IRGRP

S_IWGRP

S IXGRP

S_IROTH

S IWOTH

S_IXOTH

bits:

0010000

0020000

0040000

0060000

0100000

(any combination)

0004000

0002000

0001000

(any combination)

0000400

0000200

0000100

0000040

0000020

0000010

0000004

0000002

0000001

FIFO special.

Character special.

Directory.

Block special.

Ordinary file.

Set user id.

Set group id.

Sticky bit.

Read by owner.

Write by owner.

Execute by owner.

Read by group.

Write by group.

Execute by group.

Read by other.

Write by other.

Execute by other.

You cannot make symbolic links , control point directories or socket files via the

mknod interface.

093-701055 Licensed materiai—property of copyright hoider(s) 2-183

mknod(2) DG/UX 5.4 mknod(2)

If a file type is not specified, it defaults to ordinary. Values of mode other than those

formed as described above are illegal. mode is modified by the process’s file mode

creation mask: all bits set in the process’s file mode creation mask are cleared (see

umask).

The file’s other attributes are initialized as follows:

The inode number (st_ino) is set to refer to the per-file database allocated.

The device number (st_dev) is set to the device code containing the logical

disk. If the file is block or character special, the represented device (st_rdev)

is set to device. For other file types, the represented device is undefined.

The number of links (st_nlink) is set to one.

The file size (st_size) is set to zero.

The user id (st_uid) is set to the effective user id of the calling process. The
group id (st_gid) is set to the effective group id of the calling process.

The time last accessed (st_atime), time last modified (st_mtime), and time of

last attribute change (st_ctime) are set to the current time.

Path is created in the containing directory and is made to identify the newly created

file. The attributes of the directory the file is contained in change as follows:

The file size (st_size) is updated if the number of blocks necessary to contain

all the directory entries increases.

The time last modified (st_mtime) and time of last attribute change (st_ctime)

are set to the current time.

If the call fails, the file is not created, and the attributes of the directory the file is

contained in are unchanged.

ACCESS CONTROL

Any process may create a FIFO file, but the effective user id of the process must be

superuser to create a directory, special file, or ordinary file.

The process must have write access to the containing directory.

The process must have permission to resolve path.

RETURN VALUE

0 The new file was successfully created.

a An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EEXIST The named file exists.

EINVAL An invalid file type was specified in mode.

EROFS The directory in which the file is to be created is located on a

file system device mounted read-only.

ENOSPC No more contiguous space left to allocate file space or an

inode.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

2-184 Licensed materia}—property of copyright holders) 093-701055

mknod(2) DG/UX 5.4 mknod(2)

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EPERM

EPERM

EFAULT

SEE ALSO

filenames. |

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

Permission to create a directory, special file, or ordinary file is

denied.

The pathname contains a character not in the allowed character

set.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

mkdir(1), chmod(2), dg_mstat(2), exec(2), fstat(2), lstat(2), stat(2),

umask(2), stat(5).

093-701055 Licensed material—property of copyright holder(s) 2-1 85

mmap(2) DG/UX 5.4 mmap(2)

NAME

mmap ~ map pages of memory

SYNOPSIS

#include <sys/types.h>

#include <sys/mman.h>

caddr t mmap(caddr_t addr, size_t len, int prot, int flags,

int fd, off_t off);

where:

addr Requested mapping address

len Length in bytes of the region to map

prot Protection flags for the new mapping

flags Mapping control flags

fd File descriptor of the memory object to be mapped

off Offset in the file of the region to map

DESCRIPTION

The mmap() function establishes a mapping of a memory object into the caller’s
address space. The format of the call is as follows:

pa = mmap(addr, len, prot, flags, fd, off);

mmap() establishes a mapping between the process’s address space starting at address

pa for len bytes to the memory object represented by the file descriptor fd at offset

off for len bytes. The value of pa is an implementation-dependent function of the

parameter addr and values of flags, further described below.

The descriptor fd may refer to a regular file, as well as to certain block and character

special files. Special files usually have device specific restrictions and behavior with

respect to mmap(). To avoid repetition of qualifying statements made regarding files,

the most typical targets of mmap(), it should be assumed that the following explana-

tions are all applicable to regular files. Exceptions are discussed separately at the end

of this section. Also, specific device interactions are discussed in the documentation

for each device.

Note that the system page size can be obtained by calling either getpagesize(2) or

sysconf(2) with the _SC_PAGESIZE parameter; both calls return identical values.

Three values are used to determine the exact range of file offsets that will be made

accessible to user processes by the mmap() function. Two parameters, len and off,

and the size of the file referred to by fd are important. (The st_size field of the

stat structure is the the precise file size, see stat(2).) The identifier size will be

used refer to this quantity.

The address range [pa, pa + len) may be accessible to user processes after a success-

ful call to mmap(). There are several cases to consider. First assume that off is

zero. If len is less than or equal to size, then all addresses in the address range will

be valid. In fact, the entire page containing the last byte in the address range will be

valid; this occurs because the system can map areas only in increments of one system

page.

Lf len is greater than size, then [pa, pa + size), will be valid and accessible, as well as

any remainder of the last page in that range. The address range beginning at the next

page greater than pa + size, through the end of the page containing pa + len — 1, will

be mapped by the mmap() call, but accessing any address in this range will cause the

2-1 86 Licensed material—property of copyright holders) 093-701055

mmap(2) DG/UX 5.4 | mmap(2)

signal SIGBUS to be delivered. However, if another process extends the file while it

is still mapped by the current process, then any pages in [pa, pa + len) which overlap

[pa + old_size, pa + new_size) will become accessible by the mapping process. Like-

wise, any file truncation by another process may result in access faults in [pa, pa +

len) if the updated size is made smaller than len.

This points out that mmap() will return an address range which is “valid” for the user

process, but accessing addresses in the range may fail. Note that a valid range does

not imply one that can be read and written at all times. The range is valid because it

is a reserved part of the process’s address space and meets the address space layout

requirements. Whether or not particular addresses can be accessed is solely depen-

dent on the structure of the underlying file at the time of the memory access. For

example, touching an address may succeed now, but fail later because the file was

truncated before the second memory reference.

A special case worth noting occurs in the page which contains the last byte of the

' mapped file, and when the file size is not an integral multiple of the system page size.

Upon the first access to any address in the last page of the file, the entire page will be

read from the file into memory, and the region from the last byte of the file to the

end of the page will be filled with zeros. Now, as stated above, the calling process

may read or modify any data in the entire page. However, when data is stored in the

zero filled region beyond the end of the file, it is not guaranteed to be available later.

Due to memory demands made by other processes in the system, that page may be

written to backing store, but only data up to the current end of file will be written.

So, when it is retrieved later, only the data contained in the file will be read, with the

rest of the page being zero filled. Hence any data written beyond the end of the file

is lost.

Now assume that a non-zero value for the off parameter is specified. (Note that the

off parameter must always be an integral multiple of the system page size.) If off +
len is less than size, then [pa, pa + len) is a valid address range, mapping bytes in the

file specified by [off, off + len). As above, if Jen is not a multiple of the system page

size, then the remainder of the last page in the range will also be mapped. If off

exceeds size, then the entire range (pa, pa + len) will not be accessible to the user

process. If size is greater than off, but off + len exceeds size, and if SIZE 1s short-

hand for size rounded up the next page aligned value, then [pa, pa + SIZE — off) will

be accessible, but [pa + SIZE - off, pa + len) will not. As before, the accessibility of

the address range is constant until the size of the mapped file is changed. Recall that

other processes may modify the size of the file. Until an address is accessed, it can-

not be determined whether accesses in the range will succeed or result in access faults

and the delivery of SIGBUS.

Finally, note that mmap() cannot grow a file. While a successful call may specify len

larger the the size of the file, only the file system calls, write(2) for example, will

actually cause the file to expand. No more than size bytes will ever be written back to

the file.

The parameter flags provides other information about the handling of the mapped

pages. The options are defined in <sys/mman.h> as:

MAP_SHARED Share memory modifications.

MAP_PRIVATE Memory modifications are private.

MAP_FIXED Use addr as the mapping start address.

For a successful map, either MAP_SHARED or MAP_PRIVATE must be specified, but

not both.

093-701055 Licensed material—property of copyright holder(s) . 2-1 87

mmap(2) DG/UX 5.4 mmap(2)

MAP SHARED and MAP_PRIVATE describe the disposition of write references to the

memory object. If MAP_SHARED is specified, write references will change the

mapped file directly. These changes appear immediately; that is, any other process

which accesses the file will see the new data. The file object is changed right away,

but a delay will occur in writing data to the backing storage. (Note that a system con-

figuration parameter exists to specify the maximum amount of time that may pass

before a modified file page is written to its backing storage.)

If MAP_PRIVATE is specified, the initial write reference will create a private copy of

the memory object page and redirect the mapping to the copy. No changes to the

private copy of the mapped address range will be written to the file referred to by fd.

Note that the private copy is not created until the first write; until then, other users

who have the object mapped MAP_SHARED can change the object, and such changes

will be be seen by the process which has the MAP_PRIVATE mapping. Once a private

copy of a file page has been made, subsequent modification to the file page will not

be-reflected in the private copy.

The mapping type is retained across a fork(2).

MAP_FIXED informs the system that the value of pa must be addr, exactly. When this

option is specified, addr must be a page aligned address. The use of MAP_FIXED

may prevent an implementation from making the most effective use of system

resources. Thus, the use of this option is discouraged, except to deliberately replace

previous mappings.

When MAP_ FIXED is specified, an implicit munmap(2) operation is performed on the

address range (addr, addr + len). See munmap(2) for further details.

When MAP_FIXED is not specified, the system uses addr in an implementation-

defined manner to arrive at pa. Currently, the system ignores addr completely unless

MAP _FIXED is set. The pa so chosen will be an area of the address space which the

system deems suitable for a mapping of len bytes to the specified object. An addr

value of (caddr_t) 0 grants the system complete freedom in selecting pa, subject

to the following constraints: address (caddr_t) 0 will never be used, nor will the

system replace any extant mapping, nor map into areas considered part of the poten-

tial data or stack segments. A value of addr other than (caddr_t) 0 is discouraged

when MAP_FIXED is not set.

Some implementations add paddings of invalid ranges equivalent to the size of one

system page around the mapped region when MAP_FIXED is not specified. So, if

PAGE is equal to the system page size, and LEN is the next page aligned value

greater than Jen, then the address ranges [pa - PAGE, pa) and [pa + LEN, pa+ LEN

+ PAGE) will both be invalid. Such invalid address regions around the mapping are

provided to aid in the debugging of user processes with stray memory references.

One consequence of this is that use of MAP_FIXED is required to get successive

regions mapped at contiguous addresses within a portable application.

When calling mmap() with fd referring to a device — a character special or block spe-

cial file — the off and len parameters are usually checked during the mmap() call to

ensure that the entire range of addresses returned can be accessed at all times. This

is unlike the regular file case where off can exceed the size of the mapped file and

mmap() will complete successfully. Also, certain errno values will be generated

only when attempting mmap() on a special file. Specific interactions with special

files are described separately in the documentation for the particular device.

2-1 88 Licensed material—property of copyright holder(s) 093-701055

mmap(2) DG/UX 5.4 mmap(2)

The parameter pror determines whether read, write, execute, or some combination of

accesses are requested for the pages being mapped. Any of these values may be be

ORed together, but not all combinations are useful. The protection options are:

PROT_READ The memory can be read.

PROT WRITE The memory can be written.

PROT EXEC The memory can be executed.

PROT NONE The memory cannot be accessed.

Not all implementations literally provide all possible combinations. PROT_WRITE is

often implemented as PROT_READ | PROT_WRITE and PROT_EXEC as

PROT_READ | PROT_EXEC. However, no implementation will permit a write to

succeed where PROT WRITE has not been set. Also, no implementation will permit

any access to succeed where PROT_NONE (alone) has been set. |

When implemented on the Motorola 88000 architecture, it is illegal to specify

PROT EXEC and PROT_WRITE together on the same region. Since executable code

may be cached separately from data, coherency problems would result if this were

allowed. The system will not prevent an attempt to execute writable data, but pro-

grams which do so are incorrect and should expect cache coherency problems. Like-

wise, executing a shared page which another process is writing will produce undefined

results. A user process may successfully modify an address range, then use mpro-

tect(2) to change the range’s permissions taking away PROT_WRITE and specifying

PROT EXEC.

Note that an mmap() call may fail and leave the user’s address space in an unknown

state. If mmap() is called with MAP_FIXED, with addr and len parameters that over-

lap a previously mapped region, the implicit unmapping may succeed, but the new

‘mapping operation may fail.

ACCESS CONTROL

The file descriptor fd must be open with at least read intent.

If MAP_SHARED is specified, the file referenced by fd cannot be mapped with

PROT_WRITE permission unless the file was opened O_RDWR. Also, any attempt to

write into the address range returned by an mmap() Call which did not specify

PROT WRITE will cause a SIGSEGV to be delivered, regardless of the type of map-

ping.

RETURN VALUE

On success, mmap() returns the starting address of the new mapping. On failure it

returns (caddr_t) -1 and sets errno to indicate an error.

DIAGNOSTICS

Under the following conditions, mmap() fails and sets errno to:

EINVAL if the off parameter is negative.

EINVAL if the quantity off + len is greater than SIZE_T_MAX.

EINVAL if the off parameter is not an integral multiple of the system page

size.

EINVAL if the argument addr is not a page aligned address and MAP_FIXED is

specified.

EINVAL if addr + len exceeds the largest legal user address and MAP_FIXED

is specified.

093-701055 Licensed materia\—property of copyright holder(s) 2-189

mmap(2)

EINVAL

EINVAL

EINVAL

ENOSYS

ENODEV

ENXIO

EIO

EAGAIN

EAGAIN

EAGAIN

EBADE

EACCES

ENOMEM

ENOMEM

ENOMEM

SEE ALSO

fentl(2), fork(2), getpagesize(2), getrlimit(2), mementl(2), mprotect(2),

munmap(2), stat(2), sysconf(2).

NOTES

2-190

DG/UX 5.4 mmap(2)

if the argument flags does not contain either MAP_PRIVATE or

MAP_ SHARED.

if mapping was attempted on fd that was not a regular file or device.

if both PROT_WRITE and PROT_EXEC are specified in prot.

if mapping was attempted on a file system which does not support

mapping.

if fd refers to a device for which mmap() is unsupported.

if (off, off + len) is not a legal range to be mapped as defined by that

particular device. This error applies only to character special and

block special files.

if fd refers to an NFS file, and record locks are held on the file.

if fd refers toa regular file and mandatory file locking is in effect for
the file.

if the address range could not be locked into memory. This might

happen due to a previous call to memcnt1(2) which set the

MCL_FUTURE option on the process’s address space.

_ if the mapping uses /dev/zero or MAP_PRIVATE is specified in

conjunction with PROT_WRITE, and would reserve more space than

the available physical memory and swap space.

if fd is not a valid, active descriptor.

if fd is not open for read, regardless of the protection specified, or fd

is not open for write and PROT_WRITE was specified for a

MAP SHARED mapping.

if the argument /en is zero.

if adding the size of the mapped range would exceed the limit value

RLIMIT_AS for the process.

if MAP_FIXED was specified and the range [addr, addr + len) exceeds

that allowed for the address space of a process, or MAP_FIXED was

not specified and there is insufficient room in the address space to

effect the mapping.

mmap() allows access to resources via address space manipulations instead of the

read/write interface. Once a file is mapped, all a process has to do to access it is use

the data at the address to which the object was mapped. Consider the following

pseudo-code, where offset is assumed to be page aligned:

fd = open(...)

lseek(fd, offset, SEEK_SET)

read(fd, buf, len)

/* use data in buf */

Here is a rewrite using mmap():

Licensed materiat—property of copyright holders) 093-701055

mmap(2) DG/UX 5.4 mmap(2)

fd = open(...)

address = mmap((caddr_t) 0, len, (PROT_READ | PROT_WRITE),

MAP PRIVATE, fd, offset)

/* use data at address */

2-191
093-701055 Licensed material—property of copyright hoider(s)

mount(2) DG/UX 5.4 mount(2)

NAME

mount — mount a file system

SYNOPSIS |

#include <sys/mount.h>

int mount (const char “special, const char “path, int flag,

const char fstype, const char “dataptr, int datalen);

where:

special Address of a pathname of a block special file

path A string indicating the file on which to mount the file system

flag A bitmask of flags indicating mount options

fstype The type name for the file system

dataptr An block address for file system specific data

datalen The length of the data specified at dataptr

DESCRIPTION

Mount adds the file system device identified by special to the set of active file system

devices, using the file identified by path as the mount point. The flag contains a bit-

mask of flags (see below); ordinarily the MS_DATA flag must be set. The dataptr

and datalen describe the block address and the length of file system specific data.

Mount has the following consequences:

e The filename store contained on special is added to the system filename store.

Thus, all files contained on special can be named.

e References to the mount point will refer to the root directory on the mounted

file system device.

e The original sub-tree under the mount point disappears from the system

filename store. However, the files in that subtree remain unchanged. These

files still exist, but can no longer be named. Already opened file descriptors

for these files will remain valid.

Flag contains the following bitmap options, defined in <sys/mount.h>:

MS_DATA

This is ordinarily required; it indicates the arguments fstype, dataptr, and

datalen are being used. (For backward compatibility, if this flag is not set,

then fstype is assumed to be the same as the root file system, and dataptr and

datalen assumed to be zero.)

MS_RDONLY |

If this is set, then any writing to the file system is not allowed. Otherwise

writing is controlled by individual file permissions.

MS_NOSUID

This indicates the file system does not support setuid and setgid semantics.

MS_REMOUNT

This flag indicates the file system is already mounted and any associated attri-

butes of the mount should be modified to that of this call. This is used to

change options, however not all changes are possible. For example, it t is

impossible to make a currently mounted writeable file system to be read only.

If an error occurs, no changes are made.

2-1 92 Licensed materiai~property of copyright holder(s) 093-701055

mount(2) DG/UX 5.4 mount(2)

ACCESS CONTROL

The effective user id of the calling process must be superuser. The exception to this

is when the string narnefs is use for the value of fstype. In this case, the effective user

id of the calling process must be superuser, or the effective user id must be the owner

of path and have write permission to path.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBUSY Path is being used by another mount, is someone’s current

working path or is otherwise open for access.

EBUSY The device associated with special is currently mounted.

’ EBUSY The system limit on mounted devices has been reached.

EINVAL System information on the file system is bad.

ENOSPC Not enough memory was available to read system information

from the file system.

EIO An I/O error occurred while reading system information from

the file system.

ENOTBLK Special is not a block special device.

ENOTDIR Path is not a directory and the file system type requires a direc-

tory.

ENXIO The device associated with special does not exist.

EPERM Permission to mount a file system device is denied to the calling

process.

EROFS Path resides on a read-only file system.

ENOENT Either special or path do not exist.

ENOENT A non-terminal component of either special or path does not

exist.

ENOTDIR A non-terminal component of either special or path was not a

093-701055

path or symbolic link.

ENAMETOOLONG Either special or path exceeds the length limit for pathnames.

ENAMETOOLONG A component of either special or path exceeds the length limit
for filenames.

ENOMEM There are not enough system resources to resolve either special

or path or to expand a symbolic link.

ELOOP The number of symbolic links encountered while resolving

either special or path exceeded MAXSYMLINKS. A symbolic

link cycle is suspected.

EPERM Either special or path contains a character not in the allowed

character set.

EFAULT Either special or path does not completely reside in the

process’s address space or either special or path does not

2-193Licensed material—property of copyright hoider(s)

mount(2) DG/UX 5.4 | | mount(2)

terminate in the process’s address space.

SEE ALSO

dg_mount(2), umount(2). fattach(3).:

2-1 94 Licensed materiat—property of copyright holder(s) 093-701055

mprotect(2) DG/UX 5.4 mprotect(2)

NAME

mprotect — set protection of memory mapping

SYNOPSIS

#include <sys/types.h>

#include <sys/mman.h>

int mprotect(caddr_t addr, size_t len, int prot);

where:

addr Starting address of the memory region to modify

len Length in bytes of the memory region to modify

prot New protections to apply to the memory region

DESCRIPTION |

The mprotect() function changes the access protections on the mappings specified

by the range [addr, addr + len) to be those specified by prot. The Jen parameter is

rounded up to the next page size multiple before computing the ending address of the

range upon which to set protections. Note that the entire memory region must be

mapped within the caller’s address space.

The addr parameter must be a page aligned address. The system page size can be

obtained by calling either getpagesize(2) or sysconf(2) with the _SC_PAGESIZE

parameter; both calls return identical values.

The parameter prot determines whether read, write, execute, or some combination of

accesses are requested for the pages being modified. Any of these values may be be

ORed together, but not all combinations are useful. The protection options are:

PROT_READ The memory can be read.

‘PROT_WRITE The memory can be written.

PROT_EXEC The memory can be executed.

PROT_NONE The memory cannot be accessed.

Not all implementations literally provide all possible combinations. PROT_WRITE is

often implemented as PROT_READ | PROT_WRITE and PROT_EXEC as

PROT_READ | .PROT_EXEC. However, no implementation will permit a write to

succeed where PROT_WRITE has not been set. Also, no implementation will permit

any access to succeed where PROT_NONE (alone) has been set.

When implemented on the Motorola 88000 architecture, it is illegal to specify

PROT_EXEC and PROT_WRITE together on the same region. Since executable code

may be cached separately from data, coherency problems would result if this was

allowed. The system will not prevent an attempt to execute writable data, but pro-

grams which do so are incorrect and should expect cache coherency problems. Like-

wise, executing a shared page which another process is writing will produce undefined

results. A user process may successfully modify an address range, then use mpro-

tect(2) to change the range’s permissions taking away PROT_WRITE and specifying

PROT EXEC.

If the mprotect() function fails, portions of the specified address range may have

had their protections changed, while others have not.

ACCESS CONTROL

If the range is part of an mmap(2) region, and it has been mapped with the

MAP_SHARED option, then PROT_WRITE cannot be specified in prof unless the file
was open for writing at the time mmap(2) was called.

093-701055 Licensed material—property of copyright holder(s) 2-195

mprotect(2)

RETURN VALUE

DIAGNOSTICS

DG/UX 5.4 mprotect(2)

If the range is part of a shared memory segment which was attached using the

SHM_RDONLY flag, then PROT_WRITE cannot be specified in prot.

Upon successful completion, mprotect() returns a value of 0. Otherwise, it returns

the value -—1, and sets errno to indicate an error.

Under the following conditions, mprotect() fails and sets errno to:

EINVAL

EINVAL

EACCES

EAGAIN

EAGAIN

ENOMEM

ENOMEM

SEE ALSO

getpagesize(2), memctl(2), mmap(2), shmat(2), sysconf(2).

2-196

if addr is not a page aligned address.

if both PROT_WRITE and PROT_EXEC are specified in prot.

if prot specifies a protection that violates the access permissions

some mapping in the region has to its underlying memory object.

if prot specifies PROT_WRITE over a locked MAP_PRIVATE mapping

and there are insufficient memory resources to reserve for locking

the private page.

if prot specifies PROT_WRITE over a MAP_PRIVATE mapping and

there are insufficient swap space resources to be reserved for possi-

ble page modification.

‘if len is equal to zero.

if some page in the memory region is not mapped within the caller’s

address space.

Licensed material—property of copyright holder(s) 093-701055

msgctl(2)

NAME

DG/UX 5.4 msgctl(2)

msgctl — get or set message queue attributes or destroy a message queue

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgctl (msqid, cmd, buf)

int msgid;

int cmd;

struct msqid_ds * buf;

where:

msqid A message queue identifier

cmd The message control operation to be performed

buf The address of a message queue attribute record (used only if cmd is

IPC_STAT or IPC_SET)

DESCRIPTION

Msgctl is used to get and set message queue attributes or to destroy a message

queue. The subject message queue is identified by msgid. The action performed by

msgctl depends on the value of cmd as follows:

IPC_STAT

IPC_SET

IPC_RMID

ACCESS CONTROL

The user-visible msqid_ds structure is returned in buf. If an error

occurs, the contents of buf are undefined.

The following message queue attributes are set to the values found in

the structure pointed to by buf: user id (msg_perm.uid), group id

(msg_perm.gid), permission rights (in msg_perm.mode), and the

' maximum size (msg_qbytes).

If an error occurs, the message queue remains unchanged. Other-

wise, the last change time (msg_ctime) is set to the current time.

The message queue is destroyed. All resources consumed by the

message queue are freed and the message queue identifier is invali-

dated. All queued messages are lost.

If an error occurs, the message queue remains unchanged.

Operation permission depends on the value of cmd as follows:
IPC_STAT

IPC_SET

IPC_RMID

RETURN VALUE

093-701055

The calling process is required to have read access to the message

queue.

The effective user id of the calling process must be equal to the mes-

sage queue’s user id, the message queue creator’s user id, or that of

the superuser. If the maximum size of the message queue is

increased, the effective user id of the calling process must be the

superuser.

The effective user id of the calling process must be equal to the mes-

sage queue’s user id, the message queue creator’s user id, or that of

the superuser.

Licensed materiat—property of copyright holder(s) 2-1 97

msgcti(2) DG/UX 5.4 msgcet!(2)

0 Completed successfully.

-l An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes regardless of the value of cmd:

EINVAL msgid is not a valid message queue identifier.

EINVAL cmd is not a valid command.

If cmd is IPC_STAT, errno may be set to one of these values:

EACCES Read permission is denied to the calling process.

EFAULT buf points to an illegal address.

If cmd is IPC_SET, errno may be set to one of these values:

EPERM Permission to change the message queue attributes is denied to the

calling process.

EPERM Permission to increase to the maximum size of the message queue is
denied to the calling process.

EFAULT buf points to an illegal address.

If cmd is IPC_RMID, errno may be set to this value:

EPERM _ Permission to remove the message queue is denied to the calling pro-

cess.

SEE ALSO

2-198

intro(2), iperm(1), ipes(1), msgget(2), msgrev(2), msgsnd(2).

Licensed material——property of copyright holder(s) 093-701055

msgget(2)

NAME

DG/UX 5.4 | msgget(2)

msgget — get message queue identifier

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget (key, msgfig)

key_t key;

int msgflg;

where:

key A user-defined name for the message queue

msgfig A set of flags indicating the requested permission state of the message

queue, whether a new message queue should be created, and whether the

message queue should be held exclusively

DESCRIPTION

093-701055

Msgget returns the message queue identifier associated with key.

This message queue identifier may then be used in other message queue operations as

specified by msgctl, msgsnd, and msgrcv.

Msgget can be used to get the message queue identifier of an existing message queue

or to create a new message queue as follows:

Four options are available:

Create a private message queue.

In this case, key is IPC_LPRIVATE.

A process can create a “private” message queue by using the special

IPC_PRIVATE key. The system will create a message queue identifier that ts

private to the process. The message queue identifier will not be returned to

other processes regardless of what key value they specify.

The newly created message queue can be shared among other processes by

distributing the message queue identifier.

A process can make multiple msgget operations specifying IPC_LPRIVATE.

The identifiers returned will be unique and the associated message queues will

be different.

Find key if already defined.

In this case, the IPC_CREAT and IPC_EXCL bits of msgfig are clear and

key is not IPC_PRIVATE.

The message queue identifier associated with the given key is returned. If

none exists or if one exists but the permission rights of the message queue do

not include those specified by the low-order 9 bits of msgfig, an error is

returned.

Create only if key is not already defined.

In this case, the IPC_CREAT and IPC_EXCL bits of msgflg are both set and

Licensed material—property of copyright holder(s) | 2- 1 99

msgget(2) DG/UX 5.4 msgget(2)

key is not IPC_PRIVATE.

If a message queue identifier already exists for key an error is returned. Oth-

erwise, a message queue identifier and associated message queue are created.

The message queue identifier will be returned to other processes that specify

the same key value.

Find key if already defined, otherwise create.

In this case, the IPC_CREAT bit of msgfig is set, the IPC_LEXCL bit of

msefig is clear, and key is not PC_PRIVATE.

If a message queue identifier already exists for key, this is identical to the

second option above. Otherwise, this is identical to the third option above.

If a new message queue is created, its attributes are initialized as follows:

The message queue creator’s user id (msg_perm.cuid) and the messageage q a (ge
queue’s user id (msg_perm.uid) are set to the effective user id of the calling

process.

The message queue creator’s group id (msg_perm.cgid) and the message

queue’s group id (msg_perm.gid) are set to the effective group id of the calling

process.

The message queue’s permission rights (in msg_perm.mode) are set to the

low-order 9 bits of msgfig.

The current size (msg_cbytes), the process id performing the last msgsnd and

msgrev operations (msg_Ispid and msg_Irpid), and the times of the last

msgsnd and msgrev operations (msg_stime and msg_rtime) are all set to

their initial values.

The most recent time the message queue attributes were changed (msg_ctime)

is set to the current time.

The maximum size (msg_qbytes) is set to the system limit.

ACCESS CONTROL

See the description of the exception condition EACCES below.

RETURN VALUE

msqid

-1

A non-negative integer that identifies the message queue associated with

key.

An error occurred. errno is set to indicate the error.

DIAGNOSTICS

If a message queue exists for key, errno may be set to one of these values:

EACCES The permission rights of the message queue do not include those

2-200

specified by the low-order 9 bits of msgflg.

EEXIST Both the IPC_CREAT and IPC_EXCL bits of msgflg are set.

If a message queue does not exist for key, errno may be set to one

of these values:

ENOENT The IPC_CREAT bit of msgfig is not set.

ENOSPC Creating a new message queue would cause the system-imposed limit

on the number of message queues to be exceeded.

Licensed material—property of copyright holder(s) 093-701055

SEE ALSO |

intro(2), iperm(1), ipes(1), msgetl(2), msgrev(2), msgsnd(2).

2-201
093-701055 Licensed material—property of copyright holder(s)

msgrev(2) DG/UX §.4 msgrev(2)

NAME

msgrcv — receive a message

SYNOPSIS

#include <sys/types.h>

#include <sys/ipce.h>

#include <sys/msg.h>

int msgrcv (msqid, msgp, msgsz, msgtyp, msgfig)

int msgid ;

struct msgbuf * msgp;

Size_t msgsz;

long msgtyp;

int msegfig ;

where:

msqid A message queue identifier

msgp A buffer for the message

MSSZ The size in bytes of the message to be received

msgtyp Message type

msgflg A set of flags qualifying the action of msgrev

DESCRIPTION

Msgrev reads a message from the queue associated with the message queue identifier

specified by msqid and places it in the message buffer pointed to by msgp.

Msgtyp is used to select from other queued messages; msgsz bytes of such a message

(only a single message, if any, is selected in a call to this routine) are returned.

If the received message is larger than msgsz and the MSG_NOERROR bit of msgfig

is set, the received message is truncated to msgsz bytes. The truncated part of the

message is lost and no indication of the truncation is given to the calling process. If

the received message is larger than msgsz and the MSG_NOERROR bit of msgfig is

clear, an error is returned.

Msgtyp specifies the type of message requested as follows:

e msgtyp == 0: The first message on the queue is received.

e msgtyp > 0: The first message of type msgtyp is received.

e msgtyp <0: The first message of the lowest type of all messages on the

queue is received provided the type is less than or equal to the absolute value

of msgtyp.

Msefig specifies the action to be taken if a message of the desired type is not on the

queue. These are as follows:

e If the PC_NOWAIT bit of msgflg is set, the calling process will return

immediately.

e If the PC_NOWAIT bit of msgfig is clear, the calling process will be

suspended until:

e A message of the desired type is placed on the queue, in which case, the

operation is successful,

e msgid is removed from the system, in which case, msgrcev will return with

the error condition EIDRM, or

2-202 Licensed materia—property of copyright holder(s) 093-701055

msgrcv(2) DG/UX 5.4 msgrev(2)

e The calling process receives a signal that is to be caught, in which case,

msgrcv Will return with the error condition EINTR.

If msgrev fails, the message queue will be unchanged. Upon successful completion,
the message queue attributes are changed as follows:

e The number of messages on the queue (msg_qnum) is decremented.

e The number of bytes on the queue (msg_cbytes) is reduced by the size of the

mtext portion of the received message.

e The process id of the last process performing a msgrev operation

(msg_irpid) is set to that of the calling process.

e The most recent time a msgrcev operation was performed (msg_rtime) is set

to the current time.

ACCESS CONTROL

Read access to the message queue is required.

RETURN VALUE

actual_size Completed successfully. The number of bytes actually placed into

mtext.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |

Errno may be set to one of the following error codes:

EINVAL msgid is not a valid message queue identifier.

EACCES Read permission is denied to the calling process.

EINVAL msgsz is less than 0.

E2BIG msgp-mtext> is greater than msgsz and the MSG_NOERROR bit of

msegfig is not set.

ENOMSG The queue does not contain a message of the desired type and the

IPC_LNOWAIT bit of msgfig is set.

EFAULT msgp points to an illegal address.

EIDRM msgid was removed from the system while the calling process was

suspended by msgrcv.

EINTR The calling process received a signal that was set to be caught while

suspended by msgrcev.

SEE ALSO

intro(2), iperm(1), ipes(1), msget1(2), msgget(2), msgsnd(2), signal(2).

093-701055 Licensed material—-property of copyright hoider(s) 2-203

msgsnd(2) DG/UX 5.4 msgsnd(2)

NAME

msgsnd — send a message

SYNOPSIS

#include <sys/types.h>

#include <sys/ipce.h>

#include <sys/msg.h>

int msgsnd (msgid, msgp, msgsz, msgfig)

int msqid ;

struct msgbuf *msgp;

Size_t MSgszZ;

int mseflg;

where:

msqid A message queue identifier

msgp The message buffer of the message to be sent

MSQSZ The size in bytes of the mtext portion of the message buffer

msegflg A set of flags modifying the action of msgsnd

DESCRIPTION

2-204

Msgsnd sends a message to the queue associated with the message queue identifier

specified by msgid. msgp points to the user’s message buffer containing a message

type used for message selection, and the text of the message. msgsz is the length of

the message. It can range from 0 to a configurable system-imposed maximum.

msefig specifies the action to be taken if either the number of bytes already on the

queue after this message is added would exceed the maximum queue size, or the total

number of messages on all queues system-wide is equal to the system-imposed limit.

If either of these conditions hold, the following actions are taken:

e If the PC_NOWATIT bit of msgfig is set, the message will not be sent and the

calling process will return immediately.

e If the IPC_LNOWAITT bit of msgflg is clear, the calling process will be

- suspended untu:

the condition responsible for the suspension no longer exists, in which

case, the operation is successful,

e msqid is removed from the system, in which case, msgsnd will return

with the error condition EIDRM, or

e the calling process receives a signal that is to be caught, in which

case, msgsnd will return with the error condition EINTR.

If msgsnd fails, no message is sent and the message queue is unchanged. Upon suc-

cessful completion, the message queue attributes are changed as follows:

e The number of messages on the queue (msg_qnum) is incremented.

@ The number of bytes on the queue (msg_cbytes) is increased by the size of the

mtext portion of the message being sent.

e The process id of the last process performing a msgsnd operation

(msg_Ispid) is set to the calling process.

e The most recent time a msgsnd operation was performed (msg_stime) is set

to the current time.

Licensed material—property of copyright holder(s) 093-701055

megsnd(2) DG/UX 5.4 | msgsnd(2)

ACCESS CONTROL

Write access to the message queue Is required.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL msgid is not a valid message queue identifier.

EINVAL Message type is less than 1.

EINVAL msgsz is less than zero or greater than the system-imposed limit.

EACCES Write permission is denied to the calling process.

| EAGAIN The message cannot be sent for some reason and the PC_NOWAITT ©
bit of msgfig is set.

EFAULT msgp is an illegal address.

EIDRM msgid was removed from the system while the calling process was

suspended by msgsnd.

EINTR ' The calling process received a signal that was set to be caught while

suspended by msgsnd.

SEE ALSO

intro(2), iperm(1), ipes(1), msgctl(2), msgget(2), msgrev(2), signal(2).

093-701055 Licensed material—property of copyright holders) | 2-205

megsys(2) DG/UX 5.4 msgsys(2)

NAME

msgsys — perform a message queue operation

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgsys (Pl, P2, P3, P4, P5, P6)

int Pl;

int P2;

int P3;

int P4;

int P35;

int P6;

where:

Pl An argument indicating the type of operation to be performed with message

queues (0 = MSGGET, 1 = MSGCTL, 2 = MSGRCV, 3 = MSGSND).

P2 If the operation is MSGGET, P2 is equal to the message queue key. Other-
wise, P2 is equal to the message queue id.

P3 If the operation is MSGGET, P3 equals the flags that indicate whether to

create the queue or not and the permissions for the queue. If the operation is

MSGCTL, P3 equals the contro] command number which specifies the type

of control command to perform. If the operation is MSGSND or MSGRCV,

P3 equals the pointer to the message to be sent or received.

P4 If the operation is MSGGET, P4 is invalid. In case of MSGCTL, P4isa

pointer to a buffer containing information about the message queue. In case

of MSGSND and MSGRCV, P4 is equal to the size of the message’s text por-

tion.

P5 If the operation is MSGGET or MSGCTL, P53 is invalid. In case of
MSGRCV P%5 is equal to the message type. In case of MSGSND P53 is equal

to the message flags modifying the message MSGSND operation.

P6 If the operation is MSGRCV, P6 is equal to the message flags modifying the

MSGRCYV operation. Otherwise P6 is invalid.

DESCRIPTION

Msgsys(2) performs a message operation (MSGGET, MSGCTL, MSGSND,

MSGRCV) indicated by the value of PJ.

ACCESS CONTROL
See the description of the exception condition EACCES below.

RETURN VALUE

msgid A non-negative integer that identifies the message queue associated with

key, returned by msgget.

0 Msgsnd, msgrev or msgctl calls were successful.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

The error codes returned depend on the type of message queue operations performed

and are described in msgget(2), msgctl(2), msgsnd(2), msgrev(2).

2-206 Licensed material—property of copyright holder(s) 093-701055

msgsys(2) DG/UX 5.4 msgsys(2)

EINVAL PI argument is not in the range of 0 through 3.

SEE ALSO

intro(2), msgetl(2), msgget(2), msgrev(2), msgsnd(2).

093-701055 Licensed material—property of copyright holder(s) 2-207

munmap(2) DG/UX 5.4 munmap(2)

NAME

munmap — unmap pages of memory

SYNOPSIS

#include <sys/types.h>

#include <sys/mman.h>

int munmap(caddr_t addr, size_t len);

where:

addr Starting address of the memory region to unmap

len Length in bytes of the memory region to unmap

DESCRIPTION

The munmap() function removes any mappings for pages in the range [addr, addr +

len). Such mappings in the address range will be removed regardless of how they

were established. References to unmapped pages will result in the delivery of a SIG-

SEGV signal to the process. Note that the mmap(2) function performs an implicit

munmap() operation when MAP_FIXED is specified in the flags parameter.

The addr parameter must specify a page alioned address. The system page size is

available by calling either getpagesize(2) or sysconf(2) with the _SC_PAGESIZE

parameter; both calls return identical values.

