
(> DataGeneral

Customer Documentation

Programming in the DG/UX”TM
Kernel Environment

Programming in the DG/UXTM

Kernel Environment

093-701083-00

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 093-701083

Copyright © Data General Corporation, 1991

Unpublished—all rights reserved under the copyright laws of the United States

Printed in the United States of America

Revision 00, March 1991

Licensed Material—Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS DOCUMENT FOR USE BY DGC

PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE

COPYRIGHT HOLDER(S); AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART

NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright hokler(s) reserves the right to make changes in specifications and other information contained in this document without prior

notice, and the reader should in all cases determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS

AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE

WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND

CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST

SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT

INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME

PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED

HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE

RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST

PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION

CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN

OF THE POSSIBILITY OF SUCH DAMAGES.

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph

(c)(1)(i) of the Rights in Technical Data and Computer Software clause at [FAR] 52.227-7013 (May 1987).

DATA GENERAL CORPORATION

4400 Computer Drive

Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,

ECLIPSE MV/8000, PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General

Corporation. CEO Connection, CEO Connection/LAN, DASHER/One, DASHER/236, DASHER/236-

12c, DASHER/286-12j, DASHER/386, DASHER/386-16c, DASHER/386-25, DASHER/386-25k,

DASHER/386SX, DASHER/386SX-16, DASHER/386SX-20, DASHER/386SX-25, DASHER/LN,

DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000,

ECLIPSE MV/2500, ECLIPSE MV/3500, ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/5600,

ECLIPSE MV/7800, ECLIPSE MV/9300, ECLIPSE MV/9500, ECLIPSE MV/9600, ECLIPSE MV/10000,

ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/30000,

ECLIPSE MV/40000, Intellibook, microECLIPSE, microMV, MV/UX, PC Liaison, RASS,

SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of

Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company. NFS is a U.S.

registered trademark of Sun Microsystems, Inc. and ONC is a trademark of Sun Microsystems, Inc.

Programming in the DG/UXTM Kernel Environment

093-701083-00

Revision History: Effective with:

Original Release - March 1991 DG/UX Release 5.4

Addendum 083-000426 - Feb. 1992 DG/UX Release 5.4.1

Updating Instructions

This addendum updates Programming in the DG/UX Kernel Environment (093-701083-

00) with a new appendix, Appendix D, that describes how to take advantage of the

symmetric multiprocessing environment with the DG/UX STREAMS facility.

To update your copy of 093-701083-00, please remove the manual pages listed below

and replace them with addendum pages as follows:

REMOVE INSERT

Title/Notice Page Title/Notice Page

- D-1/D25 D4

Insert this instruction sheet immediately behind the new Title/Notice page.

Preface

This manual provides the basic information necessary for programming in the

DG/UXTM kernel environment. It includes an overview to the major features of

kernel-level programming on the DG/UX system. It is also a reference manual for

kernel] utility routines that you can use to perform various programming tasks.

Who Should Read This Manual?

Readers should be programmers who are generally knowledgeable about operating

system design topics. We presume a basic understanding of concepts such as virtual

memory, synchronization, mutual exclusion, locking, and interrupts. Readers should

also be familiar with the standard UNIX® concept of character special devices, block

special devices, and the difference between the two.

We also assume familiarity with the C programming language, because the interfaces

presented in this document are written in C.

Manual Organization

The manual is organized into parts as follows:

Part 1: Chapters1 Part 1 of the manual gives the general lay of the land by

through 3 describing kernel features and programming facilities.

Chapter 1 reviews general kernel programming concepts

with an eye to any differences caused by the fully-

symmetric multiprocessing environment. Chapter 2

covers the DG/UX kernel’s special facilities for passing

information between kernel-level code and the user.

Chapter 3 looks at other kernel-level facilities and their

associated documentation.

Part 2: Chapters 4 Part 2 is a reference section covering kernel utility

through 8 routines used in process synchronization and timing.

Chapters 4 though 8 cover respectively: locks,

eventcounters, clock routines, signals and process

groups, and interrupt handling. Each chapter contains

a brief overview of its topic area and a description of

how and when you use the various routines.

Part 3: Chapters9 Part 3 is a reference section covering kernel utility

throngh 11 routines used in data and memory management.

Chapters 9 though 11 cover respectively: memory

allocation and deallocation, user data access validation,

083-701083 Licensed material—property of Data General Corporation Ww

Manual Organization

and buffer vector management. Each chapter contains a

brief overview of its topic area and a description of how

and when you use the various routines.

Part 4: Chapters Part 4 is a reference section covering kernel utility

12 through 16 routines used in various driver operations. Chapters 12

though 16 cover respectively: configuration, handling the —

driver and generic daemons, error encoding and logging,

select operations, miscellaneous. Each chapter contains

a brief overview of its topic area and a description of

how and when you use the various routines.

Appendix A Lists standard peripherals and their default device

codes, interrupt levels, and memory-mapped I/O

addresses.

Appendix B Describes how to set up system and master file entries.

Appendix C Describes how to build a new kernel and check your

driver’s configuration.

Other Organizations’ Documents

The following manuals and papers provide information from other organizations that

you may find useful. To obtain a document contact the listed organization directly.

The primary method of synchronization provided by the kernel is eventcounters and

sequencers. These were first described in the paper: “Synchronization with

Eventcounts and Sequencers,” David P. Reed and Rajendra K Kanodia, Proceedings

of the Sixth Symposium on Operating System Principles, Purdue University, West

Lafayette, IN, November 1977. They are also described in: “Synchronization with

Eventcounts and Sequencers,” David P. Reed and Rajendra K. Kanodia,

Communications of the ACM, Vol. 22, Number 2, February 1979, pp. 115-125.

A detailed discussion of locks on the DG/UX system can be found in the paper:

“Multiprocessor Aspects of the DG/UX Kernel”, Kelley, Michael H., Proceedings of

the Winter 1989 USENIX Conference. The USENIX Association, Berkeley, CA.,

1989, 85-99.

iv Licensed material—property of Data General Corporation 0$3-701083

Readers, Please Note

Readers, Please Note

Data General manuals use certain symbols and styles of type to indicate different

meanings. The Data General symbol and typeface conventions used in this manual

are defined in the following list. You should familiarize yourself with these

conventions before reading the manual.

This manual also presumes the following meanings for the terms “command line,”

“format line,” and “syntax line.” A command line is an example of a command string

that you should type verbatim; it is preceded by a system prompt and is followed by a

delimiter such as the curved arrow symbol for the New Line key. A format line

shows how to structure a command; it shows the variables that must be supplied and

the available options. A syntax line is a fragment of program code that shows how to

use a particular routine; some syntax lines contain variables.

Convention Meaning

boldface | All DG/UX commands, system calls, pathnames, names of
files, directories, and manual pages also use this typeface.

constant width Syntax lines and examples of code use this font.

monospace

italic Represents variables for which you supply values; for

example, arguments to routines.

In text, italics are also used to emphasize a term that is used

for the first time.

093-701683 Licensed matarial—property of Data Genera! Corporation

Contacting Data General

Data General wants to assist you in any way it can to help you use its products.

Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form

(United States only) or contact your local Data General sales representative. A list of

related documents appears at the end of this manual with the TIPS order form.

For a complete list of AViON® and DG/UXTM manuals, see the Guide to AViiON®

and DG/UXTM System Documentation (069-701085). The on-line version of this

manual found in /usr/release/doc_guide contains the most current list.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system,

free telephone assistance is available with your hardware warranty and with most Data

General software service options. If you are within the United States or Canada,

contact the Data General Service Center by calling 1-800-DG-HELPS. Lines are

open from 8:00 a.m. to 5:00 p.m., your time, Monday through Friday. The center will

put you in touch with a member of Data General’s telephone assistance staff who can

answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General

sales representative for the appropriate telephone number.

vi Licensed material~property of Dats General Corporation 053-701083

Joining Our Users Group

Please consider joining the largest independent organization of Data General users,

the North American Data General Users Group (NADGUG). In addition to making

valuable contacts, members receive FOCUS monthly magazine, a conference

discount, access to the Software Library and Electronic Bulletin Board, an annual

Member Directory, Regional and Special Interest Groups, and much more. For more

information about membership in the North American Data General Users Group,

call 1-800-877-4787 or 1-512-345-5316.

End of Preface

093-701083 Licensed materiai—property of Data Genera! Corporation Vil

Contents

Chapter 1 — How Things Work in the DG/UX Kernel

What’s Special About the DG/UX Kernel?cessssscccserscccsnccsescnnsscccesenecsenes 1-1

How Does a Special Kernel Fit in the World of Industry Standards? 1-2

Kernel-level Programming Tasks and Documentationccsssscceeseseseceseeees 1-3

The Structure of the DG/UX Kernel]scccceccsccsecceccccectecescccscecscceeeeceees 14

Using Conventions and Language Toolsssssscsssssseressccressssseetecscnseeceseees 1-7

Interfacing to the Kernelc-sccesccceteccececersecnecccnssceessnsccnsseenscsecosonsoees 1-8

Programming Implications of the Fully Symmetric Environment:0s-sse0+ 1-9

General Hardware Concepts:cecscccesceescnccecceccccsccccecceecscseescencceeceees 1-11

Keeping Interrupt Handling Machine Independentsceseeeeceesecseeeeeees 1-14

Adapter, Controller, and Device Layouts on Different Machines 1-14

Identifying Interruptsccccsecceeceesssceccnccecesecensseccensccessccnsescesscoeeesoeees 1-15

Chapter 2 — How Information and Control Gets Passed Between

Levels

Setting-Up Background Informationscssccessesseccssssserenssseecssesotenssconsnensees 2-2

How the Kernel Gets From the User to the Device: Device Special Files 2-3

Getting Set Up Before and During System Initialization:.sscesscceseceeeees 2-4

Identifying a Device: Device Specificationsscsssssecesseceseceeeeecceseorenees 2-4

Registering Device Informationcessssceccncsecnsccccssccreccesesesceesssossseseeess 2-6

Reporting Errorss.ccsssssseseserscccscccessccssceccsccnssecsssccsseseeseessesooesscessaeconees 2-7

Chapter 3 — Ground Rules of Kernel-level Programming

Driver as Part of the Kernel]ccesseccceccccsccccvcscccsscccccccccssesecscccecssescceees 3-1

Elements of Memory Layout and Allocationc-cccsccescsecececencsceccecnscesceonees 3-1

Basics of the Multiprocessor Address Spaceccssccssscscccnssccsscnccscos scenes 34

Handling Interruptsccccccccssccssccesscccscnscencnsscessrsesscorsscnsssseosnsesoeeesssees 3-7

Using Signals sancceccsccecscosccccscccsccoccccccccsetesesecscscesccecesecseesceseseceseces we $8
How the DG/UX Kernel Shares Dataccscsccscccsccecescccrcccencscceccsceeceees 3-8

Setting Up Your Driver’s Interfaceccccccessscccsccccesnscenscccessessescoseescees 3-8

Building Your Driver Into the Kernelccscccssconcccesonscsscscssccccssesesssnscooees 3-9

Chapter 4 — Lock Management Routines

Overview to Using Locks on the DG/UX Systemcccsecescescecenscsssssvereoseces 4-1

Constants and Data Structures-..cecccscccccecssccccecceccnccecsccceccnccnssesessoees 44

Im_sequenced _lOCck type-.cccccccccccceccseccsccnscacsscescenssoesesseasssssccccescsscscescees 4-4

Im_unsequenced_lOck_type-...cccccccesccoccscccnecessensccsssccsessssssocessscsoeconsoes 44

MISC_SPiN_JOCK_tyPescecccccecccccccccsscenccccccessecesscccceseccesencceeeseeeessesseeeess 45

Im_initialize_sequenced_JOckccccccecsccececcccecsccessncsscceccessnssscescescsseescsces 46

Im_initialize_unsequenced_lOckcccecccecsccensensecenccessonssecsenocnsnenscososeeses 4-7

Im_obtain_sequenced_lockcccesccnssoscsencnccecsscescceccnscnsessstssceeesscscesseeeres 4-8

0$3-701083 Licensed materiai—property of Data General Corporation ix

Contents

Im_obtain_sequenced lock nO_Wait:cccesscnssssseneeseceeecesctseececessecsscesenee renee 4-9

Im_obtain_unsequenced_lockccccessescessseseeseseeeeeeesssseeeeenesensseessensersneees 4-10
Im_obtain_unsequenced_Jock no_Wait:cscsssseseceseresesseecsescsenecesescnseseesees 411

Im_release_sequenced_locksccccscescccscsstesscocscenecsccesccoscescscsseosscseseeeens 4-12

Im_release_unsequenced_lOckccecceccccseecnenenscecnsccsssecccencensenscsscensssssoess 4-13

Misc_Obtain_spin_lOck-sseececcceccsccseceecsssccrescessssensesoneseessessessnseesess 414

Misc_release_spin_lOck--00++ ceeceeeececcsscccecsscsceneeceessesesenseseceseeessessseeeeas 4-15

Chapter 5 — Eventcounter Routines

Overview to Using Evemtcountersc:cccssesecsesecensccccceneesensceneccesaeencessosess 5-1

Constants and Data Structurescececsscoecsosssseencsccscscnseeccceseeseescenssssseseees 5-4

VPEVEDLUYPCcccceeccnccencccsereceeceenensesescesscesecsscsesessessesacscssseseeseeseesenes 54

VP Add _to_ecC Value 2.2... eececcceeeee rece ceeecencseceeseeseaccsesecsenesecenseseesesasereseness §-5

VPuAdVaMCe_€C 2.2.2... cece ccccssnceccececencec cnc ceecscsteescsseeeascesersvenererenecssesaceneceeseees 5-4

VPuAWAIL_OC 20... cece cee ccc esccceeeccenc ence ence ec eeeascestensecsesceencenssesseseseeesseeeserseneroees 5-7

vp_convert_clock valtie_to_ec_valuecccesceessecesceecscesccsneneeeconessceensessenseones 5-8

Vp_comvert_ec_valuie_to_clock valuececesseeseceecserneceoeeceosen sce sceeeescoeeseres 5-9

A FET_MEXTEC_VAIUE 2.0... cece rescence econ ns eeeesereeeserecenseceeseseneeeessesescesoeseenes 5-10

Vp_has_eventoccurrede ce eeeesseneeecesceseresncceeseeseceessassesseoeseeeescesanessessrees §-11

VPANCTEMENL_EC_VAIUE 20.2... eee eee eect e tence en eneceseneeeetscnsecceeesersacseecasoneenoeeeeoes 5-12

VP_iMitialize_€Cccccccesccecccccesccccseecersccsccacescceeeeeasssseeesseeceseessesseseecegaeres 5-13

VP_initialiZe_SEQUENCEL ee eee ceeecen cnc ecssceseccenessseeeeseesenscnoesosaesseeenseeserenees 5-14

VP_TOAG_€C .0...... sc cececce ccc ecneeecneccecescecccecenseracescensssssseesessenseececoesesceeseseseseeeene 3-15

VP_ticket_ sequencercccecesscesecececesecaeetsnseetcnsceessooeeccscsorcsscssscnreoseeeees 5-16

Vp_are_ec_values_equalcesece een ceeceeeecnesecesccnosoecseceseesesacesssesseressscens 3-17

Chapter 6 — Clock Routines

Overview to Using Clock Routines -..........-.:ccccsessecseesensseceescoecessescesssenaceseassens 6-1

Constants and Data Structuresccccececsccscccsccecccecccccesercecscnscecnsnesseesoesees 6-3

MiSC_ClOCK_vValue_tyPe-scsecesnccccsccscereseseetenssccneesscsens esse csscoeseaccrsoeeees 6-3
Vpuestablish timeoutceescececsceec ec ccnscessccenereesescasssccsscsaesccssscseseeesscseees 6-5

VPCancel timeout 2.2.2... cecsencececcecencenceeececesssctescnsssccscceseesceeccssenecsssseees 6-6

Vp_specify max timeoutscccesccsccerccccensserscscnsersceenceasee soos coesasccsecesooores 6-7

Vpicreate_ClOcK_eventc0.-sccsceccceecscescncceensesesscssscascrsccecosssesencoseeseserees 6-8

Vpread_system_clockcceccccsececccecsccscnsessenesssnessecnsscssacsecsscarsvccseceosores 6-9

Chapter 7 — Process and Signal Management Routines

Overview to Using Process Signal Management Routines--seccescsseeesereree 7-1
Constants and Data Structures-cessccsccsecceteceesccesseeseenecnsccorscsssseseecoees 7-2

PM_VETL MY _PId 2.2... ceeesccecceenscccoccorccecceccnssenecneeeesensesessssnecsosccessecessenes 7-3

PM_QEL_MY_PgrP-sccreccsccscccccscccceceenccscscssenssescnsesscsessecosscascsecsenssassono sess 74

PM_is_interruptedccsccccccsccecercccocsesccesncenscnsesesensenscscsnccsssencceenseees 7-5

PMLIS_termMimatedccscccscccossccscccccnscsccsscecccnsccccsscessesecssoosconssscssessooeess 7-7

Pm_send_signal by_indexccsccccccccsccnccsscccceucceccccessessessnssecscssesecscseeeees 7-8

pm_send_signal by_process_grOUpPsscccsscennesccnccesccscnscncosococcsorscssnsseseess 7-9

Ppm_send_signal by_process_id-ccscccssccsscsscecccccecsssccnesecessnssceecossooresoes 7-10

PM_Send_signal with_siginfoccecccceccsecceseceeccsssceeeseaseecsssensssoseneceeees 7-11

Xx Licensed material—property of Data Genera! Corporation 093-701083

Contents

Chapter 8 — Interrupt Management Routines

Overview to Using Interrupt Management Routinescccecsscssessssssecsonsseees &1

Disabling Interrupts on a Single Processorcseccsecescecoccsecseecscsseeseeceeres &1

Masking Interrupts for a Particular DeviCeccccssocsecsrscesccccrcsccsscsocceses &2

Constants and Data Structurescsssccsssscssccccccsccevenscccccccessscnsscessececeseeees 8&4

UC_LINGETTUPt_ENUM_AYPe-.ceencereccsccrsescrecccencceccecsenececscecseeseesessseseseeeces 8-4

io_mask_interrupt_varietycccsccccccccssessccssscsescosacesccscsececescesscssccsseeserssees 8&5

GO_UNMASK_INter¢rUpPt_VAarletycecccccecsrscsscseccescececcsssccecececesscscecessscsssesseens 8-6

Vp_are_interrupts_disabledcecsssccosscccecerecccanseccesccececsscesccensscceessseneseces 8&7

Vp_disable_interruptscccsccssccsesccccscescsecesssceeseecesseeseecrecesssecsscesacssesensees 8-8

Vp enable_interruptscssccscccsecccecnsscceccesceccccescessetesceecesceceseesseneseceseses 8-9

Chapter 9 — Memory Allocation and Deallocation Routines

Overview to Using Memory Management Routines0..sscsscsssseseeeessseeeeeneeen 9-1

Constants and Data Structures-.cceccseseccessccnscsceecesccecocscnscaseceseesescesessenes 9-3

Page Alignment Literalscccsscscceesceessccsecsscrestecteccscscssceseceesceeneessonss 9-5

vin_get_physical_byte_addresscscscsssesesccescncceccersscsstecetccetencscessceesceeeses 9-5

VID_Get_UNWIred_MeMOLYccscescccceccscccersensenacececnsccseecsasscccasceesccsscesasenss 9-6

VID_GEL_WITEG_MEMOTYcceeceesncescencceesesecescensesceesscesseenecsccaesseescsesseeeses 9-7

Vm_map_physical memorycececseccsnctsccrnsvenacnccnecsesenenscesccasssceeeseseenseses 9-8

Vim_unmap_physical meMorycescesccescessseeceeceeceececrecseaseeccersessccersseseees 9-11

vm_mark_mod_and_ref_and_umwire_MeMOrycccccecscececcscccsecsecsccseescesees 9-13

vin_mark_ref_amd_umWwire_MeMoOry-.ceseneccenccsencccccceccccscscscccecsccserseeoees 9-14

Vin_perhaps_get_UMWired_MeEMOTYsccccsseesercoccescceneccecscesscsesscceseneessseres 9-15

Vin_perhaps_get_Wired_MeMOry-.sescceceeseeccnsenscnscnccesensssonscceseersceeseseees 9-16

Vm_Telease_UNWIFEG_MEMOTYecececscceceeeececececcecececcecceseccsccsecerececseceees 9-17

Vin_release_WireG_MeEMOTYcccecesecccccscececcescecceccnceccsecesecasscsseenceseeseosees 9-18

VIM_LUNWITE_MEMOTY0.secceccccsccecencneccccccescnsccscenseesersceneecnencssesececeeceressens 9-19