The len parameter is rounded up to the next multiple of the page size before comput-

ing the ending address of the range to unmap.

The addr and len parameters to munmap() operations do not have to match the simi-

lar parameters to mmap(2) calls which may have established the mapping. Munmap()

can release the address range of any part of a mapped region, at the beginning, end-

ing, or middle of it. Also, the [addr, addr + len) interval may span regions of multi-

ple mmap(2) calls, possibly containing addresses not currently mapped in the caller’s

address space. Further, not only mmap(2) regions can be unmapped by munmap().

Any part of a process’s address space which overlaps the range (addr, addr + len) will

be unmapped, even if the segment is part of the data segment, stack, or a shared

memory segment.

When the given address range spans a shared memory region, the attached shared

memory segment will be unmapped. However, such segments will still be considered

attached by the system, which may cause unexpected results. Processes should avoid

the use of munmap() on ranges of shared memory addresses, and instead use

shmdt(2) to cleanly detach the shared memory segment.

Regions of the process’s data segment (allocated via brk(2), sbrk(2), and

malloc(3C)) can also be invalidated with munmap(). This practice is not recom-

mended since it does not alter the caller’s break value, and thus may lead to unex-

pected results.

Since the [addr, addr + len) range may span unmapped portions of the caller’s

address space, the actual memory unmapped by munmap() may be smaller than /en.

The size of the caller’s virtual address space as accounted for by the system will

decrease only by the sum of the ranges of newly unmapped pages.

Note that any pages within the range which were locked into memory via mement1(2)

or any of its associated library routines will be unlocked when unmapped.

ACCESS CONTROL

No access check is made.

2-208 Licensed materiai—property of copyright holder(s) 093-701055

munmap(2) DG/UX 5.4 munmap(2)

RETURN VALUE

Upon successful completion, munmap() returns a value of 0. Otherwise, it returns

the value -1, and sets errno to indicate an error. | |

DIAGNOSTICS

Under the following conditions, munmap() fails and sets errno to:

EINVAL if len is equal to zero.

EINVAL if addr is not a page aligned address.

EINVAL if addr+len exceeds the largest legal user address.

SEE ALSO

mementl(2), mmap(2), getpagesize(2), sysconf(2).

093-701055 Licensed material—property of copyright holder(s) 2-209

nfssvce(2) OG/UX 5.4 nfssvc(2)

NAME

nfssve — start an NFS server on a specified socket

SYNOPSIS

int nfssve (socket)

int socket;

where:

socket Socket to listen to requests on

DESCRIPTION

An NFS server (daemon) is started on the socket identified by socket. socket is the

descriptor obtained from a socket(2) system call. The socket must be AF_INET,

and SOCK_DGRAM (protocol UDP/IP). This system call does not normally return.

ACCESS CONTROL

None.

RETURN VALUE

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to.one of the following error codes:

EBADF The descriptor indentified by socker is out of range, or the descriptor

i$ not active.

EINVAL The socket indentified by socket does not specify a socket object.

EINTR The process was terminated by a signal.

EOPNOTSUPP Kernel support for NFS is not present.

SEE ALSO :

socket(2).

. 2-21 0 Licensed material—property of copyright hoider(s) 093-701055

nice (2) DG/UX 5.4 | nice (2)

NAME

nice - change priority of a process

SYNOPSIS

#include <unistd.h>

int nice (incr)

int incr;

where:

incr A positive or negative value that is to be added to the calling process’s

priority

DESCRIPTION

The value of incr is added to the priority of the calling process. A more positive

priority value results in a lower level of service from the CPU.

' If the new priority would be greater than 19, the process’s priority is set to 19. If the

new priority would be less than -20, the process’s priority is set to —20.

ACCESS CONTROL

The effective-user-id of the calling process must be 0 (super-user) for nice to accept a

value for incr that is less than 0 or greater than 39. If this condition is not met, incr

will be treated as 0, and errno will be set to EPERM.

RETURN VALUE

Nice always returns the calling process’s priority upon completion of the system call.

If an error occurred on the call, the process’s priority will be unchanged and errno

will be set to indicate the error. erxrno should be set to zero before the call and

checked afterwards, regardless of the return value.

DIAGNOSTICS

EPERM The value of incr is negative or greater than 39 and the effective-

user-id of the calling process is not 0.

SEE ALSO

exec(2).

093-701055 Licensed materiai—property of copyright holders) | 2-21 1

open(2)

NAME

DG/UX 5.4 open(2)

open — open file for reading or writing

SYNOPSIS

#include <fentl.h>

int open (path, open_flag, protection_mode)

char * path;

int open_flag;

int protectionmode;

where:

path Address of a pathname

open_flag Open intent and open behavior flags

protection_mode Protection mode, if file is created

DESCRIPTION

2-212

Path points to a pathname naming a file to be opened. Terminal symbolic links are
followed in path. open_flag is a group of flags specifying the open intent (read, write,

or both) and requests for optional behavior of the call. It is constructed by or-ing the

desired flags. One and only one of the following three open intents must be specified

in open_flag: |

° O_RDONLY 0

e O_WRONLY 1

e O_RDWR 2

Ignoring for the moment all flags except the open intents, if the file exists, the seman-

tics of an open are:

e Ordinary, FIFO, block special, and character special files may be opened for

any of the intents. Directories can only be opened for O.RDONLY intent.

e If the specified intent is O.RDWR or OLWRONLY and the file’s type is

ordinary or FIFO, the file must reside on a file system device mounted read-

write.

e The lowest numbered available file descriptor is allocated, and the file pointer

is set to the beginning of the file.

e If the file’s type is block or character special, a device driver is called to per-

form device dependent initialization.

If the file does not exist, and the O_CREAT flag has not been specified, then the call

fails.

The basic semantics of the open call described above may be modified by setting one

or more of the following flags in open_flag:

OLNDELAY This flag has differing semantics depending on the type of file or or

device it is referencing. If the file is a FIFO and O.NDELAY is

set, a reader of a FIFO file does not pend during the open, waiting

for the presence of a writer. A writer of such a FIFO file does not

pend, either, but the error ENXIO is asserted if no reader is

present.

If the file is a FIFO and O_NDELAY is not set, then a reader of

the file will pend waiting for a writer of the file to open the FIFO,

Licensed material—property of copyright hoider(s) 093-701055

open(2)

083-701055

O_CREAT

DG/UX 5.4 open(2)

and likewise, a writer will pend waiting for a reader to open the

FIFO.

A process opening the FIFO for both read and write is not affected

by this flag.

If the file is associated with a communications device, and

O_NDELAY is set, then an opener for any intent will not wait for a

carrier to be present on the line before returning from the open

call. |

If the file is associated with a communications device, and

O_NDELAY is not set, then an open will pend waiting for a car-

rier to be present on the line. |

This flag is "remembered” in the object pointer’s flags and affects

subsequent reads and writes. See read(2) and write(2).

If set, the O.CREAT flag guarantees that the file exists after the

open call is completed. If it is set and the file already exists, the

open occurs as described above. If the file does not exist, an ordi-

nary file with the name path is created and then the file is opened

for the intent requested. The file must be on a file system device

mounted read-write. It is created in the manner of the creat sys-

tem call:

The file is entered into the flat file store by allocating and initializing

a per-file database. The file’s attributes are set as follows:

e The inode number (st_ino) refers to the per-file database

allocated.

e The file’s device (st_dev) is set to the device code of the log-

ical disk unit that contains the new file.

The represented device (st_rdev) is undefined.

The file size (st_size) is set to 0.

The number of links (st_nlink) is set to one.

The user id (st_uid) is set to the effective user id of the cal-

ling process. The group id (st_gid) is set to the process’s

effective group id.

e The file mode (st_mode) is set as follows: The file type is

ordinary. The sticky bit is cleared. The protection rights,

set-user-id, and set-group-id bits of the file mode are set to

the value of protection_mode modified by the process’s file

mode creation mask; all bits set in the mask are cleared in

the file mode (see umask). The set-group-id bit is set only

if the file’s group id is the same as the process’s effective

group id or is in the process’s group set.

e The time last accessed (st_atime), time last modified

(st_mtime), and time of last attribute change (st_ctime) are

set to the current time.

Licensed material—property of copyright holder(s) 2-21 3

open(2)

2-214

O_EXCL

O_TRUNC

O_APPEND

O.SYNC

DG/UX 5.4 open(2)

e Path is added to the filename store (i.e., a link is created in

the containing directory) and is made to identify the newly

created file. An allocation to the directory causes its attri-

butes to change as follows:

The file size (st_size) may be updated.

The time last modified (st_mtime) and time of last attribute

change (st_ctime) are set to the current time.

The O_EXCL flag modifies the O.CREAT flag and has no effect if

O_CREAT is clear or the file does not exist. If O.CREAT and

O_EXCL are set, the open will fail if the file already exists. The

O_EXCL flag also interacts with symbolic links in the following

way. If O_LEXCL is on (with OL.CREAT), and the last component

of the path is a symlink, then the open will fail even if the symlink

points to a non-existent file.

This flag implies that you are opening the file for write intent, even

though the user may have specified a read-only channel to be

opened. Thus, a channel created with this flag on is always open

for write intent.

_ O_TRUNC has no effect if the file does not exist. File specific

ramifications of this flag are:

e Directories cannot be truncated. You can never gain a

write-accessable channel to a directory, so you can never

truncate them through this interface.

e Ordinary and FIFO files being truncated must reside on a

file system device mounted read-write.

e If the file’s type is ordinary, the file’s disk blocks are freed

and its size (St_size) is set to zero.

e The file’s time last modified (st_mtime) and time of last

change to the attributes (st_ctime) are set to the current

time. (This happens whether the file’s contents were

changed or not.)

e All other file attributes remain unchanged.

The O_APPEND flag has no visible effect on the operation of the

open call. If set, it is "remembered" as part of the file’s open

intents and will affect subsequent writes by positioning the file

pointer to the end of the file prior to each wnite.

The O_SYNC flag has no visible effect on the operation of the

open call. If set, it is "remembered" as part of the file’s open

intents and will affect subsequent writes by forcing all changes to the

file to disk before returning from the write call. File changes

include changes to any data buffers and inode information.

O_NONBLOCK This flag has differing semantics depending on the type of file or

device it is referencing.

If the file is a FIFO and O_.NONBLOCK is set, a reader of a FIFO

file does not pend during the open, waiting for the presence of a

writer. A writer of such a FIFO file does not pend, either, but the

Licensed materiai—property of copyright holder(s) 093-701055

open(2) DG/UX 5.4 open(2)

error ENXIO is asserted if no reader is present.

If the file is a FIFO and O_NONBLOCK is not set, then a reader

of the file will pend waiting for a writer of the file to open the

FIFO, and likewise, a writer will pend waiting for a reader to open

the FIFO.

A process opening the FIFO for both read and write is not affected

by this flag.

If the file is a block or character special file and O_NONBLOCK is

set, then an opener for any intent will not wait for a device to be

ready or available before returning from the open call. Subsequent

behavior of the device is device specific.

If the file is a block or character special file and O.LNONBLOCK is

not set, then an open will pend waiting for the device to be ready

or available.

O_DG_UNBUFFERED

Normally, the default behavior for acquiring data from an ordinary

file is to use the system buffer cache to cache requests for the data

from the file and then to copy data from the system buffer into the

user’s buffer. The presence of this flag will change the default

behavior and access method for acquiring data from the file.

Specifically, read(2) and write(2) will not operate, but the system

calls, dg_unbuffered_read(2) and dg_unbuffered_write(2)

will work. dg _unbuffered_read(2) and

dg_unbuffered_write(2) transfers blocks of file data from the

disk directly to or from the user’s buffer in a synchronous manner.

Upon successful opening of the file with this flag, the buffer cache

for the file will have been flushed to disk and invalidated. Any

attempts to use read(2) or write(2) on the descriptor will return

an error. Descriptors returned with this flag differ in no other way

from other descriptors returned without this flag being set. This call

will fail if there are other descriptors for the file that were opened

without this flag set. Also, open calls without this flag will fail if

there are descriptors to the file that have the flag set. This flag can-

not be set or unset via the fentl(2) interface.

O.DG_SHARED_DESCRIPTOR

By default, descriptors are part of the per-process data of the pro-

cess that creates them. The use of this flag in the open call will

change this behavior. If set, the descriptor created by the open will

exist in the shared descriptor table for the process and be accesible

to all processes that have attached the shared descriptor array via

dg_attach_to_shared_descriptors(2). Descriptors in this

shared table have different reference count semantics from normal

descriptors. See the manual page for

dg_attach_to_shared_descriptors(2) for details.

Bits in open_flag other than those flags mentioned above are undefined and should

not be used.

093-701055 Licensed material—property of copyright holder(s) 2-21 5

The mode parameter is used only when the file is created, i.e., when O_.CREAT is

set and the file does not already exist. In other cases, it is ignored.

Note that creat(path, mode) has the same semantics as

open(path,O_WRONLY|O_CREAT|O_TRUNC, mode) — If the file exists, it is truncated;

if it does not exist, it is created; in both cases it is opened for writing.

If the process exceeds its limit on open files, the open call will fail, and the file will
be left in the state it was in before the call. The limit on per-process descriptors is

bounded above by the soft limit on per-process descriptors for the process. A pro-

cess may raise this soft limit by calling setrlimit(2). The current soft limit may be

found by calling getrlimit(2). The soft limit may only be raised until the system
wide hard limit is reached.

Upon successful completion, the descriptor is returned. The descriptor is set to

remain open across exec calls. See fent1(2).

ACCESS CONTROL

To open an existing file, the calling process must have read and/or write access (as

requested) to the file.

To create a file, the process must have write access to the containing directory.

To truncate an existing file, the process must have write access to the file.

The process must have permission to resolve path.

RETURN VALUE

Any non-negative integer

The file descriptor for the successfully opened file.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EACCES The open intents specified in open_flag are denied for the

named file or if in creating the file, the target containing direc-

tory disallows access.

EINVAL Invalid argument passed to this function.

EEXIST O_CREAT and O_EXCL are set, and the named file exists, or
is pointed at by a symbolic link.

EINTR A signal was caught during the open system call.

EISDIR The named file is a directory and the open intent is write or

read/write.

EMFILE NOFILE file descriptors are currently open. You have reached

the soft limit on file descriptors. If you wish to open another

file, then you must increase the number of available descriptors

with the getrusage(2) and setrusage(2) system calls.

ENOENT O_CREAT is clear and the named file does not exist; or the

file the pathname resolved to does not exist and O.CREAT

was not specified; or a non-terminal component of the path-

name does not exist.

ENXIO The named file is a character special or block special file, and

the device associated with this special file does not exist; or

O_NDELAY or O_NONBLOCK is set, the named file is a

2-21 6 Licensed material—property of copyright holder(s) 093-701055

open(2)

EOPNOTSUPP

EROFS

ENOSPC

EAGAIN

ENOTDIR

DG/UX 5.4 : open(2)

FIFO file, O.WRONLY is set, and no process has the file

open for reading.

An attempt was made to open a socket.

The named file resides on a file system device mounted read-

only and the open intent is write or read/write.

No more contiguous space to create a file entry or inode.

File exists with record locks in mandatory enforcement mode

and O.CREAT and/or O_TRUNC is specified.

A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames; or a

ENOMEM

ELOOP

EPERM

EFAULT

ENOSR

EIO

SEE ALSO

chmod(2), close(2), creat(2), dup(2), fentl(2), lseek(2), read(2), umask(2),

write(2), fent1(5), stat(5), dg_allow_shared_descriptor_attach(2),

dg_attach_to_shared_descriptors(2).

093-701055

component of the pathname exceeds the length limit for

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

The pathname contains a character not in the allowed character

set.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

The path is STREAMS-based and the system is unable to allocate

a stream.

if during the open() of a STREAMS-based device, a hangup or

error occurs.

Licensed material—property of copyright hoider(s) - 2-21 7

pathconf(2) DG/UX 5.4 pathconf(2)

NAME

pathconf, fpathconf -— get configurable pathname variables

SYNOPSIS

#include <unistd.h>

long pathconf (path, name)

char «path;

int name;

long fpathconf (fildes, name)

int fildes, name;

where:

path The name of a pointer to the pathname of a file or directory

name The variable to be queried relative to the file or directory

filedes An open file descriptor

DESCRIPTION

2-218

The pathconf() and fpathconf() functions provide a method for the application

to determine the current value of a configurable limit or option (variable) that is asso-

ciated with a file or directory.

The implementation shall support all of the variables listed in the table "Configurable

Pathname Variables” and may support others. The variables in the table come from

<limits.h> or <unistd.h> and the symbolic constants, defined in <unistd.h>,

that are the corresponding values. used for name.

Configurable Pathname Variables

Variable name Value Notes

- {LINK_MAX} {_PC_LINK_MAX} 1

{MAX_CANON} . {_PC_MAX_CANON} 2

{MAX_INPUT} {_PC_MAX_INPUT} 2
{NAME_MAX} {_PC_NAME_MAX} 3, 4

{PATH.MAX} {_PC_PATH MAX} 4,5

{PIPE_BUF} {_PC_PIPE_BUF} 6

{_POSIX_CHOWN_RESTRICTED} {-PC.CHOWN_RESTRICTED} 7

{_POSIX_NO_TRUNC} {_PC_NO_TRUNC} : 3,4
{_POSIX_VDISABLE} {_PC_VDISABLE} 2

The following notes apply to the entries in the table:

1. If path or fildes refers to a directory, the value returned applies to the direc-

tory itself.

2. The behavior is undefined if path or fildes does not refer to a terminal file.

3. If path or fildes refers to a directory, the value returned applies to the

filenames within the directory.

4. The behavior is undefined if path or fildes does not refer to a directory.

If path or fildes refers to a directory, the value returned is the maximum

length of a relative pathname when the specified directory is the working

directory.

6. If path refers to a FIFO, or filedes refers to a pipe or FIFO, the value

returned applies to the referenced object itself. If path or fildes refers to a

Licensed material—property of copyright holder(s) 093-701055

pathconf(2) DG/UX §.4 pathconf(2)

directory, the value returned applies to any FIFOs that exist or can be created

within the directory. If path or fildes refer to any other. type of file, the

behavior is undefined.

7. If path or fildes refer to a directory, the value returned applies to any files

defined in this standard, other than directories, that exist or can be created

within the directory.

RETURN VALUE

If name is an invalid value, the pathconf() and fpathconf() functions shall return
—1.

If the variable corresponding to name has no limit for the path or file descriptor, the

pathconf() and fpathconf() functions shall return ~1 without changing errno.

If the implementation needs to use path to determine the value of name and the

implementation does not support the association of name with the file specified by

path, or if the process did not have the appropriate privileges to query the file speci-

fied by path, or path does not exist, the pathconf() function shall return -1.

If the implementation needs to use fildes to determine the value of name and the

implementation does not support the association of name with the file specified by

fildes, or if fildes is an invalid file descriptor, the fpathconf() function shall return

-1.

Otherwise, the pathconf() and fpathconf() functions return the current variable

value for the file or directory without changing errno. The value returned shall not

be more restrictive than the corresponding value described to the application when it

was compiled with the implementation’s <limits.h> or <unistd.h>.

DIAGNOSTICS

If any of the following conditions occur, the pathconf() and fpathconf() func-
tions shall return -1 and set errno to the corresponding value:

EINVAL The value of name is invalid.

For each of the following conditions, if the condition is detected, the pathconf()

function shall return -1 and set errno to the corresponding value:

EACCES Search permission is denied for a component of the path prefix.

EINVAL . The implementation does not support an association of the vari-
able name with the specified file.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or a |
pathname component is longer than {NAME_MAX} while

{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist or the path argument points to an

| empty string.

ENOTDIR A component of the path prefix is not a directory.

For each of the following conditions, if the condition is detected, the fpathconf QO

function shall return -1 and set errno to the corresponding value:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The implementation does not support an association of the vari-

| able name with the specified file.

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating

093-701055 Licensed material—property of copyright holder(s) 2-219

pathconf(2) DG/UX 8.4 pathconf(2)

System Interface for Computer Environment, copyright © 1988 by the Institute of

Electrical and Electronics Engineers, Inc., with the permission of the IEEE Stan-

dards Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

STANDARDS

In addition to the configurable pathname variables listed above, the following vari-

ables are defined in <sys/m88kbces.h)>:

_~PC_BLKSIZE Get optimum block size (in bytes) for I/O operations on the
file, or 0 if such information is not available.

SEE ALSO

sysconf(2).

2-220 Licensed material—property of copyright hoider(s) 083-701055

pause (2) DG/UX 5.4 pause (2)

NAME

pause — suspend process until a signal is caught

SYNOPSIS

int pause(void)

DESCRIPTION

Pause suspends the calling process until it is presented with a signal. The signal must

be one that is not currently set to be ignored by the calling process.

Neither the presentation of signals that are ignored, nor the presentation of signals

that cause the termination of the calling process, nor the existence of pended signals

Cause pause to return.

When the signal is caught by the calling process and control is returned from the sig-

nal handler, pause returns.

ACCESS CONTROL
None.

RETURN VALUE

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to the following error code:

EINTR A Signal interrupted the pause operation.

SEE ALSO

alarm(2), kill(2), signal(2), wait(2).

STANDARDS

When using m88kbes as the Software Development Environment target, the pause

function will be emulated using BCS system calls. Since this is an emulation requir-

ing several BCS system calls, a slight performance degradation may be noticed in

comparison to using pause in /lib/libc.a.

2-221093-701055 Licensed materiai—property of copyright hoider(s)

pipe (2) DG/UX 5.4 pipe (2)

NAME

pipe — create an interprocess channel

SYNOPSIS

int pipe (fildes)

int fildes(2];

where:

fildes Address of an array of two file descriptors

DESCRIPTION

pipe creates an I/O mechanism called a pipe and returns two file descriptors,

fildes(0} and fildes{1]. The files associated with fildes[0) and fildes{1] are streams

and are both opened for reading and writing. The O_NDELAY and O_NONBLOCK flags

are cleared.

A read from fildes[0} accesses the data written to fildes[1] on a first-in-first-out

(FIFO) basis and a read from fildes[1] accesses the data written to fildes[0} also on

a FIFO basis.

The FD_CLOEXEC flag will be clear on both file descriptors.

If the process exceeds its limit for open files, the call will fail.

Pipes exist in the channel store, but not in the file name store or the flat file store.

Pipes have no file attributes except time-last-accessed, time-last-changed, time-last-

modified, and size.

ACCESS CONTROL

None.

RETURN VALUE .

0 The pipe was successfully created.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT The fildes{] buffer is an invalid area of the process’s address space.

EMFILE Pipe will fail if NOFILE~-1 or more file descriptors are currently

open.

ENFILE The system file table is full.

SEE ALSO

sh(1), fork(2), read(2), readv(2), write(2), writev(2).

. 2-222 Licensed material—property of copyright holder(s) 093-701055

plock(2) DG/UX 5.4 | plock(2)

NAME

plock - lock data, text, or both into memory

SYNOPSIS

#include <sys/lock.h>

int plock(int command);

where:

command The specific operation to be performed

DESCRIPTION

The behavior of this call is implementation dependent. Its only effects are on perfor-

mance, both of the process and of the system.

The plock() function allows the calling process to lock its text segment, its data

segment, or both into primary memory. Locking a segment via plock() has no real

_ effect in this implementation. True memory locking support is available via the .

mementl(2) page locking operations.

The semantics of plock depend upon the value of command as follows:

TXTLOCK Lock text segment into memory. An error is returned and no change is

made if the text segment is already locked.

DATLOCK Lock data segment into memory. An error is returned and no change is

made if the data segment is already locked.

PROCLOCK Lock text and data segments into memory. An error is returned and no

change is made if either the text or data segments are already locked.

UNLOCK Remove locks. This single operation unlocks all currently locked seg-

ments — text, data, or both. An error is returned and no change is made

if neither text nor data is locked.

Note that a TXTLOCK and a DATLOCK operation, in either order, are equivalent to a

PROCLOCK operation.

Locks are not inherited across a fork(2) or vfork(2). _

ACCESS CONTROL

The effective user id of the calling process must be superuser.

RETURN VALUE

Upon successful completion, plock() returns a value of 0. Otherwise, it returns the

value -1, and sets errno to indicate an error.

DIAGNOSTICS

Under the following conditions, plock() fails and sets errno to:

EPERM if the effective user id of the calling process 1s not superuser.

EINVAL if command is not a valid command.

EINVAL if TXTLOCK is specified and a text lock already exists on the calling

process.

EINVAL if DATLOCK is specified and a data lock already exists on the calling

process.

EINVAL if PROCLOCK is specified and a text lock or a data lock already exists

on the calling process.

EINVAL if UNLOCK is specified and neither a text nor a data lock exists on the

calling process.

093-701055 Licensed material—property of copyright holder(s) 2-223

plock(2) DG/UX 5.4 plock(2)

SEE ALSO

mement1(2).

2-224 Licensed materiat—property of copyright holder(s) 093-701055

poll(2) DG/UX 5.4 poll(2)

NAME

poll — input/output multiplexing

SYNOPSIS

#include <poll.h>

#include <stropts.h>

int poll (poll_descriptor.array, array_size, timeout)

struct pollfd poll_descriptor_array(];

unsigned long array_size;

int fmmeout;

where:

poll_descriptor.array An array of pollfd structures describing the files and condi-

tions to be checked. On output, the conditions that are actu-

ally true are filled in.

array_size The number of entries in the array

timeout A value specifying the timeout interval

DESCRIPTION

poll provides users with a mechanism for multiplexing input/output over a set of file

descriptors that reference open files. poll identifies those files on which a user can

read or write data, or on which certain events have occurred.

poll_descriptor_array specifies the file descriptors to be examined and the events of

interest for each file descriptor. It is a pointer to an array with one element for each

open file descriptor of interest. The array’s elements are pollfd structures, which

contain the following members:

fd A file descriptor to an open file.

events A flag word describing the conditions for which the stream is being

checked.

revents Ignored on input. On output, this flag word reports the conditions that
have been true at some time since the start of the system call.

fd specifies an open file descriptor and events and revents are bitmasks con-

structed by an OR of any combination of the following event flags:

POLLIN Data other than high priority data may be read without block-

ing. For STREAMS, this flag is set even if the message is of

zero length.

POLLRDNORM Normal data (priority band = 0) may be read without block-

ing. For STREAMS, this flag is set even if the message is of

zero length. :

POLLRDBAND Data from a non-zero priority band may be read without

blocking. For STREAMS, this flag is set even if the message

is of zero length.

POLLPRI High priority data may be received without blocking. For

STREAMS, this flag is set even if the message is of zero

length.

POLLOUT Normal data may be written without blocking.

POLLWRNORM The same as POLLOUT.

093-701055 Licensed material—property of copyright holder(s) 2-225

poli(2) OG/UX 5.4 poll(2)

POLLWRBAND Priority data (priority band > 0) may be written. This event
only examines bands that have been written to at least once.

POLLMSG An M_SIG or M_PCSIG message containing the SIGPOLL

signal has reached the front of the stream head read queue.

POLLERR An error has occured on the device or stream. This flag is

only valid in the revents bitmask; it is not used in the

events field. |

POLLHUP A hangup has occurred on the stream. This event and POL-

LOUT are mutually exclusive; a stream can never be writable if

a hangup has occurred. However, this event and POLLIN,

POLLRDNORM, POLLRDBAND, or POLLPRI are not mutually

exclusive. This flag is only valid in the revents bitmask; it

is not used in the events field.

POLLNVAL The specified fd value does not belong to an open file. This

flag is only valid in the revents field; it is not used in the

events field.

For each element of the array pointed to by poll_descriptor_array, poll examines the

given file descriptor for the event(s) specified in events. The number of file

descriptors to be examined is specified by array_size.

If the value fd is less than zero, events is ignored and revents Is set to 0 in that

entry on return from poll.

The results of the poll query are stored in the revents field in the pollfd struc-

ture. Bits are set in the revents bitmask to indicate which of the requested events

are true. If none are true, none of the specified bits are set in revents when the

poll call returns. The event flags POLLHUP, POLLERR, and POLLNVAL are always

setin revents if the conditions they indicate are true; this occurs even though these

flags were not present in events. Note that the remaining conditions are not

guaranteed to be true when the system call returns. All of those conditions that have

been true since the start of the call are reported.

If none of the defined events have occurred on any selected file descriptor, poll

waits at least fimeout milliseconds for an event to occur on any of the selected file

descriptors. Ifthe value nmeour is 0, poll returns immediately. If the value of

timeout is INFTIM (or -1), poll blocks until a requested event occurs or until the

call is interrupted. poll is not affected by the O_NDELAY and O_NONBLOCK flags.

Poll does not wait for the full timout interval to elapse if one of the reportable con-

ditions becomes true.

ACCESS CONTROL

None.

RETURN VALUE

0 Poll timed out and none of the reportable conditions are true on the

streams of interest.

1 ... array_size The number of streams for which one or more conditions are

reported.

-1 The poll failed. errno indicates the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

Licensed material—property of copyright nolderis) 093-701055

poll(2)

EAGAIN

EFAULT

EINTR

EINVAL

SEE ALSO

getmsg(2), putmsg(2), select(2).

093-701055

OG/UX 5.4 poll(2)

Memory was not available to do the poll.

The poll descriptor array did not lie entirely within the caller’s read-

able and writable address space.

A signal was caught during the poll call.

array_size is less than zero or greater than the configured number of

file descriptors.

Licensed material—property of copyright hoider(s) 2-221

profil(2)

NAME

DOG/UX 5.4 profil(2)

profil - set up execution time profiling for a process

SYNOPSIS

#include <unistd.h>

void profil (buff, bufsiz, offset, scale)

short * buff;

int bufsiz;

void (* offset)();

int — scale;

where:

buff A pointer to the profiling buffer, an array of bytes in the user’s address
space

bufsiz The number of bytes in the profiling buffer

offset The offset by which the profiling program counter (PC) is adjusted before
being multiplied by scale

scale A value by which the PC is multiplied before indexing into the buffer array

DESCRIPTION

After the profil call, the user’s program counter (PC) is examined at each clock

tick. The value of offset is subtracted from the PC, and the result is multiplied by

scale. If the resulting number corresponds to an entry in buff, that entry is incre-

mented. An entry is defined as a series of bytes with length equal to

sizeof(short).

Scale is interpreted as an unsigned, fixed-point number with the binary point 16 bits

from the right. For a machine whose instructions are 32 bits in size, such as the

MC88000, 0x8000 gives a 1-1 mapping of instructions to entries in buff; 0x4000 maps

each pair of instructions together, etc.

Profiling is turned off by giving a scale of O or 1. It is rendered ineffective by giving a

bufsiz of 0. Profiling is turned off when you call exec(2) but remains on in both the

child and parent after a call to fork(2). Profiling will be turned off if an update in

buff would cause a memory fault.

RETURN VALUE

None.

DIAGNOSTICS

None.

SEE ALSO

2-228

exec(2).

Licensed material—property of copyright holder(s) 093-701055

ptrace(2) DG/UX 5.4 ptrace(2)

NAME

ptrace -— process trace

SYNOPSIS

#include <unistd.h>

#include <sys/types.h>

int ptrace (request, pid, address, data)

int request;

pid t pid;

int address ;

int data;

where:

request + Process trace command

pid Process being traced (used only if request is 1-8)

address Optional address argument (used only if request is 1-7)

data Optional data argument (used only if request is 4-7)

DESCRIPTION

Ptrace lets a process (debugger process) control the execution of another process

(target process). Its primary use is to implement breakpoint debugging; see sdb(1)

and dbx(1). The target process behaves normally until it encounters a signal (see

sys/signal.h for the list) or until it exits; it then stops for tracing and its debugger

process is notified via wait. (A signal that is blocked does not cause the process to

stop for tracing until it is unblocked.) When the target process is stopped, its

debugger process can examine and modify its core image using ptrace. Also, the

debugger process can cause the target process either to terminate or continue, with

the possibility of ignoring the signal that caused it to stop. If the debugger process

terminates while tracing a target, the target will be sent a SIGKILL signal. While a

process is being traced via ptrace(2), job control stop signals are ignored.

_ The normal sequence of events required to trace a child process is as follows:

1. The child process is created by the fork operation.

2. The child process performs a ptrace operation with request set to 0.

3. The child’s address space is changed by the exec operation. This causes the

child to be stopped before executing the first instruction of the new image as

if the signal SIGTRAP had occurred.

4. The parent process waits for the child to stop using a wait operation.

5. The parent may now cause the child to continue execution using ptrace with
request set to 7.

The normal sequence of events required to trace a non-child process is as follows:

1. The controlling process is created by the fork operation.

2. The controlling process performs a ptrace operation with request set to 128.

If the target process is stopped due to a job control signal (e.g., SIGSTOP) at

the time request 128 is issued, the ptrace call will complete normally but

tracing does not actually occur until the target process leaves the stopped

State (due to a signal that continues or terminates it).

3. The controlling process waits for the target process to stop using a wait opera-

tion.

- 093-701055 Licensed material—property of copyright holder's) 2-229

ptrace (2) DG/UX 5.4 . ptrace(2)

The controlling process may now cause the target process to continue execu-

tion using ptrace with request set to 7.

The request argument determines the precise action to be taken by ptrace and is

one of the following:

0 The child process must issue this request if it is to be traced by its parent. It

turns on the child’s trace flag that stipulates that the child should be left in a

stopped state upon receipt of a signal rather than the state specified by its sig-

nal handler. The pid, address, and data arguments are ignored, and a return

value is not defined for this request. (Unexpected results may ensue if the

parent does not expect to trace the child. The parent may not cause the child

to continue after a signal, and the child will be terminated if the parent ter-

minates.)

The other requests can be used only by the controlling process. For each, pid is the

process id of the target, and address is a user address. The offset is a word address.

' The target must have stopped for tracing before these requests are made otherwise,

the error condition ESRCH is asserted.

lor2

4or5

2-230

With these requests, the word at location address in the address space of the

target is returned to the controlling process. The data argument is ignored.

These two requests will fail if address is not a valid word pointer, in which

case the error condition EIO is asserted and a -1 is returned.

With this request, information about the target process stored in the kernel

address space is made available to the controlling process. This information

is referenced by addr which is interpreted as a word offset into a synthetic

ptrace_user Structure (see sys/user.h). The data argument is ignored.

The request will fail if addr is not a relative word offset within the

ptrace_user structure or if addr is not a valid word * offset, in which case

the error condition EIO is asserted and a -1 is returned.

With these requests, the 32-bit value given by the data argument is written

into the address space of the target at location address. Upon successful

completion, the value is returned to the controller. These two requests will

fail if address is a location in a pure procedure space and another process is

executing in that space, or if address is not a valid word pointer. Upon

failure the error condition EIO is asserted and a —1 is returned. Upon suc-

cessful completion, the value written into the address space will be returned.

With this request, information about the target process stored in the kernel

may be changed. This is similar to request 3 above, but only a few entries in

the ptrace_user structure may be changed (see sys/user.h). Data gives

the value that is to be written and address is the word offset of the entry.

This request causes the target to resume execution. If the data argument is a

valid signal number, the target resumes execution as if it had incurred that sig-

nal, and any other pending signals are cancelled. The address argument must

be equal to 1 for this request. Upon successful completion, the value of data

is returned to the controlling process. This request will fail if data is not 0 or

a valid signal number, in which case the error condition is asserted and a -1

is returned.

This request causes the target to terminate with the same consequences as

exit, except that the target does not stop for tracing again as part of exiting.

Single step through the instructions in the target process.

Licensed materiat—property of copyright holderts) 093-701055

ptrace (2) DG/UX 5.4 ptrace(2)

128 The controlling process initiates a debugging session with an existing process

whose process id is pid.

129 The controlling process terminates a debugging session with a given process.

If addr is not 1, it becomes the new program counter of the (ex)target pro-
cess.

130 Any forked children of the target process will inherit their parent’s debugger

and trace state.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent

exec calls. If a traced process calls exec, it will stop before executing the first

instruction of the new image showing signal SIGTRAP.

ACCESS CONTROL

None.

RETURN VALUE

For request values of 0, 6, 8, 128, 129, or 130, the following values are returned:

0 The particular request was successful.

-1 An error occurred. errno is Set to indicate the error.

For request values of 1, 2, or 3, the following values are returned:

value The 32-bit value read from the given target address. This value may be -1.

-1 An error occurred. errno is set to indicate the error.

For request values of 4, 5, 7, or 9, the following values are returned:

data The value of data is returned.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EIO Request is an illegal number.

ESRCH pid identifies a child that does not exist or has not executed a

ptrace with request 0.

SEE ALSO

093-701055

exec(2), signal(2), wait(2).

2-231Licensed material—preperty of copyright holder(s)

putmsg(2) DG/UX 5.4 putmsg(2)

NAME

putmsg, putpmsg — pass a message down a stream

SYNOPSIS

#include <stropts.h>

int putmsg(filedes, control_info_ptr, data_info_ptr, flags)

int filedes;

struct strbuf * control_info_ptr;

struct strbuf * data_info_ptr;

int flags;

int putpmsg(filedes, control_info_ptr, data_info_ptr, band, flags)

int filedes; |

struct strbuf * control_info_ptr;

struct strbuf * data_info_ptr;

int band;

int flags;

where:

filedes | A valid, active descriptor referring to an open streams file

control_info_ptr. A pointer to a structure describing the control buffer or NULL,

if there is no control buffer

data_info_ptr A pointer to a structure describing the data buffer or NULL, if

there 1s no data buffer

band The priority band the message is to be sent in.

flags Indicates the type of message to be sent.

DESCRIPTION

putmsg creates a message from user-specified buffer(s) and sends the message to a

STREAMS file. The message may contain either a data part, a control part, or both.

The data and control parts to be sent are distinguished by placement in separate

buffers, as described below. The semantics of each part is defined by the STREAMS
module that receives the message.

The function pytpmsg does the same thing as putmsg, but provides the user the

ability to send messages in different priority bands. Except where noted, all informa-

tion pertaining to putmsg also pertains to putpmsg.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each point

to a strbuf structure, which contains the following members:

buf Pointer to the first byte of the control or data information.

len The number of bytes of information in the buffer.

maxlen Ignored [see getmsg(2)].

To send the data part of a message, data_info_ptr must not be NULL and the len

field of data_info_ptr must have a value of 0 or greater. To send the control part of a

message, the corresponding values must be set for control_info_ptr. No data (control)

part is sent if either data_info_ptr (control_info_ptr) is NULL or the len field of

data_info_ptr (control_info_prr) is set to -1.

For putmsg(), if a control part is specified, and flags is set to RS_HIPRI, a high

priority message is sent. If no control part is specified, and flags is set to RS_HIPRI,

putmsg fails and sets errno to EINVAL. If flags is set to 0, a normal (non-priority)

2-232 Licensed materiat—property of copyright holder(s) 093-701055

putmsg(2) DG/UX 5.4 . putmsg(2)

message is sent. If no control part and no data part are specified, and flags is set to

0, no message is sent, and 0 is returned.

The stream head guarantees that the control part of a message generated by putmsg
is at least 64 bytes in length.