VIM_WITE_INEMOTYs.cesecccscccccnsccccccencscesecescecceescececsceneeenscenscssscnseseceessees 9-20

Chapter 10 — User-Data Access Validation Routines

Overview to Using User Data Access Validation Routinesssescssssseseeees 10-1

Constants and Data Structurescccscsecsccesceccessccecccecccnrcecscscssessscessresses 10-2

SC_ACCESS_MOE_LYPEceesccscceccccccerccscrcecscecsccensrecececsccecsesesccecsenesees 10-2

sc_check_access_and_read_string from_usercsscscsscceccccssccsocscenssecceesees 10-3

SC_CHECK_Dyte_ACCESSsceccscccccccccccccccccesccccccecensecereceecccescscesececessceeseres 10-5

SC_Tead_bytes_from_userccceccccccesccsccececceccccsececeesetecccecsnccosescccsscenscces 10-6

SCLWTILE_DYTES_LO_USETcccccccscccscccevercccccscccscscscecccocsceneenencccsesensescesnseoees 10-7

SC_LWTITE_SUTIMG_tO_LUSET-ccccecccccecnesscscsceneccrccnsceenecsenssncnscnssnnssoseessccasees 10-8

Chapter 11 — Buffer Vector Management Routines

Overview to Using Buffer Vectorssssscsssscscccsesccsccescscnssccccenceseeensecees 11-1

Constants and Data Structuresccscsscossercosccescccscnccceccscncscceneesesseresseses 11-3

GO_bDuffer_VectOr_tyPecccsccccccsccccccccesccsssccccccecesccecserencscsccssseesessossees 11-3

io_buffer_descriptor_typPeccccsccecccccesecccesccsccsccescecsenscccscesesccersossoesees 11-4

io_buffer_vector_comtroLtypecscccccsccseccccecccercccecetesccccssccenecnscessseees 114

i0_add_to_buffer_vectOr_pOSitiODcseccececcececorececccneccscsecssccrecenecessoeres 11-6
io_get_buffer_vectOr_io_infosccsccccsscecerssccccrcccccecccrscecsccssenscocersoeseesees 11-7

093-701083 Licensed matarial—property of Dats General Corporation Xl

Contents

io_get_buffer_vectOr_pOSitiOnseceeececcnscessrosseneseesesecseersecesseeseseassusenses 11-9

io_get_buffer_vector_residualcccecessesceseceseessceeseceeeeesseseesesccceseoeeesees 11-10

io_get_buffer_vector_bDyte_COUntcccsecsnscecnsecesccecccsesoneeeesececssoseneeesers 11-11

Go_imit_buffer_vectOrc.ccccssccscccececececececcececserersscneesceseesssesaesseonsnassens 11-12

io_init_one_entry_buffer_vector0.c.cecescecsccenescrescecceecnscteeseesessesonecenees 11-13

io_read_from_Dbuffer_veCtOrcsecececcesccsccscesenscesenscnsereceseesecsescesescseoes 11-14

io_reset_buffer_vectOr_pPOSItion0.csccseesseecncescseceseeeorsensecscescscesenseesens 11-15

io_set_buffer_vector_residuialcecececsccsceccscecescncctececececcensecececcscesses 11-16

1O_Wite_to_Duffer_VeCtOrccescccccscneccceccccccnecscescccseecscececsensececeoeenesers 11-17

Chapter 12 — Configuration Routines

Overview to the Configuration Process and Configuration Routines 12-1

Constants and Data Structuresccccccecssseecsceeeececcencseceseceeccnecenencesessererees 12-3

fis_Gev_request_tyPecscscecscccscenececsccesenecassenecsnceersssecsceseseeoensenenseecees 12-3

fs_dev_request_operation_enuM_tyPececsscoeeecssecsceneeseceensceteeenseecesseeees 124

fs_dev_create_requesttyPeccccceececececeecesceccenseccseeesceecsceseresencecncrerecses 12-4

Go_dev_adapt_info_tyPes.csscsccseecscrsceeesecesscsseeceeereseneoseseeewse so ssesesees 12-5

UC_deVice_ClasSs_CMNUML_tyPecsecececcesceecscceseceneneeeseseeceseneeoeeoeseneresees 12-5

UC_eVICE_COGE_LYPecseeeccrencrenecrencescenc sees seseseecceseccecsees seen eenscescseees 12-5

Integrated Device Code Literals-.ceecseccsscsseecncesereereecenesereeessecnesecees 124

fs_submit_dev_requestcccssccsscceceeesssceccnesscescnnceeceecceesssesesevenseseseseesens 12-7

io_add_to_register_listcccccsssessseecescescesccesceseeeenoecssccseeesascesenenseesseeeeees 12-8

10_allocate_device_MUMDETcsesccceececececncecscnecsceonsesccseceeseressensscssereeees 12-9

io_deallocate_device_MUMDETcccceeecceesserreeesenessssesteneneeecsecereceeeeeeesees 12-10

1o_deregister_device_infoceceeeece ce ceeececscenescnscesencscasecesocscerecessescecuees 12-11

1O_Check_device_Specccsccecescseseececenssesesseeeecescescsossnsocessensecseseccessees 12-12

1O_forget_GeViCE_SPECsseessccccscsccecsceceecsccesenseeeccesccscnsoscscesceeeceesesonenaes 12-15

io_do_first_short_board_accesscececccceceeccecrerccesceceseccncsesssrnscssesssooeens 12-14

io_do_first_long_ board accesscceccccsccceceseseascenssceeseeescese reer sossseeenees 12-15

LO_Get_evice_infOcecsssscsccsccssccscecencnccecsescnscssescnscecesseecescoracensccesssees 12-16

Go_Map_device_ MUMDETccsccscccecececenscccscncescesceeessesensenseccconscsesesecsenes 12-18

LO_PArSe_eVICE_SPECcecccscccnscscesneccecscceseceesscsstesscesceencnessserscnsecssesees 12-20

VO_PerfOrmM reseteeccssccesecscescerscecscnesecescnssccscnscceccosscseseencesseneresees 12-22

LO_Tegister_device_iMfOsecccscccecececcesescenscecencessssecsscenssccnsccensceeseess 12-23

Chapter 13 — Driver Daemon, Generic Daemon And Error

Processing Routines

Overview to Driver Daemon and Generic Daemon Routines-esceeeseeees 13-1

Error Encoding aud Logging Routinessscssssseccsecsssessececcercscocecsoenesscees 13-2

Constants and Data Structurescecescececscscrersnenccnsccescecsccscccscnsscsseees 13-3

SC_LNOLERRNOcccccsescccsssccssccccccccsccccccccocsccscveccssacesncnscncscnscssencssonees 13-3

JO_queue_Message_to_Ariver_GeMOR-.ccecsneseersccssecrconsscccecerecscscseconasenees b4
io_specify_max_emon_Messagescscssercccscccescenerenesccesscconsorsccocnneocsesees 13-6

JO_queve_Message_tO_geMeTic_AeMONceeceecercesceccccsccccccsccnccnececcoceserees 13-7

io_specify_max_generic_demMOn_MesSagescescesscescreseccereccrerccesseccceseceeerers 13-9

SCLENCODELSTATUS. 200..........-cccssceccccccccccrcccsccsctssenscnceseescscsccosecscoseeeens 13-10

POLETTJOg_CTTOLecceceseccceesscccesccceecececcccccsececcsccnncnscescescsccssceccococesoeeens 13-11

Chapter 14 — Select Manager Routines

Xil Licensed material—-property of Data Genera! Corporation 033-707083

Contents

Overview to Using the Select Manager Routines:sssescccssecenseceneesceerees 14-1

Constants and Data Structuresccccececsscsscccensessnsessenereesseaceesenseesceesees 14-2

1O_Select_IMteENttyPesecescecccccncceccsccerscecsccnsscssccenscesersesaeteneeensenesers 14-2

TO_SelECt_CANCe]cecseccccccercccccscccccecceccecccsccreccccnccscrcsseccseseneeenssccercesercons 144

FO_LSCLECTLIMITeccsseceecsocceseecosccnccccececsccessecccsccersesenensseecescenseeceeeeaeeenss 14-5

iO_Select_registercecssccessscensecnececneeneccecseeeccuneseseceeeseseeeesepenseeneeesenseees 14-6

iO_select_ Satisfycessecsecsccssercceccsceceseresceesceescceccssssessseasaesceeesescncnsoase 14-7

Chapter 15 — Nodevice Routine Stubs

Constants and Data Structuresccscesccccsscccctssceseceeesccsesccecnersneeeseeeeecess 15-2

IO_NOGEVICE_OPEDceseccnsssecescnscsceceeeceecenssersceceesnssssscceescesesseesseeesonees 15-3

TO_NOGEVICE_C]OSEssceseecneecescerccencenrecerccceccccecesterscesrecceecemseesteresensecess 15-4

LO_NOGEVICE_TEAG_WTITE eee eececccececonc coe ccceerecceecsessccsasceceeeserencessceeseeces 15-5

JO_NOGEVICE_SEIECTeceereecesccececscecsececscccrcnacccecesescsccteseseeceeeeersecscsseesneons 15-6

TO_NOGEVICE_LIOCT] 2... eee ee ee eceeere ec ec cencecencecssccceceeeetesersecceeseceearesesesneenenees 15-8

TO_NOGEVICE_StALt_iO-sseccsseceseceeccccececcscersccscescceesecescsetsecescsnsteseeeneeeees 15-10

JO_NOGEVICE_CONFISUTEeeeeeeeeececes er ec eneceeneeeceececcesesensssssesesescsseeereeooesees 15-11

Jo_NOdeVice_decOonfigGureceeececececeececescesescnecnecensssessssenscsssoeeeseoeseeers 15-12

TO_MOGEVICE_MAME_TO_AEVICE cee eece sce ceee esses cee netecteecceseesetereseneesseneecenees 15-13

Go_NOdeVice_device_tO_NAMe ee cecencencecscecescecsccceessesecocsceceseseeeseeeees 15-14

IO_NOdeVIce_OPeD_GUMPeseceeceecscnceecnerecececcceseceeenersssesensnsnceseserserenees 15-15

JO_NOGEVICE_WTITE_GUIMP -.........-.sceeceecscececcscceecensesescseceneessstenesceneereceeseesenes 15-16

io_NOdevice_read_GUMpccseceeceseecescecserteceeceesssensessessteec scene soeeaeeeeees 15-17

1O_NOGEVICE_CIOSE_GUMPcecescececececeecenccecnecnscessecnassscesseeceesnseesescsonee 15-18

io_NOdevice_powerfailcceseceeecee enc eeesececcecesceeesensssrssrsenecnsasseeesseeseetes 15-19

FOLNOGEVICE_MIMAP 2.0.0... ccescceeseeeeeceececacecceneeccecenscccsnsesssessencweneseeeseseeseees 15-20

FO_MOGEVICE_MUNMAPeeeceeeesececeeeceecesceseecssenessensssscesseneseeeereseessenenes 15-21

Go_MOdeVice_MAdGMaPccessecescscncecececcecssccecneccensessscenssecacsenesseesesensens 15-22

1O_NOGEVICE_SEFVICE_INTEITUPtccecceserecccceecscceecsensnscnseecsenesonscoesceees 15-23

Chapter 16 — Miscellaneous Routines

Constants and Data Structuresccccceecceeccece ce eecnccecncnscssecececcccvecenecenecees 16-1

fs_ check self_idcccccecccsccccccccccnccccccsncscsccsassccccscescsscsceccsecssoccsecenscecs 16-2
Go_HeX_Str_TO_INTcccccscccccscccccccsceccccnccsencsacscsscccsesccccsccscscsecceccocesecesccesseess 16-3

MISC_format lime cc cececccecsecccn ccc ccccceccceccccsesccescsssscccccscccoscccsccsesscssercese 16-4

POLIS_SUPEF_USETcccccececsecssecscesecerceccenssesascnsnssenscsssscenesscoenscsesesceeeers 16-46

SCLPADiCccccccecccssceececesccercccceccesecscscenensscesscesssccssssscceensesenecssorssenernes 16-7

Appendix A — Defining Device Specification Parameters

VMEbus Class /O Defaultsccescsccsccsccccssccsccscecesscssonsecccersecsncnsasasoesces A-2

Conventions for Selecting VMEbus I/O Addressesssscscescoreesceeeeceeees A-5

Integrated Class I/O Defaultsccecescccnecccocceeccesenensncsceneresecsossscoceacses A-7

Disk and Tape Command Set Compatibilitysssscsssececcoseseccoeccesereneeees A-8

Appendix B — Preparing Master File and System File Entries

Describing Your Device: The Device Section Entry-:--essscenccesneceners B-1

Parameters: The Keyword Section Entrycccsccsssccesseseccsecsccersocescooseneeee B-3

Master File Aliases: The Alias Section0..-csccesscecescesecncscnccsserececssoerss B-5

093-703083 Licensed material—property of Data General Corporation XU

Contents

Adding a System File Entry--csssessccscsorcssseeeeseeeeeeccssessscssscenscceecsseseeees B-5

Appendix C — Rebuilding the System and Checking Configuration

Compile-time Checklistccccssessssssneceesessssesenennsncecssessessecsssssoeceseesoeees C-1

Rebuilding and Rebooting the Systemcsccesecsseeseesccsercseessesssseeseesseneseosees C-2

Checking the Configuration Process:sccccssscssseereesereeessssrsereeceeeesesenesonees C-3

The Conf..c Filecseccescsssccscsccccnsccessscececesceescecccsccsccceessenseseeasesneeseners C-3

The Configurable Variable Sectionsssecssssssersesccssccssoecereeeesecssseceesenens C-3

Device Driver Tables-.-ssccssccssseccssccececcescecesecscsscssccesssenescsenscessanees C4

The Configuration Listscccccscsscscsssssccssereereeeacssacsnecsscrsssncessesseeeencees C4

Your Special Files::sscccsccssessseeessnencesnscesseseessnsececeeensscnseseesssceeeees C-7

Index

Xiv Licensed material—property of Data Genera! Corporation 093-701083

Contents

Appendix D — Using STREAMS in the DG/UX Multiprocessor

Environment

What Are Concurrency Sets?ccceccscsccecscceenescecsssesessccescescrscneseeeceees D-1

Terminologyccsccsccscenccnccecccccececncccccceessesccsccscesccessceesceeseescessensscesons D-2

How Different Types of Concurrency Sets Workcsccssecesssecnescnssecnseoeses D-5

Recommendations on How to Use Concurrency Sets.ccccssccescceseceeseeeeees D-9

Notes on Creating STREAMS Code on the DG/UX System-ecceseeeseeeeee D-9

Notes on Porting STREAMS Code to the DG/UX System:..cseesesessenees D-10

SU_SUD_SIC€Pcencscsseccnccccesceccccnscecsececccccrecesstescesescesseseneeceseseceeesseoees D-12

SU_SIT_WAKEUPceccscoecscescccccececececcccceceserecscceseecececscsssseeeeceesescessesones D-13

SU_StF_MEXt_CVENE 0. ce ceceec sce ecercccn ccc cccenccnececsccnsececcewesessscessessececncesones D-14

086-000426 updates Licensed material—property of Data General Corporation vii
093-701083-00

Figures

Figure

D-1 Basic STREAM Layoutsscsscssecceencesceccececsccsesescnsscsesooseseees D-3

D-2 Multiplexor STREAMcceeceesccnescecensseceneeenscnsecscesesssoneeseeseess D4

D-3 Per-stream Concurrencyceccccsccscosccscecsecscscccncccctscecscceerecncnsasens D-6

D4 Per-module Concurrencycsccesessccssceeseecceccecesceeescencnesescnseosons D-7

D-5 Set Concurrencyccescscsscceecesccesssccnenscensecescesseaescosonssscsesesesenes D-8

Vili Licensed material—property of Data General Corporation 086-000426 updates
093-701083-00

Table

1-1

A-1

A-2

B-1

C-1

0$3-701083

Tables

Subsystems and Their Include Filesscssssseseserssssssersesecensersoeees 1-7

VMEbus I/O Addresses and Interrupt Level/Vector Defaults A-3

AVIION Station I/O Address Defaultsccccescescesncrecesceteeeeees A-7

Restriction Flagsscc-scsseceesecessscceseesensscessseessoncceceeeseseesseneeseees B-3

Routine Classes and Their Include Filesssssscsessecseconeececeeees C-1

Licensed material—property of Data Genera! Corporation

Figure

1-1

1-2

1-3

1-4

1-5

1-46

1-7

3-1

3-2

3-3

A-1

Figures

Kernel-level Documentationsscccsssccececeesceccesccecercececceseeeneeees 1-3

Layout of the DG/UX Kernel-----sessseesseereeeseeeesessscoceecersnesennes 1-5

The Three Steps in Locating a Driver Routine:ssceecsssoseeossenee 1-9

Overview of the Fully Symmetric Design---ssecosscesescesscoseeeeres 1-10

A General Hardware Modelscsccscsssscscccssscnccccceccnscnesceecccesacses 1-12

Diagram of the AViiON System I/O Architecture--scceesseseereeenes 1-14

Diagram of the AViiON Station I/O Architecture-.--.sscesseeeseees 1-15

User, Kernel, and Physical Address Space-..:sssssseseroseesccsossseeees 3-3

DG/UX 4.30 Address Spacescssecccccccessceenesccneesecerescessensssssrees 3-4

Traditional and DG/UX Proc Tables:secececececececscerencesceeseeees 3-6

VMEbus Memory-Mapped I/O Addresses and Data Width Areas A-2

Licensed material—property of beta General Corporation | 093-701 083

Chapter 1

How Things Work in the DG/UX

Kernel

This chapter provides a general overview of the DG/UX operating system

environment. We assume that you have a working knowledge of programming and

operating systems in general. Documents covering special topics such as

eventcounters and sequencers are listed in the Preface.

What’s Special About the DG/UX Kernel?

There are two major ways in which the DG/UX kernel is special:

It is designed for fully symmetric multiprocessor operation throughout the kernel.

Multiprocessing means that the architecture has multiple CPUs operating out of

common shared memory. Fully symmetric means that all CPUs are equal; there

are no master or central CPUs. The DG/UOX kernel’s fully symmetric

multiprocessor implementation allows any part of the kernel to run on any CPU

and in parallel. This full concurrency means full use of the CPUs. Processes

really do run in parallel on separate processors and you don’t have to do anything

to take advantage of this.

It is a re-implementation of the UNIX kernel (not a modified AT&T or Berkeley

kernel) with greatly improved internal structure and modularity.

The re-implementation and increased modularity means a better software

development environment. Modularity means well specified interfaces that: 1)
allow multiple developers to work independently; 2) allow the implementation of

one part of the kernel to change without affecting another; 3) simplify integration

of new software; and 4) meet government modularity requirements for secure

systems.

These two elements — full-symmetry and a cleanly designed kerne] — are at the heart

of what makes the DG/UX system a powerful software environment especially at the

kernel] level.

093-701083 Licensed material—property of Data General Corporation 1 -1

What's Special About the DG/UX Kernel?

How Does a Special Kernel Fit in the World of Industry

Standards?

The DG/UX system is a UNIX system that “aggressively” adheres to industry

standards such as BCS, POSIX, SVID, ABI, and BSD that define user-level

interfaces. Thus, user-level portability is assured on the multiprocessor DG/UX
kernel.

Even within the kernel, most of the basic concepts, operations, and data structures

are the same as in traditional UNIX kernels. However, fully symmetric

multiprocessing does change the kernel-level programming environment. Primarily it

means more sophisticated synchronization (fine-grained locks and program-definable

events) and scheduling (fully pre-emptive scheduling). It also means some shifts in

the standard assumptions about what level of exclusivity and control a kernel-level

process has while its running. This manual is designed to describe these kernel-level

programming differences.

This manual is also designed to give you tools to program effectively on the DG/UX

kernel. The DG/UX kernel is designed to simplify integration of new kernel-level

software. We’ve already mentioned the first major simplification: modular

engineering and well-defined interfaces between modules. The DG/UX system also

simplifies kernel programming by providing a wide range of utilities covering all

aspects of kernel programming from locks and interrupt handling to data and memory

management. These routines both reduce the programming effort and hide the

intricacies of full parallelism. If you use the kernel-supplied utilities, for the most

part you don’t need to know how full-symmetry works and you run less risk of having

problems using it.

1 -2 - Licensed materiat—property ef Data Gev.ieral Corporation 093-701 083

What's Special About the DG/UX Kernel?

Kernel-level Programming Tasks and Documentation

There are three kernel-level programming manuals: an introduction and reference

manual, and two manuals each describing a particular facility for integrating code into

the kernel. Figure 1-1 outlines the structure of kernel-level documentation.

Programming

in the DG/UX

Kernel Environment

Programmer’s Writing a Standard

Guide: Device Driver for

STREAMS the DG/UX System

Figure 1-1 Kernel-level Documentation

This manual provides the entry point for anyone wanting to do kernei-level

programming on the DG/UX system. It provides an overview of the DG/UX kernel-

level programming environment and contains reference pages for the many kernel-

supplied utilities you will need to perform support operations.

The DG/UX kernel provides two well-defined entry points for integrating foreign

code: through the STREAMS facility or through the Standard (non-STREAMS)

DG/UX Device Driver Interface. The two other manuals listed above describe these

facilities and give detailed information on how you use them to integrate your code

into the kernel.

The Standard DG/UX Device Driver Interface is the original and most basic interface

to the DG/UX kernel. To create a device driver using this interface you supply a set

of routines that conform to the interface specification. The specification describes

the functionality of required and optional routines and gives the exact calling

sequence you must supply for the main kernel code to call your driver.

The STREAMS facility provides special functions designed to make mixing and

matching modules of code easier. It defines a standard interface between modules,

ways to send messages between them, tools for managing common buffers, and easy

ways to connect modules. The STREAMS facility is particularly handy for

communications protocols and line disciplines that often consist of layers in

combinations that may vary from system to system. For example, you might have a

TCP/IP layer on an X.25 base on one system and an ISO layer on an X.25 base on

another system. By standardizing flow of control, the STREAMS facility allows you

093-701083 Licensed material—property of Data General Corporation 1 -3

What’s Special About the DG/UX Kerme!?

to switch modules in and out to fit your system without redesigning the whole stream.

To create a stream using the STREAMS interface, you write one or more modules

and/or drivers that are connected and exchange information using the the STREAMS

facility.

In theory you can change any part of an existing kernel, but in practice doing so

requires extensive knowledge of the entire system and is beyond the scope of this

document. Rather, this document focuses on the most common kernel-programming

task: writing various types of I/O-related code such as device drivers, communications

protocols, and line disciplines. To simplify discussion, we will speak in terms of

"drivers" when referring to all such code. The goal of the DG/UX kernel-level

documentation is to allow you to write drivers without having a Source License for

kernel code.

The Structure of the DG/UX Kernel

This section describes the organization of code inside the kernel. The DG/OX kernel

has the same basic layout as traditional UNIX kernels. It consists first of a

separation between user-level and kernel-level with system calls acting as the interface

or path between the two levels. In some cases a user program may call a library

routine that calls a system call, but, whether directly or not, system calls are the

user’s path into the kernel.

The DG/UX kernel was designed with two guiding themes: 1) hierarchy, and 2)
information hiding. Hierarchy means that a large software entity is divided into

smaller entities. At each level, division is done on the basis of related functions to

create meaningful software elements. As a result, the DG/UX system has four levels

of hierarchy: 1) the kernel as a whole; 2) subsystems; 3) modules; 4) individual

functions and data structure definitions. The kernel has about 50 subsystems each

containing a set of related functions that support a major area of kernel operation.

Subsystems consist of multiple modules, where a module consists of a C language

source file.

Information hiding means that each software entity is separated into an interface and

an implementation. The interface is visible; it forms the contract between the two

entities. The implementation is hidden from outside entities. This means that an

entity’s implementation can change without its users being affected. The

interface/implementation principle applies to all levels of the hierarchy.

1-4 Licensed materiat—property of Data General Corporation 0$3-701683

The Structure of the DG/UX Kernel!

The interface to each subsystem consists of a set of function calls and data structure
definitions. The kernel-supplied utility routines mentioned earlier are calls to
functions in different subsystems. Figure 1-2 shows some of the subsystems, modules
and other components relevant to drivers. It shows general flow, though not all
connections between subsystems. For example, a driver may call routines in the vp
subsystems, and the lm subsystem is used by virtually all other code.

User—level

System calls

Kernel-level | |

Filesystem Subsystem (fs Processyseem (8) _—— > Management
Subsystem

Character YO Block YO (pm)

s Standard Driver Interface Y

R |
Vi

A intualM Set Block Interface [g___» Processor

pecial Subsystem
—T (vp)

Terminal Device Kemel
Services Driver t———| Initialization
Subsystem Subsystem (init)
(ts) (dev)

Virtual Lock System
YO Micro-code — 2 Memory Manager Control

Subsystem Subsystem Subsystem Subsystem NS)
(io) (uc) + + r

Figure 1-2. Layout of the DG/UX Kernel!

The following list gives a brief description of some of the important subsystems.

File system subsystem (fs) — The file system subsystem is a utility subsystem that

contains routines of general use to the kernel. For our purposes, the important thing

about the fs subsystem is that it is the entry point for kernel I/O. The fs subsystem

channels processing requests to the correct lower-level subsystem.

083-701083 Licensed material—property of Data Genera! Corporation

The Structure of the DG/UX Kernel

Device Driver subsystem (dev) — The device driver subsystem contains device

drivers for disk, tape, and line-printer devices and for non-Data General drivers. If

you write a device driver, the driver will be part of this subsystem.

I/O subsystem (io) — The I/O subsystem implements a variety of I/O utility routines

that are used by all device drivers. It defines the standard device interface and the

general I/O architecture.

Micro-code subsystem (uc) — The micro-code subsystem isolates the rest of the

kernel from variation in AViiON hardware platforms, allowing other kernel code to

work on different machines without coding changes. It provides routines to

generalize I/O interrupts, device codes, and hardware queries.

Kernel Initialization subsystem (init) — The kernel initialization subsystem initializes

the kernel. It calls each subsystem’s initialization routine, mounts the root file system

and invokes the first user process. You will not need to call functions in this

subsystem; rather, if you write a device driver, this subsystem will call the driver.

Lock management subsystem (lm) — The lock management subsystem handles all

locking operations.

Process management subsystem (pm) — The process management subsystem

manages processes including process attributes such as uid and gid, signals, and the

fork and exec system calls.

System control subsystem (sc) — The system control subsystem handles various low-

level system functions including: panic and dump code; hardware exception handlers;

and kernel-code accessing of User space.

Virtual memory subsystem (vm) — The virtual memory subsystem implements the

UNIX address space and virtual memory, and supports the shared memory

mechanism.

Virtual process subsystem (vp) — The virtual process subsystem handles the virtual

processor abstraction used to create the fully symmetric environment. As “virtual”

processor, this subsystem manages processor related operations including: interrupt

masking/unmasking; clock routines; and eventcounters.

Miscellaneous subsystem (misc) — The miscellaneous subsystem provides utility

functions that do not have dependencies on other parts of the kernel; for example,

generic string functions, 64-bit integer arithmetic, and indivisible counters.

Note that the path to a device driver goes through the fs subsystem first. The
divisions within the fs subsystem show elements of particular interest to drivers. They

are as follows:

Character and Block I/O — When an I/O-related system call comes in, the file

subsystem separates requests by whether the device involved is a character type or

block type I/O. Block I/O uses the buffer cache to collect and transfer data in large

blocks while character or raw I/O operate on a character-by-character basis.

Character versus block is the most basic breakdown of driver type.

STREAMS versus Standard Driver Interfaces — The two driver interfaces are

1 -6 Licensed material—property of Data Genera! Corporation 093-701 083

The Structure of the DG/UX Kernel

logically below the separation between block and character I/O. A Standard driver

can be either a character or block type, and drivers of each type are grouped under

their respective I/O type. All STREAMS drivers/modules are considered a type of
character special I/O and hence come in through the character channel.

Each subsystem makes its calls and structures available to other entities via an include

file. To invoke a subsystem’s functionality, you include its include file and call one or

more of its functions. The subsystem’s include file is named iLacronym.h where

acronym is a two to four letter acronym for the subsystem (for example, vm for
Virtual Memory subsystem). Table 1-1 shows some of the major subsystems, their

acronyms,include files, and responsibilities.

Table 1-1 Subsystems and Their Include Files

Subsystem Acronym Include File

File system fs i_fs.h

VO io iLio.h

Lock management lm iim.h

Miscellaneous misc i_misc.h

Process management pm i.pm.h

System control sc i_se.h

Virtual memory vm i_vm.h

Virtual process vp i_vp.h

Micro-code uc i_uc.h

Subsystem include files are stored in /usr/sre/uts/aviion/ii. The last 13 chapters of

this manual list some of the function calls (kernel-supplied utilities) that you can use.

Using Conventions and Language Tools

A symmetric multiprocessing environment requires a high degree of coordination

among kernel-level entities. In addition to hierarchy and information hiding, the

principles of conventions and language tool usage also help promote coordination and

orderly operation in the multiprocessor environment.

Conventions are used heavily throughout the DG/UX kernel in order to increase

coordination and uniformity in the resulting product. A number of naming

conventions are used to ensure consistency, enhance clarity and usability, and to

reduce the chance of name collision. For example, prefixes and suffixes are used on

C source file names to denote various attributes such as the owning subsystem or the

category of data items contained. The conventions for identifier names and function

names are similar but have the data type indicated as a suffix (for example, the suffix

ptr is added to pointer names). Verb-object syntax is recommended for function

names (for example dm_create_link instead of dm_link create). Such conventions

are very useful when reading and debugging code.

To avoid common coding errors that may prove difficult to debug, we also encourage

the use of a number of coding conventions and language tools. For example,

everything in the DG/UX kernel is declared specifically even when the C compiler

default might produce the correct result. Similarly, compiler built-in data types such

033-701083 Licensed materia}-—property of Data General Corporation 1 -7

The Structure of the DG/UX Kernel

as int and short are not used because the realization of the types can vary on different

machines. Instead kernel types are used that are defined in terms of the compiler

built-in types. These kernel types are defined in the kernel include files, c_generics.h

and os_generics.h. These files are found in /usr/src/uts/aviion/ext.

The use of lint type checking also helps flag type-mismatch errors early on in the

development process. Lint makes heuristic checks for unused variables, variables

that are set but not used, and variables that are used without being set. The checking

done by this tool is similar to that done using function prototypes as specified by

ANSI C and may be available on some compilers.

We will discuss the use of specific conventions throughout kernel-level

documentation. We strongly encourage you to adopt the indicated conventions

though in most cases they are not mandatory. Conventions should not be substituted

for good judgement.

Interfacing to the Kernel

You can add a driver to the DG/UX kernel either through the STREAMS interface

or through the Standard Device Driver interface. The details of each interface are

given in their respective manuals. This section gives an overview of the basic

structure of a kernel interface. The major components of an interface are:

e A set of routines — All drivers (and/or modules in the case of STREAMS)

consist of a set of routines each of which performs a particular I/O or support

operation. For example, the Standard Device Driver interface requires routines

for open, close, read, and write operations and the STREAMS interface requires

routines for open, close, read-put, read-service, write-put and write-service. To

write a driver you write an appropriate set of routines for your device.

e A data structure identifying the driver’s routines — The routines provide entry

points for requests to the driver but the requestors must be able to find these

entry points. Standard DG/UX drivers must supply a data structure, called a

routines vector, that contains the names of its routines. The main kernel code

invokes the driver by calling the appropriate routine in the driver’s routines

vector.

Note that the kernel must have a routine supplied for every possible driver

routine. However, in many cases you will be able to use a kernel-supplied

routine stub and sometimes a kernel-supplied default routine instead of writing

your own. Chapter 15 lists these routine stubs, called “nodevice” routine stubs.

STREAMS drivers (and modules) have a variation on the routines vector theme.

Access to STEAMS modules are achieved through a driver supplied data

structure called a streamtab as described by the STREAMS documentation.

STREAMS drivers can also supply several DG/UX routines including routines

for initialization and configuration. STREAMS drivers need a routines vector to

allow access to these routines. However, STREAMS modules/drivers have the

option of using a default kernel-supplied routines vector with default initialization

and configuration routines. You get the default routines vector by using an

option in the master file entry described in Chapter 2.

1-8 _ Licensed materiai—property of Data General Corporation 093-701083

The Structure of the DG/UX Kerne!

@ A configuration entry for the driver including an identifying mnemonic — Al]

drivers must have a unique 2- to &letter mnemonic by which they are identified.

For example, sd is the mnemonic for the DG/UX SCSI disk driver. The kernel

uses the driver mnemonic to locate your driver during initialization and

configuration. To let the kernel know your driver exists, you must create an

entry with this mnemonic (and possibly other driver data) in the master file

configuration file, as discussed in Chapter 2.

Figure 1-3 shows how the three interface elements tie to one another. In the

figure the driver mnemonic is Foo.

Foo Foo

Master File Driver’s Rtn. Vector Driver Routines

$-- + + + + 4

| Foo —------> | Open Routine Address --> | Open Routine |

| | + + + :
|Close Routine Address -->

$————— + +——. +

| . Routine Address -->
wie +

. ar a

|Close Routine |

Routine |

Figure 1-3 The Three Steps in Locating a Driver Routine

As explained in Chapter 2, the actual routing of control is a slightly more complicated

version of this basic picture.

Programming Implications of the Fully

Symmetric Environment

For the most part, you will not need to deal with the implementation of the fully

symmetric environment itself. However, a few of the basic concepts will help you

understand programming in a fully symmetric environment.

The kernel makes full symmetry transparent to kernel-level processes by running them

on abstractions of physical processors, called virtual processors (VP). By using a VP

abstraction, the hardware implementation (actual number of physical processors)

becomes irrelevant to the higher levels of the kernel. The actual physical processor is

called a job processor (JP).

A given configuration of the kernel will have a fixed number of VPs that is usually

greater than the number of physical processors but less than the number of processes

wanting to execute. A two-level scheduling scheme is used to balance between

processes, VPs, and JPs. The lower level of scheduling multiplexes VPs onto physical

processors so that the VPs appear to be active entities that execute code. This short-

term scheduling is performed by the dispatcher. A higher level of scheduling

multiplexes processes onto VPs so that the processes may execute. This higher

scheduling is performed by the medium-term scheduler (MTS) using the operations

defined on VPs. Figure 1-4 shows the general design.

0$3-701083 Licensed materia}—property of Data General Corporation 1 -9

Programming Implications of the Fully Symmetric Environment

Process

4

-

!

VP 1 VP 2 VP 3 ;
;
L

Figure 1-4 Overview of the Fully Symmetric Design

There are several general features of a fully symmetric environment that you must

keep in mind as you do kernel-level programming. The following list gives an

overview of the major features and their programming implications:

Many processes may be running concurrently on different processors. Do not

presume that, when your code has control, it is the only process running at

kernel-level. Another process might be running on another processor and both

this process and yours will have access to kernel data bases stored in common

memory. This means that locking issues are very important. Because another

process might seek access to a Critical data structures, kernel-level processes

must protect (lock) access to critical structures while they are modifying them.

You must lock critical sections of code or data and you can do so at a fine-

grained level. In order to maximize efficiency and because locking is so

important when processes run concurrently, the DG/UX kernel provides special

facilities to allow you to lock individual data structures. We discuss the lock

facilities and the routines you use to access them in Chapter 4.

Interrupt handling is spread over multiple processors. In the fully symmetric

environment, a device’s interrupts connect to all processors and the system picks

which processor handles an interrupt on the basis of availability. Which

processor handles a particular device’s interrupt may even vary from interrupt to

interrupt.

Because of this arrangement of interrupt handling, you can enable and disable

interrupts in two distinct ways: for a processor or for a device. Disabling a

1-10 | .. Licensed material—property of Data General Corporation . — -093-701083

Programming Implications of the Fully Symmetric Environment

device’s interrupts (masking its interrupt) prevents the device from interrupting

any processor. Disabling a processor’s interrupts prevents the processor from

receiving interrupts from any device. Note that disabling a processor’s interrupts

does not affect the device; the device can still interrupt and the interrupt service

routine can still run on another processor. A driver cannot disable processor

interrupts to prevent collision with its own interrupt service routine; both could

still access the same data structure at the same time. Similarly, note that

masking does not guarantee that an interrupt is not already in progress.

Because more than one processor can service an interrupt, it is possible for a

device to have two interrupt requests being serviced at the same time.

© Scheduling even at the kernel-level is fully pre-emptive. Fully pre-emptive

scheduling is necessary to fully utilize multiple processor power. Fully pre-

emptive scheduling means that the scheduler allocates process run-time through a

combination of priority and round robin time-slice usage. Essentially, your

process runs if no higher priority processes are waiting, and then the scheduler

lets it run for a specified period of time and then gives control to another process

at the same priority level.

Though fully pre-emptive scheduling is standard in many operating systems,

traditional UNIX kernels have been based on a simple, single-threaded control

principle at the kernel level. Such kernels allow only one process at a time to

run at kernel-level. This process could then assume that it would not lose control

and that it had exclusive access to all kernel-level data bases. Such

implementations are simple but very unresponsive to real-time interactions.

© The eventcounter facility allows you to define and await multiple events. Fine-

grained locks and an eventcounter facility which supports waits on multiple

process-defined events help many concurrently executing processes to coordinate

their activity without collision. The eventcounter facility is discussed in Chapter

5.

Fully symmetric multiprocessing means that some programming practices that worked

for the traditional UNIX kernels no longer hold. For example, we’ve mentioned that

in single-threaded UNIX kernels, a process could assume that it would not lose

control and that it had exclusive access to all kernel-level data bases. Similarly, in

uni-processor UNIX kernels, disabling interrupts would guarantee that the current

process has exclusive control (no interrupts) and exclusive access to all kernel-level

data bases does not work in the fully symmetric environment. These assumptions do

not hold on the DG/UX kernel.

General Hardware Concepts

This manual applies to drivers for all AViiON series machines that are running the

DG/UX operating system. The different AViiON machines will have many common

architectural features (for example, memory-mapped I/O) and some differences (for

example, types and organization of primary and secondary buses). To encourage

development of architecture-independent code, the DG/UX kernel was developed

around a general hardware model that helps define the basic terms and concepts

needed for drivers on all AViiON machines. The general hardware model has two

1-11
093-701083 Licensed materia—property of Data Genera! Corporation

General Hardware Concepts

basic peripheral levels: controller/adapters, and units (devices). Figure 1-5 shows

how peripherals are connected to processors and memory.

CPU CPU CPU

1 2 N

Cache Cache Cache

Shared

Global

Memory

Controller Controller Adapter

0 Cluster 0

Cluster 1OOOO
Un ~)

Figure 1-5 A General Hardware Model

Controllers and adapters — Controllers/adapters act as intermediate interfaces

between the system’s primary I/O bus and one or more I/O devices or units.

Within this general class, the term adapter refers to an V/O intermediary that manages

an independent secondary bus. An adapter bridges between the primary system bus

and the secondary bus and serves as a conduit between the CPU and devices attached

to the secondary bus. An SCSI adapter supporting an SCSI bus with SCSI devices is

093-7010831-12 ' Licensed material—property of Data General Corporation” =

Genera! Hardware Concepts

an example of an adapter.

The term controller refers to an I/O intermediary that directly manages several lower

level peripherals (usually all of the same type) without an independent secondary bus.

A line controller supporting several asynchronous I/O lines is an example of a

controller.

Only controllers and adapters can directly interrupt the system. A controller or

adapter interrupt may be handled by any processor. A combination of hardware and

kernel software determines which processor will receive a given interrupt. Drivers do

not know which processor will be chosen and the assignment may change from

interrupt to interrupt.

All processors have equal access to any controller or adapter to read status, to start

I/O operations, or otherwise manipulate its state. Drivers do not know which

processor will be accessing the controller/adapter and the processor may change from

access to access.

Units (devices) — The term unit or device refers to a lower level peripheral attached

to either a controller or adapter. Units do not interrupt the CPU directly.

For the most part, a controller’s devices are simply considered to be sub-units of the

controller. On the other hand, an adapter’s devices have a degree of independence

from the adapter because they are off a secondary independent bus.

Memory-Mapped I/O — On AViiON machines, drivers access their devices via

memory-mapped I/O. This means you will read and write to specific areas of physical

address space that are dedicated to your device. With memory-mapped I/O, assembly

language programming becomes unnecessary because you can access your device using

simple memory reference instructions.

For most devices, you set the device’s memory-mapped I/O address by setting

jumpers on the device itself. For devices it supplies, Data General pre-assigns and

jumpers the memory-mapped I/O addresses to standard default addresses. However,

if you add a non-standard device or a second instance of a standard device, you will

have to jumper the I/O address on your hardware. More importantly, you will have

to choose an address that is not already used by another device. Appendix A shows

conventions and restrictions for choosing a memory-mapped I/O address. Appendix

A also lists standard devices and their default addresses.

Direct Memory Access (DMA) — In memory-mapped I/O, 2 CPU accesses physical

address space for the driver. In DMA, the controller transfers data between itself

and main memory. Such transfers are based on physical main memory addresses and

are cache coherent (that is, proper results are assured without performing any special

operations on the cache memory). Controllers will typically have to perform

scatter/gather addressing because a transfer may cross logical page boundaries and

hence be in non-contiguous physical pages.