For putpmsg, the flags are different. flags is a bitmask with the following mutually-

exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to0, putpmsg

fails and sets errno to EINVAL. Ifa control part is specified and flags is set to

MSG_HIPRI and band is set to 0, a high-priority message is sent. If flags is set to

MSG_HIPRI and either no control part is specified or band is set to a non-zero value,

putpmsg() fails and sets errno to EINVAL. If flags is set to MSG_BAND, then a

message is sent in the priority band specified by band. If a control part and data part

are not specified and flags is set to MSG_BAND, no message is sent and 0 is returned.

Normally, putmsg() will block if the stream write queue is full due to internal flow

control conditions. For high-priority messages, putmsg() does not block on this con-

dition. For other messages, putmsg() does not block when the write queue is full

and O_NDELAY or O_NONBLOCK is set. Instead, it fails and sets errno to EAGAIN.

putmsg or putpmsg also block, unless prevented by lack of internal resources, wait-

ing for the availability of message blocks in the stream, regardless of priority or

whether O_NDELAY or O_NONBLOCK has been specified. No partial message is sent.

ACCESS CONTROL.

Fildes must be open for writing.

RETURN VALUE

0 The message was successfully sent.

-1 The message was not sent. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EAGAIN The O.NDELAY or O.NONBLOCK flag was set, a non-priority mes-

sage was specified, and the stream write queue is full due to internal

flow control conditions; or streams buffers could not be allocated for

the message.

EBADF Fildes is not a valid, active descriptor open for writing.

EFAULT The arguments pointed to by control_info_ptr, or data_info_ptr do not

lie entirely within the caller’s readable address space.

EINTR A signal was caught during the putmsg call.

EINVAL An illegal value was specified by flags or flags was RS_HIPRI and

there was no control part of the message; or the stream referred to by

fildes is linked under a multiplexor.

ENXIO A hangup condition was generated downstream for the specified

stream.

ERANGE The size of the data part of the message does not fall within the range

specified by the minimum and maximum packet sizes of the write side

of the topmost module on the stream; or the control or data part of

_ the message exceeded the configured maximum for that part of a mes-

sage.

ENOSR If a stream is not associated with filedes.

093-701055 Licensed material-property of copyright hoider(s) 2-233

putmsg(2) DG/UX 5.4 putmsg(2)

SEE ALSO

getmsg(2), poll(2).

NOTE

The user should avoid using 0_NDELAY and instead should use O_NONBLOCK.

2-234 Licensed material—property of copyright hoider(s) 093-701055

read(2) DG/UX 5.4 | read(2)

NAME

read — read from an object

SYNOPSIS

int read (fildes, buffer, nbyte)

int fildes;

char buffer();

unsigned nbyte;

where:

fildes An active, valid file descriptor.

buffer User data buffer.

nbyte Size (in bytes) of the user data buffer.

DESCRIPTION

Read transfers nbyte bytes of data from the object associated with fildes into the

buffer pointed to by buffer.

If fildes refers to an object pointer having a current position attribute, the read starts

at a position in the object given by that attribute. If the current position refers to a

part of a file that has never been written (i.e., a part of a file that was created by

seeking past the end of the file) then the value of the data is all zeros.

If the object pointer has no position attribute, then the starting read position depends

on the type of object being read.

The behavior of the read call is affected by the object attribute flag O.LNDELAY

(see open(2)) associated with fildes.

If the O_NDELAY flag is set and fildes refers to a file that has mandatory record

locking enabled and is currently write locked, the call returns -1 and errno is set to

EAGAIN. If O.NDELAY is clear, the call blocks until the appropriate lock is

removed or the call is interrupted by a signal.

When attempting to read from an empty pipe (or fifo) the following will occur: If no

process has the pipe open for writing, 0 is returned to indicate end-of-file. If some

process has the pipe open for writing, and O.LNDELAY is set, 0 is returned. If some

process has the pipe open for writing, and OLNONBLOCK is set, -1 is returned and

errno is set to EAGAIN. If some process has the pipe open for writing, and

O_NDELAY is clear, the call will block until some data is written or the pipe is

closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a character special file that has no data

currently available the following will occur: If O.NDELAY is set, -1 is returned and

errno is set to EAGAIN. If O.NDELAY is clear, the call will block until some

data becomes available.

A read from a STREAMS [see intro(2)] file can operate in three different modes:

byte-stream mode, message-nondiscard mode, and message-discard mode. The

default is byte-stream mode. This can be changed using the I_SRDOPT ioct1(2)

request [see streamio(7)], and can be tested with the I_GRDOPT ioct1(2) request.

In byte-stream mode, read usually retrieve data from the stream until they have

retrieved nbyte bytes, or until there is no more data to be retrieved. Byte-stream

mode usually ignores message boundaries.

In STREAMS message-nondiscard mode, read retrieves data until they have read

nbyte bytes, or until they reach a message boundary. If read does not retrieve al]

the data in a message, the remaining data is replaced on the stream and can be

* 093-701055 Licensed material—property of copyright holder(s) 2-235

read(2) DG/UX 5.4 read(2)

retrieved by the next read call. Message-discard mode also retrieves data until it has

retrieved nbyre bytes, or it reaches a message boundary. However, unread data

remaining in a message after the read returns is discarded, and is not available for a

subsequent read or getmsg [see getmsg(2)].

When reading from a STREAMS file, handling of zero-byte messages is determined by

the current read mode setting. In byte-stream mode, read accepts data until it has

read nbyte bytes, or until there is no more data to read, or until a zero-byte message

block is encountered. read then returns the number of bytes read, and places the

zero-byte message back on the stream to be retrieved by the next read or getmsg

[see getmsg(2)]. In the two other modes, a zero-byte message returns a value of 0

and the message is removed from the stream. When a zero-byte message is read as

the first message on a stream, a value of 0 is returned regardless of the read mode.

A read from a STREAMS file returns the data in the message at the front of the

stream head read queue, regardless of the priority band of the message.

' Normally, a read from a STREAMS file can only process messages with data and

without control information. The read fails if a message containing control informa-

tion is encountered at the stream head. This default action can be changed by placing

the stream in either control-data mode or control-discard mode with the I_SRDOPT

ioctl(2). In control-data mode, control messages are converted to data messages by

read. In control-discard mode, contro] messages are discarded by read, but any

data associated with the control messages is returned to the user.

When read completes, the position attribute, if it exists, is incremented by the

number of bytes actually read. The access time for the file is updated to reflect the

time the read occurred, unless the file resides on a read-only file system.

If an error occurs, the contents of buffer and any changes to the object associated

with fildes are defined by the object’s type. The default situation is that buffer and

the object associated with fildes are unchanged. This may not be the case for some

errors on some types of objects.

ACCESS CONTROL

Fildes must be open for reading.

RETURN VALUE

0. .nbyte Completed successfully. The number of bytes actually read is

returned. The value 0 indicates the ‘end-of-file’ condition.

-1] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

2-236

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid file descriptor open for reading.

EAGAIN O_NDELAY is set on the I/O channel and there is a mandatory lock

on the file owned by a different process.

EAGAIN A read was attempted on an empty pipe that another process has

open for writing.

EAGAIN A read was attempted on an I/O channel that had OLNDELAY set,

but there was no data ready to be read at the time of the call.

EFAULT Buffer points outside the allocated address space.

EINTR A signal was caught during the system call.

Licensed material—property of copyright holder(s) 093-701055

read(2) OG/UX 5.4 read(2)

EDEADLK fildes refers to a file that has mandatory record locking enabled and
the read would produce a deadlock condition. See lockf(2) for a

discussion of deadlock conditions.

SEE ALSO

creat(2), dup(2), dup2(2), fentl(2), ioct1(2), open(2), pipe(2), readv(2),

select(2), socket(2), socketpair(2), termio(7).

093-701055 Licensed materiai—property of copyright hoider(s) 2-237

readlink(2) DG/UX 5.4 readiink(2)

NAME

readlink -— read the contents of a symbolic link

SYNOPSIS

#include <unistd.h>

int readlink (path, buffer, nbyte)

char * path;

char * buffer;

int nbyte;

where: |

path Address of a pathname naming a symbolic link

buffer User data buffer

nbyte Size (in bytes) of the user data buffer

DESCRIPTION

Readlink reads at most the first nbyres of the symbolic link file into the buffer

pointed to by buffer. The last component of path is a symbolic link file, and the path-

name resolution does not follow the symbolic link.

A terminating null character is not added to the end of the link contents (or to the

end of the buffer, should the buffer size be less than the size of the symbolic link

file). Hence, readlink’s return value, the number of characters placed in the buffer,

is the only clue the process has to how much of buffer contains valid data.

If readlink fails, the contents of the buffer are undefined.

ACCESS CONTROL

The calling process must have permission to resolve path.

RETURN VALUE

nbyte Completed successfully. The number of characters placed in the

buffer is returned. No determination can be made as to whether the

entire contents of the symbolic link file have been read.

0..nbyte—1 Completed successfully. The number of characters placed in the
buffer is returned. | .

-1 ,An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT Buffer extends outside the process’s allocated address space.

ENOENT The named file does not exist.

EINVAL The named file is not a symbolic link.

EPERM Permission to read the symbolic link is denied to the calling
process.

ENOENT | The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

2-238 Licensed material—property of copyright hoider(s) 093-701055

readiink(2) DG/UX5.4 readlink(2)

ENAMETOOLONG A component of the pathname exceeds the length limit for
filenames. |

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

set.

SEE ALSO

lstat(2), stat(2), symlink(2).

093-701055 Licensed material—property of copyright holder(s) 2-239

readv(2)

NAME

SYNOP

| DG/UX 5.4 readv(2)

readv — read from file

SIS

#include <sys/types.h>

#include <sys/uio.h>

int readv (fildes, iov, iovent)

int _fildes;

struct iovec iov[];

int lovent;

where:

fildes An active, valid file descriptor

lov An array of extents

iovent | The number of extents given

DESCRIPTION

Readv transfers data from the object associated with fildes into the iovent buffers

specified by the members of iov[]: iov[0], iov[1], ..., lov [iovent-1]. Each iov[]

member specifies the base address and length of an area in memory where data

should be placed. Readv fills an area completely before proceeding to the next.

The jov structure is defined as:

struct iovec [{

caddr_t iov_base;

int iov_len;

};

Iovent must be a positive number less than or equal to a system-imposed limit

guaranteed to be at least MAXIOVCNT. The length of each extent (iov_len) in iov[]

must be non-negative and the sum of these lengths must not overflow a ‘long’.

Except for the disposition of the data, readv is equivalent to read.

ACCESS CONTROL

Fildes must be open for reading.

RETURN VALUE

Q..nbyte Completed successfully. The number of bytes actually read is returned.

The value 0 indicates the ‘end-of-file’ condition. Here, nbyte is the sum of

the lengths of the iovent extents given in icv{].

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

2-240

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid file descriptor open for reading.

EAGAIN O_NDELAY is set on the I/O channel and there is a mandatory lock

on the file owned by a different process.

EAGAIN A read was attempted on an empty pipe that another process has

open for writing.

EAGAIN A read was attempted on an I/O channel that had OLNDELAY set,

but there was no data ready to be read at the time of the call.

EFAULT Iov points outside the allocated address space.

Licensed material—property of copyright holder(s) 093-701055

readyv(2) DG/UX 5.4 | readv(2)

EFAULT One or more of the iov[] members point outside the allocated
address space.

EINTR A signal was caught during the system call.

EINVAL Tovent was invalid.

EINVAL One or more of the iov_len values in iov[] was negative.

EINVAL The sum of the iov_len values in jov[] overflowed a ‘long’.

SEE ALSO

creat(2), dup(2), dup2(2), fentl(2), ioctl(2), open(2), pipe(2), read(2),

select(2), socket(2), socketpair(2), termio(7).

2-241
. 093-701055 Licensed material—property of copyright hoider(s)

reboot(2) DG/UX 5.4 reboot(2)

NAME

reboot —- reboot halts and optionally reboots the system processor(s)

SYNOPSIS

#include <sys/reboot.h>

int reboot (howto)

int howto;

where:

howto A mask of options specifying the type of shutdown to perform

DESCRIPTION

The reboot system call halts the system processor(s). The howto mask specifies the

type of shutdown to perform. The possible values of howto are:

RB_HALT The processor(s) is (are) simply halted. Use with caution.

'RB_SHUTDOWN _ The system is shut down and the processor(s) is (are) halted.

All user processes are killed, and the buffer cache is flushed.

RB_AUTOBOOT _ The system is shut down and the processor(s) is (are) halted.

_ All user processes are killed, and the buffer cache is flushed.

The system is then rebooted using the current boot path (the

default is the boot path used when the system was last booted).

Use the dg_sysctl1(2) system call to alter the current boot

path.

ACCESS CONTROL

Only the super-user may halt the system processor(s).

RETURN VALUE

If successful, this call never returns. Otherwise, a -1 is returned, and errno is set

to return the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM The caller is not super-user.

EINVAL The option specified in howto was not RB_LHALT or

RB_SHUTDOWN.

SEE ALSO

dg_sysctl(1M), halt(1M), reboot(1M), dg_sysct1(2).

2-242 Licensed material—property of copyright holder(s) 093-701055

recv(2)

NAME

SYNOP

DG/UX 5.4 recv(2)

recv — receive a message from a socket

SIS

#include <sys/socket.h>

int recv (Ss, buf, len, user_flags)

int S;

char * buf;

int len;

int user_flags;

where:

$ File descriptor of socket to receive data from

buf Buffer for data

len Length of buffer for data (bytes)

user_flags _ Flags for transfer

DESCRIPTION

This call can be used only with connected sockets.

If the message is too long to fit in the supplied buffer, excess bytes may be discarded

depending on the type of socket the message is received from; datagram sockets trun-

cate messages, stream sockets don’t preserve packet boundaries so only the amount

of data requested is received with no loss of data.

The user_flags argument is constructed by or-ing zero or more literals beginning with

"MSG_". See <sys/socket.h> for a description of what flags exist and what they

do.

If no messages are available at the socket, the call waits for a message to arrive,

unless the socket is nonblocking [see ioct1(2)]. In that case, an error EAGAIN
will be returned.

The select call may be used to determine when more data arrives.

ACCESS CONTROL

None.

RETURN VALUE

Recv returns the number of bytes received.

O..len Number of bytes transferred.

~1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument 5 is not a socket.

EAGAIN The socket is marked non-blocking and the receive operation

would block.

EINTR The receive was interrupted by delivery of a signal before any

data was available for the receive.

EFAULT The data was specified to be received into a non-existent or

093-701055

protected part of the process address space.

Licensed material—property of copyright holders) 2-243

recv(2) OG/UX 5.4 recv(2)

EINVAL Invalid argument.

ENOTCONN The socket is not connected. Use recvfron(2).

EOPNOTSUPP The flags argument included the MSG_OOB flag applied to a

UDP socket.

SEE ALSO

ioctl(2), read(2), recvfrom(2), select(2), send(2), socket(2).

2-244 Licensed materia—property of copyright holder(s) 093-701055

recvirom(2) DG/UX 5.4 | recvfrom(2)

NAME

recvfrom — receive a message from a socket

SYNOPSIS

#include <sys/socket.h>

int recvfrom (s, buf, len, user_flags, from, fromlen)

int S;

char * buf;

int len;

int user_flags;

struct sockaddr *from;

int * fromlen;

where:

S - File descriptor of socket to receive a message from

buf Buffer for message

len Length of buffer

user_flags Flags for. transfer

from Structure to hold sender’s name

fromlen On input contains the number of bytes available for the sender's

- name; updated to indicate the number of bytes returned

DESCRIPTION

The recvfron call is identical to the recv call with the addition of returning the

name of the socket from which the message was sent. When using recvfrom on

connected sockets, the from and fromlen arguments will be undefined. When reading

from datagram sockets, messages that are longer than the buffer are truncated. See

recv(2) for additional information about the socket receive mechanism.

ACCESS CONTROL

None.

RETURN VALUE

This call returns the number of bytes received.

1..len Number of bytes transferred.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument s is not a socket.

EAGAIN The socket is marked non-blocking and the receive operation would

block.

EINTR The receive was interrupted by delivery of a signal before any data

was available for the receive.

EFAULT The data was specified to be received into a non-existent or protected

part of the process address space.

EINVAL Bad argument.

SEE ALSO

read(2), recv(2), send(2), socket(2).

093-701055 Licensed material—property of copyright holder(s) 2-245

recvmsg(2) — DG/UX 5.4 recvmsg(2)

NAME |

recvmsg — receive a message from a socket

SYNOPSIS

#Hinclude <sys/socket.h>

int recvmsg (Ss, msg, user_fiags)

int 5;

struct msghdr * msg;

int user_flags ;

where:

$ File descriptor of socket to receive from

msg Pointer to receive msg packet

uSer_flags ___- Flags for transfer

DESCRIPTION

The recvmsg call is identical to recv or recvfrom depending on whether or not

the msg_namelen fields are greater than zero. If the msg_namelen field of the

msghdr structure is non-zero, this call is identical to recvfrom, otherwise it is ident-

ical to recv. |

The added value of this call is that it allows an IOV to be supplied in the msg packet

for use of non-contiguous buffers (see readv for more information about IOV struc-

tures).

ACCESS CONTROL

None.

RETURN VALUE

These calls return the number of bytes received.

0..len Number of bytes transferred.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS | |

Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument s is not a socket.

EAGAIN The socket is marked non-blocking and the receive operation would

block.

EINTR The receive was interrupted by delivery of a signal before any data

was available for the receive.

EFAULT The data was specified to be received into a non-existent or protected

part of the process address space.

EMSGSIZE = Too many entries in the iovec array.

SEE ALSO

read(2), readv(2), recvfrom(2), send(2), socket(2).

2-246 Licensed material—property of copyright holder(s) 093-701055

rename (2) OG/UX 5.4 | rename (2)

NAME

rename — change the name of a file

SYNOPSIS

int rename (old_path, new_path)

char * old_path;

char * new_path;

where:

old_path Address of the pathname of the file being renamed

new_path Address of file’s new pathname

DESCRIPTION

Old_path points to a pathname naming an existing file that will be called the source

file. New_path points to a pathname naming a target file that may or may not exist.

If the target exists, it must be the same type as the source file. In either case, the

source and target must reside on the same file system device. ’.’ and ’..’ cannot be

renamed. Terminal symbolic links for either pathname are not followed.

If both files are directories, old_path must not be an ancestor of new_path. This

prevents the rename operation from orphaning everything in the file hierarchy below

old_path. If new_path is an existing directory, it must contain no entries but ’.’ and

’..”, and the only links to it should be its ’.’ entry and its entry in its parent.

The link between the pathname old_path and the source file is deleted, though there

may be other links to the source file. If the target file exists, the link between

new_path and the target is also deleted. Lastly, a link between the pathname

new_path and the source file is created. This sequence of events is described in more

detail below:

If new_path does not exist in the filename store, a link for it is created in the direc-

tory indicated by the path prefix of new_parh. The link is made to refer to the same

entity in the filesystem that old_path refers to.

_If new_path already exists in the filename store, the link in its containing directory is

changed to refer to the same entity in the filesystem that old_path refers to. If this

change deletes the last link to the file formerly referred to by new_path, that file is

deleted.

Old_path is removed from the filename store.

The attributes of the files involved change as follows:

e Source File — The time of last attribute change (st_ctime) is set to the current
time. 7

e Target File (if it existed and was not deleted) - The number of links

(st_nlink) is decremented. The time of last attribute change (st_ctime) is set

to the current time.

e Containing Directory of Source File - The time last modified (st_mtime) and

time of last attribute change (st_ctime) are set to the current time. If rename

is operating on directories and either the target file existed or the parent of

the target file differs from the parent of the source file, the number of links

(st_nlink) is decremented. The file size (st_size) is updated to reflect the

deletion of the entry for old_path and possibly, the addition of an entry for

new_path.

e Containing Directory of Target File (assuming it differs from the containing
directory of the source file) — If rename is operating on directories and the

093-701055 Licensed material—property of copyright holders) 2-247

rename (2) OG/UX 5.4 rename (2)

target file didn’t exist, the number of links (st_nlink) is incremented and the

time of last attribute change (st_ctime) is set to the current time. (This

reflects that the ’..’ of the source is set to a new directory, namely, what was

the parent of the target file.) The file size (st_size) is updated if the target file

didn’t exist, reflecting the addition of an entry for new_path.

If the call fails, the attributes of all files and directories are unchanged.

ACCESS CONTROL

If the source file is a directory and its parent will change, the calling process must

have write access to the source in order to change its ’..’ entry.

The process must have write permission to the containing directories.

The process must have permission to resolve old_path and new_path.

RETURN VALUE

0 The file was successfully renamed.

-1 An error occurred. errno Is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM --‘The file named by old_path is a directory and the effective user
id is not superuser.

EXDEV The link named by new_path and the file named by old_path are

on different logical devices (file systems). Note that this error

code will not be returned if the implementation permits cross-

device links.

EACCES The requested link requires writing in a directory with a mode

that denies write permission.

EROFS The requested link requires writing in a directory on a read-only

file system device. |

EINVAL The file named by old_path is an ancestor directory of the file

named by new_path.

EINVAL The file named by old_path is ’.’ or’..’.

EISDIR Old_path is a directory and new_path is not.

ENOSPC No more contiguous space for a new directory entry.

EEXIST New_path points to a non-empty directory.

ENOENT Old_path does not exist.

ENOENT A non-terminal component of old_path or new_path does not

exist.

ENOTDIR A non-terminal component of old_path or new_path was not a

directory or symbolic link.

ENAMETOOLONG Old_path or new_path exceeds the length limit for pathnames.

ENAMETOOLONG A component of old_path or new_path exceeds the length limit

ENOMEM

2-248

for filenames.

There are not enough system resources to resolve old_path or

new_path or to expand a symbolic link.

Licensed material—property of copyright holder(s) 093-701055

rename (2) DG/UX 5.4 rename (2)

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM Old_path or new_path contains a character not in the allowed
character set.

EFAULT Old_path or new_path does not completely reside in the

process’s address space or the pathname does not terminate in

the process’s address space.

SEE ALSO

mv(1), mvdir(1M), open(2), stat(5).

093-701055 Licensed material—property of copyright holder(s) 2-249

rmdir(2) DG/UX 5.4 rmdir(2)

NAME

rmdir — remove a directory file

SYNOPSIS

int rmdir (path)

char * path;

where:

path Address of a pathname naming an existing directory

DESCRIPTION

Rmdir removes the directory from the filename store. The directory named cannot

be the calling process’s current working directory or a directory containing a mounted

file system. The directory should have no entries but ’.’ and ’..’, referring to the

directory itself and its parent. There must be exactly two links to the directory — its

own ’.’ and the entry for it in its parent. Note that precluding the removal of the

working directory and non-empty directories ensures that the current root directory

cannot be removed; if the root were empty, it would have to be the current working

directory.

The directory is removed from the filename store by deleting the link to it in its

parent.

The attributes of the parent change as follows: The number of links (st_nlink) is

decremented, reflecting the fact that the ‘..’ of the removed directory will no longer

refer to the parent. The time of last attribute change (st_ctime) is set to the current

time.

The attributes of the directory change as follows: Its size (st_size) and number of

links (st_nlink) are set to 0. The time last modified (st_mtime) and time of last attri-

bute change (st_ctime) are set to the current time.

Some process may have the directory open for reading at the time it is removed.

Upon attempting the next read operation, that process will encounter the end-of-file

condition, as the directory’s size is now zero.

When the last reference to the directory is deleted (examples of references are when
some process has the directory open or it is the working or root directory for a pro-

cess), the directory is removed from the filesystem. .

If the call fails, the directory is not removed, and the attributes of the directory and

its parent are unchanged.

ACCESS CONTROL

The calling process must have write access to the parent of the directory being

removed.

The process must have permission to resolve path.

RETURN VALUE

0 The directory was successfully deleted.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EACCES Write permission is denied on the directory containing the link

to be removed.

ENOTDIR The file to be removed is not a directory.

2-250 Licensed material—property of copyright holder(s) 093-701055

rmdir (2)

EBUSY

EINVAL

EEXIST

EEXIST

EROFS

ENOENT

ENOENT

ENOTDIR

OG/UX 5.4 rmdir (2)

The directory to be removed is currently in use by the system

(as a mount point for a mounted file system device, or mounted

on a remote system).

The directory to be removed is the current working directory.

The named directory contains files other than ".” and *..” in it.

There are not exactly 2 links to the directory.

The directory entry to be removed resides on a file system
mounted read-only.

The file the pathname resolved to does not exist.

A non-terminal component of the pathname does not exist.

A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EPERM

EFAULT

SEE ALSO

mkdir(1), rm(1), rmdir(1), mkdir(2), unlink(2), stat(5).

093-701055

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle
is suspected.

The pathname contains a character not in the allowed character

set.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

Licensed materia!—property of copyright holder(s) 2-251

sbrk(2) — DG/UX 5.4 sbrk(2)

NAME |
sbrk - change data segment space allocation

SYNOPSIS

#include <unistd.h>

void *sbrk(int increment) ;

where:

increment The signed increment by which to change the data area size

DESCRIPTION

The sbrk() system call dynamically changes the amount of space allocated for the

calling process’s data segment; see exec(2). The change is made by adding incre-

ment to the process’s current break value and allocating or deallocating the appropri-

ate amount of space. The break value is the address of the first byte beyond the end

of the data segment. The amount of allocated space increases as the break value

increases. If increment is positive, space is allocated, and any newly allocated pages

will be initialized with zero bytes; that is, if these addresses are read before they are

written, the contents will be zero. If increment is negative, space is deallocated from

the data segment. The contents of the addresses from the new break value to the

prior break value become undefined.

There is a maximum possible break value for a process; this value may be obtained by

calling the ulimit(2) function. There is also a program-dependent minimum break

value for a process; this minimum is greater than or equal to the address of the first

byte in the data segment, and less than or equal to the program’s initial break value.

The sbrk() call will fail without making any change in the allocated space if an error

occurs.

ACCESS CONTROL

No access check is made.

RETURN VALUE 7 7

Upon successful completion, sbrk() returns the previous break value. Otherwise, it

returns the value (void *) -1, and sets errno to indicate an error.

DIAGNOSTICS

Under the following conditions, sbrk() fails and sets errno to:

ENOMEM if the change would allocate more space than is allowed by a system-

imposed maximum (see ulimit(2)).

ENOMEM if the change would allocate more space than is allowed by the

current data resource limit (see getrlimit(2)).

ENOMEM if the change would make the break value greater than or equal to the

start address of an attached shared memory segment (see shmat(2)).

EFAULT if the change would make the break value less than the system-

imposed minimum.

EAGAIN if the change would allocate more space than the available physical

memory and swap space.

EAGAIN if the MCL_FUTURE memory locking option is in effect for the calling

process (see memcnt1l(2)), and the system-imposed limit on space

locked into physical memory would be exceeded.

SEE ALSO

exec(2), getrlimit(2), mementl1(2), ulimit(2).

2-252 Licensed material—property of copyright hoider(s) 093-701055

select(2) DG/UX 5.4 | select(2)

NAME

select - wait for I/O conditions

SYNOPSIS

#include <sys/types.h>

#include <sys/time.h>

int select (nfds, readfds, writefds, exceptfds, timeout)

int nfds;

long * readfds;

long * writefds;

long * exceptfds;

struct timeval *fimeou!;

where:

nfds The range of file descriptors to examine

readfds The address of a bit mask representing file descriptors ready for reading

writefds The address of a bit mask representing file descriptors ready for writing

exceptfds The address of a bit mask representing file descriptors having an exception

timeout Maximum selection duration

DESCRIPTION

Select examines the descriptors specified by the bit masks readfds, writefds, and

exceptfds to see if they are ready for reading, writing, or have an exceptional condi-

tion pending, respectively.

Descriptor f is represented in a bit mask by the value "1<</f". Furthermore, only

descriptors 0 through nfds-1 inclusive are examined.

The timeout parameter specifies a maximum interval to wait for a descriptor to

become ready. If timeour is NULL, select will wait indefinitely. Otherwise, the max-

imum wait time is given by the value of the structure located at timeout.

‘Select returns when either the maximum wait interval has expired or at least one con-

dition for one of the descriptors exists.

Select returns, in place, a mask of descriptors that are ready. The descriptor masks

are only modified if the return value is non-negative.

ACCESS CONTROL

None.

RETURN VALUE

1..3*nfds Completed successfully. The sum of the number of descriptors identified
in each bit mask is returned.

0 Time limit exceeded.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF One of the bit masks specified an invalid descriptor.

EINTR A signal was delivered before any of the selected-for events occurred

and before the time limit expired.

EINVAL nfds==0.

" 993-701055 Licensed material—property of copyright holder(s) 2-253

select(2) DG/UX 5.4 select(2)

SEE ALSO

accept(2), connect(2), read(2), readv(2), recv(2), send(2), write(2), wri-

tev(2).

2-254 Licensed materiai—property of copyright holder(s) 093-701055

semct!(2)

NAME

SYNOP

DG/UX 5.4 semetl(2)

semctl - semaphore control operations

SIS

#include <sys/types.h>

#include <sys/ipe.h>

#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)

int semid ;

int semnum ;

int cmd;

union semun [{

int val;

struct semid_ds «buf;

unsigned short «array;

)arg;

where:

semid A semaphore set identifier

semnum The subject semaphore (used only if cmd is GETVAL, SETVAL,

GETNCNT, GETZCNT or GETPID)

DESCR

093-701055

cmd The semaphore operation to be performed

arg An argument (used only if cmd is SETVAL, GETALL, SETALL,

IPC_STAT, OR IPC_SET)

IPTION

Semctl provides semaphore control operations as specified by cmd. The subject

semaphore set is identified by sermmid. The action taken depends on the value of cmd

as follows:

SETVAL

GETVAL

GETPID

GETNCNT

GETZCNT

SETALL

Set the value of semaphore number seynnum to arg.val.

When this cmd is successfully executed, all processes having a sema-

phore adjustment value corresponding to semaphore number semnum

will have those values set to zero.

If an error occurs, the semaphore set is unchanged.

Return the value of semaphore number semnum.

Return the process id of the last process to perform an operation on

semaphore number semnum.

Return the number of processes waiting for the value of semaphore

number seymum to increase.

Return the number of processes waiting for the value of semaphore

number semnum to become zero.

Set the value of all semaphores in the specified semaphore set to the

values contained in the array pointed to by arg.array.

When this cmd is successfully executed, all processes having a sema-

phore adjustment value corresponding to a semaphore in the specified

semaphore set will have those values set to zero.

If an error occurs, the semaphore set is unchanged.

Licensed material—property of copyright hoider(s) 2-255

semcti(2) | DG/UX 5.4 semcti(2)

GETALL _ Return the value of all semaphores in the specified semaphore set using
the array pointed to by arg.array.

If an error occurs, the contents of arg.array are undefined.

IPC_STAT The current semaphore set attributes are stored in the structure pointed
to by arg. buf.

If an error occurs, the contents of arg. buf are undefined.

IPC_SET The following semaphore set attributes are set to the values found in

the structure pointed to by arg. buf: user id (sem_perm.uid), group id

(sem_perm.gid), and permission rights (in sem_perm.mode).

If an error occurs, the semaphore set remains unchanged. Otherwise,

the last change time (sem_ctime) is set to the current time.

IPC_RMID The semaphore set is destroyed. All resources consumed by the sema-

phore set are freed and the semaphore set identifier is invalidated.

If an error occurs, the semaphore set remains unchanged.

ACCESS CONTROL |

Operation permission depends on the value of cmd as follows:

e If cmd is GETVAL, GETPID, GETNCNT, GETZCNT, GETALL, or

IPC_STAT, the calling process is required to have read access to the sema-

phore set.

e If cmd is SETVAL or SETALL, the calling process is required to have alter

access to the semaphore set.

e If cmd is IPC_SET or IPC_RMID, the effective user id of the calling process

must be equal to the semaphore set’s user id (sem_perm.uid), the semaphore

set creator’s user id (sem_perm.cuid), or that of the superuser.

RETURN VALUE |

The value returned: may be the following regardless of the value of cmd:

-] An error occurred. errno is set to indicate the error.

If cmd is GETVAL, the value returned may be the following:

semaphore_value Completed successfully. The specified semaphore’s value is

returned. |

If cmd is GETPID, the value returned may be the following:

process_id Completed successfully. The process id of the last process to per-

form an operation on the specified semaphore is returned.

If cmd is GETNCNT, the value returned may be the following:

process_id_count Completed successfully. The number of processes waiting for the

value of the specified semaphore to increase is returned.

If cmd is GETZCNT, the value returned may be the following:

process.id.count Completed successfully. The number of processes waiting for the

value of the specified semaphore to become zero is returned.

If cmd is SETVAL, GETALL, SETALL, IPC_STAT, IPC_SET, or IPC_RMID, the

value returned may be the following:

2-256 Licensed material—property of copyright nolder(s) 093-701055

semectl(2) DG/UX 5.4 semecti(2)

0 Completed successfully.

DIAGNOSTICS |

Errno may be set to one of the following error code regardless of the value of cmd:

EINVAL Semid is not a valid semaphore set identifier, or cmd is invalid.

If cmd is GETVAL, GETPID, GETNCNT, or GETZCNT, errno may be set to one

of these values:

EINVAL Semnum is less than zero or greater than the number of semaphores
in the semaphore set identified by semid.

EACCES Read permission is denied to the calling process.

If cmd is SETVAL, errno may be set to one of the following:

EINVAL Semaphore is less than zero or greater than the number of sema-

phores in the semaphore set identified by semid.

EACCES Alter permission is denied to the calling process.

ERANGE The value to which the selected semaphore 1s to be set, arg.val, is

greater than the system-imposed maximum.

If cmd is GETALL, errno may be set to one of these values:

EACCES _ Read permission is denied to the calling process.

EFAULT Argument.array points to an illegal address.

If cmd is SETALL, errno may be set to one of these values: .

EACCES Alter permission is denied to the calling process.

ERANGE The value to which one of the semaphores 1s to be set is greater than

the system-imposed maximum.

EFAULT Argument.array points to an illegal address.

If cmd is IPC_STAT, errno may be set to one of these values:

EACCES Read permission is denied to the calling process.

EFAULT Argument.buf points to an illegal address.

If cmd is IPC_SET, errno may be set to one of these values:

EPERM Permission to change the semaphore set attributes is denied to the

calling process.

EFAULT Argument.buf points to an illegal address.

If cmd is IPC_RMID, errno may be set to this value:

EPERM Permission to remove the semaphore set is denied to the calling pro-

cess.

SEE ALSO

intro(2), iperm(1), ipes(1), semget(2), semop(2).

093-701055 Licensed material—property of copyright holder(s) 2-257

semget(2)

NAME

DG/UX 5.4 Semget(2)

semget — get a set of semaphores

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semget (key, msems, semfig)

key_t key;

int nsems;

int semflg;

where:

key A user-defined name for the semaphore set

nsems The requested number of semaphores in the semaphore set

semflg A set of flags indicating the requested permission state of the semaphore

set, whether a new semaphore set should be created, and whether the

semaphore set should be held exclusively

DESCRIPTION

2-258

Semget returns the semaphore set identifier associated with key. This semaphore set

identifier may then be used in other semaphore set operations as specified by

semctl and semop. Semget can be used to get the semaphore set identifier of an

already existing semaphore set or to create a new semaphore set with msems sema-

phores.

Four options are available:

Create a private semaphore set.

In this case, key is IPC_PRIVATE.

A process can create a "private" semaphore set by using the special

IPC_PRIVATE key. The system will create a semaphore set identifier that is

private to the process. The semaphore set identifier will not be returned to

other processes regardless of what key value they specify.

The newly created semaphore set can be shared among other processes by

distributing the semaphore set identifier.

A process can make multiple semget operations specifying IPC_LPRIVATE.

The identifiers returned will be unique and the associated semaphore sets will

be different.

Find key if already defined.

In this case, the IPC_CREAT and IPC_EXCL bits of semflg are clear and

key is not IPC_PRIVATE.

The semaphore set identifier associated with the given key is returned. An

error is given if one of the following conditions hold:

e No semaphore set identifier is associated with key.

e A semaphore set identifier is associated with key but the permission

rights of the semaphore set do not include those specified by the low-

order 9 bits of sem/fig.

Licensed materiai—property of copyright holders) 093-701055

semget(2) DG/UX 5.4 | semget(2)

e A semaphore set identifier is associated with key but nsems is non-

zero and the number of semaphores in the semaphore set is less than

nsems.

Create only if key not already defined.

In this case, the IPC_CREAT and IPC_EXCL bits of semflg are both set and

key is not IPC_PRIVATE.

If a semaphore set identifier already exists for key an error is returned. Oth-

erwise, a semaphore set identifier and associated semaphore set are created.

The semaphore set identifier will be returned to other processes that specify

the same key value.

Find key if already defined, otherwise create.

In this case, the IPC_CREAT bit of semflg is set, the IPC_EXCL bit of

semfig is clear, and key is not IPC_LPRIVATE.

If a semaphore set identifier already exists for key, this 1s identical to the

second option above). Otherwise, this is identical to the third option above.

If a new semaphore set is created, its attributes are initialized as follows:

The semaphore set creator’s user id (sem_perm.cuid) and the semaphore set’s
user id (sem_perm.uid) are set to the effective user id of the calling process.

The semaphore set creator’s group id (sem_perm.cgid) and the semaphore

set’s group id (sem_perm.gid) are set to the effective group id of the calling

process.

The semaphore set’s permission rights (in sem_perm.mode) are set to the

low-order 9 bits of semflg.

The number of semaphores in the semaphore set (sem_nsems) is set to nsems.

The most recent time a semop operation was performed (sem_otime) is set to
the zero value.

The most recent time the semaphore set attributes were changed (sem_ctime)
is set to the current time.

The semaphore’s value is set to zero.

The process id of the last process to perform an operation on the semaphore
is set to zero. |

The number of processes waiting for the semaphore’s value to become Zero is

zero.

The number of processes waiting for the semaphore’s value to increase is

zero. |

No processes have a semaphore adjustment value for the semaphore.

ACCESS CONTROL

See the description of the exception conditions EACCESS below.

RETURN VALUE

semid

-1

_ 093-701055

A non-negative integer that identifies the semaphore set associated with

key.

An error occurred. errno is set to indicate the error.

Licensed material—property of copyright holders) 2-259

semget(2)

DIAGNOSTICS

DG/UX 5.4 semget(2)

If a semaphore set identifier exists for key, errno may be set to one of these values:

EACCES

EINVAL

EEXIST

The permission rights of the semaphore set do not include those

specified by the low-order 9 bits of semflg.

nsems is non-zero, and the number of semaphores in the set associ-

ated with Key is less than nsems.

Both the IPC_CREAT and IPC_EXCL bits of semflg are set.

If a semaphore set identifier does not exist for key, errno may be set to one of these

values:

EINVAL

ENOENT

~ENOSPC

SEE ALSO

nsems is either less than or equal to zero or greater than the system-

imposed limit. :

The IPC_CREAT bit of semflg is clear.

Creating the new semaphore set would cause the system-imposed

limit on the maximum number of allowed semaphore sets system-

wide to be exceeded.

intro(2), iperm(1), ipes(1), semctl(2), semop(2).