093-701083 Licensed material—property of Data General Corporation 1 -1 3

General Hardware Concepts

Keeping Interrupt Handling Machine Independent

Traditionally, a machine’s interrupt structure is a major cause of machine-

dependencies in device drivers. If your driver masks an interrupt using an interrupt

identifier that is particular to one machine, you will have to modify code to run on

different machines. The micro-code subsystem (nc) helps make drivers machine

independent by doing most interrupt manipulations itself. The driver code calls

micro-code routines to manipulate interrupts passing parameters that allow those

routines to determine what interrupt is being addressed. To understand how the

micro-code. subsystem works, let us first look at examples of how machine differences

affect interrupt determination in two AViiON machines.

Adapter, Controller, and Device Layouts on Different

Machines

The definitions of adapter, controller, and device apply across AViiON machines.

However, the layout of the different levels of peripheral will vary between machines.

The type of bus by which a peripheral is attached is particularly important because it

is the bus architecture that determines how interrupt identifiers are encoded and how

interrupts are handled. For example, Figure 1-6 and Figure 1-7 show adapters,

controllers and devices on the AViiON 5000 series systems and the AVION 300

series stations, respectively.

VME

Bus

Internal VME ESD! Disk

Bus Controller

(ESDI Disk)

ESD! Disk

SCSI Bus

CPU

SCSI Disk

SCSI

Adapter

SCSI Tape

SCSI ’foo’

System Board

Figure 1-6 Diagram of the AViiION System I/O Architecture

1 -1 4 Licensed materialk—property of Data Generai Corporation C93-701 083:

General Hardware Concepts

internal

Bus

SCSI Bus

SCSI Disk

SCSI

CPU Adapter

SCSI Tape

SCSI ’foo’

System Board

Figure 1-7 Diagram of the AVION Station I/O Architecture

Note that while both machines support SCSI adapters, the SCSI adapter attaches to

an integrated bus on the the AViiON 300 station and to an external VMEbus on the

AViiON 5000 machine. Peripherals on an integrated bus have a fixed interrupt

identifier while a peripheral’s interrupts on a VMEbus is defined by its interrupt

vector (see Chapter 8). Thus, an SCSI adapter on these two different machines

would have two different interrupt identifiers.

identifying Interrupts

The kernel helps drivers avoid machine-specific code by providing interrupt handling

routines that manipulate (particularly mask and unmask) interrupts. Chapter &
describes these routines. You specify the interrupt to be addressed via two

parameters. One parameter gives the class of interrupts and the other gives a unique

device identifier within that class. The interrupt class and device code parameters are

defined as follows:

e@ Interrupt (or Device) Class

The interrupt’s class is defined by the bus on which the device is located. If the

device is attached to a Data General proprietary bus integrated on the system

board or a bus expansion slot off the system board, it belongs to the Integrated

class of device interrupts. If it is attached to any bus other than these, the

device class is defined by the particular bus. For example, the AViiON 5000

series systems support an external VME bus. All devices on this VME bus would

belong to the VMEbus class of device interrupts. The kernel supplies an

enumeration type that defines device class literals. Use these literals to specify

your device’s interrupt class. Chapter 8 discusses device class enumeration types.

093-701083 Licensed materiai—property of Data General Corporation 1 -1 5

General Hardware Concepts

NOTE: A device’s class is defined by the bus to which it is attached. Thus, if a

device is attached to a secondary bus serviced by an adapter, it is the

adapter’s bus that will define the device’s class. For example, SCSI
devices (those on an SCSI bus) are serviced by an SCSI adapter. On an

AViiON 5000 series system, the SCSI adapter will be attached to a VME

bus. Because only the adapter interrupts the CPU, the device class for the

SCSI devices and the SCSI adapter is VMEbus.

@ Device Identifiers (or Device Codes)

Unique device identifiers within a device class are called device codes. Device

code definitions vary with the device class.

For devices in the Integrated class, the kernel supplies a set of literals for all

possible types of devices found in the Integrated class. For example, you use the

literal UC_DUART_DEVICE_CODE to identify any integrated duart device.

Chapter 8 describes the device code literals for the Integrated class of devices.

For other device classes, the device code is generally defined by a unique

identifier jumpered on the board or set by the software. For example, on the

AViiON 5000 series machines, controllers on the VME bus are jumpered to a

particular vector number. The bus passes this vector number to the CPU and,

when the device interrupts, it appears in the Interrupt Acknowledge register as

the device identifier. Chapter 8 describes conventions for the VMEbus class

device codes and Appendix A lists the standard VME interrupt vectors used on

the DG/UX system.

Note that your driver will be specific to a particular device class (for example,

integrated or VMEbus). Thus, you will need different drivers for SCSI adapters

in the integrated class (as on AViiON stations) and for SCSI adapters in the

VMEbus class (as on AViiON systems). Drivers’ dependency on device class

results from the fact that device codes are interpreted differently in the different

device interrupt classes.

End of Chapter

1 -1 6 . Licensed material—property of Data Genera! Corporation ws 093-701083

Chapter 2

How Information and Control

Gets Passed Between Levels

This section describes a number of elements of kernel-level programming that relate

to how needed information gets passed between levels.

Kernel-leve] code is written to serve user-level code. For portability reasons, user-

level code needs a clean unchanging interface into the kernel. The system calls

provide this clean interface. When a user wants to invoke a kernel function, it does

so by calling the appropriate system call with arguments containing the necessary

information.

This is the simple story of how information and control gets from the user-level to the

kernel-level but it is not complete. There are three major additional aspects to the

story:

1. How the kernel gets the background information that it needs to handle the

request. For example, if the user is making an I/O request, the main kernel

code must figure out what device driver should handle the request. And, once it

gets control, the device driver must know various background facts about the

device (like its hardware address and whether the operation is character or block

V/O) to handle the request correctly. This information is not passed as part of

the system call because the user-level code does not and should not have to know

about such things.

There are two primary tasks that must be done for the kernel to get the necessary

driver/device background information: 1) preparing background device and

driver information prior to run-time; and 2) registering necessary device and

driver information with the kernel at run-time.

Preparing background device information is a configuration task done by a system

administrator prior to system initialization. It involves making sure that two files

(master file and system file) accurately describe the system’s devices (for

example, how many and what types) and its drivers (names and types).

Registering the necessary device and driver information with the kernel at run-

time is done by the driver during system initialization. It involves storing various

critical pieces of driver and device information in the appropriate kernel and

filesystem data structures.

How control is passed around within the kernel. If the driver code can complete

the operation immediately, kernel control simply goes from main-kernel to driver

and back. This is called a synchronous operation; it is continous. However, if
the operation cannot be completed immediately, the driver process must start the

093-701083 Licensed material—property of Data General Corporation 2-1

How Information and Control Gets Passed Between Levels

operation, suspend awaiting some event (usually an interrupt), and then continue

operation. In asynchronous operations, control is usually passed between various

processes before it is completed.

The DG/UX system provides two daemons, the Driver and Generic Daemon, to

help complete processing of an asynchronous requests after it is resumed.

Asynchronous I/O requests generally require the use of an interrupt service

routine and in a symmetric multiprocessing environment the interrupt service

routine is only allowed to perform minimal operations. Driver Daemons and

Generic Daemons provide an appropriate way to continue processing outside the

service routine’s restricted environment. Chapter 13 discusses the Driver and

Generic Daemons and the routines used to access them.

Eventcounters are the main way control is passed between kernel-level processes.

Eventcounters allow you to define and await your own "events". An eventcounter

is a counter set to be incremented whenever a particular condition of interrest

happens (say an interrupt). You can define an “event” by associating an

eventcounter with a variable which contains a critical value. When the

eventcounter reaches the critical value, the kernel awakens all processes waiting

on the event. Chapter 5 describes eventcounters and the routines used to

manipulate them.

How the kernel-level code reports back detailed error and status information.

When the system call returns, it gives user-level code a completion status that

roughly describes any errors. The driver frequently has more information about

the error than it can return in a generic completion status which is defined on a

system-wide basis. Also, it is often the system administrator, not the user-level

program, who is interested in detailed status information. Thus, the DG/UX

kernel allows drivers to log detailed error messages to a system error logging

facility that both system administrators and user-level code can access.

ud

The rest of this chapter is devoted to discussing these three areas.

Setting-Up Background Information

In order to handle a user request, the kernel needs information about the device so

that it can invoke the appropriate driver and so the driver can access the device

properly. But, most users will not know the detailed information about their device,

nor should they have to. How does one handle these competing needs so that the

user gets hooked up with the right driver and the right device without having to do too

much work? The answer includes: system file entries, master file entries,

configuration routines, device special files, and various kinds of device or driver

identification parameters such as device codes. We will start our explanation of how

the kernel gets from the user to the driver to the device with the user side of things

which means looking at device special files.

2-2 Licensed material—property of Data General Corporation . Do 083-701083

Setting-Up Background Information

How the Kernel Gets From the User to the Device:

Device Special Files

The user-code view of a device starts with that device’s special file. A device special

file (also called a node) is a special descriptor file that contains information that the

kernel needs to get to the driver and that the driver needs to identify the specific

device. When a user-level program wants to access a device, it performs an open

using a device special file as a parameter. The kernel uses information stored in the

special file to find and call the driver’s open routine. The kernel then returns a file

descriptor that the user-level program will use in all its remaining device requests.

For example, a disk has a special file called node_name. To open the device and get

a file descriptor, the user program issues the following DG/UX system call from a C

program:

int fd;

fd = open ("/dev/dsk/node_name", O_RDWR)

The kernel passes the request to the disk driver’s open routine and returns a file

descriptor in fd. The user will now use fd to access the specific device. For example,

read (fd, Buffer, 20);

causes the kernel to read from the device identified by the special file node_name. Fd

points to this file, and 20 is the number of bytes to be read into the memory area

denoted by the Buffer variable.

The device’s special file contains information that kernel-level code needs to complete

the user’s request. The information it contains is:

e Type of I/O interface (Block or Character) — When control comes into the fs

subsystem, it passes contro! to its lower levels based on whether the device is to

be treated as block or character I/O. This information is then used both in

finding the right driver and in telling the driver what type of I/O to perform.

@ The major number — The major number is used as an index into the kernel’s

device driver tables and thus allows the kernel to find the appropriate driver.

Hence, device special files with the same major number are all serviced by the

same driver.

© The minor number — The minor number identifies a a specific unit of the family

of devices being addressed. The driver uses the minor number to keep track of

requests for particular devices.

Users can create special files with re scripts and with the mknod(1) command.

However, most device special files are created by the various device drivers at

configuration time. Of course, to create special files for its devices, the driver must

have information about what devices are on the system. Setting up this information is

part of the pre-initialization setup task.

093-701083 Licensed material—property of Data Genera! Corporation 2-3

Setting-Up Background Information

Getting Set Up Before and During System Initialization

As part of setting up the system prior to initialization, the system administrator must

create: 1) an entry for the driver in a file called the master file; and 2) entries for
each specific device in a file called the system file. Master file entries contain driver

information that kernel initialization code needs and system file entries contain device

information drivers need to build special files. The DG/UX master file already

contains entries for Data General-supplied drivers. Appendix B describes how to

create master file and system file entries.

At boot time, the system’s initialization code assigns a major number for each driver

listed in the master file. After initialization, most kernel operations will use the

major number, not the device mnemonic, to identify the driver. During initialization,

the main kernel initialization code will also call each driver’s initialization routine.

Initialization routines are generally used to initialize data areas and hardware that

must be prepared prior to configuring a specific device.

After passing through the master file, the main kernel code begins the configuration

process by passing through all the entries in the system file. It will call the driver’s

configuration routine for each entry. The configuration routine should perform all

operations needed for the specific device to be opened. This usually includes: 1)

creating a special file for this specific device; and 2) registering information about this

specific device with the kernel.

The driver’s configuration routine now has all of the information it needs to create a

special file for the device. The main kernel code assigns a major number and passes

it to the driver’s configuration routine as a parameter. Drivers use minor numbers for

their own internal bookkeeping. Thus, the driver can create and use the minor

numbers for its devices in any way it wishes. The system file entry indicates whether

the device is character or block /O.

All the information that goes into the special file is available at configuration time.

To create a special file however, the driver’s configuration routine will have to name

the special file. Special files are named using the device’s device specification, a

unique system identifier for the device. You use the device specification to name the

special file, and thereafter the kernel will use this name string as a device

identification parameter. The next section describes device specifications.

Special files are stored in the /dev directory, usually in sub-directories that hold

special files for the same types of device. For example, the disk special file called

node_name is located in /dev/dsk.

Identifying a Device: Device Specifications

All devices (controllers, adapters, and devices/units off controllers and adapters)

must have a unique software descriptor called a device specification. While you may

define aliases, generally the actual name of a device’s special file is its device

specification. (Appendix B of Installing the DG/UXTM System discusses device

specifications in more detail).

2-4 _. Licensed materiai—property of Data General Corporation ; 093-701083

Setting-Up Background Information

The kernel passes device specification strings to a driver for interpretation. Drivers

supply a name-to-device routine that the kernel can call whenever it needs a device

specification parsed. (This is one of the routines supplied in the default routines

vector for STREAMS drivers.) You could write your driver’s name-to-device routine

to use a device specification syntax different from that used by drivers supplied with

the DG/UX system. However, for intelligibility and to avoid collision, you should

implement your device specification like DG/UX drivers which use the following

device specification syntax:

device mnemonic [@device_code] ([parameters])

where:

device mnemonic is the two- to eight-letter mnemonic used to identify the

device driver in its master file entry. Appendix A shows the device mnemonics

for device and adapter drivers supplied by Data General.

device code is a device identifier that uniquely identifies a physical device

within its interrupt class. For devices with device codes, you enter the device

code as a hexadecimal number preceded by an @ (at) sign (for example, @18).

Device codes are defined within each specific device class. However, only

devices that directly interrupt the host have device codes. Devices that do not

have device codes (such as pseudo-devices or SCSI devices off SCSI adapters)

must omit the device code field in their device specification.

parameters are values that provide additional information to the driver. The

parameters for the device specification depend on the type of device and whether

the device is a controller, adapter, or device (unit).

Controller and Adapter Parameters

The device specification for an adapter consists of the adapter’s name, its device

code, and a single parameter identifying which adapter is being addressed. The

device specification for a controller consists of the controller’s name, its device code,

a parameter identifying which controller is being addressed, and a second parameter

specifying which device off the controller is addressed (for example, unit #1 off the

controller).

For both controllers and adapters, the first parameter indicates which controller or

adapter is being addressed. For drivers supplied with the DG/UX system, you can

identify which controller or adapter is being addressed in either of two ways:

@ You can specify the controller or adapter by giving its base memory-mapped I/O

address. For example, the first cied adapter would be cied(fiffef00). The cied

mnemonic stands for Ciprico ESDI disk. Appendix A lists the base addresses

for drivers supplied with the DG/UX system.

@ Ifthe controller or adapter is located at one of the standard base addresses for a

device of its type, you can omit the address and just use the number for the

controller/adapter at that address (see Appendix A). For example, you can use

cied(0) and cied(1) to specify the first and second cied controllers. If you omit

the first parameter, the driver should assume a value of zero. Drivers supplied

0$3-701083 Licensed materiai—-property of Data General Corporation 2-5

Setting-Up Background information

with the DG/UX system can deduce the base address from this information.

NOTE: You cannot use this form if you are addressing a controller or adapter

whose base address is not a default.

SCSI Device Parameters

For SCSI devices, the first parameter indicates on which adapter the device is

located. You identify the adapter with its device specification as just described. For

example, the device specification for the SCSI disk off the AViiON station integrated

SCSI adapter would be sd(insc(0),2).

The second parameter is the device’s SCSI ID. The SCSI ID is a bus identifier

jumpered on the device. A device’s SCSI ID must be unique on its adapter but not

across adapters. (Appendix B of Installing the DG/UXTM System lists the default SCSI

IDs for standard devices on the DG/UX system.)

The device specification has a third parameter that you can use to specify a unit

number if the SCSI device is a controller with multiple units.

NOTE: In device specification, device codes and base addresses are interpreted as

hexadecimal numbers. You must nor precede them with "Ox" as is

conventional in C language programming.

NOTE: In all cases, an omitted parameter is treated as if it were zero.

The following are valid device specifications:

ciedQ cied disk controller with all parameters assuming their default

values.

cied(0,1) Drive 1 on cied disk controller 0.

cied@77 (fif1f500,0) Drive 0 on the cied disk controller at the non-standard base

address Oxfffff500, with the non-standard device code 0x77.

sd(cisc(1),2) The SCSI disk at SCSI ID 2, reachable through SCSI adapter 1.

st(inse(0),2) The SCSI tape at SCSI ID 2, reachable through integrated SCSI
adapter.

sd(cisc@77 (££8f500),2)
Disk drive 2 on the cise SCSI adapter at the non-standard base

address Oxfffff500, with the non-standard device code 0x77.

Registering Device Information

The final stage in preparing a device to be opened is registering device specific
information with the kernel. The driver is responsible for tracking the progress of

operations on its devices and must do its own bookkeeping. However, the main

2-6 Licensed material—property of Data General Corporation 093-701083 |

Setting-Up Background Information

kernel code does require the driver to register device specific information in the

system’s device information table (DIT).

To register information, your driver’s configuration routine calls the kernel’s

io_register_device_info routine giving a pointer to a data structure as one of the

parameters. The layout of the data structure, called a device information structure, is

largely up to the driver. However, if the device receives interrupts, the first field of

this structure must be a pointer to your interrupt service routine. Registering

interrupt handlers is the main reason for registering device specific information.

Once the device information structure is registered, the kernel passes a pointer to it

as a parameter when it calls the driver’s interrupt service routine. In this way, both

the driver and the main kernel code have access to basic information about a specific

device.

Reporting Errors

Drivers can choose between two major error-reporting destinations: 1) the user-level
calling process; and 2) the system error logging facility. Error reporting facilities are

described in more detail in Chapter 13. This section provides a brief overview of the

facilities.

Drivers do not need to perform any special operation to report statuses back to the

user-level process. The kernel passes return values from the driver routine to the

user as a completion status. Because users receive return values as statuses, we

strongly recommend vou encode your driver’s unique return values according to

standard encoding procedures. Users can decode standardly encoded statuses using

the dg_ext_errno system call.

If the driver encounters a significant error during its processing (a device failure, for

example), it may want to flag this condition to the system administrator. To send an

error to the system error-logging facility, the driver must use the services of the

system error daemon, syslogd, and the pseudodevice, err(7). Err receives and stores

errors from kernel-level processes. Syslogd receives and stores errors from all

processes connected to the system, remote or local, user- or kernel-level. Syslogd

periodically retrieves and processes the errors stored in err.

How syslogd processes errors is determined by its configuration file,

/etc/syslog.conf. For example, syslog.conf may specify that the logged errors are to

be printed out to the system console or written to a disk file or other device. See

logger(1), syslog(3), syslog.conf(5), and syslogd(8) for more information on the

system error daemon and how to configure error processing.

The err pseudo-device receives and stores errors from drivers on an internal error

queue. Your driver can store error messages on this queue using the kernel-supplied

routine, io_err_log_error (see Chapter 13).

End of Chapter

093-701083 Licensed material—property of Data Genera! Corporation 2-7

Chapter 3

Ground Rules of Kernel-level

Programming

This chapter discusses a number of facets of kernel-level programming including

memory types and allocation, handling interrupts, and using signals. It also provides

some general guidelines for writing device drivers.

Driver as Part of the Kernel

The most important fact about a driver is that it is part of the kernel. This means a

driver has access to all of system memory and to all devices. Kernel code is

protected from write access (note that this protection means a driver cannot use self-

modifying code), but no other protection is provided against a driver writing to kernel

databases and/or otherwise destroying the kerne] internals.

Because of its special status as part of the kernel, a device driver may not use the

standard C libraries or DG/UX system calls (described in Chapters 2 and 3 of the

Programmer’s Reference for the DG/UXTM System, Volume 1).

Device driver code may be executed as part of the calling user process, part of the

kernel-level system ca!! process or as part of another kernel process such as the

Driver or Generic Daemon processes. Driver code executes on the kernel stack of

the running process. The kernel stack is of fixed size, so driver code must not nest

calls too deeply. A system panic results if a process’s kernel stack overflows. Panic

codes are listed in a file in /usr/release; your DG/UX system Release Notice

discusses this file.

Elements of Memory Layout and Allocation

This section describes memory concepts, layout, and operation on the DG/UX

system. The most basic breakdown of memory is between logical and physical

addresses:

Physical address space — The size of physical address space is determined by the

number of bits you have to specify an address. AViiON machines have 32-bit words

and thus a 4GByte physical address space.

Physical memory — The size of physical memory is based on the size of machine’s

physical memory. For example, on an AViiON 300 that has 16 Mbytes of physical

memory, the physical space would be from 0 through 16 Mbytes.