2-260 Licensed material—property of copyright holder(s) 093-701055

semop(2) DG/UX 5.4 semop(2)

NAME

semop — semaphore operations

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop (Semid, sops, nsops)

int semid ;

struct sembuf * SOpS;

unsigned msops;

where:

semid A semaphore set identifier

sops An array of semaphore operations to perform

nsops The number of semaphore operation records in sops

DESCRIPTION

Semop atomically performs msops semaphore operations on the semaphore set identi-

fied by semid. The semaphore operation records are located in the array given by

SODS.

A semaphore operation has three components: a semaphore number (sem_num), a

semaphore operation (sem_op), and an operation modifier (serm_fig). A semaphore

operation is performed by applying the operation, sem_op, modified by sem_fig, to

the semaphore specified by sem_num in the semaphore set identified by semid.

Sem_op specifies one of three semaphore operations as follows:

e sem_op <Q: Perform a P operation

If the semaphore’s value is greater than or equal to the absolute value of sem_op, the

operation is successful. In this case, the absolute value of sem_op is subtracted from

the semaphore’s value, and, if the SEM_UNDO bit of sem_fig is set, the absolute

value of sern_op is added to the calling process’s semaphore adjustment value for the

semaphore.

If the semaphore’s value is less than the absolute value of sem_op and the

IPC_NOWAIT bit of sem_fig is set, semop will return with the error condition

EAGAIN. .

If the semaphore’s value is less than the absolute value of sem_op and the

IPC_NOWAIT bit of sem_flg is clear, semop will suspend the calling process until:

e the semaphore’s value becomes greater than or equal to the absolute

value of sern_op, in which case, the operation is retried,

e semid is removed from the system, in which case, semop will return
with the error condition EIDRM, or

e the calling process receives a signal that is to be caught, in which

case, semop will return with the error condition EINTR.

e sem_op > 0: Perform a V operation

The value of sern_op is added to the semaphore’s value and, if the SEM_UNDO bit

of semn_fig is set, the value of sem_op is subtracted from the calling process’s sema-

phore adjustment value for the semaphore.

093-701055 Licensed materiai—property of copyright hoider(s) 2-261

semop(2) DG/UX 5.4 semop(2)

e sem_op == 0: Wait for zero

If the semaphore’s value is zero, the operation is successful.

If the semaphore’s value is non-zero and the PC_NOWAIT bit of semflg is set,

semop Will return with the error condition EAGAIN.

If the semaphore’s value is non-zero and the PC_NOWAIT bit of sem_fig is clear,

semop will suspend the calling process until:

e the semaphore’s value becomes zero or equal to the absolute value of

sem_op, in which case, the operation is retried,

e semid is removed from the system, in which case, semop will return

with the error condition EIDRM, or

e the calling process receives a signal that is to be caught, in which

case, semop will return with the error condition EINTR.

The operation performed by semop is the composition of the individual operations

given by sops. This composition is subject to the following:

e Semop performs the composite operation atomically. Semop succeeds and

changes all subject semaphores only when all individual operations can be

performed at a given time.
e The calling process is suspended due to the first individual operation in sops

that requires suspension.

e Wher the calling process is suspended, it is registered as waiting for only one

semaphore’s value to either increase or become zero, that semaphore being

the subject semaphore of the individual operation that suspended the process.

e Neither the individual operations nor the composite operation are guaranteed

to solve the mutual exclusion livelock problem.

If semop fails, the semaphore set will remain unchanged. Upon successful comple-

tion, the calling process is recorded as the last process to perform an operation on

each semaphore specified in the array pointed to by sops and the current time is
recorded as the most recent time a semop operation was performed. |

ACCESS CONTROL

Alter access to the semaphore set is required to change the value of a semaphore.

Read access is required to wait for a semaphore value to become Zero.

RETURN VALUE

0 Completed successfully.

=] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL Semid is not a valid semaphore set identifier.

EINVAL The number of semaphore sets for which the calling process requests

a SEM_UNDO would exceed the system-imposed limit.

EFBIG Sem_num is less than zero or greater than or equal to the number of

2-262

semaphores in the set associated with semid for one or more sema-

phore operations.

E2BIG nsops is greater than the system-imposed maximum.

Licensed material—-property of copyright holder(s) 093-701055

semop(2)

EACCES

EACCES

EFAULT

EAGAIN

ENOSPC

ERANGE

ERANGE

EIDRM

EINTR

SEE ALSO

iperm(1), ipes(1), intro(2), exec(2), fork(2), semct1(2), semget(2),

0$3-701055

exit(3C).

DG/UX 5.4 semop(2)

One of the semaphore operations (sem_op) is non-zero and the caller

does not have write access. |

One of the semaphore operations (seyn_op) is zero and the caller

does not have read access.

sops is an illegal address.

Semaphore operations would result in suspension of the caller who

has requested IPC_LNOWAIT

The limit on the number of processes requesting a SEM_UNDO

would be exceeded.

One of the semaphore operations would cause a semaphore’s value to

overflow the system-imposed limit.

One of the semaphore operations would cause a process’s semaphore

adjustment value to overflow the system-imposed limit.

semid was removed from the system while the caller was suspended

by semop.

The caller received a signal that was set to be caught while suspended

by semop.

Licensed materiai—groperty of copyright holder(s) 2-263

semsys(2) DG/UX 5.4 semsys(2)

NAME :

semsys — perform a semaphore operation

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semsys (PI, P2, P3, P4, P5)

int Pl;

int P2;

int P3;

int P4;

int P35;

where:

P] An integer indicating the type of operation to be performed with a semaphore

(0 = SEMCTL, 1 = SEMGET, 2 = SEMOP)

P2 The semaphore set key, if the PJ operation is SEMGET;

otherwise, the semaphore set id

P3 A value that varies based on the following PJ operations:

SEMCTL The number of some semaphore in the set

SEMGET The number of semaphores in the set

SEMOP A pointer to the semaphore operation structures (sembuf)

P4 A value that varies based on the following PJ operations:

SEMCTL The contro] command number

SEMGET A flag regulating the type of SEMGET operation and access to the

semaphore set

SEMOP The number of semaphore operations to perform

PS If the operation is SEMGET or SEMOP, P% is invalid. In case of SEMCTL,

P5 is a union of semun type.

DESCRIPTION

The semsys system call performs a semaphore operation (SEMGET, SEMCTL,

SEMOP) indicated by the value of PJ.

ACCESS CONTROL

See the description of the exception condition EACCES in semget(2), semop(2),

and semctl(2).

RETURN VALUE

semid A non-negative integer that identifies the semaphore set identifies the
semaphore set associated with key.

0 semctl or semop was successful.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

The error codes returned depend on the type of semaphore operations performed and

are described in semctl(2), semget(2), and semop(2).

EINVAL P1 argument is not in the range of 0 through 2.

SEE ALSO

intro(2), semctl(2), semget(2), semop(2).

2-264 Licensed material—property of copyright holder(s) 093-701055

send(2) DG/UX §.4 : send(2)

NAME

send — send a message from a socket

SYNOPSIS

#include <sys/socket.h>

int send (s, msg, len, user_flags)

int S;

char * msg;

int len;

int user_flags;

where:

S File descriptor of the socket to send message from

msg Message buffer

len Length of message (in bytes)

user_flags Flags to use when sending

DESCRIPTION

Send transmits a message to another socket. Send can be used only when the

socket is connected.

The length of the message is given by the /en argument. If the message is too long to

pass atomically through the underlying protocol, then the error EMSGSIZE is

returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of —1 indicate

some locally detected errors.

If no message space is available at the socket to hold the message to be transmitted,

then send normally blocks, unless the socket has been placed in non-blocking LV/O

mode. The select call determines when you may send more data.

_ The user_flags parameter may be set to SOF_OOB to send out-of-band data on sock-

ets that support this notion (e.g., SOCK_STREAM).

ACCESS CONTROL

None.

RETURN VALUE

1..len Completed successfully. The call returns the number of characters sent.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid file descriptor.

ENOTSOCK The argument s is not a socket.

EFAULT An invalid user space address was specified for a parameter.

EMSGSIZE _ The socket requires that message be sent atomically, and the size of

the message made this impossible.

EAGAIN The socket is marked non-blocking and the requested operation

would block.

EINTR The send was interrupted by delivery of a signal before any data was

delivered.

2-265
083-701055 Licensed materiai—property of copyright holder(s) —

send(2) OG/UX 5.4 send(2)

ENOTCONN Tried to send on unconnected socket.

EOPNOTSUPP The flags argument included the MSG_OOB flag applied to a UDP

socket.

EPIPE An established connection on a SOCK_STREAM socket was closed

by the remote peer.

SEE ALSO

recv(2), socket(2).

2-266 Licensed materiai—property of copyright holder(s) 093-701055

sendmsg(2) OG/UX 5.4 sendmsg(2)

NAME

sendmsg - send a message from a socket

SYNOPSIS

#include <sys/socket.h>

int sendmsg (Ss, msg, user_—flags)

int S;

struct msghdr * msg;

int user_flags ;

where:

Ss

msg

user_flags

DESCRIPTION

File descriptor of socket to send message from

Message header packet

Flags to use when sending

The sendmsg call performs the same function as send or sendto except the argu-

ments are repackaged in msghdr. The msghdr structure allows use of the IOV

structure [see readv(2) for a description of IOV] for access to non-contiguous

buffers.

If the msg_name field of msghdr is null, this call is identical to send. If the

msg_name field of msghdr is not null, it identifies the name of the destination for

the message and this call is identical to sendto.

ACCESS CONTROL

None.

RETURN VALUE

1..len Completed successfully. The call returns the number of characters sent.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |
Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument s is not a socket.

EFAULT An invalid user space address was specified for a parameter.

EMSGSIZE __ The socket requires that message be sent atomically, and the size of

the message made this impossible.

EAGAIN The socket is marked non-blocking and the requested operation

would block.

ENOTCONN The socket is unconnected and requires a destination address be

specified.

EISCONN The socket is connected and cannot accept a destination address.

EINTR The sendmsg() was interrupted by delivery of a signal before any

data was delivered.

SEE ALSO

recv(2), socket(2).

093-701055 Licensed materiat—property of copyright holder(s) 2-267

sendto(2) DG/UX 5.4 sendto(2)

NAME

sendto — send a message from a socket

SYNOPSIS

#include <sys/socket.h>

int sendto (s, msg, len, userflags, to, tolen)

int S;

char * msg;

int len;

int user_flags ;

struct sockaddr *fo;

int tolen;

where:

S File descriptor of socket to send message from

msg Message buffer

len Length of message (in bytes)

user_flags Flags to use when sending

to Name of destination

tolen - Length of destination name in bytes

DESCRIPTION

This call sends a message, as does send. However, sendto has arguments that

specify the destination of the message.

The address of the destination is given by the to argument with tolen specifying its

size. When used with a connected socket, the to and tolen arguments are ignored.

Other arguments are the same as for send.

ACCESS CONTROL

‘None.

RETURN VALUE |

1..len Completed successfully. The call returns the number of characters sent.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |
Errno may be Set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument s is not a socket.

EFAULT An invalid user space address was specified for a parameter.

EMSGSIZE The socket requires that message be sent atomically, and the size of

the message made this impossible.

EAGAIN The socket is marked non-blocking and the requested operation
would block.

EISCONN Can’t sendto with connected socket.

EINTR The sendto() was interrupted by delivery of a signal before any data

was delivered.

SEE ALSO

recv(2), socket(2).

2-268 Licensed material—property of copyright holder(s) 083-701055

setdomainname (2) DG/UX 5.4 . se tdomainname (2)

NAME

setdomainname — set name of current domain

SYNOPSIS

int setdomainname (name, namelen)

char * name;

int namelen;

where:

name Name to set for domain

namelen Length of name in bytes

DESCRIPTION

Setdomainname sets the domain of the host node to name, which has length

namelen. Only the superuser may use this call; it is normally used at boot time.

The purpose of domains is to enable two distinct networks that may have hostnames

in common to merge. Each network would be distinguished by having a different

domain name. At the current time, only the Yellow Pages service makes use of

domains.

Domain names are limited to MAXDOMAINNAMELEN characters, which 1s

defined in <user/param.h>.

ACCESS CONTROL

Onlv the superuser can set the domain name.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT The name parameter gave an invalid address, or the namelen parame-

ter specified a length less than zero.

EPERM The caller was not the superuser.

SEE ALSO

getdomainname(2), gethostid(2), gethostname(2).

093-701055 Licensed materiat\—property of copyright holder(s) 2-269

setegid(2) DG/UX 5.4 setegid(2)

NAME :

setegid — set the effective group id of the current process

SYNOPSIS

#include <sys/types.h>

pid t setegid(gid_t egid);

where:

egid The effective group identifier

DESCRIPTION

If the effective-user-id of the calling process is superuser, effective-croup-id is set to

egid. If the effective-user-id of the calling process is not superuser, but its real-

group-id or its effective-group-id or its saved-group-id is equal to egid, the effective-

group-id is set to egid.

ACCESS CONTROL

See the description above.

RETURN VALUE

Upon successful completion, the function setegid returns zero. Otherwise, it

returns -1 and sets errno to indicate an error.

DIAGNOSTICS

Under the following conditions, the function setegid fails and sets errno to:

EPERM An attempt was made to set the effective-group-id to a value not permitted

by the access control restrictions described above.

EINVAL The supplied value of egid was negative or greater than the maximum

allowable user id.

SEE ALSO

getuid(2), geteuid(2), getgid(2), setuid(2), setgid(2), setregid(2),

setreuid(2). |

2-270 Licensed materiai—property of copyright hoider(s) 093-701055

seteuid(2) DG/UX 5.4 seteuid(2)

NAME

seteuid -— set the effective user id of the current process

SYNOPSIS

#include <sys/types.h>

pid _t seteuid(gid_t euid);

where:

euid An effective user identifier

DESCRIPTION

If the effective-user-id of the calling process is superuser, effective-user-id is set to

euid.

If the effective-user-id of the calling process is not superuser, but its real-user-id or its

effective-user-id or its saved-user-id is equal to euid, the effective-user-id is set to

euid.

ACCESS CONTROL

See the description above.

RETURN VALUE

Upon successful completion, the function seteuid returns zero. Otherwise, it

returns -—1 and sets errno to indicate an error.

DIAGNOSTICS |

Under the following conditions, the function seteuid fails and sets errno to:

EPERM An attempt was made to set the effective-user-id to a value not permitted

by the access control restrictions described above.

EINVAL The supplied value of euid was negative or greater than the maximum

allowable user id.

SEE ALSO

getuid(2), geteuid(2), getgid(2), setuid(2), setgid(2), setregid(2),

setreuid(2).

093-701055 Licensed materiel—property of copyright holder(s) 2-271

setgid(2) DG/UX 5.4 setgid(2)

NAME

setgid — set the real-, effective-, and saved-group-ids

SYNOPSIS

#include <sys/types.h>

int setgid (gid)

gid_t gid;

where:

gid The value to which the calling process’s group-ids are to be set

DESCRIPTION |

Setgid sets the real-group-id, effective-group-id, and saved-group-id of the calling

process to gid, subject to the access control constraints described below.

The value of gid must always be non-negative and less than MAXUID.

ACCESS CONTROL
If the effective-user-id of the calling process is superuser the real-group-id, effective-

group-id, and saved_group_id values are all set to gid.

If the effective-user-id of the calling process is not superuser, but its real-group-id or

its saved_group_id is equal to gid, the effective-group-id is set to gid. The real-

group-id and saved_group_id are unchanged.

RETURN VALUE

07 Successful completion.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM An attempt was made to set the effective-group-id to a value not per-

mitted by the access control restrictions described above.

EINVAL The supplied value of gid was negative or greater than MAXUID.

SEE ALSO |

getegid(2), geteuid(2), getgid(2), getuid(2), setregid(2), setreuid(2),

setuid(2). |

2-272 Licensed rnaterial—property of copyright holder(s) 093-701055

sethostid(2) DG/UX 5.4 sethostid(2)

NAME

sethostid — set unique identifier of current host

SYNOPSIS

int sethostid (new_hostid)

long new_hostid;

where:

new_hostid Hostid to set

DESCRIPTION

Sethostid establishes an identifier for the current node, which is intended to be

unique among all UNIX systems in existence. This is normally a DARPA Internet

address for the local machine. Only the superuser may use this call; it is normally

performed at boot time.

ACCESS CONTROL

The effective user id of the calling process must be superuser.

RETURN VALUE

0 Completed successfully.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS |
Errno may be set to the following error code:

EPERM Caller must be superuser.

SEE ALSO

hostid(1), getdomainname(2), gethostid(2), gethostname(2).

093-701055 Licensed material—property of copyright hoider(s) 2-273

sethostname (2) DG/UX 5.4 sethostname(2)

NAME

sethostname - set name of current host

SYNOPSIS

int sethostname (name, namelen)

char * name;

int namelen;

where:

name Name to set for host

namelen Length of name in bytes

DESCRIPTION

Sethostname sets the name of the host node to name, which has length namelen.

Only the superuser may use this call; it is normally used at boot time.

Hostnames are limited to MAXHOSTNAMELEN characters, which is defined in
<sys/param.h>.

ACCESS CONTROL

Only the superuser can set the hostname.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT The name parameter gave an invalid address, or the namelen parame-

ter specified a length less than zero.

EPERM The caller was not the superuser.

SEE ALSO

getdomainname(2), gethostid(2), gethostname(2). uname(1), uname(2)

NOTES ,

This system call also modifies the node name that is contained in the system’s

utsname structure. Subsequent calls to uname -n will return this new node name.

4

2-274 Licensed material—property of copyright holder(s) 7 093-701055

setpgid(2) DG/UX5.4 setpgid(2)

NAME

setpgid — set process group ID for job control

SYNOPSIS

#include <sys/types.h>

int setpgid (pid, pgid)

where:

pid The process id of the process whose process group id is to be changed.

pgid The new process group id.

DESCRIPTION

The setpgid() function is used to either join an existing process group or create a

new process group within the session of the calling process. The process group ID of

a session leader shall not change. Upon successful completion, the process group ID

of the process with a process ID that matches pid shall be set to pgid. As a special

case, if pid is zero, the process ID of the calling process shall be used. Also, if pgid

is zero, the process ID of the indicated process shall be used.

RETURN VALUE

0 Successful completion.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

If any of the following conditions occur, the setpgid() function shall return -1 and

set errno to the corresponding value:

EACCES The value of the pid argument matches the process ID of a child pro-

cess of the calling process and the child process has successfully exe-

cuted one of the exec() functions.

EINVAL The value of the pgid argument is less than zero or is not a value sup-

ported by the implementation.

ENOSYS The setpgid() function is not supported by this implementation.

EPERM The process indicated by the pid argument is a session leader.

The value of the pid argument is valid but matches the process ID of

a child process of the calling process and the child process is not in

the same session as the calling process.

The value of the pgid argument does not match the process ID of the

process indicated by the pid argument and there 1s no process with a

process group ID that matches the value of the pgid argument in the

same session as the calling process.

ESRCH The value of the pid argument does not match the process ID of the

calling process or of a child process of the calling process.

SEE ALSO

exec(2), getpgrp(2), setsid(2), tesetpgrp(3C).

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEF Standards

092-701085 tirneneact materialeenranery af eopvriant holder's) 2-275

setpgid(2) DG/UX 5.4 se tpgid(2)

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

STANDARDS

The setpgid() always behaves as if _POSLX_JOB_CONTROL were defined, regard-

less of whether or not it is defined.

9976 lieeneed material—oroperty of coovriaht hoider(s) 093-701055

setporp(2) OG/UX 5.4 setpgrp(2)

NAME

setpgrp — set process-group-id

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

gid_t setpgrp ()

DESCRIPTION

The setpgrp system call sets the process-group-id of the calling process to the

process-id of the calling process.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE
process-group-id The new value of the calling process’s process-group-id.

DIAGNOSTICS

None.

SEE ALSO

getpgrp(2), getpgrp2(2), setpgrp2(2).

STANDARDS

When using m88kbes as the Software Development Environment target, the

setpgrp function will be emulated using BCS system calls. Since this is an emula-

tion requiring several BCS system calls, a slight performance degradation may be

noticed in comparison to using berk_signalin /lib/libc.a.

The only way for a session to allocate a controlling terminal is for the session leader

(which must not already have a controlling terminal) to open a terminal device that is

not already associated with any session, without using the O.NOCTTY option to

open. The effect is that the processes in a session may have at most one controlling

terminal, and a terminal may have at most one controlling process, which must be a

session leader. When the controlling process terminates, an automatic vhangup

occurs on the terminal and its terminal characteristics are reset.

093-701055 Licensed materiai—property of copyright holders) 2-277

setpgrp2(2) OG/UX 5.4 setpgrp2(2)

NAME

setpgrp2 — set process-group-id

SYNOPSIS

#include <sys/types.h>

int setpgrp2 (pid, pgrp)

pid_t pid;

gid_t pg7p:

where:

pid The process-id of the process whose process-group-id is to be changed. A

value of zero denotes the calling process, not pid 0.

pEgrp The value to which the target process’s process-group-id is to be set

DESCRIPTION

‘If the access contro] requirements described below are met, setpgrp2 sets the

process-group-id of the process specified by pid to the value specified by perp. The

value of pgrp is not required to be the process-id of an existing process; hence a pro-

cess group with no group leader can be established.

ACCESS CONTROL

The access control requirements of setpgrp2 can be met in one of three ways: 1)

the caller has effective-user-id of superuser, or 2) the target process is a descendant of

the caller in the process tree, or 3) the target process has the same effective-user-id as

the caller.

RETURN VALUE

0 Successful completion.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

ESRCH The process specified by pid does not exist.

EPERM None of the three conditions described in the ACCESS CONTROL

section above is met.

SEE ALSO

getpgrp(2), getpgrp2(2), setpgrp(2).

STANDARDS

When using m88kbcs as the Software Development Environment target, the

setpgrp2 function will be a restricted emulation of Berkeley semantics. This emula-

tion only allows a process to join a process group already in use inside its session or

to create a new process group whose process group ID is equal to its process ID.

2-2/8 Licensed material—property of copyright holder(s) 093-701055

setpriority(2) OG/UX 5.4 setpriority(2)

NAME

setpriority — set process scheduling priority

SYNOPSIS

#include <sys/resource.h>

int setpriority (which, who, prio)

int which;

int who;

int prio;

where:

which How the argument who is to be interpreted in identifying one or more

processes whose priorities will be set: PRIO_PROCESS, PRIO_PGRP, or

PRIO_USER

who Identifier of one or more processes whose priorities will be set: a process

ID, a process group ID, or user ID, depending on the value of which

prio The new priority value

DESCRIPTION

One or more processes are identified by the combination of the arguments which and

who. If which is PRIO_PROCESS, who is interpreted as a process ID and a single

process is identified. If which is PRIO_PGRP, who is interpreted as a process group

ID, and all processes that are members of that group are identified. If which is

PRIO_USER, who is interpreted as a user ID, and all processes with an effective user

id of who are identified. A who value of 0 is interpreted as the calling process’s pro-

cess ID, process group ID, and effective-user-id, respectively, for the three cases

listed. For example, all processes in the calling process’s process group may be iden-

tified with which set to PRIO_PGRP and who set to zero.

The setpriority call sets the priorities of all the identified processes to prio, sub-

ject to the access control constraints described below. The access checks are applied

to each process in the identified set. If one or more processes fail the checks, set-

priority still changes the priority of those processes that pass the checks, but the

error return value will be given.

ACCESS CONTROL

In order to set a process’s priority to a larger numerical value (less favorable schedul-

ing) or leave it unchanged, the calling process must have an effective-user-id that is 0

or that matches the target process’s effective-user-id.

In order to set a process’s priority to a smaller numerical value, the calling process

must have an effective-user-id that is 0.

RETURN VALUE

0 Successful completion.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

ESRCH Using the which and who values specified, no processes were located

at all, or if any processes were located, none passed the access

checks.

EINVAL Which was not one of PRIO_LPROCESS, PRIO_PGRP, or

_ PRIO_USER.

093-701055 Licensed materiai—property of copyright holder(s) 2-279

DG/UX 5.4 setpriority(2)
setpriority(2)

EACCES One or more (but not all) of the process < in the identified set did
not pass the access checks described above.

SEE ALSO

fork(2), nice(2).

2-280 Licensed material—property of copyright holder(s) 093-701055

setpsr(2)

NAME

SYNOP

DG/UX 5.4 setpsr(2)

setpsr — set the processor status register

SIS

#include <sys/m88kbcs.h>

unsigned int setpsr (new_psr)

unsigned int neéew_psr;

where:

new_psr The bits to be set or cleared in the calling process’s psr

DESCRIPTION

This system call sets several bits in the Processor Status Register of the calling pro-

cess. These bits control certain aspects of the execution of the process. The bits that

may be set are the SER, C, BO, and MXM bits.

Setting the SER bit turns on serial mode. Clearing this bit allows concurrent opera-

tion. Setting the C bit sets the carry bit to one. Clearing this bit sets the carry to

zero. Setting the MXM bit disables misaligned access exceptions. Clearing this bit

enables misaligned access exceptions; in this mode a misaligned access causes the sys-

tem to deliver a SIGBUS signal to the process. Setting the BO bit causes the current

byte ordering to be Litte- Endian; clearing this bit causes the current byte ordering to

be Big-Endian. Regardless of the setting of the BO bit, all interfaces to or from the

system are always in Big-Endian order. All other bits are ignored.

This call returns the previous setting of the Processor Status Register.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

processor status register

The processor status register of the calling process.

DIAGNOSTICS

None.

SEE ALSO

093-701055

getpsr(2).

Licensed material—property of copyright hoider(s) 2-281

setregid(2) DG/UX 5.4 setregid(2)

NAME |

setregid — set the real-, effective-, and saved-group-ids

SYNOPSIS

#include <sys/types.h>

int setregid (rgid, egid)

gid_t rgid;

gid_t egid;

where:

rgid The value to which the real-group-id should be set

egid The value to which the effective-group-id should be set

DESCRIPTION

The real-group-id and effective-group-id’s of the calling process are set according to

the arguments. If rgid or egid is -1, the current value of the real-group-id is used. If

the caller is not the superuser, he may only set the effective-group-id to the real-

group-id or the saved-group-id. Only the superuser may make other changes. If after

changing the real- and effective-group-id’s, the calling process’s effective-group-id no

longer matches either its real- or saved-group-id’s, its saved-group-id is set to the

value of its effective-group-id. If the real-group-id is changed and the calling process’s

group list is not empty, the old real-group-id is deleted from the group list and the

new real-group-id is added.

Note that since the effective-group-id is implicitly a part of the group list, if this call

changes the effective-group-id it also changes the group list.

ACCESS CONTROL

If the calling process has effective-user-id of superuser, setting of the real- and

effective-user-ids is not restricted.

Otherwise, the effective-user-id may be set only to its current value or to the current

value of the real-user-id or to the saved-user-id value. The real-user-id may be set

only to its current value. |

RETURN VALUE

0) Successful completion.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM The above specified access check failed.

EINVAL The supplied value of rgid or egid was less than -1 or greater than

MAXUID.

SEE ALSO

getuid(2), geteuid(2), getgid(2), getegid(2), setuid(2), setgid(2),

setreuid(2).

2-282 Licensed material—property of copyright holder(s) 093-701055

setreuid(2) DG/UX §.4 setreuid(2)

NAME

setreuid — set the real-, effective-, and saved-user-ids

SYNOPSIS

#include <sys/types.h>

int setreuid (mid, euid)

uid t uid;

uid_t euid;

where:

ruid The value to which the real-user-id should be set

euid The value to which the effective-user-id should be set

DESCRIPTION

The real-user-id and effective-user-id’s of the calling process are set according to the

arguments. If ruid or euid is -1, the current value of the real-user-id is used. If the

caller is not the superuser, he may only set the effective-user-id to the real-user-id or

the saved_user_id. Only the superuser may make other changes. If after changing

the real- and effective-user-id’s, the calling process’s effective-user-id no longer

matches either its real- or saved-user-id’s, its saved-user-id is set to the value of its

effective-user-id.

ACCESS CONTROL .

If the calling process has effective-user-id of superuser, setting of the real- and

effective-user-ids is not restricted.

Otherwise, the effective-user-id mav be set only to its current value or to the current

value of the real-user-id or to the saved-user-id value. The real-user-id may be set

only to its current value.

RETURN VALUE

0 Successful completion.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM The above specified access check failed.

EINVAL The supplied value of ruid or euid was less than ~1 or greater than MAX-

UID.

SEE ALSO

getuid(2), geteuid(2), getgid(2), getegid(2), setuid(2), setgid(2).

. 093-701055 Licensed material—property of copyright hoider(s) 2-283

setsid(2) DG/UX 5.4 setsid(2)

NAME

setsid — create session and set process group ID

SYNOPSIS

#include <sys/types.h>

pid t setsid ()

DESCRIPTION

If the calling process is not a process group leader, the setsid() function shall

create a new session. The calling process shall be the session leader of this new ses-

sion, shal] be the process group leader of a new process group, and shall have no con-

trolling terminal. The process group ID of the calling process shall be set equal to

the process ID of the calling process. The calling process shall be the only process in

the new process group and the only process in the new session.

RETURN VALUE

Upon successful completion, the setsid() function returns the value of the process

group ID of the calling process.

DIAGNOSTICS

If any of the following conditions occur, the setsid() function shall return -1 and

set errno to the corresponding value:

EPERM The calling process is already a process group leader or the process

group ID of a process other than the calling process matches the pro-

cess ID of the calling process.

SEE ALSO

exec(2), _exit(2), fork(2), getpid(2), kill(2) setpgid(2), sigaction(2).

COPYRIGHTS |

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the orginal version takes precedence.

STANDARDS

The only way for a session to allocate a controlling terminal is for the session leader

(which must not already have a controlling terminal) to open a terminal device that is

not already associated with any session, without using the O.NOCTTY option to

open(). The effect is that the processes in a session may have at most one control-

ling terminal, and a terminal may have at most one controlling process, which must

be a session leader. When the controlling process terminates, an automatic

vhangup() occurs on the terminal and its terminal characteristics are reset.

2-284 Licensed materia\—property of copyright holder(s) 093-701055

setsockopt(2) DG/UX 5.4 setsockopt(2)

NAME

setsockopt — set options on sockets

SYNOPSIS

#include <sys/socket.h>

int setsockopt (5s, level, optname, optval, optlen)

int 5S;

int level;

int optname;

char * optval;

int optlen;

where:

S File descriptor of socket to set options on

level Level in socket that the options apply to (e.g., socket level, implementing

protocol level)

optname Name of options to set

optval Value associated with option

optlen Length of option to set (bytes)

DESCRIPTION

The setsockopt call sets options associated with a socket. Options may exist at

multiple protocol levels; they are always present at the uppermost socket level.

When setting socket options, the caller must specify the level at which the option

resides and the name of the option. To manipulate options at the socket level, level is

specified as SOL_SOCKET. To manipulate options at any other level, the protocol

number of the appropriate protocol controlling the option is supplied. See documen-

tation for the domain being used.

The parameters oprval and optlen supply option values for setsockopt. If no

option value is to be supplied, optlen must be supplied as 0 and optval may be unde-

fined.

Optname and any specified options are passed uninterpreted to the appropriate proto-

col module for interpretation. The include file <sys/socket.h> contains defini-

tions for socket level options; see socket(2). Options at other protocol levels vary

in format and name; consult the related domain documentation.

Socket Level Options

093-701055

This is a list of the options recognized at the socket level:

SO_DEBUG Toggles debugging in the underlying protocol] modules. optval is

a pointer to on/off flag int.

SO_REUSEADDR Toggles the indication that the rules used in validating addresses

supplied in a bind(2) call shall allow reuse of local addresses.

optval is a pointer to on/off flag int.

SO_KEEPALIVE Toggles the periodic transmission of messages on a connected

socket. Should the connected peer fail to respond to these

messages, the connection is considered broken and processes

using the socket are notified via a SIGPIPE signal. optval is a

pointer to on/off flag int.

SO_DONTROUTE Toggles the indication that outgoing messages shall bypass the
| standard routing facilities. Instead, messages are directed to

Licensed material—property of copyright holder(s) 2-285

setsockopt(2)

SO_LINGER

SO_BROADCAST

SO_OOBINLINE

SO_SNDBUF |

SO_RCVBUF

SO_TYPE

SO_ERROR

ACCESS CONTROL . .

Consult domain documentation for any specific restrictions imposed by the domain.

SOL_SOCKET has no restrictions.

RETURN VALUE

DG/UX 5.4 | setsockopt(2)

the appropriate network interface according to the network por-

tion of the destination address. optval is a pointer to on/off

flag int.

Controls the action taken when unsent messages are queued on

the socket and a close(2) is performed. If linger is set, the

system will block the process on close(2) until all the data is

sent or until the linger timeout expires. A linger timeout of

zero will cause the system to process the close in a manner that

allows the process to continue as quickly as possible. If linger

is reset, the system will block the process on close(2) untill all

the data is sent or the system detects that the connection is no

longer viable. optval is a pointer to struct linger.

Toggles permission to send broadcast datagrams on the socket.

optval is a pointer to on/off flag inr.

With protocols that support out-of-band data, the option toggles

the request that out-of-band data be placed in the normal data

input queue as received; it will then be accessible with recv(2)

or read(2) calls without the MSG_OOB flag. optval is a

pointer to on/off flag inr.

Adjusts the normal buffer sizes allocate for output buffers.

optval is a pointer to int containing the size of send buffer.

Adjust the normal buffer sizes allocated for input buffers.

optval is a pointer to int containing the size of receive buffer.

Used only with getsockopt(2) to return the type of the

socket. optval is a pointer to int containing the socket type.

Used only with getsockopt(2). It returns any pending error

on the socket and clears the error status. optval is a pointer to

int containing errno. 7

0 Completed successfully.

~1 An error occurred. errno is set to indicate the error.
DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF The argument s is not an active valid descriptor.

ENOTSOCK The argument s is a file, not a socket.

ENOPROTOOPT _ The option is unknown.

EFAULT The options are not in a valid part of the process address space.

EINVAL Invalid argument.

ENOBUFS No internal buffers available.

EOPNOTSUPP The option is unsupported.

EISCONN The option is invalid while the socket is in the connected state.

2-286 Licensed material—property of copyright holder(s) : 093-701055

setsockopt(2) DG/UX 5.4 setsockopt(2)

EACCES Caller has inadequate privileges to set the option. Socket
privilege is based on the euid of the process when the socket

was created.

SEE ALSO

getsockopt(2), socket(2), inet(3N), inet(6F), unix_ipce(6F).

2-287
093-701055 Licensed materiali—property of copyright holder(s)

settimeofday(2) DG/UX 5.4 settimeofday(2)

NAME

settimeofday — set date and time

SYNOPSIS

#include <sys/time.h>

int settimeofday (fime_value, ftime_zone)

struct timeval * fime_value;

struct timezone * time zone;

where:

time_value Address of an initialized structure giving the new current time

fime_zone NULL or address of an initialized structure giving the new time zone

DESCRIPTION

Settimeofday sets the system’s notion of the current Greenwich time and the

current time zone to the values contained in the structures at the locations specified

by ftime_value and fime_zone.

When the time is successfully changed, a log of the change is sent to the error logger

device.

If time_zone is NULL, the current time zone is not changed.

The interpretation of the time value and time zone structures are discussed in get-

timeofday.

Although not enforced, it is unusual if the time zone correction,

time_zone .tz_minuteswest, is not divisible by 60 minutes.

Setting the system clock may interfere with other timing functions.

ACCESS CONTROL

Only the superuser may set the time of day.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT An argument address referenced invalid memory.

EPERM Permission to set the time is denied to the calling process.

SEE ALSO

date(1), gettimeofday(2), ctime(3C).

2-288 Licensed materiai—property of copyright holder(s) 093-701055

setuid(2) DG/UX 5.4 se tuid(2)

NAME

setuid — set the real-, effective-, and saved-user-ids

SYNOPSIS

#include <unistd.h>

int setuid (uid)

uid_t uid;

where:

uid The value to which the calling process’s real-, effective-, and saved-user-ids
are to be set | 7

DESCRIPTION

Setuid sets the real-user-id, effective-user-id, and saved-user-id of the calling process

to uid, subject to the access control constraints described below.

The value of uid must always be non-negative and less than or equal to MAXUID.

ACCESS CONTROL .

If the effective-user-id of the calling process is superuser the real-user-id, effective-

user-id, and saved_user_id values are all set to uid.

If the effective-user-id of the calling process is not superuser, but its real-user-id or its

saved_user_id is equal to uid, the effective-user-id is set to uid. The real-user-id and

saved_user_id are unchanged.

RETURN VALUE

0 Successful completion.

-1] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM An attempt was made to set the effective-user-id to a value not per-

mitted by the access control restrictions described above.

_ EINVAL The supplied value of uid was negative or greater than MAXUID.

SEE ALSO

getegid(2), geteuid(2), getgid(2), getuid(2), setgid(2), setregid(2),

setreuid(2).

- 093-701055 Licensed material—property of copyright hoider(s) 2-289

shmat(2) OG/UX 5.4 shmat(2)

NAME

shmat — attach a shared memory segment

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

void * shmat (shmid, shmaddr, shmflg)

int shmid;

void * skmaddr;

int shmflg;

where:

shmid The shared memory identifier of the shared segment to attach

_ Shmaddr The byte address at which to attach the shared segment (may be defaulted

to a system-selected value or rounded to a system-specified address boun-

dary)

shmflg | SHM_RND or SHM_RDONLY, an option flag used to select between the

various options for shmaddr and to choose read-only or read-write access

to the shared memory segment

DESCRIPTION

Shmat attaches the shared memory segment associated with the shared memory iden-

tifier specified by shmid to the data segment of the calling process. The segment is

attached at the byte address specified by the caller as detailed below, for either read-

write access or read-only access. The length of the shared memory segment is taken

from the shared memory descriptor associated with shmid; i.e., by the value of the

shm_segsz field. There is no way to attach only a portion of a shared memory seg-

ment.

The address where the segment is attached is returned upon successful completion of

the call. This address may be specified in one of three ways:

e Explicitly without rounding.

If shmaddr is non-zero, and shmflg & SHM_RND is false, the segment is

attached at shmaddr. shmaddr must be a multiple of the page size; otherwise,

an error is returned.

e Explicitly with rounding.

If shmaddr is non-zero, and shmflg & SHM_RND is true, the segment is

attached at the address obtained by rounding down shmaddr to a multiple of

SHMLBA, specifically, to (shmaddr - (shmaddr modulo SHMLBA))

e By default.

If shmaddr is zero, the segment is attached at the first convenient address as

selected by the system. NOTE: "first convenient" address means the value is

implementation dependent, and may change from release to release. The
value is arbitrary and the user should not depend on how the address is

selected.

The segment is attached with read-only access if (shmflg & SHM_RDONLY) evalu-

ates to true, otherwise it is attached for reading and writing.

Upon successful completion, this call changes the following fields in the shared

memory data structure associated with the shared segment:

2-290 Licensed material—property of copyright holder(s) 093-701055

shmat(2) DG/UX 5.4 shmat(2)

shm_lpid Changed to equal the process identifier of the calling process.

shm_atime Changed to equal the current time.

shm_nattach Incremented by 1.

There is a per-process limit on the number of shared segments a process may have

attached simultaneously. If the process is currently at this system-imposed maximum,

the attach operation will not be performed. This limit is the same for ALL processes

regardless of process identifier (i.e., this limit does apply to processes whose effective

user id is the superuser). This limit is specified by the SHMSEG configuration vari-

able.

A fork operation is an implicit attach operation, since a new process inherits all

attached shared memory segments from its parent. This implicit attach alters only the

shm_nattach field as described above for an explicit attach; the shm_atime and

shm_lpid fields are not changed by this implicit attach. Note this implicit attach

applies to all attached shared memory segments. This includes IPC_PRIVATE seg-

ments, and also segments that have been the target of the IPC_RMID operation of

shmctl, i.e., have been "deleted" but still exist because their attach account

(shm_nattach) has not become zero. This exception is the only way such a

"deleted" shared memory segment can be attached.

Shmat will fail and not attach the shared memory segment if an error occurs.

ACCESS CONTROL

The calling process must have read permission to the shared segment as defined in

the shm_perm field of the associated shared memory data structure to attach for

read-only access, and read and write permission to attach for read-write access.

RETURN VALUE

address The shmat operation was successful; the value returned 1s the starting

byte address of the newly attached shared memory segment.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL shmid is not a valid shared memory identifier.

EINVAL The rounding option was used; i.e., SHM_RND evaluates to true and

shmadar is not equal to zero, but the value of (shmaddr - (shmaddr

modulo SHMLBA)) is an invalid address.

EINVAL shmaddr was given explicitly; i.e., shmaddr is not equal to zero and

SHM_RND evaluates to false, but the value of shmaddr is not a mul-

tiple of the page size, or is an invalid address.

EACCES Operation permission is denied to the calling process.

ENOMEM Either the kernel or the user data space is insufficient to accommo-

date the attach request. This error may not recur on subsequent

calls, if other operations free the needed space.

EMFILE The number of shared memory segments attached to the calling pro-

cess would exceed the system-imposed limit.

EAGAIN The system-imposed limit on space locked into physical memory

would be exceeded; the MCL_FUTURE memory locking option is in

effect for the calling process (see memcnt1(2)).

2-291
093-701055 Licensed materiat—property of copyright holder(s)

shmat(2) DG/UX 5.4 shmat(2)

SEE ALSO

iperm(1), ipes(1), intro(2), exec(2), _exit(2), fork(2), memcntl(2),
shmctl(2), shmget(2), exit(3C).

2-292 Licensed material—property of copyright holderis) 093-701055

shmeti(2)

NAME

DG/UX 5.4. shmct!(2)

shmctl1 — shared memory control operations

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shn.h>

int shmctl (shmid, cmd, buf)

int shmid;

int cmd;

struct shmid_ds * buf;

where:

shmid The shared memory identifier of the shared area to be operated on

cmd __ The specific shared memory operation (IPC_STAT, IPC_SET, or

IPC_RMID)

buf The address of a shared memory structure to be used in the operation (used

only if command is IPC_STAT or IPC_SET)

DESCRIPTION

The shmctl system call obtains or modifies information on shared memory segments

previously defined by shmget. The shmctl call also allows for the destruction of

shared memory segments. The action performed by shmctl is determined by the

value of the cmd parameter as follows:

083-701055

IPC_STAT

IPC_SET

IPC_RMID

Get status information. Returns the current value of each member of

the shared memory data structure (shmid_ds) associated with the

shared memory segment specified by shmid into the buffer pointed to

by buf. This command does not change the values of any of the fields

in the shared memory data structure. If an error occurs, the contents

of the buffer pointed to by buf are undefined.

Set status information. Set the current value of each member of the

shared memory data structure (shmid_ds) associated with the shared

memory segment specified by shmid to the corresponding value in the

buffer pointed to by buf. Only the following fields may be set:

shm_perm.uid

shm_ perm.gid

shm_perm.mode /% only low 9 bits %/

In addition to setting the above fields, this command causes the

shm_ctime field to be set to the current time. If an error occurs, no

changes are made to any of the fields in the shared memory descriptor.

Remove shared memory identifier. This “deletes” the shared memory

identifier specified by shmid from the system. This command has

"delete on last detach” semantics. The shared area segment 1s not actu-

ally destroyed until all processes that currently have the area attached

detach from it via the shmdt operation. However, no other processes

may attach to the shared area via the shmat call. (Note, however, that

implicit attach operations that occur as part of a fork operation may

still occur; see shmat.) Once this command is performed on a shmid,

the only operations that may be performed on that shmid are the

IPC_STAT command of shmctl and the shmdt operation. All other

Licensed materiai—property of copyright holder(s) 2-293

shmct!(2) DOG/UX 5.4 shmet!(2)

operations act as though shmid is invalid; that is, return the EINVAL

status code. A shared segment that has had this operation performed

on it will have the SHM_DEST bit set in the shm_perm.mode field of

its shared memory data structure. (This information is returned by the

IPC_STAT command of shmctl.) This command updates the

shm_ctime field in the shared segment’s data structure to the current

time. If an error occurs, the shared segment is not deleted and no

changes are made to its shared memory data structure.

Note that none of the commands require that the caller have the shared segment

attached.

ACCESS CONTROL

The access required to the shared memory segment denoted by shmid depends on the

value of cmd, as specified below.

IPC_STAT Get status information. The effective user id of the calling process

must equal the superuser; or the calling process must have read access

(SHM_R) as determined by the mode bits in the ipc_perm structure

defined by the shm_perm field of the shared memory data structure

associated with shmid.

IPC_SET Set status information. This cmd can be executed by any process with

effective user id equal to either that of superuser; or to the value of

either shm_perm.uid or shm_perm.cuid in the ipc_perm structure

defined by the shm_perm field of the shared memory data structure

associated with shmid.

IPC_RMID Remove shared memory identifier. This cmd can be executed by any

process with effective user id equal to either that of superuser; or to the

value of either shm_perm.uid or shm_perm.cuid in the ipc_perm

structure defined by the shm_perm field of the shared memory data

structure associated with shmid.

RETURN VALUE

0 The shmctl operation was successful.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes for any value of cmd:

EINVAL Shmid is not a valid shared memory identifier; or cmd is not a valid

command. |

The IPC_STAT command may return the following errors:

EFAULT Buf points to an illegal address.

EACCES Read access is denied.

The IPC_SET command may return the following errors:

EFAULT Buf points to an illegal address.

EPERM Access is denied; that is, effective user id of the calling process is

not superuser and does not match the shm_perm.uid or

shm_perm.cuid fields of the shared memory descriptor associated

with shmid.

The IPC_RMID command may return the following error:

2-294 Licensed material—property of copyright holder(s) 093-701055

shmeti(2) DG/UX 5.4 shmetl(2)

EPERM Access is denied; that is, effective user id of the calling process is
not superuser and does not match the shm_perm.uid or

shm_perm.cuid fields of the shared memory descriptor associated

with shmid.

SEE ALSO

intro(2), iperm(1), ipes(1), shmget(2).

" 093-701055 Licensed material—property of copyright hoider(s) 2-295

shmdt(2) DG/UX 5.4 shmdt(2)

NAME

shmdt — detach a shared memory segment

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmdt (shmaddr)

void * shmaddr;

where:

shmaddr The byte address of the attached shared memory segment to be detached.

This must equal the value returned by shmat when the shared segment

was attached.

DESCRIPTION

Shmdt detaches the shared memory segment located at the address specified by

shmaddr from the calling process’s data segment.

Upon successful completion, this call changes the following fields in the shared

memory data structure associated with the shared segment:

shm_lpid Changed to equal the process id of the calling process.

shm_dtime Changed to equal the current time.

shm_nattach Decremented by 1.

Detaching a shared memory segment makes it no longer available to the calling pro-

cess. Other users who still have the shared memory segment attached are not

affected. However, the calling process may not be able to re-attach to the segment.

This will be the case if a remove operation has been performed on the shared

memory segment (see the IPC_RMID operation of shmctl).

Calls to either exec or exit cause implicit detach operations on all shared segments

that a process has attached. These implicit detach operations change only the

shm_nattach field of the shared memory data structure as described above for expli-

cit detach calls. The shm_lpid and shm_dtime fields remain unchanged by these

implicit detach operations.

Shmdt will fail and not detach the shared memory segment if an error occurs.

ACCESS CONTROL

No access permission is required to detach a shared memory segment.

RETURN VALUE

0 The detach operation was successful.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS
Errno may be set to the following error code:

EINVAL Shmadadr is not the starting address of any shared memory segment

currently attached to the calling process.

SEE ALSO

intro(2), exec(2), _exit(2), fork(2), iperm(1), ipes(1), shmct1(2),

shmget(2), exit(3C).

2-296 Licensed material—property of copyright holder(s) 093-701055

shmget(2) DG/UX 5.4 shmget(2)

NAME

shmget — get shared memory segment

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget (key, size, shmflg)

key_t key;

int size;

int shmfle;

where:

key Key identifying shared memory segment

size Size in bytes of the shared memory segment

shmflg Access and option shmfigs. Valid shmflg bits that may be set are

IPC_CREAT and IPC_LEXCL. The low-order 9 bits are the standard

access bits.

DESCRIPTION

$-701055

The shmget system call returns the shared memory identifier associated with key.

This shared memory identifier may then be used in other shared memory operations

as specified by shmat, shmctl, and shmdt. Shmget can be used to get the

shared memory identifier of an already existing shared memory segment, or to create

a new shared memory segment.

The size parameter is used in one of two ways, depending on whether shmget creates

a new shared memory segment. When shmget is used to create a new shared

memory segment, size specifies the number of bytes to make the new shared memory

segment. In this case size must be greater than or equal to a system-imposed

minimum size and less than or equal to a system-imposed maximum size.

When shmget is used to find the shared memory identifier of an existing shared

memory segment, size is used to ensure any such existing shared memory segment is

at least as large as size. This guarantees that when the shared memory segment is

attached, all references to the shared area whose offsets relative to the start of the

shared area are between 0 and size-1, inclusive, are valid references to the shared

memory segment. If size is greater than the value of the existing shared memory seg-

ment, an error is returned. If size is less than or equal to the value of the existing

shared segment, the shared memory identifier is returned. This is true even if the

value of size used is less than the system-imposed minimum for creating shared

memory segments. In particular, a size of 0 can always be specified; this 1s

guaranteed to be less than the actual size of the shared memory segment and there-

fore passes this test.

Using the IPC_CREAT and IPC_EXCL shmfigs in shmflg along with the special key

value IPC_PRIVATE, four options are available:

e Create a private segment.

In this case, key = IPC_LPRIVATE. A process can create a "private" shared

memory identifier by using the special IPC_PRIVATE key. This results in

the system creating a shared memory identifier that is private to the process.

This shared memory id will not be returned to other processes regardless of

what key value they specify. Note it is really the key that is "private". The

Licensed materiali—property of copyright holder(s) 2-297

shmget(2)

2-298

DG/UX 5.4 shmget(2)

shared memory identifier that is returned is not private; other processes may

use this shared memory identifier in other shared memory calls. Thus, the

shared memory segment itself is not necessarily private and accessible only to

the calling routine. (For example, the process could pass the shared memory

identifier to another process via an interprocess message. Even if the process

does not do this, the segment is still accessible to any child processes created,

since a fork operation does an implicit attach operation; see shmat). A

process can make multiple shmget calls specifying the IPC_PRIVATE key;

the shared memory identifiers returned will be unique and the shared seg-

ments associated will be different. Since this call always creates a shared seg-

ment, size must always be set to the size of the desired segment. If an error

occurs, no shared memory segment is created and an error is returned.

Find key if already defined.

In this case, neither the PC_CREAT nor the IPC_LEXCL shmflg bits are set

in shmflg, and key '= IPC_LPRIVATE. The shared memory identifier associ-

ated with the given key is returned. If none exists, or if one exists but the

size of the associated segment is less than size, an error is returned.

Find key if already defined, otherwise create.

In this case, the IPC_CREAT shmflg bit is set, the IPC_LEXCL shmfig bit in

shmflg is ignored, and key != IPC_PRIVATE. Ifa shared memory identifier

already exists for key and the size of the associated shared memory segment is

greater than or equal to size (note this will be the case if size = 0), the shared

memory identifier is returned. If a shared memory identifier already exists

for key but the size of the associated shared memory segment is less than size,

an error is returned. If there is no shared memory identifier corresponding to

key, a shared memory segment and an associated shared memory identifier

are created with the specified key and size. Any errors cause an error to be

returned and do not cause a shared memory segment to be created.

Create only if key not currently defined.

In this case, the IPC_CREAT and IPC_EXCL shmfigs are both set in shmfig,

and key,!= IPC_PRIVATE. If a shared memory identifier already exists for

key, an error is returned; otherwise, a shared memory segment and associated

shared memory identifier are created with the specified key and size. Since

this call attempts to create a shared segment, size must always be set to the

size of the desired segment.

If a shared memory segment is created, the shared memory data structure associated

with the new shared memory identifier is initialized as follows:

shm_perm.uid and shm_perm.cuid -— set to the effective user id of the cal-

ling process.

shm_perm.gid and shm_perm.cgid - set to the effective group id of the

calling process.

shm_perm.mode - the low-order 9 bits are set to the low-order 9 bits of

shmfig. Note these bits determine the access to the shared memory segment

in the standard way: 3 bits for owner, 3 bits for group, 3 bits for other.

shm_ptbl - set to an implementation-dependent value.

Licensed material—property of copyright holder(s) 093-701055

shmget(2) DG/UX 5.4. shmget(2)

shm_segsz — set to Size.

shm_lpid -— set to 0.

shm_cpid — set to the process id of the calling process.

shm_nattch - set to 0.

shm_cnattch - set to 0.

shm_atime - set to 0.

shm_dtime - set to 0.

shm_ctime — set to the current time.

There is a system-imposed maximum on the number of shared memory segments (and

therefore shared memory identifiers) that may exist simultaneously. Calls to shmget

will fail if they require a new shared memory segment to be created and the system 1s
already at this limit.

In general, applications wishing to share a memory segment must agree on a key in

some fashion beforehand. One system-defined mechanism for doing this is the ftok

facility, which takes a filename and returns a process-specific key based on that

filename. See the ftok description in stdipc(3C).

Although no access permission is required to do a shmget operation, a consistency

check is made on the access permissions specified in the lower 9 bits of shmflg. For

any of the options that return the shared memory identifier of an already existing

shared memory segment, a check is made that all mode bits set by the caller in shmflg

are currently set in the shm_perm.mode field of the shared mémory descriptor for

the segment. If any mode bit set in shmflg is not set in shm_perm.mode, an error is

returned. This is not an access check, because the process calling shmget requires

no access to anything and the shmflg mode bits passed can all be zero. Rather, it

guarantees that the shared memory segment is accessible for the access modes that

may be desired by the caller.

ACCESS CONTROL

No access permission is required to do a shmget operation (except for the con-

sistency check made on shmfig).

RETURN VALUE

shmid A non-negative integer, namely a shared memory identifier indicating the

shmget operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

0983-701055

Errno may be set to one of the following error codes:

EINVAL A shared memory identifier was to be created but size is less than the
system-imposed minimum or greater than the system-imposed max-

imum; or a shared memory identifier exists for key but the size of the

segment associated with it is less than size and size is not equal to

zero.

EACCES A shared memory identifier exists for key but one of the low-order 9
bits set in shmfig is not set in the shm_perm.mode field of the shared

- memory identifier’s corresponding shared memory descriptor.

ENOENT A shared memory identifier does not exist for key and the "create if

not already existing” option was not selected, that is, the PC_CREAT

option was not specified in shmflg.

Usensed materiai—property of copyright holder(s) 2-299

shmget(2) DG/UX 8.4 shmget(2)

ENOSPC A shared memory identifier is to be created but the system-imposed
limit on the maximum number of allowed shared memory identifiers

system wide would be exceeded. Another shared memory segment

cannot be created until one is destroyed.

ENOMEM __ A shared memory identifier and associated shared memory segment

are to be created but there is not enough internal system memory

available to fill the request. This is different from ENOSPC in that

arbitrary operations that free internal system memory may allow the

call to succeed at a later time.

EEXIST A shared memory identifier exists for key but the "create only if not

already existing” option was selected, that is, the IPC_CREAT and

IPC_EXCL options were on in shmflg.

SEE ALSO

intro(2), iperm(1), ipes(1), shmetl1(2), stdipe(3C).

2-300 Licensed material—property of copyright holder(s) 093-701055

shmsys(2) DG/UX 5.4 shmsys(2)

NAME

shmsys — perform a shared memory operation

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmsys (Pl, P2, P3, P4)

int Pi;

int P2;

int P3;

int P4;

where:

Pl An integer indicating the type of operation to be performed with shared

memory (0 = SHMCTL, 1 = SHMGET, 2 = SHMAT, 3 = SHMDT)

P2 In case of SHMCTL or SHMAT, P2 is a shared memory id. In case of

SHMGET, P2 is a shared memory key. In case of SHMDT, P2 is a shared

memory segment address.

P3 In case of SHMCTL, P3 is a control command. In case of SHMGET, P3 is

the shared memory segment size. In case of SHMAT, P3 is the shared

memory segment address.

P4 In case of SHMCTL, P4 is a pointer to a buffer, which contains al the infor-

mation about the shared memory segment. In case of SHMGET and

SHMAT, P4 is a flag.

DESCRIPTION |

The shmsys system call performs a shared memory operation (SHMCTL,

SHMGET, SHMAT, SHMDT) indicated by the value of PJ.

ACCESS CONTROL

See the descriptions of the exception condition EACCES in the man pages for the

shmget, shmctl, shmat, and shmdt system calls.

RETURN VALUE

shmid If SHMGET was successful.

shmaddr If SHMAT was successful.

0 If SHMCTL or SHMDT was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

The error codes returned depend on the type of shared memory operations performed

and are described in shmget, shmctl, shmat, shmdt.

EINVAL Pl argument is not in the range of 0 through 3.

SEE ALSO

intro(2), shmget(2), shmctl(2), shmat(2), shmdt(2).

093-701055 Licensed material—property of copyright holder(s) 2-30 1

shutdown(2) DG/UX 5.4 shutdown(2)

NAME

shutdown — shut down part of a full-duplex connection .

SYNOPSIS

int shutdown (5s, how)

int 5S;

int how;

where:

S File descriptor of socket to shut down

how Flag (0, 1, or 2) for what to shut down

DESCRIPTION

The shutdown call shuts down all or part of a full-duplex connection on the socket

associated with s. If how is 0, then further receives will be disallowed. If how is 1,

then further sends will be disallowed. If how is 2, then further sends and receives will .

- be disallowed.

ACCESS CONTROL

None.

RETURN VALUE __.

0 Completed successfully.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF

The argument s 1s not an active valid descriptor.

ENOTSOCK

sis a file, not a socket.

ENOTCONN

The specified socket is not connected.

EINVAL :

The how parameter is out of range.

SEE ALSO

connect(2), socket(2).

2-302 Licensed material—property of copyright hoider(s) 093-701055

sigaction(2) DG/UX 5.4 sigaction(2)

NAME

sigaction - examine and change signal action

SYNOPSIS

#include <signal.h>

int sigaction (sig, act, oact)

int SIZ;

const struct sigaction +*@cl;

struct sigaction +«oacl;

where:

sig A signal number.

act NULL, or a new action to be installed for sig.

oact NULL, or the current action associated with sig. If act is not NULL and

the call is successful, oact will be replaced by act.

DESCRIPTION

The sigaction() function allows the calling process to examine or specify (or both)

the action to be associated with a specific signal. The argument sig specifies the sig-

nal; acceptable values are defined in <signal.h>.

The structure sigaction, used to describe an action to be taken, is defined in the

header <signal.h> and includes the following members:

Member Member Description

Type Name P

void (*)() sahandler SIG_DFL, SIG_IGN, or pointer to a function.

sigset_t Sa_mask Additional set of signals to be blocked during

execution of signal-catching function.

int sa_flags Special flags to affect behavior of signal.

If the argument act is not NULL, it points to a structure specifying the action to be

associated with the specified signal. If the argument oact is not NULL the action pre-

viously associated with the signal is stored in the location pointed to by the argument

oact. If the argument act is NULL signal handling is unchanged by this function call;

thus, the call can be used to enquire about the current handling of a given signal.

The sa_handler field of the sigaction structure identifies the action to be associated

with the specified signal. It may have any of the values specified above.

If the sa_handler field specifies a signal-catching function, the sa_mask field identifies

a set of signals that shall be added to the process’s set of blocked signals before the

signal-catching function is invoked. In addition, the signal that caused the handler to

be invoked will be added to the set of blocked signals unless the SALNODEFER flag

has been specified (see the sa_flags description below). The SIGKILL and SIGSTOP

signals shall not be added to the signal mask using this mechanism; this restriction

shall be enforced by the system without causing an error to be indicated.

The sa_flags field can be used to modify the delivery of the specified signal.

The following flags, defined in the header <signal.h>, can be set in sa_flags:

093-701055 Licensed material—property of copyright holder(s) 2-303

sigaction(2)

Svmbolic

Constant

SA_ONSTACK

SA_RESETHAND

SA_NODEFER

SA_RESTART

SA_SIGINFO

SA_NOCLDWAIT

a

SA_NOCLDSTOP

DG/UX 5.4 | sigaction(2)

Description

If set and the signal is caught, and an alternate signal stack

has been declared, the signal is delivered to the calling process

using the alternate stack. Otherwise, the signal is delivered on

the same stack as the main program.

If set and the signal is caught, the action of the signal is reset

to SIG_DFL. (Note: SIGILL, SIGTRAP, and SIGPWR can-

not be automatically reset when delivered; this restriction shall

be enforced by the system without causing an error to be indi-

cated.) :

If set and the signal is caught, sig will not be automatically
blocked when while the handler is active.

If set and the signal is caught, a restartable system call that is

interrupted by the execution of the signal’s handler will be

transparently restarted when the handler finishes. If this flag

is not set, a system call that is interrupted will return EINTR.

If this flag is not set and the signal 1s caught, sig is passed as

the only argument to the signal handling function. If this flag

is set and the signal is caught, two additional arguments will

be passed to the signal handling function. If the second argu-

ment is not equal to NULL, it will point to an object of type

siginfo_t, which will explain the reason the signal was gen-

erated (see siginfo.h). The third argument will point to an

object of type ucontext_t, which will describe the receiving

process’ context at the time it received the signal (see

ucontext.h).)

If set and sig equals SIGCHLD, the system will clean up after

the calling processes dead children. If the calling process sub-

sequently calls wait(), it will block until all of its processes

terminate and then return a value of —1 with errno set to

ECHLD.

If set and sig equals SIGCHLD, sig will not be sent to the cal-

ling process when its child processes stop.

When a signal is caught by a signal-catching function installed by the sigaction()

function, a new signal mask is calculated and installed for the duration of the signal-

catching function (or until a call to either the sigprocmask() or sigsuspend()

function is made). This mask is formed by taking the union of the current signal

mask and the value of the sa_mask for the signal being delivered, and then including

the signal being delivered (unless the SA_NODEFER flag is set, as described above).

If and when the user’s signal handler returns normally, the original signal mask is

restored.

Once an action is installed for a specific signal, it remains installed until another

action is explicitly requested (by another call to the sigaction() function), or until

2-304 Licensed materiali—property of copyright holder(s) 093-701055

sigaction(2) DG/UX 5.4 | sigaction(2)

one of the exec() functions is called. This behavior may be modified by using the

SA_RESTART flag as described above. |

If the previous action for sig had been established by the signal() function, defined

in the C Standard, the values of the fields returned in the structure pointed to by oact

are unspecified, and in particular oact->sv_handler is not necessarily the same value

passed to the signal() function. However, if a pointer to the same structure or a

copy thereof is passed to a subsequent call to the sigaction() function via the acr

argument, handling of the signal shall be as if the original call to the signal() func-

tion were repeated.

If the sigaction() function fails, no new signal handler is installed.

RETURN VALUE

0 Successful completion.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

If any of the following conditions occur, the sigaction() function shall return -1
and set errno to the corresponding value:

EINVAL The value of the sig argument 1s an invalid or unsupported signal

number, or an attempt was made to catch a signal that cannot be

_ caught or to ignore a signal that cannot be ignored. See

| <signal.h>.

EFAULT act or oact points to an invalid location in the user’s address space.

SEE ALSO °

kill(2), sigprocmask(2), sigsuspend(2), sigsetops(3C), <signal.h>.

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

093-701055 Licensed material—property of copyright hoider(s) 2-305

sigaltstack(2) DG/UX §.4 sigaltstack(2)

NAME

sigaltstack -— set or get signal alternate stack context

SYNOPSIS

#include <signal.h>

int sigaltstack(const stack_t *sSs, stack_t *0SS);

where:

SS A structure specifying the new alternate signal stack

OSS A structure specifying the old alternate signal stack

DESCRIPTION

sigaltstack allows users to define an alternate stack area on which signals are to

be processed. If ss is non-zero, it specifies a pointer to, and the size of a stack area

on which to deliver signals, and tells the system if the process is currently executing

on that stack. When a signal’s action indicates its handler should execute on the alter-

nate signal stack [specified with a call to sigaction(2) or sigvec(2)], the system

checks to see if the process is currently executing on that stack. If the process is not

currently executing on the signal stack, the system arranges a switch to the alternate

signal stack for the duration of the signal handler’s execution.

The structure sigaltstack includes the following members.

int *sSs_sp

long ss_size

int ss_flags

If ss is not NULL, it points to a structure specifying the alternate signal stack that will

take effect upon return from sigaltstack. The ss_spand ss_size fields

specify the new base and size of the stack, which is automatically adjusted for direc-

tion of growth and alignment. The ss_flags field specifies the new stack state and

may be set to the following:

SS DISABLE The stack is to be disabled and ss_sp and ss_size are ignored. If

SS_DISABLE is not set, the stack will be enabled.

If oss is not NULL, it points to a structure specifying the alternate signal stack that

was in effect prior to the callto sigaltstack. The ss_spand ss_size fields

specify the base and size of that stack. The ss_flags field specifies the stack’s

state, and may contain the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack.

Attempts to modify the alternate signal stack while the process is exe-

cuting on it will fail.

SS_DISABLE The alternate signal stack is currently disabled.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

On success, sigaltstack returns zero. On failure, it returns ~1 and sets errno to

indicate the error.

DIAGNOSTICS

EINVAL ss is non-null and its ss_flags field has one or more invalid flags.

EPERM An attempt was made to modify an active stack.

ENOMEM The size of the alternate stack area is less than MINSIGSTKSZ.

2-306 Licensed material—property of copyright holder(s) 093-701055

sigaltstack(2) DG/UX 5.4 sigaltstack(2)

EFAULT Either ss or oss points to memory which is not a valid part of the proces’s

address space.

SEE ALSO |

getcontext(2), sigaction(2), sigvec(2), sigsetjmp(3C), ucontext(5).

NOTES

The value SIGSTKSZ is defined to be the number of bytes that would be used to

cover the usual case when allocating an alternate stack area. The value

MINSIGSTKSZ is defined to be the minimum stack size for a signal handler. In com-

puting an alternate stack size, a program should add that amount to its stack require-

ments to allow for the operating system overhead.

The following code fragment is typically used to allocate an alternate stack.

if ((sigstk.ss_sp = (char *)malloc(SIGSTKSZ)) == NULL)

7* error return */;

Sigstk.ss_size = SIGSTKSZ;

Sigstk.ss_flags = 0;

if (sigaltstack(&sigstk, (stack_t *)0) < 0)

perror("sigaltstack”);

093-701055 Licensed materiai—property of copyright hoider(s) 2-307

sigblock(2) DG/UX 5.4 sigblock(2)

NAME

sigblock —- add to set of blocked signals

SYNOPSIS

#include <signal.h>

long sigblock (signalmask)

long signal_mask;

where:

signal.mask _—_ Set of additional signals to block

DESCRIPTION

Sigblock adds the set of signals specified in signal_mask to the set of signals

currently being blocked from presentation. Signal s is represented by the value

sigmask(s) in signalnask.

-It is not possible to block SIGKILL, SIGSTOP, or SIGCONT. It may or may not be |
possible to block signals that are not defined by the system. An attempt to block

these signals will not produce an error.

ACCESS CONTROL

None.

RETURN VALUE

old_signal_mask The previous set of signals being blocked from presentation.

DIAGNOSTICS

None.

SEE ALSO

kill(2), sigvec(2), sigsetmask(2).

2-308 Licensed material—property of copyright hoider(s) 093-701055

sigfiliset(2) DG/UX 5.4 sigfillset(2)

NAME

sigfillset — fill in the set of implementation-defined signals

SYNOPSIS

int sigfillset (signal_mask)

sigset_t *signalunask;

where:

signalymask A pointer to a signal mask

DESCRIPTION

The sigfillset call sets the signal mask pointed to by signal_mask to contain all
signals defined in this implementation.

RETURN VALUE

0 The operation was successful.

-1 The operation was not successful.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT The argument signal_mask specifies an invalid area of the calling

process’s address space or an area which does not have write access.

SEE ALSO

kill(2), signal(2).

093-701055 Licensed material—property of copyright holder(s) 2-309

sighold(2) DG/UX 5.4 : sighold(2)

NAME

sighold — add a signal to the calling process’s set of blocked signals

SYNOPSIS

#include <signal.h>

int sighold (signal_number)

int signal_number;

where:

signal_number The signal to be blocked

DESCRIPTION

Sighold adds the specified signal to the calling process’s set of signals blocked from
presentation. If the specified signal is already blocked, no error is reported, but this
call has no effect as block operations do not nest.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT. It may or may not be

possible to block signals that are not defined by the system. An attempt to block

these signals will produce the error EINVAL.

Note that this system call performs exactly the same basic operation as the system call

sigset with the function parameter set to SIG_LHOLD and as the system call sig-

block with a mask specifying a single signal. These three system calls differ in their

return values and in reporting attempts to block a signal that cannot be blocked.

ACCESS CONTROL

None.

RETURN VALUE

0 The operation succeeded.

-1 The operation failed.

DIAGNOSTICS
Errno may be set to the following error code: |

EINVAL Signal_number is an illegal signal number or one which may not be

blocked.

SEE ALSO

sighold(2), stgignore(2), sigpause(2), sigrelse(2), sigset(2).

2-31 0 Licensed material—property of copyright holder(s) : 093-701055

sigignore (2) DG/UX5.4 sigignore(2)

NAME

sigignore — set the signal action of a signal to ignore’

SYNOPSIS

#include <signal.h>

int sigignore (signalnumber)

int signal_number;

where:

signal_number The signal whose action is to be changed to ignore

DESCRIPTION

Sigignore sets the signal action associated with the specified signal to ’ignore’ and

the signal is removed from the set of signals blocked from presentation. (Any pended

signals are also effectively discarded because as soon as they are unblocked, they are

ignored.)

It is not possible to ignore SIGKILL, SIGSTOP, or SIGCONT (see

sys/signal.h). An attempt to ignore these signals will produce the error EIN-

VAL.

This system call performs exactly the same basic operation as the signal, sigset,

and sigvec system calls with the function set to SIG_LIGN. Note, however, that

sigvec does NOT remove the signal from the set of blocked signals.

ACCESS CONTROL

None.

RETURN VALUE

0 The operation succeeded.

-1 The operation failed.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL Signal_number is an illegal signal number or a signal that may not be

ignored.

SEE ALSO

sighold(2), sigignore(2), sigpause(2), sigrelse(2), sigset(2).

093-701055 Licensed material—property of copyright hoider(s) 2-31 1

signal(2)

NAME

DG/UX 5.4 signal(2)

signal — specify what to do upon presentation of a signal

SYNOPSIS

#include <signal.h>

void (* signal (signalnumber, action))()

int signal_number;

void (*action)();

where:

signal_number Any of the valid signals except SIGKILL (see <sys/signal.h>,

action

DESCRIPTION ,
This manual page describes the default signal behavior. If you define the

~BSD_SIGNAL_FLAVOR macro or if you define only the _BSD_SOURCE macro
when you compile your C application, however, you will get the behavior described in

berk_signal(3C) (also found as signal(3C)). For more information about the

2-312

which is included into <signal.h»>, for a complete list)

Handler for the signal: SIG_DFL, SIG_IGN, or a function address

_BSD_SIGNAL_FLAVOR and _BSD_SOURCE macros and the capabilities they

provide, see Porting Applications to the DG/UXTM System.

Signal allows the calling process to choose one of three ways to handle the presenta-

tion of a specific signal. Signal_number specifies the signal, and action specifies the

choice. The actions prescribed by action are as follows.

SIG_DFL Terminate the process.

SIG_LIGN

address

The process’s signal action vector entry for signal_number is set to

‘default’. If the signal signal_number was pended and signal_number is

not SIGKILL, the pended signal is lost. The set of blocked signals

remains unchanged.

When the signal signal_number is presented to the process, it will cause

the process either to terminate, stop, ignore the signal, or terminate with

a core dump depending on the signal’s type (see <sys/signal.h>).

If a core dump is indicated, the receiving process must have adequate

permission to do so.

Ignore signal.

The process’s signal action vector entry for signal_number is set to

‘ignore’. The set of blocked signals remains unchanged.

When the signal signal_number is presented to the process, it will be dis-

carded.

SIGKILL cannot be ignored.

Catch signal.

The process’s signal action vector entry for signal_number is set to

‘catch’. If the signal signal_number was pended and signal_number is not

SIGKILL, the pended signal is lost. The set of blocked signals remains

unchanged.

Licensed material—property of copyright holders) 093-701055

signal(2) DG/UX 5.4 signal(2)

When the signal signal_number is sent to the process, it will cause the sig-

nal handler specified by action to be invoked.

The following attributes are set for the signal action vector entry for

signal_number :

@ The signal mask addend is cleared. Thus, no additional signals

will be blocked when the signal handler is invoked.

e The signal stack choice specifies the current execution stack.

Thus, no stack change is made.

e If signal_number is not SIGILL, SIGTRAP, or SIGPWR, the sys-

tem first sets the signal action to SIG_DFL before executing the

signal handler. For signals whose new signal action is set to

SIG_DFL, the occurrence of multiple signals may cause some sig-

nals to be lost or may cause the process to terminate.

e System calls interrupted by signal signal_number will not be res-

tarted.

The value of the signal action is not verified or access checked at

the time of the call. If it is invalid, results are undefined when

the signal is caught.

SIGKILL cannot be caught.

After a fork, the child process inherits all software signal structures, except that the

pending signal vector is cleared.

Exec modifies the software signal structures in the following manner:

1) The signal action for signals set to ‘catch’ is changed to ‘default’.

2) The signal stack context is discarded.

3) All other software signal] structures are unchanged.

Setting the signal SIGCLD to SIG_IGN affects exit and wait in the following

manner:

1) The calling process’s child processes will be cleaned up by the parent when the

parent issues its next system call (checks signals).

2) If the calling process later performs a wait operation, wait will suspend the cal-

ling process until all child processes have terminated and will return with the error

condition ECHILD.

Signal will fail, and the signal handler will be unchanged if an error occurs.

ACCESS CONTROL

093-701055

No access is required to install a signal handler.

The receiving process is granted permission to produce a core dump file provided:

e the effective-user-id and the real-user-id of the receiving process are equal,

and

e the receiving process has adequate file system permission to create or rewrite

the core dump file. :

Licensed material—property of copyright holder(s) 2-31 3

signal(2) DG/UX 5.4 signal(2)

RETURN VALUE

old_action Completed successfully. The previous signal handler for signal_number

is returned.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to the following error code:

EINVAL Signal_number is an illegal signal number, including SIGKILL.

SEE ALSO

kill(2), pause(2), ptrace(2), wait(2), berk_signal(3C).

STANDARDS

When using m88kbes as the Software Development Environment target, the signal

function will be emulated using BCS system calls. Since this is an emulation requir-

ing several BCS system calls, a slight performance degradation may be noticed in

' comparison to using signalin /lib/libc.a.

2-31 4 Licensed materiai—property of copyright holder(s) 093-701085

sigpause (2) DG/UX 5.4 sigpause (2)

NAME

sigpause — clear a blocked signal and suspend the process until a signal is caught

SYNOPSIS

#include <sys/signal.h>

int sigpause (signal.number)

int signal_number;

where:

signal.number The signal whose blocked state is to be cleared

DESCRIPTION

Sigpause removes the specified signal from the set of signals blocked from presenta-

tion and then suspends the caller until a signal is caught.

This function is exactly equivalent to the system call sigrelse followed by pause.

ACCESS CONTROL —

None.

RETURN VALUE

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL _ . signal_number is an illegal signal number or a signal that cannot be

unblocked.

EINTR A signal interrupted the sigpause operation

SEE ALSO

berk_sigpause(2), kill(2), pause(2), sighold(2), sigignore(2), signal(2),

sigrelse(2), sigset(2).

STANDARDS

When using m88kbes as the Software Development Environment target, the sig-

pause function will be emulated using BCS system calls. Since this is an emulation

requiring several BCS system calls, a slight performance degradation may be noticed

in comparison to using sigpause in /lib/libc.a.

093-701055 . Licensed material—property of copyright holder(s) 2-31 5

sigpending(2) DG/UX 5.4 : sigpending(2)

NAME

sigpending - examine pending signals

SYNOPSIS

#include <signal.h>

int sigpending (Sef)

Sigset_t +*Set;

where:

set A structure to which the list of signals are to be written

DESCRIPTION

The sigpending() function shall store the set of signals that are blocked from

delivery and pending for the calling process, in the space pointed to by the argument

Set.

RETURN VALUE

) Successful completion.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

This standard does not specify any error conditions that are required to be detected
for the sigpending() function. Some errors may be detected under

implementation-defined conditions.

SEE ALSO

sigprocmask(2), sigsetops(3C), <signal.h>.

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

STANDARDS

The EFAULT error will be generated if the argument ser specifies an invalid error of
the calling process’s address space, or an address area which does not have write

access.

2-31 6 Licensed materialt—-property of copyright holder(s) - 093-701055

sigproemask(2) DG/UX 5.4 sigprocmask(2)

NAME

sigprocmask - examine and change blocked signals

SYNOPSIS

#include <signal.h>

int sigprocmask (how, set, oset)

int how;

const sigset_t Sel;

sigset_t “oSet ;

where:

how The manner in which the current set of blocked signals is changed.

set NULL, or the signal set used to change the current set of blocked signals.

oset NULL, or the current set of blocked signals.

DESCRIPTION

The sigprocmask function is used to examine or change (or both) the calling

process’s signal mask. If the value of the argument ser is not NULL, it points to a set

of signals to be used to change the currently blocked set.

The value of the argument how indicates the manner in which the set is changed, and

shall consist of one of the following values, as defined in the header <signal.h>.

Name Description

SIG_BLOCK The resulting set shal] be the union of the current set

and the signal set pointed to by the argument ser.