093-701083 Licensed material—property of Data General Corporation 3-1

Elements of Memory Layout and Allocation

Control Space or Memory-mapped I/O Areas — The control space, starting at

address Oxffc00000 to the end of memory, contains the memory-mapped hardware

registers and buffer areas. This is where most drivers access their devices. Memory-

mapped hardware registers and buffer areas are not part of regular physical memory

though they are addressed like memory locations.

Physical addresses — Physical addresses refer to unmapped, absolute physical

addresses that identify either physical memory locations and/or hardware registers

found in control space. For example, as Figure 3-1 shows, on an AViiON 300 there

are valid physical addresses for the 16 Mbytes of physical memory and for the control

or memory-mapped space.

Logical addresses — Logical addresses are the virtual addresses with which your

program operates. Logical addresses must be associated with a physical address when

they are used. They span the logical address space which is 4 gigabytes on AVION

machines.

Mapping Logical Addresses to Physical Addresses —- The hardware registers for

your device are located at a specific physical memory address. Yet, when you read

and write to memory, you are always addressing logical address space. To map

(associate) a logical address to a specific physical address, use the kernel-supplied

map and unmap routines described in Chapter 9. You will not need to map your

device’s registers if your hardware’s I/O area falls in the control area because the

control area is mapped to corresponding physical addresses by the kernel initialization

code.

Using the Volatile Compiler Directive — When you read a memory-mapped location,

you want to know that the value present represents the current state of the hardware.

For the sake of speed, optimizing compilers minimize the number of accesses to

memory. Thus, a memory access is not necessarily made every time a program

addresses a variable. You must use the volatile compiler directive for variables

assigned to memory-mapped location to ensure that the value is current. The volatile

directive tells the compiler that the variable should be updated before every access.

The volatile directive is part of type specification in typedef and variable declarations.

For example:

typedef volatile unsigned log hdw_reg_type

typedef volatile struct

{ int a;

int b;

} ab_vol_type

volatile int j;

volatile enum {mon, tue, wed, thu, fri} weekdays;

- Note that casts can cancel the effect of volatile. See your compiler’s documentation

for more information on volatile.

The system maps logical address spaces in and out of physical memory which results

in several additional concepts:

Page — A page refers to an area of 4096 bytes of memory. Generally this is

considered to be a piece of logical address space.

3-2 _» Lieensed material—pmperty of Data General Corporation 093-701083

Elements of Memory Layout and Allocation

Page frame — A page frame is the physical area on which a page is loaded or

mapped; a page frame has a physical address.

Unwired memory — Unwired memory is memory that can be paged out to disk. A

page fault must occur before the memory can be accessed after it has been paged out

to disk.

Wired memory — Wired memory is memory that cannot be paged out to disk (see

wired page). Wired memory is critical for certain kinds of data and text. For

example, any kind of data required to service a page fault must be in memory when a

page fault occurs. When you link your code into the kernel image, the text and static

data goes into wired memory by default.

Wired page — A wired page is a page that is bound to a page frame. Wired pages

cannot be paged out to disk until they are unwired.

In addition to addresses, memory has address spaces that enforce the separation of

User and Kernel levels with the following result:

User address space — User address space refers to memory accessible to the owning

user process. The kernel can also access this memory, but in general, other user

processes cannot.

Kernel address space — Kernel address space requires Supervisory Access Privileges

to access. It is accessible to the kernel and not, as a rule, to user processes.

Figure 3-1 shows the net result of all of these addresses and address spaces:

0 4GBytes

User Logical | |

Address Space | |

0 4GBytes

Kernel Logical |

Address Space |

0 L6MBytes 4GBytes

Physical | |<-- no memory ——>| |

Address Space |Physical | invalid [Control |
Main Memory Space

Figure 3-1 User, Kernel, and Physical Address Space

Note that in all cases the address space range is 4 Gigabytes which is the range

covered by a 32-bit address. Note also the separation of main system physical

memory located at the lower range of the address space and control space which is

located at the upper end of the address space.

093-701083 Licensec material—property of Data General Corporation 3-3

Elements of Memory Layout and Allocation

Basics of the Multiprocessor Address Space

On AViiON machines, all Job Processors (JPs) use the same physical memory. This

physical memory includes a kernel address space and multiple user address spaces.

Job Processors (JPs) have pointers to these address spaces. Figure 3-2 shows the

major elements of the multiprocessor address space.

Kernel Address Space

User Address Spaces

Space
LikhhhhhideWN
g3

WL
4 Gbytes

Figure 3-2 DG/UX 4.30 Address Spaces

As shown, each JP has two pointers, one pointer to the kernel address space and one

to a user address space. On a multiprocessor system, all JPs point to the same kernel

address space, but each JP points to a different user address space.

As shown, the kernel address space has five major areas: wired space, dynamic

logical space, kernel stack, per-process area, and control space. We've already

described the control space. The rest of the areas are:

Wired Space — The wired area shown in the figure contains the main body of kernel

text and static data that remains resident in the lower part of physical memory. Your

driver’s text and static data are included in this area so that they can be accessed

from interrupt handlers.

3-4 Licensed material—property of Data General Corporation 093-701083

Elements of Memory Layout and Allocation

Dynamic Logical Space — The dynamic logical space holds any unwired kernel text

or data. Most importantly for drivers, this space also contains a general kernel

memory pool.

Memory Pool: The memory pool contains memory from which you can dynamically

allocate either wired or unwired data. You use kernel-supplied utilities (for example,

vm_get_wired_memory) to get and release such memory. Chapter 9 describes the

routines used to allocate and deallocate memory.

Kernel Stack — A user process has its own stack in its user space for system calls

that do not enter the kernel and a kernel stack for calls within the kernel code.

Although all user processes use the same kernel code, every user process has its own

kernel stack. The kernel stack has a unique physical page for every user process, but

the kernel stack is mapped at the same logical kernel address.

Per-process Information — Per-process data is similar to the “u-area” in traditional

UNIX kernels. It holds state information for a specific process. Per-processor (or

per-JP) data is like per-process data except for a processor.

In order to reduce implementation dependence, DG/UX per-process data is organized

differently from the traditional UNIX kernel. In the traditional UNIX kernel all u-

areas were declared in one global process table. Consequently, if anything changed in

any individual u-area, the entire kernel had to be rebuilt. The DG/UX kernel

separates procedure tables by subsystem. Each per-process area (u-field) is declared

as an independent per-process variable in the subsystem that owns the field. Per-

process variables are put in a special linker section, and are collected together at link

time. Thus, the DG/UX equivalent of the System V u-area is built at kernel link time

instead of at compile time. When you integrate your driver code you will not have to

re-compile the entire kernel. Figure 3-3 shows the traditional versus DG/UX

implementation of process (proc tables).

0$3-701083 Licensed materiai—propesty of Data Genera! Corporation 3-5

N-1

Elements of Memory Layout and Allocation

Old proc table

<> — = a en oF ae ae aw aw ay

a ey ee ee

a Ph a oh ae ae oe ee ee oe on

DG/UX distributed process table

0 tty_ptr

1 tty_pir

a pid od

poe uid ___ |

gid

— pid ___ i

be a a uid N-1 tty_ptr

gid

Owned by

Terminal Services

Subsystem

0 e_tbl_ptr

pe pid | 1 oe _rbl_ptr

— uid.

gid

Owned by

Process Manager

Subsystem

N-1 pg_tbl_ptr

Owned by

Virtual Memory

Subsystem

Figure 3-3 Traditional and DG/UX Proc Tables

By convention variables in the per-process area are “my” variables and are named

subsystem_my._---, for example, sc_my_process_index. You get the information

traditionally found in u-areas by calling kernel-supplied routines that return this

information (for example, see Chapter 7 for pm_get_my_pid). By using routine calls

to get this information, your code becomes independent of the way in which that

information is stored which in turn leaves the implementation freer to change.

3-6 Licensed material—property of Data General Corporation 0$3-701083

Elements of Memory Layout and Allocation

Because per-process data is only mapped to physical memory when the process is

active, it is not available when the process is not running. Some kernel-supplied

routines supply per-process information as return values. If a parameter is per-

process, you will only be able to reference it when the you are in the calling process.

You will not be able to pass such parameters to the Generic or Driver Daemons or to

interrupt level because these levels do not operate in the calling process’ context.

Handling Interrupts

If your device generates hardware interrupts, your driver must supply an interrupt

service routine (interrupt handler) to service those interrupts. When an interrupt

occurs, the kernel will read the Interrupt Status register (IST) and pass control to the

driver’s interrupt service routine as registered in the DIT (see Chapter 2). Once it

receives control, the interrupt service routine must clear the interrupt if reading the

IST did not clear it. For VME devices, reading the Interrupt Acknowledge register

acknowledges the interrupt, and on many devices (Release-on-acknowledge devices)

this action also clears the interrupt. However, some devices require additional action

to clear the interrupt. Consult the documentation for your device to see when and

how your device stops asserting interrupts.

The interrupt service routine must operate in a severely restricted environment. The

interrupt service routine will run with all interrupts disabled on the current processor

(interrupts on other processors are not affected). It is expected to quickly determine

what action to take (usually advancing one or more eventcounters) and then dismiss

the interrupt. It must not pend or page fault. To avoid page faults, the service

routine should not reference unwired memory. It should also avoid calls to routines

that might pend or page fault. Each kernel routine described in Chapters 4 -16

indicates whether or not it might pend or page fault.

Interrupts do not nest in the DG/UX system, so each interrupt handler must quickly

finish its job and return to base level. Furthermore, interrupts are handled on the

kernel stack of the currently running process; no separate interrupt stack is used.

Therefore, the interrupt service routine must limit the amount of stack space used by

it and any procedure it calls.

Clearing the interrupt frees the device to issue another interrupt. Because another

interrupt may be serviced by another processor, it may be handled before the first

interrupt service routine has completed.

Most device driver code executes with interrupts enabled. The driver should not

manipulate the state of the interrupt enable register unless absolutely necessary. If

the driver must change the interrupt state, it should use the kernel’s interrupt enable

and disable routines (described in Chapter 8).

093-701083 Licensed material—property of Data General Corporation 3-7

Using Signals

Using Signals

Before a device driver waits for an indefinite amount of time for an I/O operation to

complete (such as on a read of a user keyboard), it must prepare to receive a signal

by calling the appropriate kernel functions. If a signal should occur, the driver must

abort the operation and return an appropriate status.

For devices that do not normally require user intervention for an I/O operation to

complete (such as a disk), signals do not have to be handled while waiting for the

device to respond. The device must, however, be timed out if it fails to respond

within a few seconds so that the calling process will not become hung indefinitely if

the device should lose power or otherwise fail.

Higher levels of the system are responsible for providing reasonable response to

signals. These higher levels may break large user requests into smaller, driver-level

requests so that signals are not ignored for too long a time. For example, if a user

requests that 100 Mbytes be written to the disk, the driver may see only a succession

of 256 Kbyte requests. A device driver need not be concerned about the size of a

user’s request as long as it is making progress on the request and is not depending

upon some indefinite external event for continued progress.

How the DG/UX Kernel Shares Data

Information hiding is one of the guiding principles in the DG/UX kernel. By

convention, all data in the kernel is private to the subsystem of which it a part.

Instead of exporting a data item, a subsystem exports procedures that define the

allowed set of operations on the data item. Every item “owned” by a subsystem

effectively eliminates global data from the kernel.

Having clear ownership of all data is extremely important in achieving multiprocessor

operation. In a multiprocessor kernel, data structures must be locked before being

accessed in order to ensure that the contents are consistent. Ownership restricts

access to the few owning functions so that the lock and unlock operations can be

clearly and consistently applied. It also allows for the use of finer-grained locks and

the briefer use of locks than in global data kernels.

Setting Up Your Driver’s Interface

For drivers, the routines vector mentioned in Chapter 1 constitutes the primary

exported interface. For standard DG/UX drivers, the routines vector should be

named cfy_xxx_routines_vector where xzzx is the driver’s master-file mnemonic. The

STREAMS driver’s streamtab structure functions as the major exported interface and

should be named xxxinfo. STREAMS driver’s may also supply a routines vector for

initialization and configuration routines. For STREAMS drivers, you set whether or

not you will supply a routines vector (versus using the default system vector) in your

master file entry described in Appendix B.

3-8 Licensed materia-—property of Data General Corporation 093-701083

Setting Up Your Driver's Interface

To further support modularity we recommend you use the following groupings as well:

a driver header file, a global data file, and a C code file. The header file holds the

drivers constants and data structure definitions and is named dev_ua_def.h. The

global data file holds the driver’s statically allocated global data including the routines

vector. The global data file should be named dev_xxx_global_data.c. The C code

file contains the C code text and local data. A standard driver’s C code file should

be named def_xxx_driver.c and a STREAMS driver’s C code file should be named

sim_xxx_driver.c.

Building Your Driver Into the Kernel

Code that is imported into the kernel from outside Data General is defined as user

text and user data. This user text and data is not built with the same procedures used

on internal kernel code which generates specific text sections. Your compiled and

assembled code will produce an .o file with three sections called .text, data, and

-bss. The .text section is your code; .data is initialized data; and the .bss section

contains uninitialized variables.

The procedures for building a new kernel and checking your driver’s configuration are

described in Appendix C.

End of Chapter

0$83-701083 Licensed materiai—property of Data Genera! Corporation 3-9

Chapter 4

Lock Management Routines

This chapter describes all DG/UX kernel routines used in implementing locks on

critical sections of data. We start with a brief introduction to locks and the locking

routines. Following the introduction is a "Constants and Data Structures” section,

which lists some of the major constants and data structures used by routines in this

section. Check the appropriate include files (for example, check i_tm.h for structures

beginning with the lm acronym) for a complete and current list of all constants and

structures.

Overview to Using Locks on the DG/UX

System

The kernel lock facilities are used to protect critical sections of code. If more than

one process is executing the same code and/or accessing the same data at the same

time, the data may become corrupted. The lock facilities guarantee exclusive access

to the code or data covered by the lock while the lock-holder is executing in that

region.

Most operating systems use locking facilities. However, locking is particularly

important in the DG/UX kernel. Unlike traditional UNIX kernels, the DG/UX
kernel provides fully pre-emptive scheduling. This means that a process might be

suspen:.ed while updating a data base and another process that accesses the same data

might t 2 given control. In addition, because the DG/UX system runs in a fully

symmetric environment, you can’t disable interrupts for protection as has often been

done ir single-processor UNIX kernels. Such disabling only affects one processor —

other processes may be running on other processors. To further enhance

performance with multiple processors, the DG/UX kernel also provides fine-grained

locks that protect individual data bases rather than the traditional approach that locks

the entire kernel data base at once.

All locks provide mutual exclusion. However, several types of locks are available

each o7 which provides certain additional features. Different locks also vary in

performance and in the memory required to implement them. The three types of

locks tne DG/UX kernel provides are: sequenced locks, unsequenced locks, and spin

locks.

There are three routines for each type of lock: a routine to initialize the lock; a

routine to obtain the lock (start locking); and a routine to release the lock (stop
locking). Note that routine names consist of the operation and lock type plus the

kerne: subsystem (and, hence, include file) where the routine is located —- for

examrie, Im_obtain_sequenced_lock. Each type of lock also uses its own

corresponding data structures.

093-701083 Licensed material—property of Data Genera! Corporation 4-1

Overview to Using Locks on the DG/UX System

To use a lock, you first allocate space for it and then call the appropriate initialization

routine. You then call the obtain routine. Once this call returns, you hold the lock

and no other process can have the lock until you call the corresponding release

routine. Sometimes someone else may already hold the lock you want when you try

to obtain it. This situation, called contention, is handled differently depending on the

type of lock involved. In fact, what happens during contention is one of the major

differences that define the different locks. So, before discussing this situation, we'll

describe the different types of locks.

Spin locks are the simplest type of lock. They cause the caller to loop within the call

until the lock can be obtained. This looping, called a "busy wait," consumes a lot of

CPU resources because the process continues to run on the physical processor until

the lock is available.

Spin locks are very dangerous because the potential for deadlock is high. Obviously,

to release a lock the owner of the lock must be able execute the release routine for

that lock. If someone else busy waits for a spin lock on the same processor that is

running the lock-owner process, they will tie up the processor and the lock owner will

not be able to call the release routine. This is called deadlock.

Because of the potential for deadlock spin locks should generally be avoided. If you

must use them, you should use them only for protecting very small critical sections of

code (only a few instructions in length). You should also make sure that the process

cannot lose the processor on which it is running while holding a spin lock. This

means that the process cannot take any action that might require it to be removed

from the processor including taking a page fault. Thus, the lock itself must be

allocated in wired memory and you must only reference wired memory while holding

the lock. Finally, while holding a spin lock, you must also ensure that interrupts are

disabled.

The sequence to gain exclusive access to a resource protected by a spin lock is as

follows:

vp_disable_interrupts();

misc_obtain_spin_lock(&some_resource_spin_1lock);

misc_release_spin_lock(&some_resource_spin_lock) ;

vp_enable_ interrupts();

You disable interrupts before attempting to gain the spin lock. Then, if the lock is

not available, it can only be because another process on a different processor is

holding the lock. If this happens, your process, by owning its home processor, will

spin until the lock becomes available. Such busy-waiting is a major reason why spin

locks should be held only for a short time.

You will use sequenced or unsequenced locks for most locking needs. Neither

sequenced nor unsequenced locks use busy waiting; so the holder of the lock can give

up the processor. They differ in how waiting is done.

4-2 ' Licensed materiak—property of Data Genera! Corporation So, 093-701083

Overview to Using Locks on the DG/UX System

Sequenced locks grant access on a first-come-first-serve basis. They avoid the

scheduling overhead by ordering contending processes based on when they first tried

to obtain the lock. When the lock is released, only the next process in line is

awakened.

Unsequenced locks are faster and take less space and CPU time than sequenced

locks. When you call to obtain an unsequenced lock, the kernel removes your

process from the processor until the lock is available (that is, when the current owner

releases it). They provide no ordering of requesters.

Unsequenced locks, however, may not perform well under high contention, because

they can cause a cascade of rescheduling. When the lock is released, ALL the

processes waiting on the lock are awakened (made runnable again). At some point

after they start running, they will attempt to obtain the lock again. One of them will

be first and will succeed in obtaining the lock. The rest will find the lock already

locked and will be put back to sleep until the new owner releases the lock and the

sequence of events repeats itself. The resulting cascade of awakenings and

reschedulings creates a high cost in system time.

Unsequenced locks might also have a “livelock” problem. If new processes are always

trying to get the lock, a process might recurrently fail to obtain the lock, and thus

wait a long time to make forward progress. The process would not be dead, but

would essentially be looping trying but failing to get the lock and continue.

Sequenced locks avoid these problems, but at a cost. The cost is in performance

(obtaining and releasing them is slower and takes more CPU time) and space (a

sequenced lock takes more space to implement). The cost results from the queue of

waiting processes that is associated with a sequenced lock. When a process must wait

on the lock, it is entered onto the end of a FIFO queue of waiting processes. When

the lock is released, the system wakes up only the process at the head of the list and

this process obtains the lock.

Both sequenced and unsequenced locks provide no-wait versions of their obtain

routines that return control immediately. The no-wait routines either return with the

lock now locked on the caller’s behalf, or with an indication that the lock could not

be obtained. The no-wait version allows a process to handle other operations and try

to obtain the lock again later.

For a more detailed discussion of locks on the DG/UX system, see the reference

listed in the Preface of this manual.

The routines described in this section are as follows:

@® In_initialize_ sequencedlock

© ikn_initialize_unsequenced_lock

© Iim_obtain_sequenced_lock

@ im_obtain_sequenced_lock_no_wait

093-701083 Licensed materiai—property of Data General Corporation 4-3

Overview to Using Locks on the DG/UX System

@ im_obtain_unsequenced_lock

@ Im_obtain_unsequenced_lock_no_wait

@ Im_release_sequenced_lock

@ Im_release_unsequenced_lock

@ misc_obtain_spin_lock

@ misc_release_spin_lock

Routines beginning with lm and mise require the i_lm.h and i_misc.h include files,

respectively.

Constants and Data Structures

The routines in this section use the following constants and data structures. Try to

avoid dependencies on the specifics of these structures, such as size or location of

fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must

verify exact variable definitions in the appropriate include file (for

example, check i_lm.h for structures beginning with the Im acronym).

Chapter 1] lists the various include files.

im_sequenced_lock_type

typedef struct

{

im_resource_counter_type re;

} I1m_sequenced_lock_type ;

Description

This type is a sequenced lock. A sequenced lock may be created by simply declaring

an instance of this type. The user of the lock is responsible for allocating the space

occupied by the lock instance and reclaiming that space when the lock is destroyed.

A sequenced lock is simply a resource counter that has an initial value of one.

im_unsequenced_lock_type

typedef struct

{

vp_unsequenced_lock_type lock;

4-4 ... Licensed materiab—property of Data Genera!.Corporation ——- 0$3-701083

Constants and Data Structures

} lm_unsequenced_lock_type =;

Description

This type is an unsequenced lock. An unsequenced lock may be created by simply

declaring an instance of this type. The user of the lock is responsible for allocating
the space occupied by the lock instance and reclaiming that space when the lock is

destroyed.

misc_spin_lock_type

typedef bit32e_type misc_spin_lock_type ;

Description

This type defines a spin lock. The spin lock actually uses only the low bit of the 32.

The lock is considered held when the low order bit is 1, and is considered not held

otherwise.

4-5
093-701083 Licensed material——property of Data General Corporation

im_initialize_sequenced_lock

Im_initialize_sequenced_lock

Syntax

void lm_initialize_sequenced_lock (lock_ptr)

lm_sequenced_lock_ptr_type lock_ptr; /*tWRITE ONLY*/

Summary

This routine initializes a sequenced lock.

Parameters

lock_ptr — A pointer to the lock to be initialized.

Description

This routine initializes a sequenced lock. None of the obtain or release

operations should be performed on a lock until it has been initialized by this

routine.

Return Values

None.

Exceptions

None.

4-€ Licensed materiai—-property of Data General Corporation . @93-701083

im_initialize_unsequenced_lock

lm_initialize_unsequenced_lock

Syntax

void 1lm_initialize_unsequenced_lock (lock_ptr)

lim_unsequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine initializes an unsequenced lock.

Parameters

lock_ptr — A pointer to the lock to be initialized.

Description

This routine initializes an unsequenced lock. None of the obtain or release

operations should be performed on a lock until it has been initialized by this

routine.

Return Values

None.

Exceptions

None.

0$3-701083 Licensed materiai—property of Data Generai Corporation 4-7

Im_obtain_sequenced_lock

lm_obtain_sequenced_lock

Syntax

void 1m obtain_sequenced_lock(lock_ptr)

1m _sequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine obtains the specified lock.

Parameters

lock_ptr — A pointer to the lock to be obtained.

Return Values

None.

Exceptions

None.

4-8 ‘ Licensed material—property of Dzta Genera! Corporation ~~ _ , 083-761083

im_obtain_sequenced_lock_no_wait

Im_obtain_sequenced_lock_no_wait

Syntax

boolean type 1m_obtain_sequenced_lock_no_wait (lock_ptr)

lm_sequenced_lock_ptr_type lock_ptr; /*READ/WRITE*/

Summary

This routine obtains the specified lock. The calling process is not pended if the

lock is not immediately available. A boolean is returned, which indicates

whether the lock was obtained.

Parameters

lock_ptr — A pointer to the lock to be obtained.

Description

See Summary.

Return Values

TRUE — The lock was obtained.

FALSE — The lock was not obtained.

Exceptions

None.

093-701083 Licensed materiai—property of Data Genera! Corporation 4-9

im_obtain_unsequenced_iock

Im_obtain_unsequenced_lock

Syntax

void 1m _obtain_unsequenced_lock(lock_ptr)

lm _unsequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine obtains the specified lock.

NOTE: The calling process will be pended if the lock is not immediately available.

Parameters

lock_ptr — A pointer to the lock to be obtained.

Return Values

None.

Exceptions

None.

4-4 0 , , Ligensed material—property of Data General Corporation 093-701083

im_obtain_unsequenced_lock_no_wait

Im_obtain_unsequenced_lock_no_wait

Syntax

boolean type 1m_obtain_unsequenced_lock_no_wait (lock_ptr)

lm_unsequenced_lock_ptr_type lock_ptr; /*READ/WRITE*/

Summary

This routine obtains the specified lock if it is not already held. The calling process

will NOT be pended if the lock is not immediately available.

Parameters

lock_ptr — A pointer to the lock to be obtained.

Description

See Summary.

Return Values

TRUE — The lock was obtained.

FALSE — The lock was not obtained.

Exceptions

None.

093-701083 Licensed materiat—property of Data General Corporation 4-1 1

Im_release_sequenced_lock

Im_release_sequenced_lock

Syntax

void 1m release_sequenced_lock(lock_ptr)

lm _sequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine releases the specified lock. If other processes are waiting for the

lock to become available, the next one in sequence will be awakened.

Parameters

lock_ptr — A pointer to the lock that is to be released.

Return Values

None.

Exceptions

None.

‘ & he . .

4-12 License¢ material—property of Data Genera! Corporation 093-701083

im_release_unsequenced_lock

Im_release_unsequenced_lock

Syntax

voic€ lim _release_unsequenced_lock(lock_ptr)

lim ursequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summa: -

Th:. routine releases the specified lock. If other processes are waiting for the

loc. to become available, all waiting processes will be awakened and one will be

giv. i the lock.

Parame:ers

loc:_ptr — A pointer to the lock that is to be released.

Return Values

Nc re.

Except:ons

Nene.

0$3-701083 Licensed materiak—property of Data General Corporation 4-13

misc_obtain_spin_lock

misc_obtain_spin_lock

Syntax

void misc_obtain_spin_lock (lock_ptr)

mise_spin_lock_ptr_type lock_ptr; /*READ/WRITE*/

Summary

This routine obtains a spin lock. If the lock is not immediately available, the

process will loop until it becomes available.

Parameters

lock_ptr — A pointer to the spin lock that is to be obtained.

Description

An attempt is made to obtain the lock. If the lock is already held, the code

loops until the lock is obtained. Spin locks are the only locks that can be

obtained at interrupt level.

Return Values

None.

Exceptions

None.

4-4 r.§ Licensed material—property of Data General Corporation CO 0$3-701SE3

misc_release_spin_lock

misc_release_spin_lock

Syntax

void misec_release_spin_lock (lock_ptr)

misc_spin_lock_ptr_type lock_ptr; /*READ/WRITE*/

Summary

This routine releases a spin lock.

Parameters

lock_ptr — A pointer to the spin lock that is to be released.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

0$3-701083 Licensed material—property of Data General Corporation 4-15

Chapter 5

Eventcounter Routines

This chapter describes all DG/UX kernel routines used in handling eventcounters.
We start with a brief introduction to eventcounters and eventcounter routines.

Following the introduction is a "Constants and Data Structures” section, which lists

some of the major constants and data structures used by routines in this section.

Check the appropriate include files (for example, check i_vp.h for structures

beginning with the vp acronym) for a complete and current list of all constants and

structures.

Overview to Using Eventcounters

Eventcounters are the primary synchronization mechanism used in the DG/UX
kernel. The DG/UX system’s treatment of eventcounters and the related concept of

a sequencer comes from work by Reed and Kanodia. See the Communications of the

ACM papers listed in the “Other Documents” section of the Preface for more

technical backsround on eventcounters and sequencers.

The eventcounter synchronization mechanism uses two basic elements: eventcounters

and events. An eventcounter is simply a count of the number of times some

condition of interest has happened. You create an eventcounter by declaring a

variable of eventcounter type and then initializing its count value to zero by calling

vp-_initialize_ec.

Events are separate from eventcounters. Eventcounters allow you to define "events"

of interest by connecting an eventcounter with a critical value. When the eventcount

is equal to the critical value, the event is said to be "satisfied" and the kernel

automatically awakens all processes waiting on the event. You create an event by

declaring a variable of event type (vp_event_type) and filling in the name of the

eventcounter (pointer to its count address) and the critical value. Typically, you will

define an eventcounter globally and create successive events from it.

Typically, you will also want to wait for the event to occur once you have created it.

You do this by calling vp_await_ec. The vp_await_ec routine actually allows you to

suspend waiting for any of a number of events supplied in an event list. If one or

more of the specified events is already satisfied when the await call is made, await

returns immediately and the process continues execution. If none of the specified

events is satisfied, the process enters the awaiting state where it does not compete for

CPU resources. Because a process doing a vp_await_ec may suspend indefinitely, it

should only hold locks while awaiting an event that can be counted on occurring in a

reasonable time (perhaps a second or less).

093-701083 Licensed materia-—property of Data Genera! Corporation 5-1

Overview to Using Eventcounters

When one of the events is satisfied, the kernel will awaken the waiting process and

pass it the index of the event that has occurred. The index identifies the event in the

list that caused the await to be satisfied. However, the event specified by the index is

not necessarily the only event that has occurred in the list. You may determine if

other events in the list have occurred by calling the routine vp_has_event_occurred

for each entry in the event list. Note that if you want to wait until ALL of the desired

events have occurred, you may need to do several calls to vp_await_ec.

Frequently, the event you will want to create is the next occurrence of the condition,

that is, the next increment of the eventcounter. You can create such an event by: 1)
calling vp_read_ec which reads the current count into an event value variable; and 2)

calling vp_increment_ec which adds one to that count value — making a critical value

equal to “the next occurrence.” Alternatively, you can call vp_get_next_ec_value to

perform these two steps in one indivisible step; it reads and returns an incremented

count into an event value variable.

Some part of your code will also have to increment the eventcounter each time the

condition of interest occurs. You increment (advance) the eventcounter by calling

vp_advance_ec. After incrementing the specified eventcounter, the advance

operation checks to see whether the new value of the incremented eventcounter

causes any events to be satisfied. If the process associated with a satisfied event is

still in the awaiting state, it is scheduled to run. Because interrupts are one common

condition of interest, interrupt service routines are frequently the ones calling

vp_advance_ec.

Because eventcounters are monotonically increasing values, they map very well into

the normal concepts of clocks and times. This allows clocks routines and timer

routines to be based on the same eventcounter mechanism. A clock can be

- considered an eventcounter, and when the clock reaches a certain value an event is

triggered. The two routines yp_convert_clock_value_to_ec_value and

vp_convert_ec_value_to_clock_value allow you to convert between clock and

eventcounter values.

Because eventcounters are monotonically increasing values, they also provide a

natural ordering of events. This allows the eventcounter mechanism to be extended

to support sequencing using the concept of "sequencers". Often simply waiting on an

event is not enough; what is wanted is a way of ordering, or sequencing, the waiters

on an event. This is often the case when the event being awaited is access to a

resource of some sort, such as a critical section of code or shared data. Sequencers

support such ordering.

Sequencers, like eventcounters, are simply counters with values that increase in a

monotonic fashion. Like eventcounters, sequencers are declared and initialized (in

sequencer’s case, by calling vp_initialize_sequencer). Sequencers order events by

issuing sequential "tickets." You get a ticket by calling vp_ticket_sequencer which

atomically increments the current value of the sequencer and returns the new value.

Thus, each caller of the ticket operation gets a unique value and the values are

ordered by the order in which the calls to ticket were made: the first caller will get 1,
the second 2, and so on. You create events using these ticket values and await them

using vp_await_ec. Each process will see its event in turn — in the same order as the

sequencer values. This is exactly the same as in any store where you “take a number

for service.”

5-2 Licensed material--property of Data General Corporation . 093-701083

Overview to Using Eventcounters

Eventcounters offer several advantages over the more simplistic synchronizations

techniques used in most standard UNIX implementations. First, because

eventcounters actually count the number of occurrences of an event, you can tell if an

event has already happened. Thus, in a sense eventcounters remember previous

events. If code tries to wait on an event that has already happened (the event’s

critical value is less than the current count), the wait returns immediately because the

event has been satisfied. There is no danger of the waiting process pending forever as

with the standard UNIX sleep and wakeup primitives.

The vp_are_ec_values_equal routine for comparing eventcounter values is provided

for convenience.

You must be careful of the order in which you perform the tasks involved in creating

and awaiting an event lest you accidently create an endless wait situation.

Specifically, if you start the I/O operation to be awaited before you create the event,

the L/O may be logged before you get the eventcounter and the condition you create

will be one count past the operation you started. The best sequence for creating and

awaiting events is: 1) create the event to be awaited; 2) start the I/O operation; 3)

check the event; 4) if it is not satisfied (and you do want to suspend until it is), start

the await process. The typical code sequence is as follows:

dev_cird_build_scatter_gather_arrays(request_block_ptr);

vp_get_next_ec_value(&srequest_block_ptr->sync_io_ec,

&request_completion_event.value) ;

status = dev_cird_start_command_list_request(request_block_ptr);

if (status == OR)

{

vp_await_ec(é&request_completion_event, (int32_type)1, éresult_index) ;

}

If you use routines from this section, you must allocate the space used by the event

and eventcounter instances (see the "Constants and Data Structures” section below).

Eventcounters are normally allocated from global memory. Event types are allocated

dynamically, as needed.

The following routines are described in this section:

@® vp _add_to_ec_value

@ vp_advance_ec

@® vp_await_ec

® vp_convert_clock_value_to_ec_value

@ vp_convert_ec_value_to_clock_value

@ vp get_next_ec_value

@® vp_has_event_occurred

@ vp_increment_ec_value

033-701083 Licensed materia—property of Data Genera! Corporation 5-3

Overview to Using Eventcounters

© vp-initialize_ec

@ vp_initialize_sequencer

@ vp.read_ec

@ vp_ticket_sequencer

@ vp_are_ec_values_equal

Routines beginning with vp require the i_vp-h include file.

Constants and Data Structures

This section discusses some of the data structures used by synchronization routines.

Try to avoid dependencies on the specifics of these structures, such as size or

location of fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must

verify exact variable definitions in the appropriate include file (for

example, check i.vp.h for structures beginning with the vp acronym).

Chapter 1 lists the various include files.

vp_event_type

typedef struct

{

vp_ec_ptr_type name;

vp_ec_value type value;

}

vp_event_ type ;

Description

This structure defines an event, which is an eventcounter name and an eventcounter

value. The event is said to occur or to be satisfied when the value of the

eventcounter pointed to by the name field is greater than or equal to the value

field.

5-4 "Licensed materiah—property of Data Genera! Corporation = -G93-701083

vp_add_to_ec_value

vp_add_to_ec_value

Syntax

void vp_add_to_ec_value (ec_value_ptr, addend)

vp_ec_value_ptr_type ec_value_ptr; /*READ/WRITE*/

uint32_type addend; /*READ ONLY*/

Summary

This routine adds the given value to the specified eventcounter value.

Parameters

ec_value_ptr — A pointer to the eventcounter value to be added to.

addend — The value to be added to the eventcounter value.

Description

The specified 32-bit integer is added to the specified eventcounter value.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

093-761083 Licensed materiat—property of Data General Corporation 5-5

vVp_advance_ec

vp_advance_ec

Syntax

void vp_advance_ec (ec_name)

vp_ec_ptr_type ec_name; /*READ ONLY*/

Summary

This routine performs an advance (by one) on the specified eventcounter. Any

processes awaiting on the new value of the eventcounter will be notified.

Parameters

ec_name — A pointer to the eventcounter to be advanced.

Description

The eventcounter is indivisibly incremented, and any processes awaiting on the

new value are notified. If a higher priority process becomes eligible to run as a

result of the notification, it may be rescheduled. Thus, your process may be pre-

empted if you call this routine.

Return Values

None.

Exceptions

None.

5-6 '* Licensed materiale=property 6f Data General Corporation, 8k . 093-701083 .

Vp_await_ec

Vp_awa: ._ec

Syntax

void -p_await_ec (event_list, list_size, list_index_ ptr)

vp_ev :nt_type event_list[]; /*READ ONLY*/

int3z type list_size; /*READ ONLY*/

int3z ptr_type list_index_ptr; /*WRITE ONLY*/

Summary
»

This > sutine performs the await operation on one or more events. The calling

proce s will be suspended until at least one of the specified events is satisfied.

Paramete - 5

even: ist — An array of events for which the process wishes to await.

list_s -e — The number of elements in event_list.

list_iz 4ex_ptr — A pointer to the array index (zero based) of an event that is

satist.:d when the call returns.

Descripti 2

This >utine causes the calling process to be suspended until any one of the

supp. zd events has been satisfied. If any of the events is satisfied at the time the

call: made, the process is not suspended. When the call returns, the

list_} iex_ptr is set to the index of an event that is satisfied, but if more than one

even: .s satisfied, no statement is made about which event will be indicated by

list_i dex ptr.

Return V ives

Non...

Exceptio.:s

Nor ..

083-701083 Licensed material—property of Data General Corporation

vp..convert.clock_value_to_ec_value

vp_convert_clock_value_to_ec_value

Syntax

void vp_convert_clock_value_to_ec_value (clock_value_ptr,

ec_value_ptr)

misc_clock_value_ptr_type clock_value_ptr; /*READ ONLY*/

vp_ec_value_ptr_type ec_value_ptr; /*WRITE ONLY=/

Summary

This routine converts a clock value into an eventcounter value.

Parameters

clock_value_ptr — A pointer to a clock value.

ec_value_ptr — A pointer to the location where the corresponding eventcounter

value is to be written.

Description

This routine converts a clock value into an eventcounter value. Converti.2 from

clock value to eventcounter value requires converting the 64-bit clock val. = toa

32-bit eventcounter value.

The number of bits to take from the high and low word of the clock value are

defined in i_vp.h as VP_CLOCK_TO_EC_HIGEH_BITS and

VP_CLOCK_TO_EC_LOW_BITS.

Return Values

None.

Exceptions

None.

5-8 . ucensed material--property of Data General Corporation Of3-7618E3

ee

vp_convert_ec_value_to_clock_value

vp_convert_ec_value_to_clock_value

Syntax

void vp_convert_ec_value_to_clock_value (ec_value_ptr,

clock_value_ptr)

vp_ec_value ptr_type ec_value_ptr; /*READ ONLY*/

misc _clock_value_ptr_type clock_value_ptr; /*WRITE ONLY*/

Summary

This routine converts an eventcounter value into a clock value.

Parameters

ec_value_ptr — A pointer to an eventcounter value.

clock_value_ptr — A pointer to the location where the corresponding clock value

is to be written.

Description

This routine converts an eventcounter value into a clock value. Conversion from

eventcounter value to clock value requires converting a 32-bit eventcounter value

to a 64-bit clock value.

The number of bits to assign to the high and low word of the clock value are

defined in i_vp.h as VP_CLOCK_TO_EC_HIGH_BITS and

VP_CLOCK_TO_EC_LOW_BITS.

Return Values

None.

Exceptions

None.

093-701083 Licensed materiaproperty of Data Genera! Corporation 5-9

vp..get_next_ec_value

vp_get_next_ec_value

Syntax

void vp_get_next_ec_value (ec_name, ec_value_ptr)

vp_ec_ptr_type ec_name; /*READ ONLY*/

vp_ec_value_ptr_type ec_value_ptr; /*WRITE ONLY*/

Summary

This routine indivisibly reads the specified eventcounter and returns its value plus

one.

Parameters

ec_name — A pointer to the eventcounter to be read.

ec_value_ptr — A pointer to the location where the eventcounter value (plus

one) is to be written.

Description

The eventcounter is read indivisibly with respect to other processors and with

respect to the executing processor’s interrupt level. The value is then

incremented by one, which is equal to the value that will be reached the next time

the eventcounter is advanced.

Return Values

None.

Exceptions

None.

5-14 6 Licensed material—property of Data Genera! Corporation . 093-701083

vp_has_event_occurred

vp_has_event_occurred

Syntax

boolean type vp_has_event_occurred (event_ptr)

vp_event_ptr_type event _ptr; /*READ ONLY*/

Summary

This routine determines whether the given event has occurred.

Parameters

event_ptr — A pointer to the subject event.

Return Values

TRUE — The event has been satisfied.

FALSE — The event has not yet occurred.

Exceptions

None.

083-701083 Licensed materiat—property of Data General Corporation 5-1 1

vp_increment_ec_value

vp_increment_ec_value

Syntax

void vp_increment_ec_value (ec_value_ptr)

vp_ec_value_ptr_type ec_value_ptr; /*READ WRITE*/

Summary

This routine increments the specified eventcounter value.

Parameters

ec_value_ptr — A pointer to the eventcounter value to be incremented.

Description

This routine simply takes the eventcounter value passed in and increments it.

Return Values

None.

Exceptions

None.

5-14 2 Licensed material—property of Data Genera! Corporation oe 093-791083

Vp-_initialize_ec

vp-_initialize_ec

Syntax

void vp_initialize_ec (ec_name)

vp_ec_ptr_ type ec_name; /*READ ONLY*/

Summary

This routine initializes an eventcounter.

Parameters

_ec_name — A pointer to the eventcounter to be initialized.

Description

The eventcounter value is set to zero.

Retarn Values

None.

Exceptions

None.

0$3-701083 Licensed material—property of Data General Corporation 5-13

vp_initialize_sequencer

vp_initialize_sequencer

Syntax

void vp_initialize_sequencer (seq_name)

vp_ec_ptr_type seq_name; 7 *READ ONLY*/

Summary

This routine initializes a sequencer.

Parameters

seq_name — A pointer to the sequencer to be initialized.

Description

The sequencer value is set to zero.