SIG_UNBLOCK The resulting set shall be the intersection of the

current set and the complement of the signal set

pointed to by the argument ser.

SIG_SETMASK _ The resulting set shall be the signal set pointed to by

the argument Set.

If the argument oser is not NULL, the previous mask is stored in the space pointed to

by oset. If the value of the argument ser is NULL, the value of the argument how is

not significant and the process’s signal mask is unchanged by this function call; thus,

the call can be used to enquire about currently blocked signals.

If there are any pending unblocked signals after the call to the sigprocmask func-

tion, at least one of those signals shall be delivered before the sigprocmask func-

tion returns.

It is not possible to block the SIGKILL and SIGSTOP signals; this shall be enforced

by the system without causing an error to be indicated.

If any of the SIGFPE, SIGILL, or SIGSEGV signals are generated while they are

blocked, the result is undefined, unless the signal was generated by a call to the kill

function or the raise function defined by the C Standard.

If the sigprocmask function fails, the process’s signal mask is not changed by this

function call. .

093-701055 Licensed material—property of copyright holder(s) 2-31 7

sigprocmask(2) DG/UX 5.4 sigprocmask(2)

RETURN VALUE

0 Successful completion.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

If any of the following conditions occur, the sigprocmask function shall return -1

and set errno to the corresponding value:

EINVAL The value of the how argument is not equal to one of the defined
values.

SEE ALSO |

sigaction(2), sigpending(2), sigsetops(3C), sigsuspend(2), <signal.h>.

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

2-31 8 Licensed material—property of copyright holder(s) 093-701055

sigretse (2) OG/UX 5.4 sigrelse(2)

NAME

sigrelse - remove a signal from the calling process’s set of blocked signals

SYNOPSIS

#include <signal.h>

int sigrelse (signal_number)

int signalnumber;

where:

signal_number The signal to be removed from the set of blocked signals

DESCRIPTION

Sigrelse removes the specified signals from the calling process’s set of signals
blocked from presentation. If the specified signal is not currently blocked, no error

is reported, but this call has no effect as block/unblock operations do not nest.

It is not possible to unblock SIGKILL, SIGSTOP, or SIGCONT. It may or may not

be possible to unblock signals that are not defined by the system. An attempt to

unblock these signals will produce the error EINVAL.

ACCESS CONTROL

None.

RETURN VALUE

0 The operation succeeded.

-1 The operation failed.

DIAGNOSTICS

Errno may be set to the following error code:

EINVAL Signal_number is an illegal signal number or one which may not be

unblocked.

SEE ALSO

sighold(2), sigignore(2), sigpause(2), sigrelse(2), sigset(2).

093-701055 Licensed materiai—property of copyright holder(s) 2-31 9

sigret(2) DG/UX 5.4 sigret(2)

NAME |

sigret — restore the process state to that contained in a signal frame

SYNOPSIS

#include <signal.h>

void sigret ()

DESCRIPTION

The sigret call restores the process state to that contained in a signal frame

pointed to by r31. These values (with the exception of the four modifiable fields,

SXIP, SNIP, SFIP, and r31) must be identical to the values in a signal frame that was

pushed onto the user’s stack when the process’s signal handler was invoked (that is,

this is a "return from signal handler").

ACCESS CONTROL

None.

RETURN VALUE

This function never returns. Execution resumes at the point specified by the

sigcontext structure. If an error occurs, this function terminates the process with

an exit status which indicates that the process was killed by a SIGSEGV signal.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT The sigcontext structure pointed to by r31 could not be accessed.

EINVAL The sigcontext structure pointed to by r31 contains invalid infor-

mation.

SEE ALSO

kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),

sigvec(2).

2-320 Licensed material—property of copyright holder(s) 093-701055

sigsend(2) DG/UX 5.4 sigsend(2)

NAME _

sigsend, sigsendset — send a signal to a process or a group of processes

SYNOPSIS

#include <sys/types.h>

#include <sys/signal.h>

#include <sys/procset.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(procset_t *psp, int Sig);

where:

idtype P_PID, P_PGID, P_SID, P_UID, P_GID, P_CID, or P_ALL,

id An identification number or P_MYID

psp A structure of type procset_t defined in procset.h

sig. | A number or name specifying a signal

DESCRIPTION

Sigsend sends a signal to the process or group of processes specified by id and |

idtype. The signal to be sent is specified by sig and is either zero or one of the values

listed in signal(5). If sig is zero (the null signal), error checking is performed but

no signal is actually sent. This value can be used to check the validity of id and

idtype.

The real or effective user ID of the sending process must match the real or effective

user ID of the receiving process, unless the effective user ID of the sending process is

super-user, or sig is SIGCONT and the sending process has the same session ID as the

receiving process.

If idtype is P_PID, sig is sent to the process with process ID id.

If idrype is P_PGID, sig is sent to any process with process group ID id.

If idtype is P_SID, sig is sent to any process with session ID id.

If idtype is P_UID, sig is sent to any process with effective user ID id.

If idtype is P_GID, sig is sent to any process with effective group ID id.

If idtype is P_CID, sig is sent to any process with scheduler class ID id.

If idtype is P_ALL, sig is sent to all processes and id is ignored.

If id is P_MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process ID

of 1 is excluded unless idtype is equal to P_PID.

sigsendset provides an alternate interface for sending signals to sets of processes.

This function sends signals to the set of processes specified by psp. psp is a pointer

to a Structure of type procset_t, defined in <sys/procset.h>, which includes

the following members:

idop_t Pp_oOp;

idtype_t p_lidtype;

id t p_lid;

idtype_t p_ridtype;

id t p_rid;

p_lidtype and p_lid specify the ID type and ID of one (“‘left’’) set of processes;

p_ridtype and p_ rid specify the ID type and ID of a second (“‘right”) set of

processes. ID types and IDs are specified just as for the idrype and id arguments to

093-701055 Licensed material—property of copyright hoider(s) 2-321

sigsend(2) DG/UX 5.4 sigsend(2)

sigsend. p_op specifies the operation to be performed on the two sets of processes

to get the set of processes the system call is to apply to. The valid values for p_op

and the processes they specify are:

POP_DIFF set difference: processes in left set and not in nght set
POP_AND set intersection: processes in both left and right sets

POP_OR set union: processes in either left or right set or both

POP_XOR set exclusive-or: processes in left or right set but not in both

ACCESS CONTROL

If user ID of the sending process is not superuser, then its rea] or effective user ID

must match the real or effective user ID of the receiving process(es), unless it is send-

ing SIGCONT to a process in that shares its session.

RETURN -VALUE

On success, sigsend sigsendset return zero. On failure, it returns —-1 and sets

errno to indicate the error.

Errno may be set to the following error code:

EINVAL sig is not a valid signal number.

EINVAL _idtype is not a valid idtype field.

EINVAL sig is SIGKILL, idrype is P_PID and id is 1 (procl).

ESRCH No process can be found corresponding to that specified by id and

idtype.

EPERM The user ID of the sending process is not super-user, and its real or

effective user ID does not match the real or effective user ID of the

receiving process, and the calling process is not sending SIGCONT to

a process that shares the same session.

In addition, sigsendset may set errno to

EFAULT PSp points outside the process’s allocated address space.

SEE ALSO

2-322

getpid(2), getpgrp(2), kill(1), kill(2), setpid(2), signal(2), signal(5).

4

Licensed material—property of copyright holder(s) 093-701055

sigset(2)

NAME

DG/UX 5.4 sigset(2)

sigset — specify what to do upon presentation of a signal

SYNOPSIS

#include <signal.h>

void (* sigset (signal.number, action))()

int signal.number;

void (*acfion)();

where:

signal_number Any of the valid signals except SIGKILL (see signal.h for a com-

action

DESCRIPTION

Sigset lets the calling process choose one of four ways to handle the presentation of
a specific signal. signal_number specifies the signal and action specifies the choice.

The action choices are as follows:

093-701055

SIG_DFL

SIG_IGN

SIG_HOLD

address

plete list)

Handler for the signal: SIG_DFL, SIG_IGN, SIG_HOLD, or a

function address -

Process termination.

The process’s signal action vector entry for signal_number is set to

‘default’ and the blocked signal vector entry for signal_number is

cleared.

When the signal signal_number is sent to the process, it will not be
pended and will cause the process to either terminate, stop, ignore the

signal, or terminate with a core dump depending on the signal’s type

(see signal.h).

If a core dump is indicated, the receiving process must have adequate

permission to do so.

Ignore signal.

The process’s signal action vector entry for signal_number is set to

‘ignore’ and the blocked signal vector entry for signal_number is

cleared.

When the signal signal_number is sent to the process, it will not be

pended and will be discarded.

SIGKILL, SIGCONT and SIGSTOP cannot be ignored.

Hold signal.

The process’s signal action vector entry for signal_number is not modi-

fied, but the block signal vector entry for signal_number is set. This

option is equivalent to the system call sighold.

Catch signal.

- The process’s signal action vector entry for signal_number is set to

‘catch’ and the blocked signal vector entry for signal_number is

cleared. If the signal signal_number was pended, the signal is

_ presented to the process.

Licensed materia—property of copyright holder(s) 2-323

sigset(2) DG/UX 5.4 sigset(2)

When the signal signal_number is sent to the process, it will not be

pended and will cause signal handler specified by action to be invoked.

The following attributes are set for the signal action vector entry for

signal_number:

e The signal mask addend is set to the specified signal. Thus,

the specified signal will be added to the set of blocked signals

when the signal handler is invoked.

e The signal stack choice specifies the current execution stack.

‘Thus, no stack change is made.

e System calls interrupted by signal signal_number will not be

restarted.

SIGKILL cannot be caught.

After a fork, the child process inherits al] software signal structures, except that the
pending signal vector is cleared.

Exec modifies the software signal structures in the following manner: 1) The signal

action for signals set to ‘catch’ is changed to ‘default’. 2) The signal stack context is

discarded. 3) All other software signal structures are unchanged.

Setting the signal SIGCLD to SIG_IGN affects exit and wait in the following manner:
1) The calling process’s child processes will be cleaned-up by the system when they

terminate. 2) If the calling process later performs a wait operation, wait will suspend

the calling process until all child processes have terminated and will return with the

error condition ECHILD.

Signal will fail and the signal handler will be unchanged if an error occurs.

ACCESS CONTROL

No access is required to install a signal handler.

The receiving process is granted permission to produce a core dump file provided

e the effective-user-id and the real-user-id of the receiving process are equal,

and

e the receiving process has adequate file system permission to create or rewrite

the core dump file.

RETURN VALUE

old_action Completed successfully. The previous signal handler for

signal_number is returned.

SIG_LERR An error occurred. errno is set to indicate the error.

DIAGNOSTICS .

Errno may be set to the following error code:

EINVAL Signal_number is an illegal signal number, including SIGKILL.

SEE ALSO

kill(2), pause(2), ptrace(2), wait(2).

STANDARDS

When using m88kbes as the Software Development Environment target, the sigset

function will be emulated using BCS system calls. Since this is an emulation requir-

ing several BCS system calls, a slight performance degradation may be noticed in

comparison to using sigset in /lib/libc.a.

2-324 Licensed material—property of copyright holder(s) 093-701055

sigse tmask(2) DOG/UX 5.4

NAME

sigsetmask — specify set of blocked signals

SYNOPSIS

#include <signal.h>

int sigsetmask (signalunask)

int signalmask;

where:

signalmask Set of signals to be blocked

DESCRIPTION

sigsetmask(2)

Sigsetmask assigns the set of signals specified in signal_mask to the set of signals

blocked from presentation. Signal s is represented by the value sigmask(Ss) in

signal_mask.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT. It may or may not be
possible to block signals that are not defined by the system. An attempt to block

these signals will not produce an error.

ACCESS CONTROL

None.

RETURN VALUE

old_signal.mask The previous set of signals being blocked from presentation.

DIAGNOSTICS

None.

SEE ALSO

kill(2), sigblock(2), sigpause(2), sigvec(2).

093-701055 Licensed material—property of copyright hoider(s) 2-325

sigstack(2) DG/UX 5.4 sigstack(2)

NAME

sigstack — set and/or get signal stack context

SYNOPSIS

#include <signal.h>

int sigstack (new_signal_stack, old_signal_stack)

struct sigstack * new_signal_stack;

struct sigstack * old_signal_stack;

where:

new_signal_stack NULL or address of new signal stack context specifier

old_signal_stack NULL or address of old signal stack context specifier

DESCRIPTION

Sigstack is used to install a new signal stack context and retrieve the previous signal

Stack context. A new signal stack context is optionally installed using the |

new_signal_stack parameter. If new_signal_stack is NULL, the signal stack context

remains unchanged. Otherwise, new_signal_stack is installed. The previous signal

stack context may be obtained by the old_signal_stack parameter. If old_signal_stack

is NULL, the previous signal stack context is not returned. Otherwise, the previous

sional stack context information is stored in the location pointed to by

old_signal_stack.

A signal stack is an alternate execution stack on which signals are processed. The

sicnal stack context consists of two components: the address of the base of the signal

stack (ss_sp) and an indication as to whether the process is currently executing on the

sional stack (ss_onstack).

In DG/UX, the user’s stack grows from high to low addresses. Therefore, the stack

pointer, ss_sp, must be the upper bound of the memory allocated for the alternate sig-

nal stack. The caller must make this adjustment; it will not be made by the system.

When a signal’s action is ‘catch’ and its signal stack choice specifies the signal stack,

the system checks to see if the process is currently executing on the signal stack. If

the process is not currently executing on the signal stack, the system arranges a switch
to the signal stack for the duration of the signal handler.

Signal stacks do not increase automatically, as is done for the normal stack. If the

stack overflows unpredictable results may occur.

Sigstack will fail and the signal stack context will be unchanged if an error occurs.

ACCESS CONTROL

None.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to the following error code:

EFAULT Either new_signal_stack or old_signal_stack points to memory which is
not a valid part of the process address space. The validity of the signal

stack is not checked.

SEE ALSO

sigvec(2), setjmp(3C).

2-326 Licensed material—property of copyright holder(s) 093-701055

sigsuspend(2) DG/UX 5.4 sigsuspend(2)

NAME |

sigsuspend — wait for a signal

SYNOPSIS

#include <signal.h>

int sigsuspend (Sigmask)

sigset_t ssigmask;

where:

sigmask A structure containing a set signals constituting a signal mask

DESCRIPTION

The sigsuspend() function replaces the process’s signal mask with the set of signals

pointed to by the argument sigmask and then suspends the process until delivery of a

signal whose action is either to execute a signal-catching function or to terminate the

process. :

If the action is to terminate the process, the sigsuspend() function shall not return.

If the action is to execute a signal-catching function, the sigsuspend() shall return

after the signal-catching function returns, with the signal mask restored to the set that

existed prior to the sigsuspend() call.

It is not possible to block those signals that cannot be ignored, as documented in

<signal.h> this shall be enforced by the system without causing an error to be indi-

cated.

RETURN VALUE |

Since the sigsuspend() function suspends process execution indefinitely, there is

no successful completion return value. A value of -1 is returned and errno is set to

indicate the error.

DIAGNOSTICS

If any of the following conditions occur, the sigsuspend() function shall return -1

and set errno to the corresponding value:

EINTR A signal is caught by the calling process and control is returned from

the signal-catching function.

SEE ALSO

pause(2), sigaction(2), sigpending(2), sigprocmask(2), sigsetops(3C),

<signal.h>.

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,
the original version takes precedence.

093-701055 Licensed material—property of copyright hoider(s) 2-327

sigvec(2) DG/UX 5.4 . sigvec(2)

NAME

sigvec — specify what to do upon presentation of a signal

SYNOPSIS

#include <signal.h>

int sigvec (signalnumber, new_signal_vector, old_signal_vector)

int signal_number ;

struct sigvec * new_signal_vector;

struct sigvec * old_signal_vector;

where:

signal_ number Any of the valid signals except SIGKILL or SIGSTOP (see

signal.h for a complete list)

new_signal_vector | NULL or address of new handler specifier

old_signal_vector NULL or address of old handler specifier

DESCRIPTION

2-328

Sigvec is used to install a new handler and retrieve the previous handler for signal

signal_number. A handler for the signal is optionally installed using the

new_signal.vector parameter. If new_signal_vector is NULL, the handler remains

unchanged. Otherwise, new_signal_vector is installed. The previous handler for the

signal may be obtained by the old_signal_vector parameter. If old_signal_vector is

NULL, the previous handler is not returned. Otherwise, the previous handler infor-

mation is stored in the location pointed to by old_signal_vectror.

A signal handler has three components: a set of flags (sv_flags), a signal mask

(sv_mask), and an action (sv_handler).

Each signal handler may choose to execute on either the current stack of the calling

process or on a special signal stack. The process must have previously defined the

signal stack using sigstack. The handler’s stack choice is indicated by a flag in

sv_flags. Setting the flag SV_ONSTACK chooses the signal stack of the calling

process; otherwise the current stack is used. The stack address is chosen when the

signal is presented. Thus, subsequent sigstack operations may redirect the handler’s

signal stack. 7

The handler’s signal mask is an additional set of signals that are to be blocked from

presentation while the signal is being handled. The set of signals that are blocked

while the signal is being handled is the union of the handler’s signal mask, the signal

that occurred, and the process’s current set of blocked signals.

Signal s is represented by the value sigmask(s) in sv_mask.

The handler’s action chooses one of three ways to handle the receipt of a signal.

new_signal_vector.sv_handler may be assigned one of the values: SIG_DFL,

SIG_IGN, or a function address. The actions prescribed by these values are as fol-

lows:

SIG_DFL _ Default signal action.

The process’s signal action vector entry for signal_number is set to

‘default’.

When the signal signal_number is sent to the process, it may be pended

depending on the state of the blocked signal vector. When the signal is

presented to the process, it will cause the process to either terminate,

Licensed material—property of copyright holder(s) 093-701055

sigvec(2) DG/UX 5.4 sigvec(2)

stop, ignore the signal, or terminate with a core dump depending on the

signal’s type (see signal.h). |

If a core dump is indicated, the receiving process must have adequate
permission to do so.

SIG_IGN Ignore signal.

The process’s signal action vector entry for signal_number is set to

‘ignore’.

When the signal signal_number is sent to the process, it may be pended

depending on the state of the blocked signal vector. When the signal is

presented to the process, it will be discarded.

SIGKILL, SIGSTOP, and SIGCONT cannot be ignored.

address Catch signal.

The process’s signal action vector entry for signal_number is set to
6 9
catch’.

When the signal signal_number is sent to the process, it may be pended

depending on the state of the blocked signal vector. When the signal 1s

presented to the process, it will cause the signal handler specified by

action to be invoked.

The following attributes are set for the signal action vector entry for

signal_number:

e The signal mask addend is set to the union of

new_signal_vector.sv_mask and signal_number. These signals

are added to the blocked signal vector for the duration of the

signal handler’s invocation.

e The signal stack choice is set based on the flag

SV_ONSTACK. This may cause a stack switch to take place

for the duration of the signal handler’s invocation.

e The new signal action is set to ‘unchanged’. The occurrence of

multiple signals will not cause the loss of signals or process ter-

mination.

e The restart system call choice is set based on the flag

SV_INTERRUPT. If the flag is set, system calls interrupted by

signal signal_number will be be terminated with errno set to

EINTR rather than being restarted. If the flag is not set, res-

tartable system call will be transparantly restarted when the sig-

nal handler returns.

SIGKILL and SIGSTOP cannot be caught.

After a fork, the child process inherits all software signal structures, except that the

pending signal vector is cleared.

Exec modifies the software signal structures in the following manner: 1) The signal

action for signals set to ‘catch’ is changed to ‘default’. 2) The signal stack context is

discarded. 3) All other software signal structures are unchanged.

093-701055 Licensed material—property of copyright holder(s) 2-329

sigvec(2) DG/UX 5.4 sigvec(2)

The mask specified in new_signal_vector is not allowed to block SIGKILL, SIG-

STOP, or SIGCONT. This is done silently by the system.

Sigvec will fail and the signal handler will be unchanged if an error occurs.

ACCESS CONTROL

No access is required to install a signal handler.

The receiving process is granted permission to produce a core dump file provided

e the effective-user-id and the real-user-id of the receiving process are equal,

and

e the receiving process has adequate file system permission to create or rewrite

the core dump file.

RETURN VALUE

0 Completed successfully.

-] Ap error occurred. errno Is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT Either new_signal_vector or old_signal_vector point to memory which
is not a valid part of the process address space.

EINVAL Signal_number is not a valid signal number.

EINVAL An attempt is made to ignore or supply a handler for SIGKILL or

SIGSTOP.

EINVAL An attempt is made to ignore SIGCONT.

SEE ALSO

kill(1), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sig-
stack(2), sigvec(2), setjmp(3C), tty(7).

2-330 Licensed material—property of copyright holders) 093-701055

socket(2) DG/UX 5.4 socket(2)

NAME

socket — create an endpoint for communication

SYNOPSIS

#include <sys/socket.h>

int socket (af, type, protocol)

int af;

int ype;

int protocol;

where:

af Protocol family (domain)

type Type of service desired

protocol Optional protocol id (usually 0)

DESCRIPTION .

Socket creates an endpoint for communication and returns a descriptor for the

socket.

The af parameter specifies the domain in which the socket should be created. The

domain determines the semantics of the service provided and affects what services are

available. The domains available in the system are configuration dependent.

Domains are identified by constants defined in sys/socket.h. All constants begin

with PF_; examples are PF_UNIX and PF_INET. However, defining a domain in

sys/socket.h does not imply the domain is configured in the current system.

The socket has the indicated type that specifies the semantics of communication.

Socket types are defined in sys/socket.h as constants beginning with SOCK_,;

examples are SOCK_STREAM and SOCK_DGRAM.

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte

streams with an out-of-band data transmission mechanism. A SOCK_DGRAM socket

supports datagrams (connectionless, unreliable messages of a small, fixed maximum

length). SOCK_RAW sockets provide access to internal network interfaces. The type

-SOCK_RAW is available only to the superuser.

The protocol optionally specifies a particular protocol to be assigned to the socket. If
the user doesn’t care which protocol in the domain supplies the service, a protocol of

zero can be given and the domain will choose an appropriate protocol.

However, many protocols may exist and a user can specify a particular protocol by

giving the protoco] identifier in this manner. The protocol number to use depends on

the communication domain in which communication is to take place; see the related

documentation for a particular domain for more information about individual proto-

cols.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A

stream socket must be in a connected state before any data may be sent or received

on it. A connection to another socket is created with a connect call. Once con-

nected, data may be transferred using read and write calls or some variant of the send

and recv calls. When a session has been completed, a close may be performed.

Out-of-band data may also be transmitted as described in send and received as

described in recv.

The communications protocols used to implement a SOCK_STREAM ensure that data

is not lost or duplicated. If a piece of data for which the peer protocol has buffer

space cannot be successfully transmitted within a reasonable length of time, then the

connection is considered broken. Subsequent calls will return an error, -1. The

093-701055 Licensed material—property of copyright hoider(s) 2-331

socket(2) DG/UX 5.4 | socket(2)

specific error code in global variable errno will be ETIMEDOUT. The protocols

optionally keep sockets warm by forcing transmissions roughly every minute in the
absence of other activity. An error ts then indicated if no response can be elicited on

an otherwise idle connection for a extended period (e.g., five minutes). A SIGPIPE

signal is raised if a process sends on a broken stream; this causes naive processes,

which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents

named in send calls. You can also receive datagrams at such a socket with recv.

Connected SOCK_DGRAM sockets can communicate through the read and write

system calls.

An fentl call can be used to specify a process group to receive a SIGURG signal
when the out-of-band data arrives.

ACCESS CONTROL

The access depends on the domain and type of service requested, see information

about the individual domain for restrictions. However, in general only superuser can

use sockets of type SOCK_RAW.

RETURN VALUE

The return value is a descriptor referencing the socket.

Q..maxfd A file descriptor which references the created socket.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EAFNOSUPPORT The specified address family is not supported in this ver-
sion of the system.

EACCES Permission to create a socket of the specified type and/or
protocol is denied.

ESOCKTNOSUPPORT _ The specified socket type is not supported in this address

family.

EPROTONOSUPPORT _ The specified protocol is not supported.

ENFILE The per-system descriptor table is full.

ENOBUFS No buffer space is available. The socket cannot be

created.

EPROTOTYPE The protocol type doesn’t supply the desired type of ser-
vice.

ENOSTR The system is out of STREAMS resources and could not
create the protocol stream.

SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioct1(2),

listen(2), recv(2), select(2), send(2), shutdown(2), socketpair(2),

inet(3N), unix_ipe(6F).

2-332 Licensed material~property of copyright holder(s) 093-701055

socketpair(2) DG/UX 5.4 socketpair(2)

NAME

socketpair — create a pair of connected sockets

SYNOPSIS

#include <sys/socket.h>

int socketpair (d, type, protocol, sv)

int d;

int ype;

int protocol;

int sv{j;

where:

d Domain of the socket, PF_UNIX

type Type of service, SOCK_STREAM/SOCK_DGRAM

protocol Protocol of interest, 0 for default

sv Buffer in which to return descriptors

DESCRIPTION

The socketpair call creates an unnamed pair of connected sockets in the specified

domain d, of the specified type, and using the optionally specified protocol. The

descriptors used in referencing the new sockets are returned in sv[0} and sv[1].

The two sockets are indistinguishable.

This call is currently implemented only for the UNIX domain.

ACCESS CONTROL

See related documentation on the domain of interest.

RETURN VALUE

0 Completed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EMFILE Too many descriptors are in use by this process.

ENFILE No per-system file descriptor available.

EAFNOSUPPORT The specified address family is not supported on this

machine.

EPROTONOSUPPORT _ The specified protocol is not supported on this machine.

EOPNOSUPPORT The specified protocol does not support creation of

socket pairs.

EFAULT The address sv[] does not specify a valid part of the pro-

cess address space.

ENOBUFS No internal buffers available.

SEE ALSO

read(2), write(2), inet(3N), unix_ipc(6F).

093-701055 Licensed materiai—property of copyright holder(s) 2-333

stat(2) DG/UX 5.4 : stat(2)

NAME

stat — get file status

SYNOPSIS
#include <sys/types.h>

#include <sys/stat.h>

int stat (path, buffer_ptr)

char * path;

struct stat * buffer_pir;

where:

path Address of a pathname

buffer_ptr Address of a stat buffer to fill

DESCRIPTION

Stat returns the current attributes of the file named by the pathname pointed to by

path into the stat buffer at the location specified by buffer_prr. If path refers to a

symbolic link, file status for the target of the symbolic link is returned.

The interpretation of the file’s attributes depends on the file’s type (see stat(5)).

The subject file must be of type ‘ordinary-disk-file’, ‘directory’, ‘block-special-file’,

‘character-special-file’, or ‘fifo-special-file’.

If stat fails, the contents of the buffer are undefined.

ACCESS CONTROL

Read, write, or execute permission of the named file is not required, but the process

must have permission to resolve path.

RETURN VALUE

0 The stat operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |

Errno may be set to one of the following error codes:

EFAULT Buffer_ptr points to an invalid address.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname
or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

set.

EFAULT The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

2-334 Licensed materiat—property of copyright holder(s) 093-701055

stat(2) DG/UX §.4 stat(2)

process’s address space.

SEE ALSO |

chmod(2), chown(2), creat(2), dg_mstat(2), fchmod(2), fchown(2), fstat(2),

link(2), lstat(2), mknod(2), pipe(2), read(2), time(2), unlink(2), utime(2),

utimes(2), write(2), stat(5).

2-335093-701055 Licensed material—property of copyright holders)

statts(2) DG/UX 5.4 statfs(2)

NAME

statfs — get information about a mounted file system

SYNOPSIS

#include <sys/types.h>

#include <sys/statfs.h>

int statfs (pathname, statfs.buffer, len, fstype)

char * pathname;

struct statfs * statfs buffer;

int len;

int fstype;

where:

pathname Address of a pathname

statfs_buffer Where information about the file system is returned

len Length of the statfs structure

fstype 0 (to return the file system statistics for the file system containing the

file named by pathname) or nonzero (to return the file system statis-

tics for the file system that resides on the file system device named

by pathname)

DESCRIPTION

If fstype is O, statfs returns information about the mounted file system that con-

tains the file named by pathname. Otherwise, statfs returns information about the

file system residing on the device named by pathname. Terminal symbolic links are

followed. The statistics returned are:

e The file system block size

The total number of blocks in the file system

The number of free blocks in the file system |

The number of free blocks that are available to a non-superuser process

The number of files that the file system is capable of holding

The number of free file slots in the file system

A character string file system identifier

See stat(5) for details.

Fields that are undefined for a particular file system are set to —1.

ACCESS CONTROL

None.

RETURN VALUE

0 The file system information was successfully returned.

| -1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT Some part of the statfs structure pointed to by statfs_buffer lies

outside of the process’s writable address space.

ENOENT - The named file does not exist.

2-336 Licensed material—property of copyright holder(s) 093-701055

statfs(2)

ENOENT

ENOTDIR

DG/UX 5.4 statfs(2)

A non-terminal component of the pathname does not exist.

A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EPERM

EFAULT

EINVAL

SEE ALSO

chmod(2), chown(2), creat(2), fehmod(2), fchown(2), fstatfs(2), link(2),

mknod(2), pipe(2), read(2), time(2), times(2), ustat(2), write(2), £s(4),

093-701055

statfs(5).

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

The pathname contains a character not in the allowed character

' $et.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

Fstype was nonzero and pathname did not name a block special

device.

Licensed materia'—property of copyright hoider(s) 2-337

statvts(2) DG/UX 5.4 | statvis(2)

NAME

statvfs — return information about a file system

SYNOPSIS

#include <sys/types.h>

#include <sys/statvfs.h>

int statvfs (const char “pathname, struct statvfs *buffer)

where:

pathname The pathname of a file in the file system to be reported on

buffer Address of statvfs buffer where file system information will be returned

DESCRIPTION

Pathname must be that of a file residing in the file system desired for report on.

Read, write, or execute permission to the file is not required, but all directories

preceeding the file named must be searchable. The information returned about the

file system includes:

ulong f.bsize; /* file system block size */

ulong ffrsize; /* file system fragment size */

ulong f.blocks; /* total number of blocks of f_frsize

contained in the file system */

ulong f_.bfree; /* total number of free blocks */

ulong f_bavail; /* number of free blocks available to

the non-super-user */

ulong fLfsid; /* file system identifier */

char f_basetype[FSTYPSZ]; /* null-terminated fs type

name */

ulong f_flag; /* bit mask of flags */

ulong fnamemax; /* maximum file name length */

char f_fstr[32]; /* file system specific string */

{_basetype contains the file system type name and is null-terminated. The value for

the constant FSTYPSZ is defined in the <statvfs.h> file.

The f_flag can return the following:

ST_RDONLY /* a read-only file system */

ST_NOSUID /* file system does not support the

setuid or setgid semantics */

ACCESS CONTROL

None.

RETURN VALUE

0 The information was successfully returned in the statvfs buffer.

~1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EACCES If the search permission does not exist on a component of the

pathname.

ELOOP There were too many symbolic links involved in resolving the

path.

2-338 Licensed materiali—property of copyright holder(s) 093-701055

statvts(2) OG/UX 5.4 statvis(2)

ENAMETOOLONG If the pathname given exceeds the maximum path length.

ENOENT The file name refered to does not exist.

ENOTDIR A prefix of the pathname component is not a directory.

SEE ALSO

chmod(2), chown(2), create(2), dup(2), fentl(2), link(2), mknod(2), open(2),

pipe(2), read(2), time(2), unlink(2), ustat(2), utime(2), write(2).

093-701055 Licensed materiat—property of copyright holder's) 2-339

stime (2) DG/UX 5.4 stime (2)

NAME

stime — set time

SYNOPSIS

#include <time.h>

#include <unistd.h>

#include <sys/types.h>

int stime (seconds)

time _t * seconds;

where:

seconds Address of an initialized longword interpreted as the new system time

DESCRIPTION

Stime sets the system’s notion of the current Greenwich time to the value contained

in the longword at the location specified by seconds.

When the time is successfully changed, a log of the change is sent to the error logger

device.

The time value specified is interpreted as Greenwich time expressed in seconds since

midnight January 1, 1970. | .

Setting the system clock may interfere with other timing functions.

ACCESS CONTROL

Only the superuser may set the time of day.

RETURN VALUE

0 Completed successfully.

-] An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM Permission to change the system time is denied to the calling process.

EFAULT The seconds argument references invalid memory. _

SEE ALSO

settimeofday(2), time(2).

2-340 Licensed material—property of copyright hoider(s) 7 083-701055

store_conditional(2) DG/UX 5.4 | store_conditional(2)

NAME

store_conditional - indivisible compare and swap

SYNOPSIS

tbo 0,r0,400

DESCRIPTION

Store_conditional is a extended operation (XOP) that indivisibly fetches the value

of a user memory location, compares it with a value in a register, and if the proper

conditions are met, stores a new value into the memory location.

Input registers are:

r2 Address of 32 bit user memory location to be fetched and added to. This

address must be aligned on a 4 byte boundary.

r3- The old value against which the value of the memory location will be com-

pared. .

r4 The new value to store into the memory location if the proper conditions are

met.

x5 A mask used to compute the conditions that govern whether the new value is

stored.

Return registers are:

r1 Unchanged

x2 Unchanged

x3 Unchanged

r4 Unchanged

x5 Unchanged

r6 Undefined

x7 Status: 0 means success (memory location was set to the new value), 1 means

some fault occurred when accessing the memory location, 2 means the condi-

tion was not met and hence the new value was not stored.

r8 Old value of the memory location

rg Undefined

r10 through r31

Unchanged

The value of the memory location pointed to by r2 is read. If the value read is equal

to the value in x3 in all bit positions for which the corresponding bit in the mask

(r5) is set, then the new value (r4) is stored into the memory location. More pre-

cisely, the value in the memory location is KORed with r3 and ANDed with x5; if

the result is 0, the new value is stored into the memory location. If the result is not

0, the new value is not stored, and error code 2 is returned in x7. If any fault

(including a page fault) occurs when accessing the memory location, error code 1 is

returned and the memory location is not modified.

The store_conditional XOP executes indivisibly with respect to all other

store_conditional operations running on any processor in the system that may be

going on simultaneously to the same physical memory location. It does not neces-

sarily execute indivisibly with respect to store_conditional operations to other

memory locations, or with respect to other XOPs to the same memory location, or

093-701055 Licensed material—property of copyright holder(s) 2-341

store_conditional(2) DG/UX 5.4 store_conditional(2)

with respect to normal loads and stores or I/O traffic to the memory location.

While the XOP is being executed, the user process will not be descheduled, will not

page fault, and will not be terminated. If a fault of any kind (page fault, protection

fault, misaligned access fault, for example) occurs when the XOP references user

data, the XOP terminates and returns an error. User code is responsible for catching

the error, touching the data item so that the fault can be handled, and then retrying

the XOP. The execution time of the XOP is charged to user mode, not kernel mode.

User profiling ticks that occur while the XOP is in progress are accounted to the

instruction following the trap instruction.

Store_conditional must be invoked with an assembly language trap instruction.

Typically the trap instruction is done from an assembly language routine that is linked

with the application and called as a standard subroutine in the high level language in

which the application is written.

EXAMPLE

See example at fetch_and_add(2).

SEE ALSO

fetch _and_add(2).

2-342 Licensed material—property of copyright hoider(s) 093-701055

swapon(2) DG/UX §.4 swapon(2)

NAME

swapon — add a swap device for demand paging

SYNOPSIS

int swapon(char *special); —

where: |

special Pathname of the block device to page on

DESCRIPTION

The swapon() function makes the block device special available to the system to use

for paging. The entire device is made available for use for paging; the previous con-

tents of the storage will be overwritten.

ACCESS CONTROL

The effective user id of the calling process must be superuser.

RETURN VALUE

Upon successful completion, swapon() returns a value of 0. Otherwise, it returns

the value -1, and sets errno to indicate an error.

DIAGNOSTICS

Under the following conditions, swapon() fails and sets errno to:

EPERM if the effective user id of the calling process is not superuser.

ENOSPC if the swap area could not be set up because the system already has
‘the maximum number of paging areas in use.

ENODEV if the swap area could not be set up because its size is bigger than the

maximum or smaller than the minimum allowable size for a paging

area.

ENOTBLK if the file with the specified pathname is not a block special file.

EBUSY if the given device is already in use.

ENOENT if there is no file with the specified pathname.

‘ENOENT if a non-terminal component of the specified pathname does not exist.

ENOTDIR if a non-terminal component of the specified pathname was not a

directory or symbolic link.

ENAMETOOLONG

if the pathname exceeds the length limit for pathnames.

ENAMETOOLONG

if a component of the pathname exceeds the length limit for

filenames.

ELOOP if the number of symbolic links encountered during pathname resolu-
tion exceeds the system maximum. A symbolic link cycle is

suspected.

EFAULT if the pathname does not completely reside in the process’s address

space or the pathname does not terminate in the process’s address

space.

SEE ALSO

swapon(1M).

- 083-701055 Licensed materiai—property of copyright hoider(s) 2-343

symlink(2) DG/UX 5.4 . symlink(2)

NAME

symlink - create a symbolic link file

SYNOPSIS

#include <unistd.h>

int symlink (link contents, link_path)

char * link contents;

char * link_path;

where:

link_contents Null terminated string to become the symbolic link’s contents

link_path Address of a pathname

DESCRIPTION

Symlink creates a symbolic link file named by the pathname pointed to by link_path

that contains the null-terminated string pointed to by link_contents.

Link_contents need not be a valid pathname in order to create the symbolic link.
When the symbolic link is resolved as part of a pathname, however, an error will

occur if it does not obey all the pathname resolution rules.

Link_contents must be less than MAXPATHLEN bytes long. This restriction is in

addition to the size restrictions that apply to every file — the process file size limit,

and the system file size limit.

The symbolic link file is entered into the filesystem. The file’s attributes are initial-

ized as follows:

e The inode number (st_ino) refers to the per-file database allocated.

e The device number (st_dev) is the same as that of the directory containing the

symbolic link file. The represented device (st_rdev) is undefined.

e The number of links (st_nlink) is set to one.

e The file mode (st_mode) is set as follows: The file pe is ‘symbolic-link-file’.
The other mode fields are undefined.

e The user id (st_uid) is set to the effective user id of the calling process. (The
user id is needed to support the protection required by readlink.) The group
id (st_gid) is undefined.

e The file size (st_size) is set to the number of characters in link_contents,

exclusive of the terminating null character.

e The time last accessed (st_atime), time last modified (st_mtime), and time of

last attribute change (st_ctime) are set to the current time.

Link_path is created in the containing directory and is made to identify the newly

created file. An allocation to the directory causes its attributes to change as follows:

e The file size (st_size) is updated if the number of block necessary to hold the

directory entries was increased by adding the symbolic link entry.

e The time last modified (st_mtime) and time of last attribute change (st_ctime)

are set to the current time.

If symlink fails, no changes are made.

ACCESS CONTROL

The calling process must have permission to resolve link_path.