Return Values

None.

Exceptions

None.

5-1 4 Licensed material-property of Data Genera! Corporation’ 093-767 083

vp_read_ec

vp_read_ec

Syntax

void vp_read_ec (ec_name, ec_value_ ptr)

vp_ec_ ptr_type ec_name; /*READ ONLY*/

vp_ec_value_ptr_type ec_value_ptr; /*tWRITE ONLY*/

Sammary

This routine indivisibly reads the specified eventcounter and returns the value in

the variable pointed to by ec_value_ptr.

Parameters

ec_name — A pointer to the eventcounter to be read.

ec_value_ptr — A pointer to the location in which the eventcounter value is to

be written.

Description

The eventcounter is read indivisibly with respect to other processors and with

respect to the executing processor’s interrupt level.

Return Values

None.

Exceptions

None.

0$3-701083 Licensed material—property of Data Genera! Corporation 5-1 5

vp_ticket_sequencer

vp_ticket_sequencer

Syntax

void vp_ticket_sequencer (seq_name, seq_value_ptr)

vp_ec_ptr_ type seq_name; /*READ ONLY*/

vp_ec_value_ptr_type seq_value_ptr; /*WRITE ONLY*/

Summary

This routine indivisibly increments the value of the specified sequencer and

returns the new value (that is, the value after the increment).

Parameters

seq_name — A pointer to the sequencer to be ticketed.

seq_value_ptr — A pointer to the location in which the new value of the

sequencer is to be written.

Description

The sequencer value is incremented and then read as an indivisible operation.

Return Values

None.

Exceptions

None.

5- 1 6 Licensed materiak—property of Data General Corporation 033-701 083

vp_are_ec_values_equal

vp_are_ec_values_equal

Syntax

boolean type vp_are_ec_values_equal (valuel_ptr, value2_ptr)

vp_ec_value_ptr_type valuel_ptr; /*READ ONLY*/

vp_ec_value_ptr_type value2_ptr; /*READ ONLY*/

Summary

This routine compares two eventcounter values for equality.

Parameters

valuel_ptr — A pointer to an eventcounter value.

value2_ptr — A pointer to an eventcounter value.

Description

This routine compares two eventcounter values and returns TRUE if they are

equal.

Return Values

TRUE — The eventcounter values are equal.

FALSE — The eventcounter values are not equal.

Exceptions

None.

End of Chapter

0$93-701083 Licensed material—property of Data Genera! Corporation 5-1 7

Chapter 6

Clock Routines

This chapter describes the DG/UX kernel routines used in clock operations. We

start with a brief introduction to the clock and clock routines. Following the

introduction is a "Constants and Data Structures” section, which lists some of the

major constants and data structures used by routines in this section. Check the

appropriate include files (for example, check i_vp.h for structures beginning with the

vp acronym) for a complete and current list of all constants and structures.

Overview to Using Clock Routines

The kernel provides three sets of clock routines: 1) routines to create an event that

will occur at a specified time; 2) routines to establish and cancel timeouts; and 3)a

routine to read the system clock.

The kernel maintains time via the system clock. The system clock is a 64-bit logical

counter that increments at a fixed rate in real time. The counter is given value zero at

system boot time. System clock values are continuous and monotonically increasing.

Continuous means that the value of the system clock is not changed even if the

external time-of-day is changed. Therefore, you can use the system clock to time

intervals knowing its value will not be reset during the interval.

The system clock maintains the time since the system was booted in

misc_clock_value_type units. A misc_clock_value_type unit is a 64-bit value where

the high order 32 bits represent seconds and the low order 32 bits represent a fraction

of a second. The number of significant bits in the fractional part of a second is

determined by the accuracy of the architecture-dependent hardware clock used to

implement the system time. misc_clock_value_type and pre-defined values for it are

shown in the "Constants and Data Structures” section.

You can read the system clock using the vp_read_system_clock routine. This may be

useful for applications that are doing timing intervals.

The clock routines also let you schedule events based on system time. You can use

these clock events either asynchronously (time-outs) or synchronously (clock events).

You use clock eventcounters to await for a time interval synchronously (suspended

and thus without continuing processing). You use the routine vp_create_clock_event

to create a clock event that will occur after some specified system time interval. After

you create the event, you await it using the vp_await_ec routine described in Chapter

5. Chapter 5 also describes other routines you can use in manipulating eventcounters.

The following sample shows how to create a clock event that will occur in 5 seconds:

093-701083 Licensed material—property of Data General Corporation 6- 1

Overview to Using Clock Routines

vp_create_clock_event(édelay_event, émisc_five_seconds) ;

vVp_await_ec(&delay event, (int32_type)1, &result_index);

Clock events are typically used in synchronous I/O requests. In this application the

driver will issue an I/O request and then suspend waiting for one of three events to

occur: the completion of the I/O request; a time-out of the I/O request; or

termination of the I/O process. Upon awakening, the driver determines which event

occurred and performs the appropriate operations.

The DG/UX system provides time-out services for doing asynchronous processing.

With a time-out, the kernel is directed to call a specified routine after a specified

interval expires.

The kernel needs a certain amount of data space to handle a time-out. Since it

allocates this space dynamically at run-time, you must declare the amount of space

you will need. You do this by calling vp_specify_max_timeouts.

Once this space has been allocated, it cannot be released and more cannot be

allocated. This means several things. First, be rational when setting this value; try

not to allocate too many or too few time-outs. Allocating too few time-outs is

particularly dangerous. If you ask for more than the specified max_timeouts, the

system will panic because of insufficient resources. You should make sure that you

never have more concurrent time-outs than you specified. The concurrency of time-

outs, then, is also critical. The time-out routines vp_establish_timeout and

vp_cancel_timeout are a matched set. One establishes the time-out and the other

cancels it; the time-out is still current until you call vp_cancel_timeout. You must

call vp_cancel_timeout once for each call to vp_establish_timeout, regardless of

whether or not the time-out event has occurred. You can cancel the time-out before

it expires, but you must cancel it after it expires.

When you call vp_establish_timeonut, it returns a time-out ID. You need this ID to

cancel the time-out. Cancelling the time-out will prevent your time-out routine from

being called if the interval expires, and will free resources for another time-out to run.

Your time-out routine will run at interrupt level with event resources locked. Thus, it

should not invoke event routines that might lock event resources (and thus deadlock

the system). This includes advancing events and awaiting events. As an alternative,

you can have the routine return an eventcounter name to be advanced by the higher

process on behalf of the time-out routine when it is safe to do so.

The routines described in this section are as follows:

e vp_establish_timeout

® vp.cancel_timeout

® vp_specify_max_timeouts

© vp_create_clock_event

® vp_read_system_clock

Routines beginning with vp require the i_vp-h include file.

S| : : CB . oo ;
6-2 Licensed materiai—property of Data Genera! Corporation 093-701083

Constants and Data Structures

Constants and Data Structures

This section describes the format of svstem clock values and the general clock value

constants that may be needed by other subsystems. These constants are allocated in

global memory, and the data types are defined in i.mise.h. Pointers to the constants

are passed to the clock management routines to specify time values. Generally useful

values are defined in this section; if a subsystem has a need for a special clock value,

it may define the value itself.

Try to avoid dependencies on the specifics of these structures, such as size or

location of fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, vou must

verify exact variable definitions in the appropriate include file (for

example, check imisc.h for structures beginning with the misc acronym).

Chapter 1 lists the various include files.

misc_clock_value_type

typedef struct

{

uint32e_type high;

uint32e_type low;

}

misc_clock_value_type

Description

This type describes a value that the system clock can have. The clock value is treated

as a 64-bit signed integer with time values contained in the bottom 63 bits. (The bits

are numbered such that bit 63 is the most-significant bit, and bit 0 is the least

significant bit with bit 32 representing one second.) Actual resolution of timing may

vary but will be accurate to at least 10 milliseconds.

You may use the following defined constants in your driver. They are defined in

i_misc.h.

misc_five_minutes

misc_one_hondred_seconds

misc_one_minute

misc_ten_seconds

misc_five_ seconds

misc_three_seconds

misc_two_seconds

misc_one_second

misc_one_half_second

misc_two_hundred_fifty_milliseconds

misc_two_hundred_milliseconds

6-3
0$3-701083 Licersed material—-property of Data General Corporation

Constants and Data Structures

misc_ten_milliseconds

6-4 Licensed materish—preparty of Data Gensrai Cerperation 093-701083

vpestablish_timeout

vp_establish_timeout

Syntax

opaque32_type vp_establish_ timeout (time_ptr, routine_ptr,

argument)

misc_clock_value_ptr_type time_ptr; /*READ ONLY*/

vp_timeout_routine_ptr_type routine_ptr; /*READ ONLY*/

bit32e_type argument; /*READ ONLY*/

Summary

This routine establishes a timeout. The timeout will occur time_ptr time from

the current time, and then the specified routine will be called with the specified

argument.

Parameters

time_ptr — A pointer to a clock value indicating the amount of real time that is

to elapse before the timeout occurs. Use the clock constants in the "Constants

and Data Structures" section for increment values.

routine_ptr — A pointer to a routine that is to be called by the I/O daemon

when the timeout occurs.

argument — A 32-bit value that is to be passed to the timeout routine as an

argument.

Return Values

timeout_id —- The return value is an opaque 32-bit identifier for the timeout. This

value may be used only as an argument to vp_cancel_timeont.

Exceptions

None.

093-701083 Licensed material—property of Data Genera! Corporation 6-5

vp.cancel_ timeout

vp_cancel_timeout

Syntax

void vp_cancel_ timeout (timeout_id)

opaque32_ type timeout_id; /*READ ONLY*/

Summary

This routine cancels a previously established timeout.

Parameters

timeout_id — The timeout_id of the timeout to be cancelled. This value was

returned by the vp_establish_timeout routine.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

6-6 Lieensed materiat—property of Data General Corporation . 0$3-701083

vVp.specify_max_ timeouts

vp_specify_max_timeouts

Syntax

void vp_specify max timeouts (count)

uint32_type ccunt; /*READ ONLY*/

Summary

This routine reserves space for the specified number of timeouts. A device

driver should call it to reserve space for the maximum number of timeouts it will

ever have in effec: simultaneously.

Parameters

count — The number of timeouts for which to reserve space.

Description

Space is reserved for the specified number of timeouts. The space must be

reserved before any timeouts are established. This routine will presumably be

called several times, once by each driver in the system, as part of its

initialization.

The amount of space reserved for timeouts cannot be reduced. Therefore you

should try not to ask for more space than you will need during the life of the

system.

Return Values

None.

Exceptions

None.

093-701083 Licensed materia}—property of Data General Corporation 6-7

vp..create_clock_event

vp_create_clock_event

Syntax

void vp_create_clock_event (event_ptr, increment_ptr)

vp_event_ptr_type event_ptr; /*WRITE ONLY*/

misc_clock_value_ptr_type increment_ptr; /*READ ONLY*/

Summary

This routine sets up a clock event for a specified (increment_ptr) time in the

future.

Parameters

event_ptr — A pointer to the event that is to be set up.

increment_ptr — A pointer to a clock value that is to be added to the current

system time. Use the clock constants in the "Constants and Data Structures”

section for increment values.

Description

event_ptr is set to an event. The value of the eventcounter is set to make the

event occur at current time plus the increment. See the "Synchronization

Routines” section of this chapter for other routines used in servicing the event.

For example, you may want to use vp_await_ec to await the occurrence of this

event. You do this by specifying the event in vp_await_ec’s event list.

Return Values

None.

Exceptions

None.

6-8 Licensed material—property of Data General Corporation ‘ " 993-701083_

vp_read_system_clock

vp_read_system_clock

Syntax

void vp_read_system_clock (current_time_ptr)

misc_clock_value_ptr_type current_time _ ptr; /*READ ONLY*/

Summary

The current value of the system clock is returned.

Parameters

current_time_ptr — A pointer to where the current value of the system clock is

to be written.

Return Values

None.

Exceptions

None.

End of Chapter

093-701083 Licensed material—property of Data General Corporation 6-9

Chapter 7

Process and Signal Management

Routines

This chapter describes the DG/UX kernel routines used in sending and receiving

signals. We start with a brief introduction to signals and the signal handling routines.

Following the introduction is a "Constants and Data Structures” section, which lists

some of the major constants and data structures used by routines in this section.

Check the appropriate include files (for example, check i_pm.h for structures

beginning with the pm acronym) for a complete and current list of all constants and

structures.

Overview to Using Process Signal
Management Routines

The DG/UX kernel allows you to send a signal to either a particular process or to a

group of processes. You can send signals selectively based on the target process’: 1)
process index; 2) process ID (PID); or 3) process group (PGRP). The routines you

use are: pm_send_signal_by_process_id, pm_send_signal_by_process_index, and

pm_send_signal_by_process_group. In the DG/UX kernel, it is more efficient to

refer to processes by their process index than by their PID. Hence, signalling by

pm_send_signal_by_process_index is the preferred method.

Typically you will be sending signals to your own process or other processes in you

process group, and you will need the appropriate process identifier. You can

determine you own PID and PGRP by calling pm_get_my_pid or pm_get_my_pgrp,

respectively. You can read your process’s process index from a per-process variable

called sc_my_process_index.

You must query the kernel to find out if you have a signal pending. You query for

any pending signals using the pm_is_interrupted and pm_is_terminated routines.

The kernel identifies two classes of signals: normal ones that the calling process can

handle; and terminal ones that will cause the calling process to terminate (with or

without a core dump). You call pm_is_interrupted to find out about both normal and
terminate signals. You call pm_is_terminated to ask about terminate signals only.

Though you must query for the signal, signals may also be processed in conjunction

with events. If a signal is present, the query routine (for example,

pm_is_interrupted) returns a flag indicating the signal is present and you process the

signal. If a signal is not present, the flag is FALSE and the query routine returns an

event. You can use this event to suspend and wait for the signal. To do so you add

the event to the list of events to be awaited and call vp_await_ec. Generally, the

033-701083 Licensed material—propevty of Data General Corporation 7-1

Overview to Using Process Signal Management Routines

event will be satisfied when a signal occurs but this is not always the case. Therefore,

when the event is satisfied, you should verify that a signal has occurred by calling the

query routine again.

Note that pm_is_interrupted may suspend the calling process for an arbitrary amount

of time and should only be used when an indefinite wait is possible. For example, if a

process that is being debugged receives a signal, it will communicate with its debugger

during pm_is_interrupted (see ptrace(2)). Because of this, pm_is_interrupted may

pend indefinitely waiting for a debugger to continue the calling process. Because it

may pend indefinitely, you should avoid holding locks when calling

pm_is_interrupted.

pm_is_terminated is designed for use within the kernel when a potentially long, but

nevertheless finite length operation is started. For example, a space operation on a

tape drive or an I/O request to an NFS server are such potentially long operations.

In either case the operation will eventually finish (possibly due to a time-out), but the

user may like the option to terminate the operation mid-stream by sending the process

a signal. pm_is_terminated does not communicate with any debugger process and

does not flag non-terminal signals. Because it only informs the caller of terminal

signals, you can safely call it while holding a lock.

The routines described in this section are as follows:

® pm_get_my_pid

© pm_get_my_pgrp

@ pm_is_interrupted

@ pm_is_terminated

® pm_send-signal_by_index

@ pm_send_signal_by_process_group

@® pm_send_signal_by_process_id

Routines beginning with pm require the i_pm-h include file.

Constants and Data Structures

No special constants or data structures are required by these routines.

7-2 Licenses! material-~property of Data Genera! Corporation : 023-791983.

pm_get_my_pid

pm_get_my_pid

Syntax

pm_process_id type pm_get_my_pid ()

Summary

Returns the process id of the "calling" process.

Parameters

None.

Description

See Summary.

Return Values

The current pid.

083-701083 Licensed materia}—property of Data Genera! Corporation

pm_get.my_pgrp

pm_get_my_pgrp

Syntax

pm_process_id_type pm_get_my_pgrp ()

Summary

Returns the process group of the “calling” process.

Parameters

None.

Description

See Summary. —

Return Values

The process group

7-4 “Licensed material—property of Data Genera! Comporation » ,093-761083

pm_is_interrupted

pm_is_interrupted

Syntax

boolean_type pm_is_interrupted (event_ptr)

vp_event_ptr_type event_ptr; /*WRITE ONLY*/

Summary

This routine handles signals during a system call.

Parameters

event_ptr — The address of a process interrupt event.

Description

This routine handles signal processing. It should be used whenever a system call

will pend the calling process until some external event occurs (that is, pend for

an arbitrary amount of time). Processing includes the following:

@ Interrupting the system call.

e Terminating the process (with or without a core dump).

e Stopping the process for an arbitrary amount of time.

Only the last of these actions is contained entirely within the pm_is_interrupted

routine. The first two actions are performed in cooperation with the caller.

Typically, you will use the following code fragment:

if (pm_is_interrupted(sevents [PROCESS _INTERRUPT]))

{

Arrange to return EINTR to the user. Exit with error EINTR.

}

_ Vp_await_ec(events, N, &index);

Act on the event that was satisfied.

If only the PROCESS INTERRUPT was satisfied, loop back to

pm_is_interrupted()

In the code shown above, the relevant events are those in the events[] array in the

first line. In addition, the event returned by pm_is_interrupted is also important. If

the calling process is interrupted, the system call will return an error and will set

ermo to EINTR. Otherwise, the system call pends until the calling process is

interrupted or one of the relevant events has happened.

083-701683 Licensed materia}—property of Data General Corporation 7-5

pm_is_interrupted

Return Values

TRUE — A signal is presented to be handled.

FALSE — No signal is present.

[event] — event_ptr is set to an event that will occur when it is appropriate to

check for signals again.

Exceptions

None.

7-6 ' Licensed material—property of Data General Corporation me - 093-701083

pm_is_terminated

pm_is_terminated

Syntax

boolean type pm_is_terminated (event_ptr)

vp_event_ptr_type event_ptr; /*WRITE ONLY*/

Summary

This routine chec::s for termination signals during a system call.

Parameters

event_ptr — The address of a process interrupt event.

Description

This routine determines whether the calling process has any signals that will cause

process terminaticn.

Return Values

TRUE — A signal is presented to be handled.

FALSE — No signal is present. event_ptr is set to an event that will occur when

it is appropriate tc re-check for termination signals.

Exceptions

None.

Remarks

This call is designed for use within the kernel when a potentially long but

nevertheless finite operation is started. For example, a spacing operation on a

tape drive or an I/O request to an NFS server is essentially indefinite. In both of

these cases, the operation is guaranteed to eventually finish, perhaps due to a

timeout; but the end user may like the option of terminating the operation mid-

stream by sending the process a signal.

093-701083 Licensed material—-property of Data General Corporation 7-7

pm_send_signal_by_index

pm_send_signal_by_index

Syntax

void pm_send_signal_by index (index, signal, signal_source)

sc_process_index type index; /*READ ONLY*/

pm_signal_type signal; /*READ ONLY*/

pm_signal_source_enum_type signal_source; /*READ ONLY*/

Summary

If the subject process exists, this routine sends the process a signal. If the

subject process does not exist, this routine has no effect.

Parameters

index — The subject process’ index. The index is a unique identifier assigned to
each process. It is maintained in per process data and is contained in the

variable sc_my_process_index.

signal — The signal to send.

signal_source — The reason the signal is being sent.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

7-8 Licensed material—-preperty of Data Genera! Cosporation ; 092-70708S

pm_senc_signal_by_process_group

pm_send_signal_by_process_group

Syntax

status_type pm_send_signal_by —process_group (process_group,

Signal_number,

signal_source)

pr_process_id type process_ group; /*READ ONLY*/
pr_signal_type Signal_number; /*READ ONLY*/
pr_signal_source_enum_ type Signal_source; /*READ ONLY*/

Sumrr :ry

T. -s routine sends a signal to a process group.

Pararr “ters

PF :cess_group — The process group ID of the target process.

si, 2al_ number — The signal being sent.

si, aal_source — The reason the signal is being sent.

Deseri tion

S« .d the signal signal_number to the processes whose process group ID is
p :cess_group. The signal is sent only to processes that are not system
pi sesses and to which the calling process has permission to send a signal.

Return: Values

T= following values may be returned:

O” — The signal was sent successfully.

P: _ESRCH_NO_SUCH_PROCESS_GROUP — No process corresponding to
th se specified by process_group can be found.

P: _ESRCH_NO_PERMISSION — The calling process does not have permission
to signal the processes identified by process_group.

0$3-701093 Licensed materiai—property of Data General Corporation 7-9

pm_send_signal_by_process_id

pm_send_signal_by_process_id

Syntax

status_type pm_send_signal_by process_id (process_id,

signal_number,

signal_source)

pm_process_id_ type process_id; /*READ ONLY*/

pm_signal_type signal_number; /*READ ONLY*/

pm_signal_source_enum_type signal_source; /*READ ONLY*/

Summary

This routine sends a signal to a process identified by process_id.