2-34 4 Licensed material—property of copyright holder(s) 093-701055

symiink(2) DG/UX 5.4 symiink(2)

The calling process must have write permission to the directory containing the sym-
bolic link to be added.

RETURN VALUE

0 The symbolic link was successfully created.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EEXIST The symbolic link named by new_path exists.

EFAULT Link_contents points outside the allocated address space of the

process.

EROFS The requested symbolic link requires writing in a directory on a

file system mounted read-only.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EFAULT

SEE ALSO

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

1n(1), link(2), readlink(2), unlink(2), stat(5).

093-701055 Licensed material—property of copyright holder(s) 2-345

sync(2) DG/UX 5.4 . syne(2)

NAME

syne — synchronize disk and memory resident file system information

SYNOPSIS

#include <unistd.h>

void syne ()

DESCRIPTION

The sync system call causes file system information in memory to be written to the

disk.

Activity may continue on the file system device while the sync is being performed,

but there are no guarantees about whether changes to files or file system data that

occur after sync starts get to disk. Upon return from sync, there is no guarantee

that all writes to the disk have completed.

ACCESS CONTROL
None.

RETURN VALUE

None.

DIAGNOSTICS

None.

SEE ALSO

syne(1M), fsyne(2).

2-346 Licensed material—property of copyright holder(s) 7 093-701055

sysconf(2) DG/UX 5.4 . sysconf(2)

NAME

sysconf — get configurable system variables

SYNOPSIS

#include <unistd.h>

#include <sys/m88kbcs.h>

long sysconf (name)

int name;

where:

name The name of the system variable to be queried

DESCRIPTION

The sysconf() function provides a method for the application to determine the

current value of a configurable system limit or option (variable).

The implementation shall support all of the variables listed in the table "Configurable

System Variables" and may support others. The variables in the table come from
<limits.h> or <unistd.h> (or <time.h> from the C Standard for

{CLK_TCK}), and the symbolic constants, defined in <unistd.h>, that are the

corresponding values used for name.

Configurable System Variables

Variable name Value

{ARG_MAX} {_SC_ARG_MAX}

{CHILD_MAX} {_SC_CHILD_MAX}

{CLK_TCK} {_.SC_CLK_TCK}

-{<NGROUPS_MAX} {_SC_NGROUPS_MAX}

{OPEN_MAX} {_SC_OPEN_MAX}
{PAGESIZE} {_SC_PAGESIZE}

{_POSIX_JOB_CONTROL} {_SC_JOB_CONTROL}

{_POSIX_SAVED_IDS} {_SC_SAVED_ID$}
{_POSIX_VERSION} {_SC_VERSION}

The value of {CLK_TCK} is permitted to be evaluated at run-time by the C Standard
(and thus by this standard). The value returned by sysconf() for {_.SC_CLK_TCK}

shall be the same as that returned by {CLK_TCKE}.

RETURN VALUE

If name is an invalid value, sysconf() shall return -1. If the variable corresponding

10 name is not defined on the system, sysconf() shall return —1 without changing

the value of errno.

Otherwise, the sysconf() function returns the current variable value on the system.
The value returned shall not be more restrictive than the corresponding value

described to the application when it was compiled with the implementation’s

<limits.h> or <unistd.h>. The value shall not change during the lifetime of the

calling process.

DIAGNOSTICS

If any of the following conditions occur, sysconf returns -1 and sets errno to the

corresponding value:

EINVAL The value of the name argument is invalid.

093-701055 Licensed material—property of copyright holders) 2-347

sysconf(2)

FILES

unistd.h

sys/m88kbcs.h

SEE ALSO

pathconf(2).

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-
cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

STANDARDS

In addition to the configurable system variables listed above, the following variables

are defined in <sys/m88kbcs.h>:

_~SC_BCS_VERSION: Get version number of 880pen BCS to which the system con-

forms.

~SC_BCS_.VENDOR_STAMP:

-~SC_BCS_SYS_ID:

_~SC_MAXUMEMV:

-~SC_MAXUPROC:

-SC_MAXMSGSZ:

~SC_NMSGHDRS:

_~SC_SHMMAXSZ:

_~SC_SHMMINSZ:

-~SC_SHMSEGS:

_SC_NMSYSSEM:

~SC_MAXSEMVL:

~SC_NSEMMAP:

_~SC_NSEMMSL:

_~SC_NSHMMNI:

~SC_LITIMER_VIRT: -

_SC_ITIMER_PROF:

_~SC_TIMER_GRAN:

_~SC_PHYSMEM:

_~SC_AVAILMEM:

~9SC_NICE:

9-RAR |

Get BCS vendor stamp of the system.

Get system hardware’s unique system ID number.

Get maximum user process size, in Kbytes.

Get maximum number of processes per user.

Get maximum number of bytes in a message.

Get maximum number of message headers in system.

Get maximum size of a shared memory segment.

Get minimum size of a shared memory segment.

Get maximum number of attached shared memory segments

per process.

Get total number of semaphores in system.

Get maximum semaphore value.

Get number of semaphore sets.

Get number of semaphores per set.

Get number of shared memory segments in the system.

Determine whether or not system supports a timer.

Determine whether or not system supports a profiling timer.

Get granularity (in microseconds) of system’s real-time clock.

Get system’s physical memory size, in Kbytes.

Get amount of physical memory available to user processes, in

Kbytes.

Determine whether or not nice() process prioritization 1s

supported on system.

ieanesd materialproperty of copyright holder(s) 093-701055

sysconf(2) DG/UX 5.4 sysconf(2)

~SC_MEMCTLLUNIT:

Get number of bytes in a memctl() memory unit.

~SC_SHMLBA: Get number of bytes used as rounding factor on memory
addresses by shmsys().

~SC_SVSTREAMS: Determine whether or not system supports System V style
STREAMS.

~SC_CPUID: Get the value stored in the M88100 Processor Identification
Register.

~SC_NPTYS: Get the number of BCS Networking Supplement stype
pseudo-ttys supported.

-093-701055 Licensed materia'—property of copyright holder(s) 2-349

systs(2) DG/UX 5.4 | systs(2)

NAME

sysfs - returns information about file system types

SYNOPSIS

#include <sys/fstyp.h>

#include <sys/fsid.h>

int sysfs (int opcode, parameter], parameter2)

where:

opcode The operation code to get file system information (GETFSIND, GETFS-

TYP, or GETNFSTYP)

parameter] Parameter’s existence and use depends on operation.

parameter2 Parameter’s existence and use depends on operation.

DESCRIPTION |

-Sysfs returns information about the file system types configured in the system. The

number of arguments accepted by sysfs varies and depends on the opcode selected.

The recognized opcodes and their functions are described below:

GETFSIND Translates fsname (parameter1), a null-terminated file system identif-

ier, into a file system type index. Parameter2 is ignored.

GETFSTYP Translates fs_index (parameter1), a file system type index into a null-

terminated file system identifier and writes it into the buffer pointed

to by fsname (parameter2). This must be at least the size of

FSTYPSZ as defined in <sys/fstyp.h>.

GETNFSTYP Returns the total number of file system types configured with the sys-

tem. Parameter] and parameter2 are ignored.

ACCESS CONTROL

None.

RETURN VALUE

For GETFSIND:

fs_index or -1

Errno is set to indicate the error if -1. Otherwise, it is the type index of the

file system.

For GETFSTYP:

0 Successful, paramter2 is set to the file system name.

-1 An error occurred. Errno is set appropriately.

For GETNFSTYP:

Number of registered file systems

The return value indicates the number of configured file systems.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EINVAL Fsname points to an invalid file system identifier; fs_index is zero, or

invalid; the opcode is invalid.

EFAULT A pathname does not completely reside in the process’s address

space or the pathname does not terminate in the process’s address

space.

2-350 Licensed materiai—property of copyright holder(s) 093-701055

systs(2) DG/UX 5.4 systs(2)

SEE ALSO.

mount(2), nfsmount(2), fs(4).

2-351
093-701055 Licensed materiatproperty of copyright holder(s)

sysinfo(2) DG/UX 5.4 sysinfo (2)

NAME

sysinfo — get and set system information strings

SYNOPSIS

#include <sys/systeminfo.h>

long sysinfo (int command, char *buf, long count);

where:

command Specifies a particular operation for sysinfo to perform.

buf A pointer to a buffer where system information will be written. If com-

mand specifies a set operation, then buf will point to a string that

sysinfo will use to set a system variable.

count The length in bytes of the buffer pointed to by buf.

DESCRIPTION

Sysinfo copies information relating to the system on which the process is executing

into the buffer pointed to by buf; sysinfo can also set certain information as speci-

fied by commands.

The POSIX P1003.1 interface sysconf [see sysconf(2)] provides a similar class of

configuration information, but returns an integer rather than a string.

The commands you can specify are as follows:

SLSYSNAME

Copy into the array pointed to by buf the string that would be returned by

uname [see uname(2)] in the sysname field. This is the name of the

implementation of the operating system, e.g., dgux.

SLHOSTNAME

Copy into the array pointed to by buf a string that names the present host

machine. This is the string that would be returned by uname [see

uname(2)] in the nodenamefield.

The hostname is the name of this machine as a node in some network;

different networks may have different names for the node, but presenting

the nodename to the appropriate network Directory or name-to-address

mapping service should produce a transport end point address. The name

may not be fully qualified.

Internet host names may be up to 256 bytes in length (plus the terminating

null).

SLSET_HOSTNAME

Copy the null-terminated contents of the array pointed to by buf into the

string maintained by the kernel whose value will be returned by succeed-

ing calls to sysinfo with the command SI_HOSTNAME. This command

requires that the effective-user-id be super-user.

SLRELEASE

Copy into the array pointed to by buf the string that would be returned by

uname [see uname(2)] in the release field. A typical value might be 5.4.

SLVERSION

Copy into the array pointed to by buf the string that would be returned by

uname [see uname(2)] in the version field. The syntax and semantics of

this string are defined by the system provider.

2-352 Licensed material—property of copyright holder(s) | 093-701055

sysinto(2) DG/UX 5.4 sysinto(2)

SLMACHINE

Copy into the array pointed to by buf the string that would be returned by

uname [see uname(2)] in the machine field,e.g., AViiON.

SILARCHITECTURE

Copy into the array pointed to by buf a string describing the instruction

set architecture of the current system, e.g., mc88100. These names may

not match predefined names in the C language compilation system.

SLHW_PROVIDER ~

Copies the name of the hardware manufacturer into the array pointed to

by buf, e.g., Data General.

SLHW_SERIAL

Copy into the array pointed to by buf a string which is the ASCI

representation of the unique, hardware-specific serial number of the phy-

sical machine on which the system call is executed.

SLSRPC_DOMAIN

Copies the Secure Remote Procedure Call domain name into the array

pointed to by buf.

SLSET_SRPC_DOMAIN

Set the string to be returned by sysinfo with the SLSRPC_DOMAIN

command to the value contained in the array pointed to by buf. This

command requires that the effective-user-id be super-user.

RETURN VALUE .

Upon successful completion, the return value indicates the buffer size in bytes

required to hold the complete string value and the terminating null character. If this

value is no greater than the value passed in count, the entire string was copied; if this

value is greater than count, the string copied into buf has been truncated to count—1

bytes plus a terminating null character.

Otherwise, a value of -1 is returned and ev7o is set to indicate the error.

DIAGNOSTICS

Sysinfo will fail if one or both of the following are true:

EPERM The process does not have appropriate privilege for a SET commands.

EINVAL buf does not point to a valid address, or the data for a SET command

exceeds the limits established by the implementation.

A good starting guess for count is 257, which is likely to cover all strings returned by

this interface in typical installations.

SEE ALSO

uname(2), sysconf(2), gethostname(2), gethostid(2).

NOTE

For many of the system information variables, no programmatic interface exists that

allows a user set their values. Such strings are settable only by the system administra-

tor modifying entries in the master.d directory.

2-353
093-701055 Licensed material—property of copyright holder(s)

time (2) DG/UX 5.4 time (2)

NAME

time — get system time

SYNOPSIS

#include <time.h>

#include <sys/types.h>

time t time (tloc)

time t * tloc;

where:

tloc NULL or address of a time_t to be set to the current system time

DESCRIPTION

Time returns the system’s notion of the current Greenwich time as the system call’s

return value.

If tloc is not NULL, the current time is also stored in the (time_t) at the location

specified by floc.

The time value returned is Greenwich time expressed in seconds since midnight Janu-

ary 1, 1970.

ACCESS CONTROL

None.

RETURN VALUE

current time Completed successfully.

-1 An error occurred. errno ls set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT Time will fail if tloc points to an illegal address.

SEE ALSO

date(1), stime(2).

2-354 Licensed material—property of copyright holder(s) 093-701055

NAME

times — get process and child process times

SYNOPSIS

#include <sys/types.h>

#include <sys/times.h>

clock_t times (buffer)

struct tms * buffer;

where:

buffer The address of a structure into which the times are to be put

DESCRIPTION

The times system call fills in the structure pointed to by buffer with time accounting

information for the calling process and each of its terminated child processes for
which it has executed a wait.

All times are defined in units of 1/{CLK_TCK} of a second. See sysconf(2).

The value of mn_urime is the CPU time used while executing instructions in the user

space of the calling process.

The value of rm_stime is the CPU time used by the system on behalf of the calling

process.

The value of rms_cutime is the sum of the nns_urime and tmsucurime of the child

processes.

The value of nns_sutime is the sum of the mns_snime and mnsucstime of the child

processes.

ACCESS CONTROL

The argument buffer must point to an area of the calling process’s address space that

is valid and has write access.

RETURN VALUE

Upon successful completion, times returns the elapsed real-time, in [(CLK_TCK]ths of

a second, since an arbitrary point in the past (e.g., system start-up time). This point

does not change from one invocation of times to another. Hence, a single value

returned from “this call is not meaningful; only the difference between values returned
at different times is meaningful.

If an error occurs, -1 is returned and errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT Buffer points to an illegal address.

SEE ALSO

time(1), exec(2), fork(2), time(2), wait(2).

-093-701055 Licensed material—property of copyright holder(s) 2-355

truncate (2) DG/UX 5.4 truncate (2)

NAME

truncate — truncate a file to a specified length

SYNOPSIS

#include <unistd.h>

int truncate (path, length)

char * path;

long length;

where:

path Address of a pathname

length Maximum length of file after truncation

DESCRIPTION

Truncate causes the file named by path to be truncated to at most length bytes in

size. If path refers to a symbolic link, the target of the symbolic link is truncated.

The subject file must reside on a file system device mounted read-write. Also, it

must not be a directory. If mandatory locking is enabled on the file, truncate waits

until all locks on the file are cleared.

If an error occurs, no changes occur. Otherwise, the subject file is changed with the

following consequences:

e For files of type ‘ordinary-disk-file’, if the file’s size is greater than length

bytes, it is truncated to that length, and the file’s size is updated. If the file’s

size is less than length bytes, the file is lenghtened by appending null bytes

and the file’s size is updated.

e If file is not of type ‘ordinary-disk-file’, neither its contents nor its size are

altered.

e The ‘time-last-modified’ and ‘time-last-changed’ attributes are set to the

current time. These attributes are changed even if there is no change to the

file’s contents.

ACCESS CONTROL :

The calling process must have permission to resolve path.

The calling process must have write access to the file.

RETURN VALUE

0 The file was successfully truncated.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EACCES Write permission is denied for the named file.

EISDIR The named file is a directory.

EROFS The named file resides on a file system device mounted read-
only.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

2-356 Licensed material—property of copyright hoider(s) 093-701055

truncate (2) DG/UX 5.4 truncate (2)

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EPERM

EFAULT

EINTR

SEE ALSO

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

The pathname contains a character not in the allowed character

set.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

The truncate system call was interrupted while waiting for a

mandatory record lock to clear.

creat(2), ftruncate(2), open(2).

STANDARDS

When using m88kbes as the Software Development Environment target, the trun-

cate function will be emulated using BCS system calls. Since this emulation uses the

open system call, a failure will occur if all file descriptors are in use. In this case,

ermo will be set to EMFILE. Also, since this is an emulation requiring several BCS

system calls, a slight performance degradation may be noticed in comparison to using

truncate in /lib/libc.a.

093-701055 Licensed material—property of copyright nolder(s) 2-357

vadmin(2) DG/UX 5.4 vadmin(2)

NAME

uadmin — administrative control

SYNOPSIS

#include <sys/uadmin.h>

int uadmin(int cmd, int fen, int mdep);

where:

cmd A_SHUTDOWN or A_REBOOT

fon AD HALT, AD_BOOT, or AD_IBOOT

mdep This argument is provided for machine-dependent use and is not defined here.

DESCRIPTION

Vadmin provides control for basic administrative functions. This system call is tightly

coupled to the system administrative procedures and is not intended for general use.

As specified by cmd, the following commands are available:

A_SHUTDOWN The system is shut down. All user processes are killed and the

buffer cache is flushed. The action to be taken after the system has

been shut down is specified by fen. The valid functions are:

AD_HALT Halt the processor(s).

AD_BOOT Reboot the system, using the same boot flags as the last

time it was booted.

AD_IBOOT The same as AD_HALT. Control is returned to the sys-

tem contro] monitor where the user can specify a new

boot path.

A_REBOOT The system stops immediately without any further processing. The

action to be taken next is determined by the value of fen.

ACCESS CONTROL

Only the super user may halt the system processor(s).

RETURN VALUE | - oo

If successful, this call never returns. Otherwise, a —1 is returned and errno is set to

indicate the error. :

DIAGNOSTICS ‘

EPERM The effective user ID is not super-user.

SEE ALSO

dg_sysentl(2).

2-358 Licensed materiat~property of copyright holder(s) 093-701055

ulimit(2) DG/UX 5.4 ulimit (2)

NAME

ulimit - get and set user limits

SYNOPSIS

#include <sys/ulimit.h>

long ulimit (cmd, newlimit)

int cmd;

long newlimit;

where:

cmd An integer, 0 - 4, specifying which of several user limit-related operations

to perform

newlimit An argument to the user limit operation, the specific meaning depending

upon the cmd argument

DESCRIPTION : |
The ulimit system call controls various per-process limits. The cmd argument

specifies which of several operations to perform as described below:

GET_ULIMIT or UL_GETFSIZE

Get the calling process’s file size limit. The file size limit is the maximum log-

ical offset within a file at which the process can perform a write operation.

The limit is in units of 512-byte blocks. The newlimit argument is ignored and

need not be present. This option is the same as the hard RLIMIT_FSIZE in

getrlimit.

SET_ULIMIT or UL_SETFSIZE

Set the file size limit of the process to newlimit. A process may not increase

its file size limit unless it has an effective-user-id of 0 (that is, is super-user).

Newlimit may be any positive or negative integer. This option is the same as

the hard RLIMIT_FSIZE in setrlimit with the soft RLIMIT_FSIZE set to

RLIVLINFINITY.

GET_BREAK

Get the maximum possible break value for the calling process. The newlimit

argument is ignored and need not be present.

GET_MAX_OPEN

Get the maximum number of open files allowed per process.

ACCESS CONTROL

The following access restrictions apply, depending on the value of cmd:

GET_ULIMIT or UL GETFSIZE

None.

SET_ULIMIT or UL_SETFSIZE

If newlimit is greater than the current value of the file size limit, the effective-

user-id of the calling process must be 0 for the call to succeed. Otherwise,

the limit is unchanged and an EPERM error is returned.

GET_BREAK

None.

GET_MAX_OPEN

None. »

RETURN VALUE

If cmd has the value GET_ULIMIT or UL._GETFSIZE, the return value is as fo)-

lows:

083-701055 Licensed material—property of copyright hoider(s) 2-359

ulimit(2) — DG/UX 5.4 ulimit(2)

Q0..FILESIZE The return value is always the current value of the calling process’s

file size limit. 7

If cmd has the value SET_ULIMIT or UL_SETFSIZE, the return value is as follows: ©

0..FILESIZE Successful completion. The new file size limit is returned.

-1 An error occurred. errno is set to indicate the error.

If cmd has the value GET_BREAK, the return value is as follows:

O..MAXBRK _ The return value is always the calling process’s maximum possible

break value.

If crnd has the value GET. MAX_OPEN, the return value is as follows:

NOFILE The return value is always NOFILE as defined in param.h.

If cmd is anything other than the above values, -1 is returned and errno Is set to

EINVAL.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EPERM The calling process is trying to increase its file size limit and does not

have an effective-user-id of 0.

EINVAL ‘The value of cmd was not one of the valid commands listed above.

SEE ALSO

brk(2), getrlimit(2), setrlimit(2), write(2).

2-360 Licensed material—property of copyright holder(s) 093-701055

umask(2) DG/UX 5.4 umask(2)

NAME

umask — set and get file creation mask

SYNOPSIS

mode _t umask (creation.mask)

int creafion_mask ;

where:

creationnask File mode creation mask

DESCRIPTION

Umask sets the process’s file mode creation mask to the low-order 9 bits of

creation_mask and returns the previous value of the mask. Those bits other than the

low-order 9 in creation mask are reserved, and in the return value are undefined. See

creat(2) for details of how this mask is used.

ACCESS CONTROL

None.

RETURN VALUE

0..07777 Previous mask value.

DIAGNOSTICS

None.

SEE ALSO

mkdir(1), sh(1), umask(1), chmod(2), creat(2), mknod(2), open(2).

093-701055 Licensed material—-property of copyright hoider(s) 2-361

umount(2)

NAME

DG/UX 5.4 | umount(2)

umount — remove a file system device

SYNOPSIS

#include <sys/mount.h>

int umount (special)

char * special;

where:

special Address of a pathname

DESCRIPTION

Umount removes the file system device identified by special or mounted on the file

special from the set of active file system devices with the following consequences:

e The filename store contained on special is removed from the system filename

store. Thus, all files contained on special] can no longer be named.

e The filesystem contained on special is removed from the system flat file store.

Thus, all files contained on special can no longer be accessed.

e None of the files on special may be open. No process may have its current

working directory on special.

e The filename store contained on special cannot contain a mount point of any

other file system device at the time of the call to umount.

e Special must have previously been the subject of a successful mount opera-

tion. If umount is successful, the sub-tree over which special was mounted

reappears in the system file name store. These files can now be named.

e If special refers to a named stream and there are no other references to the

Stream, the stream is closed and its resources deallocated.

If an error occurs, no changes are made.

ACCESS CONTROL 7

To unmount a dg/ux or nfs file system, the calling process’s effective user id must be

the superuser. To unmount a namefs file system, the calling process’s effective user

id must be the superuser or the owner of special.

RETURN VALUE

0 Special was successfully unmounted.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBUSY There are still processes accessing file system objects on spe-

cial.

EBUSY A file contained on special is the mount point of another file

system device.

EINVAL Special is not mounted.

ENOENT The named file does not exist.

ENOTBLK Special is not a block special file.

ENXIO The device associated with special does not exist.

2-362 Licensed materia—property of copyright holder(s) 093-701055

umount(2)

EIO |

EPERM

ENOENT

ENOTDIR

DG/UX 5.4 umount(2)

V/O error when flushing file system information.

Permission to unmount the file system device is denied to the

calling process.

A non-terminal component of the pathname does not exist.

A non-termina]l component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EPERM

EFAULT

SEE ALSO

mount(1M), dg_mount(2), mount(2), f£s(4).

0893-701055

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

The pathname contains a character not in the allowed character |

set.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

Licensed material—property of copyright holder's) 2-363

uname (2) DG/UX 5.4 uname (2)

NAME

uname, nuname — get name of current UNIX system

SYNOPSIS

#include <sys/utsname.h>

int uname (name)

struct utsname * name;

int nuname (name)

Struct utsname * name;

where:

name Address of a structure to be filled with the current system name

DESCRIPTION |
uname and its synonym nuname store information identifying the current UNIX sys-

tem in the structure pointed to by mame. This information is set during the system

generation procedure and may be meaningful to other software. The utsname struc-

ture is defined in the include file <sys/utsname.h>. See <sys/utsname.h> fora

description of the fields.

ACCESS CONTROL

None.

RETURN VALUE

0 The operation was successful.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EFAULT uname and nuname will fail if name points to an invalid address.

SEE ALSO

uname(1) in the User’s Reference for the DG/UX System, hostname(1C), sethost-

name(2)

NOTES

The command hostname(1C) and the system call sethostname(2) modify the

system’s nodename, and thus change the value returned in the nodename field of the

utsname structure.

2-364 Licensed materiat—property of copyright holder(s) | 093-701055

unlink(2) DG/UX 5.4 | unlink(2)

NAME

unlink - remove a directory entry

SYNOPSIS

int unlink (path)

char * path;

where:

path Address of a pathname

DESCRIPTION

Unlink removes the directory entry named by the pathname pointed to by path from

the filename store. A symbolic link occurring at the end of path will not be followed.

The named file must reside on a file system device mounted read-write.

The subject file must be of type ‘ordinary-disk-file’, ‘block-special-file’, ‘character-

special-file’, ‘fifo-special-file’, ‘socket’, or ‘symbolic-link’.

It is an error to attempt an unlink call on a directory or control point directory type

file.

Removing a reference to a file in the filename store has the following consequences:

e The subject file’s link count attribute is decremented.

e The subject file’s ‘time-last-attribute-changed’ attribute is set to the current

time. —

e If the subject file has no more links in the filename store, then on the release

of the Jast reference, the file will removed from the flat file store. Thus,

unlink deletes inactive files.

e If the subject file has no more links in the filename store but is still open,

then the file is removed from the filesystem when it is closed for the last time.

If unlink fails, no changes are made to the named file.

ACCESS CONTROL

The calling process must have permission to resolve path.

The calling process must have write permission to the directory containing the entry

to be removed.

RETURN VALUE

0 The filename was successfully removed.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |
Errno may be set to one of the following error codes:

EACCES Permission to modify the directory containing the entry to be

removed is denied to the calling process.

EBUSY The named file is the mount point of a file system device.

EPERM The named file is a directory.

EROFS The named file is contained on a read-only file system device.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory

or symbolic link.

093-701055 Licensed materiat—property of copyright holder(s) 2-365

unlink(2) DG/UX 5.4 unlink(2)

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames. |

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

EPERM The pathname contains a character not in the allowed character

set.

EFAULT The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

SEE ALSO

rm(1), close(2), link(2), open(2).

2-366 Licensed material—property of copyright holder(s) 093-701055

ustat(2) DG/UX 5.4 ustat(2)

NAME

ustat — get file system device statistics

SYNOPSIS

#include <sys/types.h>

#include <sys/ustat.h>

int ustat (device, ustat_buffer)

dev_t device;

struct ustat * ustat_buffer;

where:

device Device number of a mounted file system device

ustat_buffer Where the file system statistics are returned

DESCRIPTION |
Ustat returns information about a mounted file system device. Device is a device

number identifying a device containing a mounted file system. Status information

concerning the file system device contained on device is returned in the location
pointed to by ustar_buffer.

If an error occurs, the contents of ustar_buffer are undefined.

ACCESS CONTROL

None.

RETURN VALUE

0 The file system device status information was successfully returned.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |
Errno may be set to one of the following error codes:

EINVAL Device is not the device number of an active file system device.

EFAULT Some part of the ustat structure pointed to by ustat_buffer lies out-

side of the process’s writable address space.

EINTR Interrupted ustat call.

SEE ALSO

fstat(2), stat(2), fs(4), ustat(5).

093-701055 Licensed material—property of copyright holderts) 2-367

utime (2) DG/UX 5.4 utime (2)

NAME

utime — set file access and modification times

SYNOPSIS

#include <sys/types.h>

#include <utime.h>

int utime (path, times) -

char * path;

struct utimbuf *nmes;

where:

path Address of a pathname

times NULL or address of an initialized structure giving the access and modifica-

tion times

DESCRIPTION

Path points to a pathname naming a file, which must reside on a file system device

mounted read-write. If path refers to a symbolic link, the target of the symbolic link

is affected. Utime sets the ‘time-last-accessed’ and ‘time-last-modified’ attributes of

the subject file. If fimes is NULL, ‘time-last-accessed’ and ‘time-last-modified’ are set

to the current time. Otherwise, the ‘time-last-accessed’ is set to (*flmes) .actime and

‘time-last-modified’ is set to (*fmes) .modfime.

If utime fails, the file is left unchanged. Otherwise, the ‘time-last-changed’ attribute

of the subject file is set to the current time.

ACCESS CONTROL

The calling process must have permission to resolve path.

If times is NULL, either the calling process must have write permission to the subject

file or the calling process’s effective user id must be equal to the user id of the sub-

ject file.

Otherwise, the calling process’s effective user id must be superuser or the user id of

the subject file.

RETURN VALUE

0 The file’s access and modification times were changed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EACCES Permission to set the access and modification times to the
current time is denied to the calling process.

EFAULT _ Times is not NULL and some part of the utimbuf structure

pointed to by rimes lies outside the process’s readable address

space.

EPERM | Permission to set the access and modification times to an arbi-
trary value is denied to the calling process.

EROFS The file system device containing the subject file is mounted

read-only.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

2-368 Licensed materiali—property of copyright holder(s) 033-701055

utime (2)

ENOTDIR

DG/UX 5.4 utime (2)

A non-terminal component of the pathname was not a directory

or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

ENOMEM

ELOOP

EPERM

SEE ALSO

touch(1), dg_mstat(2), lstat(2), stat(2), ustat(2), utimes(2), stat(5).

093-701055

filenames.

There are not enough system resources to resolve the pathname

or to expand a symbolic link.

The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

is suspected.

The pathname contains a character not in the allowed character

set.

Licensed materiat—property of copyright holder(s) 2-369

utimes(2) DG/UX 5.4 utimes(2)

NAME

utimes — set file access and modification times

SYNOPSIS

#include <sys/time.h>

int utimes (path, times)

char * path;

struct timeval times[2);

where:

path Address of a pathname naming a file, which must reside on a file system
device mounted read-write

times Address of an initialized array of two time values giving the access and

modification times

DESCRIPTION

Utimes sets the ‘time-last-accessed’ and ‘time-last-modified’ attributes of the subject

file to rimes(0] and ftimes[1] respectively. If path refers to a symbolic link, the target

of the symbolic link is affected.

If utimes fails, the file is left unchanged. Otherwise, the ‘time-last-changed’ attri-

bute of the subject file is set to the current time.

ACCESS CONTROL

The calling process must have permission to resolve path.

The calling process’s effective user id must be superuser or the user id of the subjectSP p J

file.

RETURN VALUE

0 The file’s access and modification times were changed successfully.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS |

Errno may be set to one of the following error codes: ae

EFAULT Some part of the array pointed to by times lies outside the
process’s readable address space. —

EPERM , Permission to set the access and modification times to an arbi-
trary value is denied to the calling process.

EROFS The file system device containing the subject file is mounted
read-only.

ENOENT The file the pathname resolved to does not exist.

ENOENT A non-terminal component of the pathname does not exist.

ENOTDIR A non-terminal component of the pathname was not a directory
or symbolic link.

ENAMETOOLONG The pathname exceeds the length limit for pathnames.

ENAMETOOLONG A component of the pathname exceeds the length limit for

filenames.

ENOMEM There are not enough system resources to resolve the pathname

or to expand a symbolic link.

ELOOP The number of symbolic links encountered during pathname

resolution exceeded MAXSYMLINKS. A symbolic link cycle

2-370 Licensed material—property of copyright hoider(s) 093-701085

utimes(2)

EPERM

EFAULT

SEE ALSO

DG/UX 5.4 utimes(2)

is suspected.

The pathname contains a character not in the allowed character

set.

The pathname does not completely reside in the process’s

address space or the pathname does not terminate in the

process’s address space.

dg _mstat(2), lstat(2), stat(2), ustat(2), utime(2), stat(5).

0$3-701055 Licensed material—property of copyright holder(s) 2-371

vfork(2) DG/UX 5.4 viork(2)

NAME

vfork — spawn new process in a virtual memory efficient way

SYNOPSIS

#include <unistd.h>

int vfork ()

DESCRIPTION

Vfork creates a new process in the same way that fork(2) does except that the new

process (the child) shares the address space of the parent rather than being given his

own address space that is a copy of the parent’s. The vfork call does not return in

the parent process until the child does an exec, an _exit, or terminates abnor-

mally. The vfork call does return in the child process, whereupon it is expected the

child will call exec very soon.

Vfork can normally be used just like fork, except after the vfork call the child

must be careful about modifying the user address space and any per-process state,

since the changes will be reflected in the parent when he continues. It does not

work, for example, for the child process to return from the procedure which called

vfork because the parent would return to a no-longer-existent stack frame.

If the following process attributes are changed by the child, those changes will be visi-

ble to the parent:

e The shared memory segments (see shmat and shmdt).

e The unshared data segment as a result of changing the break value (see brk

and sbrk).

e The text or data segment locks (see plock).

ACCESS CONTROL

No access checking is performed.

RETURN VALUE |

Upon successful completion, vfork returns a value of 0 to the child process and

(later) returns the process ID of the child process to the parent process. Otherwise a

value of -1 is returned to the parent process, no child process is created, and errno

is set to indicate the error.

DIAGNOSTICS

Vfork will fail and no child process will be created if one or more of the following

are true:

EAGAIN The system-imposed limit on the total number of processes under

execution would be exceeded.

EAGAIN The calling process is not a superuser and there already exists

cf_pm_max_processes_per_real_user_id processes with the same real

user id as the calling process.

ENOMEM The process requires more space than the system is able to supply.

SEE ALSO

exec(2), fork(2), nice(2), plock(2), ptrace(2), semop(2), signal(2), sig-

set(2), times(2), ulimit(2), umask(2), wait(2).

NOTES

To avoid a possible deadlock, child processes in the middle of a vfork are never

sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input

attempts result in an end-of-file indication. |

2-372 Licensed material—property of copyright holder(s) 093-701055

viork(2)vfork(2) DG/UX §.4

S ARDS

cae When using m88kbcs as the Software Development Environment target, the vfork
function will be an incomplete emulation of Berkeley semantics. This emulation

does not support the virtual fork capability but is simply a call to fork.

2-373
093-701055 Licensed materialt—property of copyright holder(s)

vhangup(2) DG/UX 5.4 | vhangup(2)

NAME

vhangup -— virtually hang up the current control terminal -

SYNOPSIS

void vhangup ()

DESCRIPTION

This function provides capabilities that are inherently implementation dependent. It

may change or cease to exist in the future.

Vhangup revokes read and write access to the calling process’s controlling terminal

for all processes (including the calling process). Further attempts to access this ter-

minal will cause I/O errors (EBADF). If the subject terminal has a process group

associated with it, a hangup signal (SIGHUP) is sent to that process group.

ACCESS CONTROL

The calling process’s effective user id must be superuser.

RETURN VALUE

None.

DIAGNOSTICS

None.

SEE ALSO

init(1M).

2-374 Ucensed material—property of copyright holder(s) 093-701055

wait(2)

NAME

OG/UX 5.4 wait (2)

wait, waitpid — wait for process termination

SYNOPSIS

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(statloc)

int s«stat_loc;

pid_t waitpid (pid, Sstat_loc, options)

pid_t pid;

int «statloc;

int opfions ;

where:.

pid A process identifier

stat.loc A location for returning a process status

options Oora positive integer (see "Option Flags” below)

DESCRIPTION

The wait() and waitpid() functions allow the calling process to obtain status infor-

mation pertaining to one of its child processes. Various options permit status infor-

mation to be obtained for child processes that have terminated or stopped. If status

information is available for two or more child processes, the order in which their

Status is reported is unspecified.

The wait() function shall suspend execution of the calling process until status infor-

mation for one of its terminated child processes is available, or until delivery of a sig-

nal whose action is either to execute a signal-catching function or to terminate the

process. If status information is available prior to the call to wait(), return shall be

immediate.

The waitpid() function shall behave identically to the wait() function, if the pid

argument has a value of -1 and the options argument has a value of zero. Otherwise,

its behavior shall be modified by the values of the pid and options arguments.

The pid argument specifies a set of child processes for which status is requested. The

waitpid() function shall only return the status of a child process from this set.

(1) If pid is equal to -1, status is requested for any child process. In this respect,
waitpid() is then equivalent-to wait().

(2) If pid is greater than zero, it specifies the process ID of a single child process

for which status is requested.

(3) If pid is equal to zero, status is requested for any child process whose process

group ID is equal to that of the calling process.

(4) If pid is less than -1, status is requested for any child process whose process

group ID is equal to the absolute value of pid.

Option Flags

093-701055

The options argument is constructed from the bitwise inclusive OR of zero or more of

the following flags, defined in the header <sys/wait.h>:

WUNTRACED If the implementation supports job control, the status of any child

processes specified by pid that are stopped, and whose status has not

yet been reported since they stopped, shall also be reported to the

- requesting process.

Licensed material—property of copyright holder(s) 2-375

wait(2) DOG/UX 5.4 wait(2)

WCONTINUED Also report the status of any continued child process specified by pid

whose status has not been reported since it continued.

WNOHANG ~~ The waitpid() function shall not suspend execution of the calling

process if status is not immediately available for one of the child

processes specified by pid.

WNOWAIT Keep the process whose status is returned in stat_loc in a waitable

state. The process may be waited for again with indentical results.

If wait() or waitpid() return because the status of a child process is available,

these functions shall return a value equal! to the process ID of the child process. In

this case, if the value of the argument srat_loc is not NULL, information shall be

stored in the location pointed to by stat_loc. If and only if the status returned is from

a terminated child process that returned a value of zero from main or passed a value

of zero as the status argument to _exit() or exit(), the value stored at the location

pointed to by stat_loc shall be zero. Regardless of its value, this information may be

interpreted using the following macros, which are defined in <sys/wait.h> and

evaluate to integral expressions; the star_val argument is the integer value pointed to

by stat_loc.

WIFEXITED (star_val) |

Evaluates to a non-zero value if status was returned for a child process that

terminated normally.

WEXITSTATUS(stat_val)

If the value of WIFEXITED(stat_val) is non-zero, this macro evaluates to the

low-order 8 bits of the stats argument that the child process passed to

_exit() or exit(), or the value the child process returned from main.

WIFSIGNALED(stat_val)

Evaluates to a non-zero value if status was returned for a child process that

terminated due to the receipt of a signal that was not caught (see

<signal.h>).

WTERMSIG(stat_val) |

If the value of WIFSIGNALED(star_val) is non-zero, this macro evaluates to

the number of the signal that caused the termination of the child process.

WIFSTOPPED(stat_val)

Evaluates to a non-zero value if status was returned for a child process that is

currently stopped.

WSTOPSIG(stat_val)

If the value of WIFSTOPPED(stat_val) is non-zero, this macro evaluates to the

number of the signal that caused the child process to stop.

WIFCONTINUED(stat_val)

Evaluates to a non-zero value if status was returned for a child process that

has continued.

If the information stored at the location pointed to by srar_loc was stored there by a

call to the waitpid() function that specified the WOUNTRACED flag, exactly one of

the macros WIFEXITED(sstat_loc), WIFSIGNALED(sstar_loc), and

WIFSTOPPED(sstat_loc) shall evaluate to a non-zero value. If the information stored

at the location pointed to by star_loc was stored there by a call to the waitpid()

function that did not specify the WUNTRACED flag or by a call to the wait() func-

tion, exactly one of the macros WIFEXITED(s«stat_loc) and WIFSIGNALED(ssrat_loc)

shall evaluate to a non-zero value.

2-376 Licensed materiat—property of copyright holder(s) 093-701055

wait(2) DG/UX 5.4 | wait(2)

An implementation may define additional circumstances under which wait() or
waitpid() reports status. This shall not occur unless the calling process or one of its

child processes explicitly makes use of a nonstandard extension. In these cases the

interpretation of the reported status is implementation-defined.

If a parent process terminates without waiting for all of its child processes to ter-

minate, the remaining child processes shall be assigned a new parent process ID

corresponding to an implementation-defined system process.

RETURN VALUE

If the wait() or waitpid() functions return because the status of a child process is

available, these functions shall return a value equal to the process ID of the child pro-

cess for which status is reported. If the wait() or waitpid() functions return due

to the delivery of a signal to the calling process, a value of —1 shall be returned and

errno Shall be set to EINTR. If the waitpid() function was invoked with

WNOHANG set in options, it has at least one child process specified by pid for

which status is not available, and status is not available for any process specified by

pid, a value of zero shall be returned. Otherwise, a value of -1 shall be returned,

and errno shall be set to indicate the error.

DIAGNOSTICS

If any of the following conditions occur, the wait() function shall return —1 and set

errno to the corresponding value:

ECHILD The calling process has no existing unwaited-for child processes.

EINTR The function was interrupted by a signal. The value of the location

pointed to by stat_loc is undefined.

If any of the following conditions occur, the waitpid() function shall return ~1 and

set errno to the corresponding value:

ECHILD The process or process group specified by pid does not exist or is not

a child of the calling process.

EINTR The function was interrupted by a signal. The value of the location

pointed to by srat_loc is undefined.

EINVAL The value of the options argument is not valid.

SEE ALSO |

_exit(2), fork(2), pause(2), times(2), /usr/include/signal.h.

COPYRIGHT

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.
In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

STANDARDS

Wait and waitpid report status if a child process that is being traced [by

ptrace(2) or dg_xtrace(2)] stops. In this case, the 8 low order bits of the wait

status will contain the octal value 0177 and the 8 high order bits will contain the value

of the signal that stopped the child process.

If the parent process terminates without waiting for all of its child processes to ter-

minate, the remaining child processes are assigned a new parent process ID of 1,

which is the PID of the special system initialization process.

093-701055 Licensed material—property of copyright holders) 2-377

wait3(2) — DG/UX 5.4 wait3(2)

NAME

wait3 — wait for child process to stop or terminate

SYNOPSIS

#include <sys/wait.h>

#include <sys/time.h>

#include <sys/resource.h>

int wait3 (wailstatus, options, rusage)

union wait * waitstats;

int options ;

struct rusage * usage;

where:

wail_status NULL or address of a status word

options Modifications to the action of wait3
rusage NULL or address of a resource usage structure

DESCRIPTION

The wait3 system call suspends the calling process until a child process stops or ter-

minates, then reports the identity, status, and resource usage of the child process to

the calling process. If more than one child process has stopped or terminated, the

manner in which one is chosen is undefined.

e A process stops when it is being traced (see ptrace) and either hits a break

point or receives a signal that is set to be caught.

e A process terminates when it calls exit or when it receives a signal that

Causes it to terminate.

e A process that has terminated but whose status has not been reported on by

wait may consume system resources. The wait operation cleans up the ter-

minated process and recovers remaining system resources.

wait3 returns the PID of the child process.

The status of the child process is optionally obtained by the wait_status parameter. If

wait_status is NULL, status information is not returned. Otherwise, 16 bits of status

information are stored in the low-order 16 bits of the location pointed to by

wail_status. wait_status can be used to determine the reason for the child process’

termination. |

The following macros are provided in sys/wait.h for use in interpreting

wait_status. When using these macros with wait3, the program must define

~BSD_WAIT_FLAVOR either in the executable or at compile time.

WIFSTOPPED(*wait_status)

Evaluates to a non-zero value if status was returned for a child process that is

currently stopped.

WIFSIGNALED(*wait_status)

Evaluates to a non-zero value if status was returned for a child process that

terminated due to the receipt of a signal that was not

WIFEXITED(*wait_status)

Evaluates to a non-zero value if status was returned for a child process that

terminated normally.

A summary of the resources used by a child process that has terminated is obtained

by the 7usage parameter. If rusage is NULL, a summary is not returned. Otherwise,

2-378 Licensed material—-property of copyright holder(s) 093-701055

wait3(2) DG/UX 5.4 wait3(2)

summary information is stored in the location pointed to by rusage.

The following statement:

wait (status)

is identical to this one:

wait3(status, 0, NULL)

However, the action taken by wait3 may be modified by setting bits in the options

parameter as follows.

e The WNOHANG bit specifies that the calling process should not be

suspended by wait3.

e - A process that is not being traced may be stopped by the SIGTTIN,

SIGTTOU, SIGTSTP, or SIGSTOP signals. The WUNTRACED bit speci-

fies that the status of all stopped child processes should be reported, not just

those being traced.

If a parent process terminates without waiting for its child processes to terminate, a

special system process inherits the child processes.

If an error occurs, wait3 will not clean-up any process and the values of status and

rusage are undefined.

If, while waiting for a child to terminate or stop, the process receives a signal that

causes it to invoke a handler, wait3 will be restarted if the handler was established

using sigvec without the SV_INTERRUPT flag or sigaction with the

SA_RESTART flag. See sigvec(2) and sigaction(2).

ACCESS CONTROL

None.

RETURN VALUE

child-process-id | Completed successfully.

0 The WNOHANG bit in options was set, and the calling process
would otherwise have been suspended by wait3.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

ECHILD The calling process has no child processes. This condition implies

that the calling process was not suspended by wait3.

EFAULT The status or rusage arguments point to an illegal address. This con-

| dition implies that the calling process was not suspended by wait3.

SEE ALSO

exec(2), _exit(2), fork(2), ptrace(2), sigpause(2), sigvec(2), sigac-

tion(2), wait(2), wait4(2), exit(3C).

STANDARDS

When using m88kbes as the Software Development Environment target, the wait3

function will be an incomplete emulation of Berkeley semantics. Since we are using

BCS system calls, resource usage information is not available. If rusage is non-

NULL, wait3 will fail with errno set to EINVAL.

693-701055 Licensed material—property of copyright holders) 2-379

wait4(2) DG/UX 5.4 | wait4(2)

NAME

wait4 — wait for the specified child process to stop or terminate

SYNOPSIS

#include <sys/wait.h>

#include <sys/time.h>

#include <sys/resource.h>

int wait4 (child_pid, wait_status, options, rusage)

int child_pid;

union wait * wall_status;

int options ;

struct rusage * usage;

vee ld pid The process id for the child process that we are waiting on
. wait_status NULL or address of a status word

options Modifications to the action of wait3

rusage NULL or address of a resource usage structure

DESCRIPTION

Wait4 suspends the calling process until the specified child process stops or ter-

minates, then reports the identity, status, and resource usage of the child process to

the calling process.

e A process "stops" when it is being traced (see ptrace) and either hits a

break point or receives a signal that is set to be caught.

e A process "terminates" when it calls exit either directly or due to the receipt

of a signal that causes the process to terminate.

e A process that has terminated, but whose status has not been reported on by

wait may consume system resources. The wait operation "cleans-up" the

terminated process and recovers remaining system resources.

The status of the child process is optionally obtained by the wait_status parameter. If

waift_Status is NULL, status information is not returned. Otherwise, 16 bits of status

information are stored in the low-order 16 bits of the location pointed to by

wait_status. wait_status can be used to determine the reason for the child process’

termination.

The following macros are provided in sys/wait.h for use in interpreting

wait_status. When using these macros with wait4, the program must define

~BSD_WAIT_FLAVOR either in the executable or at compile time.

WIFSTOPPED(*wait_status)
Evaluates to a non-zero value if status was returned for a child process that is

currently stopped.

WIFSIGNALED(*wait_status)
Evaluates to a non-zero value if status was returned for a child process that

terminated due to the receipt of a signal that was not

WIFEXITED (*wait_status)

Evaluates to a non-zero value if status was returned for a child process that

terminated normally.

A summary of the resources used by a child process that has terminated is obtained

by the rusage parameter. If rusage is NULL, a summary is not returned. Otherwise,

2-380 Licensed material—property of copyright holder(s) 093-701055

wait4(2) DG/UX 5.4 wait4(2)

summary |
A summary of the resources used by a child process that has terminated is obtained

by the rusage parameter. If rusage is NULL, a summary is not returned. Otherwise,

summary information is stored in the location pointed to by rusage.

Wait4(2) is identical to wait3(2) except that it waits only on one specified child.

Siblings of the specified children are ignored. If the caller specifies child_pid as zero,

wait4 behaves identically to wait3.

The action taken by wait4 may be modified by setting bits in the options parameter

as follows.

e The WNOHANG bit specifies that the calling process should not be
suspended by waité.

e A process that is not being traced may be stopped by the SIGTTIN,

- | SIGTTOU, SIGTSTP, or SIGSTOP signals. The WUNTRACED bit speci-

fies that the status of all stopped child processes should be reported, not just

those being traced.

If a parent process terminates without waiting for its child processes to terminate, a

special system process inherits the child processes.

If an error occurs, wait4 will not clean-up any process and the values of status and

rusage are undefined.

If, while waiting for a child to terminate or stop, the process receives a signal that

causes it to invoke a handler, wait4 will be restarted if the handler was established

using sigvec without the SV_INTERRUPT flag or sigaction with the

SA_RESTART flag. See sigvec(2) and sigaction(2).

ACCESS CONTROL

None.

RETURN VALUE

child-process-id | Completed successfully.

0 The WNOHANG bit in options was set and the calling process

would otherwise have been suspended by wait3.

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

ECHILD The calling process has no child processes. This condition implies

that the calling process was not suspended by wait3.

EFAULT The status or rusage arguments point to an illegal address. This con-

dition implies that the calling process was not suspended by wait3.

SEE ALSO
exec(2), _exit(2), fork(2), ptrace(2), sigpause(2), sigvec(2), sigac-

tion(2), wait(2), wait3(2), exit(3C).

STANDARDS

When using m88kbes as the Software Development Environment target, the waité

function will be an incomplete emulation of Berkeley semantics. Since we are using

BCS system calls, resource usage information is not available. If rusage is non-

NULL, wait4(will fail with errno set to EINVAL.

093-701055 Licensed material—property of copyright holder(s) 2-381

waitid(2) DG/UX 5.4 waitid(2)

NAME

waitid — wait for child process to change state

SYNOPSIS

#include <sys/types.h>

#include <wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

where:

idtype P_PID, P_GID, or P_ALL

id A process identifier

infop A structure to contain information

options 0 or a positive integer (see "Option Flags” below)

DESCRIPTION

Waitid suspends the calling process until one of its children changes state. It

records the current state of a child in the structure pointed to by infop. If a child

process changed state prior to the call to waitid, waitid returns immediately.

The idtype and id arguments specify which children waitid is to wait for.

If idtype is P_PID, waitid waits for the child with a process ID equal to

(pid_t) id. |

If idrype is P_PGID, waitid waits for any child with a process group ID

equal to (pid_t)id.

If idtype is P_ALL, waitid waits for any children and id is ignored.

Option Flags

The options argument is used to specify which state changes waitid is to wait for. It

is formed by an OR of any of the following flags:

WEXITED Wait for process(es) to exit.

WIRAPPED Wait for traced process(es) to become trapped | or reach a breakpoint

[see ptrace(2) or dg_xtrace(2)].

WSTOPPED Wait for and return the process status of any child that has stopped
upon receipt of a signal.

WCONTINUED Return the status for any child that was stopped and has been contin-
ued.

WNOHANG Return immediately.

WNOWAIT Keep the process in a waitable state.

infop must point toa siginfo_t structure, as defined in siginfo(5). siginfo_t

is filled in by the system with the status of the process being waited for.

ACCESS CONTROL

No access checking is performed.

RETURN VALUE

If waitid returns due to a change of state of one of its children, a value of 0 is

returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

DIAGNOSTICS

EFAULT infop points to an invalid address.

EINTR waitid was interrupted due to the receipt of a signal by the calling

process.

2-382 Licensed material—property of copyright holder(s) : 093-701055

waitid(2) DG/UX 5.4 waitid(2)

EINVAL An invalid value was specified for options.

EINVAL idtype and id specify an invalid set of processes.

ECHILD The set of processes specified by idrype and id does not contain any

unwaited-for processes.

SEE ALSO

intro(2), exec(2), exit(2), fork(2), pause(2), ptrace(2), dg_xtrace(2),

signal(2), sigaction(2), wait(2), siginfo(5).

2-383093-701055 Licensed materiaproperty of copyright hoider(s)

write (2) DG/UX 5.4 write (2)

NAME

write — write to an object

SYNOPSIS

int write (fildes, buffer, nbyte)

int fildes ;

char buffer(];

unsigned nbyte;

where:

fildes An active, valid file descriptor.

buffer User data buffer.

nbyte Size (in bytes) of the user data buffer.

DESCRIPTION

Write transfers nbyte bytes of data from the buffer pointed to by buffer into the

object associated with fildes.

If fildes refers to an object pointer having a current position attribute and the

O_APPEND flag is clear, the write starts at a position in the object given by that

attribute.

If fildes refers to an object pointer having a current position attribute and the

O_APPEND flag is set, the position attribute of the object is set equal to the object’s

current size, where the write will start.

If the object pointer has no position attribute, then the starting write position depends

on the type of object being written.

The behavior of the write call is affected by the object attribute flag O_.NDELAY [see

open(2)] associated with fildes.

The behavior of writes to a pipe or FIFO depends on whether or not the request is

for more than PIPE_BUF bytes. Write requests of PIPE_BUF bytes or less are

guaranteed not to be interleaved with data from other processes doing writes on the

same pipe. Writes of greater than PIPE_BUF bytes may have data interleaved, on

arbitrary boundaries, with writes by other processes, whether or not the O_NONBLOCK

or O_NDELAY flags are set. Also, if a request is greater than PIPE_BUF bytes and all

data previously written to the pipe has been read, write will transfer at least

PIPE_BUF bytes.

If a write of nbyte bytes to a pipe (or FIFO) is requested, and nbyre is less than

PIPE_BUF bytes, but nbyte of free space is currently not available in the pipe, then

the following occurs:

If the O.LNDELAY and O.NONBLOCK flags are clear, the process will

block until at least nbyre bytes of free space becomes available in the pipe,

and the write will take place.

If the O.NONBLOCK flag is set, -1 is returned and errno is set to

EAGAIN. If both OLNONBLOCK and OLNDELAY are set,

O_NONBLOCK has precedence.

If the OLNDELAY flag is set, 0 is returned.

If a write of more than PIPE_BUF bytes is requested, the following occurs:

If the O_NDELAY and O_NONBLOCK flags are clear, the process will
block if the pipe is full. As space becomes available in the pipe, the data —

Licensed material—property of copyright holder(s) 093-701055

write (2) OG/UX 5.4 write (2)

from the write request will be written piecemeal—in multiple smaller amounts

until the request is fulfilled. Thus, data from a write request of more than

PIPE_BUF bytes may be interleaved on arbitrary byte boundaries with data

written by other processes.

If the O.NONBLOCK flag is set and the pipe is full, the process will not

block, -1 is returned with errno set to EAGAIN. If both O.NONBLOCK |

and O.NDELAY are set, O.NONBLOCK has precedence.

If the O_NONBLOCK flag is set and the pipe is not full, the process will not

block, and as much data as will currently fit in the pipe will be written and

that number of bytes 1s returned.

If the O_NDELAY is set and the pipe is full, the process will not block, and
0 is returned.

If the O.NDELAY flag is set and the pipe is not full, the process will not

block, and as much data as will currently fit in the pipe will be written and

that number of bytes is returned.

For STREAMS files [see intro(2)], the operation of write is determined by the

values of the minimum and maximum nbyre range (“‘packet size”) accepted by the

stream. These values are contained in the topmost stream module. If nbyve falls

within the packet size range, nbyre bytes are written. If nbyre does not fall within the

range and the minimum packet size value is zero, write breaks the buffer into max-

imum packet size segments prior to sending the data downstream (the last segment

may be smaller than the maximum packet size). If nbyte does not fall within the

range and the minimum value is non-zero, write fails and sets errno to ERANGE.

Writing a zero-length buffer (nbyre is zero) to a STREAMS device sends a zero length

message with zero returned. However, writing a zero-length buffer to a pipe or FIFO

sends no message and zero is returned. The user program may issue the I_SWROPT

- ioctl(2) to enable zero-length messages to be sent across the pipe or FIFO [see

_streamio(7)].

When writing to a stream, data messages are created with a priority band of zero.

The behavior of the write call is affected by the object attribute flag O_SYNC associ-

ated with fildes. This flag causes the write call to block until both the file data and

file status are physically updated.

When write completes, the position attribute, if it exists, is incremented by the

number of bytes actually written. The modification time for the file and the changed

time for the file status are updated to reflect the time the write occurred.

If an error occurs, any changes to the object associated with fildes is defined by the

object’s type. The default situation is that the object associated with fildes is

unchanged. This may not be the case for some errors on some types of objects.

If write is successful and O_SYNC is not specified, the data transferred may not be

transferred to long term storage (in the case of an ‘ordinary-disk-file’ for example).

To ensure this is the case, the fsync operation should be used.

ACCESS CONTROL

Fildes must be open for writing.

093-701055 Licensed materiat—property of copyright holder(s) 2-385

write (2)

RETURN VALUE

0. .nbyte

a

DIAGNOSTICS

DG/UX 5.4 | write (2)

Completed successfully. nbyre is the number of bytes actually writ-

ten.

An error occurred. errno is set to indicate the error.

Errno may be set to one of the following error codes:

EBADF

ERANGE

-EAGAIN

Fildes is not a valid file descriptor open for writing.

if attempts to write to a stream with mbyre are outside the specified

minimum and maximum write range, and the minimum value is non-

zero. if the process is a member of a background process group and

is attempting to write to its controlling terminal, TOSTOP is set, the

process is neither ignoring nor blocking SIGTTOU and the process

group of the process is orphaned.

The O.NDELAY flag was set and there was not enough room in the
pipe.

EPIPE and SIGPIPE signal

EFBIG

EFAULT

EINTR

ENOLCK

EDEADLK

SEE ALSO

_ An attempt is made to write to a pipe that is not open for reading or

a'socket of type SOCK_STREAM that is not connected to a peer

‘socket.

An attempt was made to write a file that exceeds the process’s file

size limit or the maximum file size.

Buffer points outside the process’s allocated address space.

A signal was caught during the write system call.

A lock required to complete the call cannot be allocated from the

system lock table.

fildes refers to a file that has mandatory record locking enabled and

the read would produce a deadlock condition.

creat(2), dup(2), dup2(2), fent1(2), ioctl1(2), lseek(2), open(2), pipe(2),
select(2), socket(2), socketpair(2), ulimit(2), writev(2).

2-386 Licensed material—property of copyright holder{s) 093-701055

writev(2) DG/UX 5.4 writev(2)

NAME .

writev -— write on a file

SYNOPSIS

#include <sys/types.h>

#include <sys/uio.h>

int writev (fildes, iov, iovent)

int fildes ;

struct iovec iov[];

int iovent ;

where:

fildes An active, valid file descriptor

tov An array of extents

lovent The number of extents given

DESCRIPTION

The writev system call transfers data from the iovlen buffers specified by members |
of the iov array: iov[0], iov[1]}, ..., iov[iovlen—-1] into the object associated with

fildes.

For writev, the jovec structure is defined as:

struct iovec {

caddr_t iov_base;

int iov_len;

) ;

Each iov member specifies the base address and length of an area in memory where

data is located. The writev call uses an area completely before proceeding to the

next.

Jovent must be a positive number less than or equal to a system-imposed limit

guaranteed to be at least MAXIOVCNT. The length of each extent (iov_len) in iov[]

must be non-negative and the sum of these lengths must not overflow a ‘long’.

Except for the disposition of the data, writev is equivalent to write.

ACCESS CONTROL

Fildes must be open for writing.

RETURN VALUE

0. .nbyte Completed successfully. The number of bytes actually written is
returned. Here, nbyte is the sum of lengths of the iovenr extents

given in iov[]).

-1 An error occurred. errno is set to indicate the error.

DIAGNOSTICS

Errno may be set to one of the following error codes:

EBADF Fildes is not a valid file descriptor open for writing.

EPIPE and SIGPIPE signal

An attempt is made to write to a pipe not open for writing or a

socket of type SOCK_STREAM that is not connected to a peer

socket.

093-701055 Licensed material—property of copyright hoider(s) 2-387

writev(2)

EFBIG

EAGAIN

EDEADLK

ENOLCK

EINTR

EFAULT

EFAULT

EINVAL

EINVAL

EINVAL

SEE ALSO

2-388

DG/UX 5.4 writev(2)

An attempt was made to write a file that exceeds the process’s file

size limit or the maximum file size.

The OLNDELAY flag was set and there was not enough room in the

pipe.

Fildes refers to a file that has mandatory record locking enabled and

the read would produce a deadlock condition.

A lock required to complete the call cannot be allocated from the

system lock table.

A signal was caught during the system call.

Iov points outside the allocated address space.

One or more of the jov[] members point outside the allocated

address space.

Iovent was invalid.

One or more of the iov_len values in iov[] was negative.

The sum of the iov_len values in iov[] overflowed a ‘long’.

creat(2), dup(2), dup2(2), fent1(2), ioctl(2), lseek(2), open(2), pipe(2),
select(2), socket(2), socketpair(2), ulimit(2), write(2).

End of Chapter

Licensed materiai—property of copyright holder(s) | 093-701055

Index

Note: Boldfaced page numbers (e.g., 1-5)

indicate definitions of terms or other key

information.

A

accept(2) 2-19

access(2) 2-21

acct(2) 2-23

adjtime(2) 2-25

admin(1) 1-4

alarm(2) 2-27

ar(1) 1-8

as(1) 1-10

asa(1) 1-12

async_daemon(2) 2-28

att_.dump(1) 1-13

B

berk_sigpause(2) 2-29

bind(2) 2-30

brk(2) 2-31

C

C Standard 2-305, 2-317

cb(1) 1-15

cc(1) 1-16

cdce(1) 1-22

cflow(1) 1-24

chdir(2) 2-33

chmod(2) 2-34

chown(2) 2-37

chroot(2) 2-39

ci(1) 1-26

ckdate(1) 1-29

ckgid(1) 1-31

ckint(1) 1-33

ckitem(1) 1-35

ckkeywd(1) 1-38

ckpath(1) 1-40

ckrange(1) 1-42

093-701055 Licensed materiai—property of copyright holder(s)

ckstr(1) 1-44

cktime(1) 1-46

ckuid(1) 1-48

ckyorn(1) 1-50

close(2) 2-41

co(1) 1-52

cofgelf(1) 1-56

comb(1) 1-57

connect(2) 2-43

cpp(1) 1-58

cprs(1) 1-61

creat(2) 2-45

cscope(1) 1-62

ctags(1) 1-67

ctl(1) 1-69

ctrace(1) 1-70

cxref(1) 1-74

D

dbx(1) 1-76

delta(1) 1-83

dg_allow_shared_descriptor_attach(2) 2-46

dg_attach_to_shared_descriptors(2) 2-47

de_decryptsessionkey(2) 2-49

dg_devctl(2) 2-50

dg_encryptsessionkey(2) 2-52

dg_ext_errno(2) 2-53

dg_file_info(2) 2-54

dg_fstat(2) 2-56

dg_getrootkey(2) 2-57

dg_ipc_info(2) 2-58

dg_Icntl(2) 2-60

dg_Jock_kill(2) 2-63

dg_lock_reset(2) 2-64

dg_lock_wait(2) 2-65

dg_mknod(2) 2-66

dg_mount(2) 2-69

dg_mstat(2) 2-73

dg_paging_ info(2) 2-75

dg_process_info(2) 2-78

dg_set_cpd_limits(2) 2-80

dg_setsecretkey(2) 2-82

dg_stat(2) 2-83

Index-1

index

dg_sys_info(2) 2-85

dg_sysctl(2) 2-86

dg_unbuffered_read(2) 2-92

dg_unbuffered_write(2) 2-93

dg_xtrace(2) 2-94

dis(1) 1-86

Documention

AViiON and DG/UX, Guide to RD-1

related RD-1

dup(2) 2-101

dup2(2) 2-102

E

Environment variable

EDITOR 1-64

HOME 1-65

INCLUDEDIRS 1-65

PATH 1-171, 2-103

SHELL 1-65, 1-82, 1-134, 1-172

SOURCEDIRS 1-65

TARGET_BINARY_INTERFACE 1-172

TERM 1-65

TERMINFO 1-65

TMPDIR 1-9, 1-21, 1-65, 1-75, 1-129

VIEWER 1-65

VPATH 1-65

exec(2) 2-103

exit(2) 2-107

exportfs(2) 2-109

F

fchdir(2) 2-111

fchmod(2) 2-112

fchown(2) 2-113

fentl(2) 2-114

fetch_and_add(2) 2-117

fork(2) 2-119

fsplit(1) 1-87

fstat(2) 2-121

fstatfs(2) 2-122

fstatvfs(2) 2-123

fsync(2) 2-124

ftruncate(2) 2-125

G

gcc(1) 1-88

get(1) 1-101

Index-2 Licensed material—property of copyright noider(s)

getcontext(2) 2-126

getdents(2) 2-127

getdomainname(2) 2-129

getdtablesize(2) 2-130

getegid(2) 2-131

geteuid(2) 2-132

getfh(2) 2-133

getgid(2) 2-134

getgroups(2) 2-135

gethostid(2) 2-136

gethostname(2) 2-137

getitimer(2) 2-138

getmsg(2) 2-140

getpagesize(2) 2-143

getpeername(2) 2-144

getpgrp(2) 2-145

getpgorp2(2) 2-146

getpid(2) 2-147

getppid(2) 2-148

getpriority(2) 2-149

getpsr(2) 2-150

getrlimit(2) 2-151

getrusage(2) 2-154

getsid(2) 2-155

getsockname(2) 2-156

getsockopt(2) 2-157

gettimeofday(2) 2-159

getuid(2) 2-161

ident(1) 1-107

intro(1) 1-2

intro(2) 2-2

ioctl(2) 2-162

ipcrm(1) 1-108

ipcs(1) 1-109

K

kill(2) 2-163

killpg(2) 2-165

L

Id(1) 1-112

Id-coff(1) 1-116

ldd(1) 1-119

lex(1) 1-120

link(2) 2-167

083-701055

lint(1) 1-125

listen(2) 2-169

lorder(1) 1-129

Iseek(2) 2-170

Istat(2) 2-171

M

m4(1) 1-130

make(1) 1-133

mces(1) 1-139

mementl(2) 2-173

memctl(2) 2-178

mincore(2) 2-180

mkdir(2) 2-181

mknod(2) 2-183

mkstr(1) 1-141

mmap(2) 2-186

mount(2) 2-192

mprotect(2) 2-195

msgctl(2) 2-197

msgget(2) 2-199

msercv(2) 2-202

msgsnd(2) 2-204

msgsys(2) 2-206

munmap(2) 2-208

N

nfssvc(2) 2-210

nice(2) 2-211

nm(1) 1-143

O

open(2) 2-212

p

pathconf(2) 2-218

pause(2) 2-221

pipe(2) 2-222

plock(2) 2-223

poll(2) 2-225

prof(1) 1-146

profil(2) 2-228

prs(1) 1-149

ptrace(2) 2-229

putmsg(2) 2-232

093-701055

index

R

ratfor(1) 1-152

res(1) 1-153

resdiff(1) 1-155

resintro(1) 1-156

resmerge(1) 1-157

read(2) 2-235

readlink(2) 2-238

readv(2) 2-240

reboot(2) 2-242

recv(2) 2-243

recvirom(2) 2-245

recvmse(2) 2-246

regcmp(1) 1-158

Related documents RD-1

rename(2) 2-247

rev(1) 1-159

rlog(1) 1-160

rmdel(1) 1-162

rmdir(2) 2-250

Ss

sbrk(2) 2-252

sccsdiff(1) 1-163

sccstorcs(1) 1-164

sdb(1) 1-165

sde-target(1) 1-172

select(2) 2-253

semctlh(2) 2-255

semget(2) 2-258

semop(2) 2-261

semsys(2) 2-264

send(2) 2-265

sendmse(2) 2-267

sendto(2) 2-268

setdomainname(2) 2-269

setegid(2) 2-270

seteuid(2) 2-271

setgid(2) 2-272

sethostid(2) 2-273

sethostname(2) 2-274

setpgid(2) 2-275

setperp(2) 2-277

setpgerp2(2) 2-278

setpriority(2) 2-279

setpsr(2) 2-281

setregid(2) 2-282

setreuid(2) 2-283

setsid(2) 2-284

Licensed material—property of copyright holder(s) Index-3

Index

setsockopt(2) 2-285

settimeofday(2) 2-288

setuid(2) 2-289

shmat(2) 2-290

shmctl(2) 2-293

shmdt(2) 2-296

shmget(2) 2-297

shmsys(2) 2-301

shutdown(2) 2-302

sifilter(1) 1-174

Sigaction(2) 2-303

sigaltstack(2) 2-306

sigblock(2) 2-308

sigfillset(2) 2-309

sighold(2) 2-310

sigignore(2) 2-311

signal(2) 2-312

sigpause(2) 2-315

sigpending(2) 2-316

sigprocmask(2) 2-317 ..

Sigrelse(2) 2-319

Sigret(2) 2-320

sigsend(2) 2-321

sigset(2) 2-323

sigsetmask(2) 2-325

sigstack(2) 2-326

Sigsuspend(2) 2-327

sigvec(2) 2-328

size(1) 1-176

sno(1) 1-178

socket(2) 2-331

socketpair(2) 2-333

stat(2) 2-334

statfs(2) 2-336

statvfs(2) 2-338

stime(2) 2-340

store_conditional(2) 2-341

strip(1) 1-179

swapon(2) 2-343

symlink(2) 2-344

sync(2) 2-346

sysconf(2) 2-347

sysfs(2) 2-350

sysinfo(2) 2-352

T

time(2) 2-354

times(2) 2-355

truncate(2) 2-356

tsort(1) 1-181

Iindex-4

U

uadmin(2) 2-358

ulimit(2) 2-359

umask(2) 2-361

umount(2) 2-362

uname(2) 2-364

unget(1) 1-182

unlink(2) 2-365

ustat(2) 2-367

utime(2) 2-368

utimes(2) 2-370

V

val(1) 1-183

valtools(1) 1-185

Variable, see Environment variable

vc(1) 1-186

vfork(2) 2-372

vhangup(2) 2-374

W

wait(2) 2-375

wait3(2) 2-378

wait4(2) 2-380

waitid(2) 2-382

what(1) 1-189

write(2) 2-384

writev(2) 2-387

x

xstr(1) 1-190

Y

yacc(1) 1-191

Licensed materiai—property of copyright holder(s) 093-701055

Related Documents
The following list of related manuals gives titles of Data General manuals followed by nine-

digit numbers used for ordering. You can order any of these manuals via mail or telephone

(see the TIPS Order Form in the back of this manual).

For a complete list of AViiON® and DG/UXTM manuals, see the Guide to AViION® and

DG/UXTM Documentation (069-701085). The on-line version of this manual found in

/usr/release/doc_guide contains the most current list.

Data General Software Manuals

User’s Manuals

User's Reference for the DG/UXTM System

Contains an alphabetical listing of manual pages for commands relating to genera] system

operation. Ordering Number — 093-701054

Using the DG/UXTM Editors

Describes the text editors vi and ed, the batch editor sed, and the command line editor edi-

tread. Ordering Number — 069-701036

Using the DG/UXTM System

Describes the DG/UX system and its major features, including the C and Bourne shells, typi-

cal user commands, the file system, and communications facilities such as mailx. Ordering

Number — 069-701035

installation and Administration Manuals

System Manager's Reference for the DG/UXTM System

Contains an alphabetical listing of manual pages for commands relating to system administra-

tion or operation. Ordering Number — 093-701050

093-701055 Licensed material—property of copyright holder(s) RD-1

Related Documents

Programming Manuals

Porting and Developing Applications on the DG/UXTM System

A compendium of useful information for experienced programmers developing or porting

- applications to the DG/UXTM system. It includes inforination on how to: set up your environ-

ment, use the software development tools, compile and link programs, port to the windowing

environment, and build BCS applications. It also describes available debuggers and the vari-

ous industry standards the DG/UX system supports. Ordering Number — 069-701059

Programmer's Guide: ANS! C and Programming Support Tools (UNIX System V Release 4)

Describes the standard tools of the UNIX program development environment including com-

piling, linking, debugging, and analysis and revision control. An accompanying supplement,

Supplement for Programmer's Guide: ANSI C and Programming Support Tools (086-000180)

describes the DG/UX system enhancements and differences. Ordering Number —

093-701104

Programmer's Guide: Systems Services and Application Packaging Tools (UNIX System V

Release 4)

Describes standard programming procedures and interfaces available to the C application
developer in the UNIX environment. Topics include interprocess communications, memory

management, file and record locking and application packaging. Note: Chapters 5 and 9 of

this Prentice Hall manual discuss topics that do not apply to the DG/UX system. Ordering

Number — 093-701105

Programmer's Reference for the DG/UXTM System, (Volume 2)

Alphabetical listing of manual pages for DG/UX subroutines and libraries. This is part of a

three-volume set. Ordering Number — 093-701056 |

Programmer's Reference for the DG/UXTM System, (Volume 3)

Alphabetical listing of manual pages for DG/UX file formats, miscellaneous features, and

networking protocols. Part of a three-volume set, this volume contains the table of contents

and index (contents (0) and index (0)) for man pages. Ordering Number —- 093-701102

4

Programming in the DG/UXTM Kernel Environment

Introduces kernel-level programming on the DG/UXTM system and provides reference pages
for kernel-supplied utility routines. This manual is a pre-requisite to botk UNLY System V

Release 4: Programmer’s Guide: STREAMS and Writing a Standard Device Driver for the

DG/UXTM System. Ordering Number — 093-701083

End of Related Documents

RD-2 Licensed material—property of copyrignt holder{s) - 093-701055

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for by purch:

orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

_ METHOD OF PAYMENT

2. As acustomer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must accompany ord

b) Check or Money Order - Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and refer to

following chart:

Total Quantity Shipping & Handling Charge

1—4 Units $5.00

5-10 Units $8.00

11—40 Units $10.00

41-200 Units $30.00

Over 200 Units $100.00

If overnight ar second day shipment is desired, this information should be indicated on the order form. A separate char:

will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS |
4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-$499.99 10%

Over $500 20%

' TERMS AND CONDITIONS
5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered to at all om:

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS
7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at (508) 870-16

to notify the TIPS department of any problems.

INTERNATIONAL ORDERS
9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary or

Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the appropnate L

Subsidiary or Representative for processing.

Ld

TIPS ORDER FORM

Mail To: | Data General Corporation

Attn: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581 - 9973

ATTN: ATTN:__
ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Tite Date Phone (Area Code) E
(Agrees to terms conditions on reverse ee

a!

ero tete Win a WNEe arere ete ean OP OMe Is ee 0 vane or Opp. born OW e.0 0.00 0a detec. tle G0, 0.0,9,0 0.0 wae ee. 2 ee961 @. tae. 0 0-008 O00 G0 8 OA re O08 ee ele ete ee te tee
ott gt

tot ate et et etatet erst eaten et ae ner eee tune te atan ge atane rele eet ee enon ewe ete ene Or oe AN leone geen a ee eMeereens se

A Rae eT | BR 2 ORDER TOTAL

CO ups ADD Order Amount Save Less Discount .
1-4 Items $ §.00 $0 — $149.99 0% See 8

5-10 Items $ 8.00 $150 - $499.99 10% | laxExenpts SUB TOTAL

41-200 Items $ 30.00 sales tax

200+ Items $100.00 Shipping are and +

Check for faster delivery _handing-See Aj
ON oe | TOTAL — See C

C) UPS Bive Labe! (2 day shipping)

0 Red Label ee ae
TT GRA VMENT METHOD. THANK YOU FOR YOUR ORDER

Dr Purchase Order Anached ($50 minimum im)
P.O. number is . (Include hardcopy P.O.) PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
Check or Money Order Enclosed Pe REFUNDS NO RETURNS. VERY.
Visa C)MasterCard ($20 minimum on credit cards)

oo. . .

Aenourt. Number Expiration Date | * Oe Serncout nam anen be Marana tas Soran
| | | | | | | {4 | | | | | | [TL] covers ali SO states. Please mcuce your local taxes when cetermmng in

vaiue of your order. if you are unceran about the correct tax armuni, pie

call 508-870-1600.

Authonzed Signature

(Crean card orders without signature and expration dae cannot be processed.)

Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS
SERVICE |

TERMS AND CONDITIONS

Data General Corporation ("DGC") provides its Technical information and Publications Service (TIPS) solely in accordance with the followinc

terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form. These terms and conditions
apply to all orders, telephone, telex, or mail. By accepting these products the Customer accepts and agrees to be bound by these terms anc

conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub—licensee of the software which is the

subject matter of the publication(s) ordered hereunder. —

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under this Agreement,

exclusive of taxes based on DGC's net income, unless Customer provides written proof of exempton.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by suc

markings. DGC retains for itself exclusively all proprietary rights (including manufacturing nghts) in and to all designs, engineering details an

other data pertainirig to the products described in such publication. Licensed software materials are provided pursuant to the terms and

conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated intc

this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY ce

OGC warrants the ClJ Macros media, provided by DGC to the Customer under this Agreement, against physical detects for a period of nine

(90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided it is retumed postage prepaxd

DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and DGC's sole obligation and liability for defective

media. This limited media warranty does not apply if the media has been damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY (

THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO LIABILITY ARISING

OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT EXCEED THE CHARGES PAID BY

CUSTOMER FOR TiiE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED. THIS LIMITATION OF LIABILITY SHALL NOT APP
TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED

HEREIN, IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES

WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST

DATA, OR DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY. |

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational Services Order

Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of law rules. Such contract is nc

, assignable. These terms and conditions constitute the entire agreement between the parties with respect tc the subject matter hereof and

_- $upersedes all prior oral or written communications, agreements and understandings. These terms and conditons shall prevail notwithstand

any different, conflicting or additional terms and conditions which may. appear on any order submitted by Customer. DGC hereby rejects all

such different, conflicting, or additional terms. s

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS Intemals Series documents may be specific to a particular

revision of the product. Consequently user programs or systems based on this information and material may be revisionocked and may nc

function properly with prior or future revisions of the product. Therefore, Data General makes no representations as to the utility of this

information and material beyond the current revision level which is the subject of the manual. Any use thereof by you or your company is at

your own risk. Data General disclaims any liability arising from any such use and | and my company (Customer) hold Data General complet

harmless therefrom.

Cut here and insert in binder spine pocket

¢» Data General
Data General Corporation, Westboro, Massachusetts 01580