Parameters |

process_id — The process ID of the target.

signal_ number — The signal being sent.

signal_source — The reason the signal is being sent.

Description

Send the signal signal_number to the process identified by process_id. If

signal_number is PM_SIGNAL_SIGKILL, pm_send_signal_by_process_id

assumes that process_id does not identify a system process.

Return Values

The following values may be returned:

OK — The signal was sent successfully.

PM_ESRCH_NO_SUCH_PROCESS_ID — No process corresponding to that

specified by process_id can be found.

PM_EPERM_NO_KILL_ACCESS — The sending process does not have

permission to signal the receiving process.

7-1 6 Licensed materia\—property of Data General Corporation - 993-791 083

pm_send_signal_with_sigintfo

pm_send_signal_with_siginfo

Syntax

void pm_send_signal_with_siginfo (index, siginfor_ptr)

sc_process_index_type index, /*READ ONLY*/

pm_siginfo_ptr_type siginfo_ptr /*READ ONLY*/

Summary

Send a signal to the process identified by index.

Parameters

index — The index of the process to whom we are sending the signal.

siginfo_ptr — A pointer to 2 pm_siginfo_type structure that describes the signal.

Description

If the target process exists, this routine will send it the signal described in the

structure pointed to by siginfo_ptr. If the target process is initializing,

terminating or already terminated, this routine does nothing. If the target process

is in the Free state, this routine issues a panic.

To call this routine, you must completely describe the signal by filling in all of the

fields of the signal information structure.

Return Values

None.

Abort Conditions

Panic may be invoked with the following error codes:

PM_PANIC_SEND_TO_FREE_PROCESS — The target process is in the Free

state.

End of Chapter

093-701083 Licensed materiat—property of Data Genera! Corporation 7-1 1

Chapter 8

Interrupt Management Routines

This chapter describes the DG/UX kernel routines used in handling interrupts. We

start with a brief introduction to interrupt handling. Following the introduction is a

“Constants and Data Structures” section, which lists some of the major constants and

data structures used by routines in this section. Check the appropriate include files

(for example, check i_vp.h for structures beginning with the vp acronym) for a
complete and current list of all constants and structures.

Overview to Using Interrupt Management

Routines

The kernel provides routines to mask and unmask device interrupts and processor

interrupts. The routines to mask and unmask interrupts are architecturally

independent, allowing applications that use these routines to be unaware of the

processor they are currently executing on.

Disabling Interrupts on a Single Processor

You use vp_disable_interrupts to disable all interrupts on the processor on which

your process is executing. The call keeps that processor from receiving interrupts.

When you disable interrupts on your home processor, your process cannot be

preempted or interrupted; in a certain sense your process now “owns” that processor.

For this reason, you should use great care when disabling processor interrupts.

In nonsymmetric systems, processes often disable processor interrupts for locking

purposes — in order to have exclusive access to a resource, such as a data structure.

This does not work under symmetric processing because disabling interrupts on one

processor does not prevent another process executing on a different processor from

accessing the resource.

Processor interrupts are enabled using the routine vp_enable_interrupts. Any
interrupt that occurred while interrupts were disabled was saved and will occur

immediately when interrupts are enabled.

The disabling of interrupts on a processor is nested, such that for every disable an

enable is required before interrupts are actually enabled on the processor. This

prevents premature enabling of interrupts. You can use vp_are_interrupts_disabled

to determine if the processor’s interrupts are already disabled.

093-701083 Licensed material—property of Data General Corporation 8-1

Overview to Using Interrupt Management Routines

Masking Interrupts for a Particular Device

In addition to enabling/disabling interrupts for the entire processor, you can use

io_mask_interrupt_variety and io_unmask_interrupt_variety to mask and unmask

interrupts for a particular device. Masking device interrupts stops the device from
interrupting on all processors.

The device mask and unmask routines take a parameter called interrupt_variety of

type uc_interrupt_enum_type that allows drivers to maintain architectural

independence. There are uc_interrupt_enum_type constants defined for every

interrupt type for all hardware architectures the DG/UX system supports, for

example, Uc_Keyboard_Interrupt, Uc_SCSI_Interrupt, Uc_Duart_Interrupt. Using

these pre-defined values means your code can be used by all Data General machines

that use the DG/UX system. For example, code to mask the duart interrupt would

operate unchanged on all Data General machines that have duarts and the DG/UX
system.

The masking of a device interrupt is nested, such that for every mask an unmask is

required to actually unmask the interrupt.

Device drivers must mask device interrupts as part of the procedure to gain exclusive

access to device registers. Because of the DG/UX kernel’s symmetric

multiprocessing, it is possible for one processor to be issuing commands to a device

while another processor is handling a completion interrupt for the device. In both

cases, the code must access the device registers. The following standard locking

procedure keeps two sets of code from attempting access simultaneously:

NOT_INTERRUPT_HANDLER: INTERRUPT _HANDLER:

if(!obtain_lock_no_wait(

&controller_lock)

return;

io_mask_interrupt_variety (

Uc_Some_Interrupt);

obtain_lock(&controller lock) ;

(manipulate registers) (manipulate registers)

release_lock(&controller_lock);

io_unmask_interrupt_variety(

Uc_Seome_Interrupt);

|
|
|
|
|
|
|
|
| .

| release_lock(

| scontroller_ lock);

Non-interrupt handler code (let’s call it completion code) must mask the device’s

interrupts before it obtains a lock on the device’s registers. This is done to prevent

the device from interrupting and invoking interrupt handler code on a processor other

than the completion code’s home processor. Such masking of the device interrupts

prevents a potential deadlock situation that can occur if interrupt handler and

completion code are executing on the same processor.

Consider the scenario of completion code executing on Processor A and accessing

device X without masking device interrupts. First, the completion code obtains a

lock on the device registers. If the device interrupts Processor A while the lock was

held, we would enter interrupt handler code. The interrupt handler code would try to

obtain the lock but would fail and retun. However, the interrupt would still be high

8-2 Licensed materiah—property of Data General Corporation — os * — 093-781083

Overview to Using Interrupt Management Routines

on the processor because the interrupt handler could not access the device registers

to acknowledge the interrupt. The processor would therefore return immediately to

the interrupt handler code to service the interrupt, which would return because it

could not obtain the lock, etc. This cycle would continue forever, deadlocking the

system. Now, consider the same scenario with the completion code masking the

device interrupts before acquiring the device register lock. In this case the device

cannot interrupt the processor while the controller lock is held, thus avoiding the

deadlock scenario.

In the above scenario, the deadlock could also be avoided by having completion code

disable all processor interrupts instead of just the device interrupts. However, under

symmetric multiprocessing, disabling processor interrupts is not sufficient.

Consider the scenario of completion code executing on Processor A that simply

disables all processor interrupts. This prevents the device from interrupting

_ Processor A, thus avoiding the deadlock described earlier. However, under

symmetric multiprocessing the device may still interrupt another processor, say

Processor B. In this case, Processor B would execute interrupt handler code, try to

obtain the lock held by Processor A, fail and return. As before, the interrupt would

remain high, causing Processor B to repeat the procedure. This would continue until

the completion code on Processor A released the lock.

Although this situation would not cause the system to deadlock, it is inefficient to

have Processor B sit in a loop trying to service the interrupt until the lock is released

by Processor A. Now consider the same scenario where completion code masks the

device interrupt before obtaining the lock. The masking prevents the interrupt from

being generated to ANY processor, thereby avoiding the situation just described.

The two scenarios described show the necessity for a driver to mask device interrupts.

The routine io_unmask_interrupt_variety is used to unmask the interrupts. Ifa

device generates an interrupt while it is masked by the processor, the interrupt is not

lost. When the interrupt is unmasked, it will occur immediately.

The routines described in this section are as follows:

® io_mask_interrupt_variety

@ io _unmask_interrupt_variety

@® vp_are_interrupts_disabled

@ vp_disable_interrupts

@ vp_enable_interrupts

Routines beginning with vp and io require the i_vp.h and i_io-h include files,

respectively.

093-701083 Licensed material—property of Data General Corporation 8-3

Constants and Data Structures

Constants and Data Structures

The routines in this section use the following constants and data structures. Try to

avoid dependencies on the specifics of these structures, such as size or location of

fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must

verify exact variable definitions in the appropriate include file (for

example, check i_uc.h for structures beginning with the uc acronym).

Chapter 1 lists the various include files.

uc_interrupt_enum_type

typedef enum

{

Uc_System_Alarm Clock_Interrupt =

Uc_Keyboard_Interrupt =

Uc_Parallel Port_Interrupt

Uc_Ethernet_Interrupt =

Uc_SCSI_Interrupt =

Uc_Duart_Interrupt=

Uc_Graphics_Device_Interrupt

Uc_Level_1 VME Interrupt

Uc_Level_2_VME_Interrupt

Uc_Level_3_VME_Interrupt

Uc_Level_4 VME Interrupt

Uc_Level_5 VME Interrupt

Uc_Level_6_VME_ Interrupt

Uc_Level_7_VME_Interrupt

Uc_Dma_Terminal_Count_Interrupt =

Uc_System_Console_Interrupt

Uc_Zbuffer_ Interrupt =

Uc_Syne_Interrupt =

Uc_Interrupt_Enum_ Last =

.

e} uc_interrupt_enum_ type

Description

This type is used to describe the type (or variety) of interrupt to be masked or

unmasked.

8-4 : Licensed material—property of Data Genera! Corporation .- O83-701083 -

io_mask_interrupt_variety

io_mask_interrup:_variety

Syntax

void io_mask_interrupt_variety (interrupt_variety)

uc_interrupt_enum_type interrupt_variety; /*READ ONLY*/

Summary

This routine masks a variety of interrupt specified in interrupt_variety.

Parameters

interrupt_variety — The type of interrupt to be masked. Any device that uses

the interrupt variety to interrupt the system is effectively masked.

Description

This routine masks interrupts for a device with the interrupt type given in

interrupt_variety. Any devices that use the interrupt variety to interrupt the

system are effectively masked. If there are multiple processors, the interrupt is

disabled for all precessors. It also nests mask and unmask requests.

The routine uses 2 mask depth associated with the specified device to nest

interrupts. This r:-utine increments the mask depth, and if the new value is one,

the hardware is ur iated to reflect a change in the mask.

You may call this -outine from base level or from interrupt level. It remembers

and correctly restc>es the state of the interrupt enable flag.

Return Values

None.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

IO_PANIC_ILLEGAL_MASK_INTERRUPT — The mask depth associated with

the specified device has become larger than it should. This must be due to

incorrect pairing of the mask and unmask functions by the caller.

0$3-701083 Licensed material—property of Data General Corporation 8-5

io_mask_interrupt variety

io_unmask_interrupt_variety

Syntax

void io_unmask_interrupt_variety (interrupt_variety)

uc_interrupt_enum_type interrupt_variety; /*READ ONLY*/

Summary

This routine unmasks a variety of interrupt specified in interrupt_variety.

Parameters

interrupt_variety — The type of interrupt to be unmasked. Any device that uses

this interrupt variety is effectively unmasked.

Description

This routine unmasks interrupts for a device with the interrupt type given in

interrupt_variety. Any devices that use the interrupt variety to interrupt the

system are effectively unmasked. If there are multiple processors, the interrupt is

enabled for all processors. The routine nests mask and unmask requests.

The routine uses a mask depth associated with the specified device to nest

interrupts. This routine decrements the mask depth, and if the new value is 0,

the hardware is updated to reflect a change in the mask.

You may call this routine from base level or from interrupt level. It remembers

and correctly restores the state of the interrupt enable flag.

Retura Values

None.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

IO_PANIC_ILLEGAL_UNMASK_INTERRUPT — The device’s mask depth is

equal to zero. This must be due to incorrect pairing of the mask and unmask

function calls.

8-S | Licensed material—property of Data Genera Corporation $3-761083

io_unmask_interruptvariety

vp_are_interrupts_disabled

Syntax

boolean_type vp_are interrupts disabled ()

Summary

This routine returns TRUE if interrupts are disabled in the calling processor.

Parameters

None.

Return Values

TRUE — Interrupts are disabled in the calling processor.

FALSE — Interrupts are enabled in the calling processor.

Exceptions

None.

093-701083 Licensed material—property of Data General Corporation 8-7

vp_disable_interrupts

vp._disable_imterrupts

Syntax

void vp_disable_ interrupts ()

Summary

This routine disables interrupts in the calling processor.

Parameters

None.

Description

Interrupts are disabled and the interrupt disable depth count is incremented. An
interrupt disable depth count is maintained so that calls to this routine and

yp_enable_interrupts will nest properly.

Return Values

None.

Exceptions

None.

8-8 Licensed materiaproperty of Data Genera! Corporation ; 0$3-701083. -

vp_enable_interrupts

vp_enable_interrupts

Syntax

void vp_enable_interrupts ()

Summary

This routine counters a previous call to disable interrupts in the calling processor.

Interrupts are enabled if the disable depth is returned to zero.

Parameters

None.

Description

Multiple disable interrupt calls are tracked by the disable count depth. This

routine counteracts one disable call by decrementing the disable depth count. If

this decrement restores the count to its initial value, interrupts are enabled.

Return Values

None.

Exceptions

None.

End of Chapter

093-701083 Licensed materia}—pre perty of Data General Corporation 8-9

Chapter 9

Memory Allocation and

Deallocation Routines

This chapter describes the kernel routines that your driver uses for allocating and

releasing memory. We start with a brief introduction to allocating and releasing

memory. Following the introduction is a "Constants and Data Structures” section,

which lists some of the major constants and data structures used by routines in this

section. Check the appropriate include files (for example, check i_vm-h for

structures beginning with the vm acronym) for a complete and current list of all

constants and structures.

Overview to Using Memory Management

Routines

We discuss the basics of kernel memory in Chapter 3. This section examines the

particular routines you use for allocating and deallocating wired and unwired memory.

As described in Chapter 3, there are two basic types of kernel memory: wired

(memory that will not be paged out) and unwired (memory that may be paged out).

Hence, kernel memory management routines come in two corresponding versions,

wired and _unwired_ referred to in short hand as _(un)wired_ (for example,

vm_get_(un)wired_memory refers to both vm_get_wired_memory and

ym_get_unwired_memory). In general, you should allocate unwired memory because

wired memory is a limited resource. However, you must allocate wired memory for

data structures that are referenced at interrupt level or for code that may be

referenced during a page fault (for example, disk driver code).

The kernel provides two different ways to allocate memory: a demand version and a

perhaps version. The perhaps version (vm_perhaps_get_(un)wired_memory) returns

a pointer to a space of the required number of bytes or a

VM_INVALID_MEMORY._PTR pointer if no more (un)wired memory is available.

The demand version (vm_get_(un)wired_memory) should be used only for critical

data segments. Like the perhaps version, the demand version returns a pointer to the

allocated space if its successful. However, if the requested number of bytes are not

available, the demand version causes a system panic.

Memory is deallocated using vm_release_(un)wired_memory. Note that you must

match the get and release calls. For example, on release, you must supply the same

number of bytes to the release call as specified in the get call. You must also release

the memory in the same type as which it was originally allocated. Thus, you cannot

allocate wired memory, unwire it, then release it as unwired memory — or allocate as

unwired memory, wire it, then release it as wired memory.

093-701083 Licensed material—property of Data Genera! Corporation 9-1

Overview to Using Memory Management Routines

Once you have allocated memory, you may switch its type by calling

vm_wire_memory or vm_unwire_memory. However, there are certain restrictions on

this conversion. The system keeps a “wire-count” which it increments for each wire

and decrements for each unwire. You may wire (increment) and unwire (decrement) a
memory area as much as you want as long as you do not take its wire count below its

initial value: 0 for wired; 1 for unwired.

Memory-mapped I/O requires special allocation routines. Normally, 2 driver works

within a logical address space and does not know or care what physical addresses are

being used. However, in memory-mapped I/O, the device’s registers are fixed to

physical memory addresses. To make sure that the logical addresses the driver uses

map to the correct physical addresses, you must direct a particular logical-to-physical

mapping for the device’s control registers. To do this you first reserve logical address

space by allocating memory (that is calling one of the "get" routines). Then you call

vm_map_physical_memory to map the logical address space to particular physical

memory addresses. The device driver can now access the device registers through its

logical address space.

The kernel also provides a number of routines to help drivers transfer data between

the host and a device. To start a data transfer, the driver must have a buffer set up in

wired memory. If the buffer was allocated out of wired kernel memory, then there is

no need to wire the memory. Otherwise, if the buffer is in user space or was allocated

out of unwired kernel memory, then the driver must wire the buffer memory using

vm_wire_memory. To start the transfer (read or write), the driver must give the

device the buffer’s physical address. The driver gets the physical address of the

buffer using vm_get_physical_byte_address. You cannot assume that the pages

occupied by the buffer are physically contiguous. Thus, you must call

vm_get_physical_byte_address for each page in the wired buffer.

After the I/O operation completes, you should unwire the previously wired memory.

After completion the driver must also inform the kernel about the state of the

memory. The kernel must know whether the memory was referenced and/or

modified. DMA transfers do not set the referenced or modified bits in the page

tables. If data was transferred from the buffer, then the device driver should call

vm_mark_ref_and_unwire_memory to flag the memory as referenced. If data was

transferred to the buffer, then the device driver should call

vm_mark_mod_and_ref_and_unwire_memory to flag the memory as referenced and

modified. Failure to appropriately set the reference and/or modified bits can cause

new buffer data to be lost.

The routines described in this section are as follows:

e vm_get_physical_byte_address

© vm_get_unwired_memory

@® vm_get_wired_memory

@® vm_map_physical_memory

@® vm_unmap_physical_ memory

S-2 os Licensed material--property of Data Genera! Corperation me ' (993-701083

Overview to Using Memory Management Routines

@® vm_mark_ mod_and_ref_and_unwire_memory

® vm_mark_ref_and_unwire memory

@ vm_perhaps_get_unwired_ memory

@ vm_perhaps_get_wired_memory

@® vm_release_unwired_memory

® vym_release_wired_memory

® vm_unwire_memory

@ vm_wire_memory

Routines beginning with vm require the i_vm.h include file.

Constants and Data Structures

This section discusses the literals used to specify data alignment in calls to

vym_get_wired_memory and vm_get_unwired_memory.

NOTE: Because constants and data structures are subject to change, you must

verify exact variable definitions in the appropriate include file (for

example, check i_vm.h for structures beginning with the vm acronym).

Chapter 1 lists the various include files.

Page Alignment Literals

The following literals are used to specify alignment when “getting” memory:

VM_DOUBLE_WORD_ALIGNED

This constant will request double word alignment (64-bit).

VM_WORD_ALIGNED

This constant will request word alignment (32-bit).

VM_BYTE_ALIGNED

This constant will request byte alignment.

VM_DEFAULT_ALIGNMENT

This constant represents the most efficient alignment for use when allocating strings

and structures. The default is double word alignment (64-bit) because, in most cases,

the system deals with double word alignment most efficiently. Use this constant

0$3-701083 Licensed materia—property of Data Genera! Corporation 9-3

Constants and Data Structures

whenever possible.

After memory has been aligned, you cannot ask for a quantity smaller than the

specified alignment. To ask for page alignment for more than one page, use

VM_PAGE_ALIGNED shown below. To ask for page alignment for less than one

page, use VM_.DEFAULT_ALIGNMENT_NO_PAGE_CROSS (shown below).

VM_PAGE_ALIGNED

This constant will request page alignment. Don’t use this alignment when

VM_DEFAULT_ALIGNMENT_NO_PAGE_CROSS is sufficient, because it will

result in wasted space.

VM_DEFAULT_ALIGNMENT_NO_PAGE_CROSS

This constant represents an alignment that is guaranteed not to cross a page boundary

and will be default-aligned. Allocations that use this alignment are restricted to one

page or less.

VM_INVALID_MEMORY_PTR

This constant will be returned by vm_perhaps_get_wired_memory and

vm_perhaps_get_unwired_memory when the memory allocation fails.

9-4 Licensed materiai—prope:ty of Data General Corperatcn - ; 093-701023 ©

ants

vm_get_physical_byte_address

vm_get_physical_byte_address

Syntax

void vm_get_p»ysical_byte_address (logical_address,

is_user_address,

physical_address_ptr)

byte _address_type logical_address; /*READ ONLY*/

boolean _ type is_user_address; /*REZD ONLY*/

byte address tvpe * physical_address_ ptr; /*WRITE ONLY*/

Summary

This function returns the physical address that corresponds to the given logical

byte address.

Parameters

logical_address — The logical address for which a phvsical address is needed.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is_user_address is TRUE, the address is a user address. If

FALSE, it is a kernel address.

physical_address_ptr — A pointer to the physical address corresponding to the

given logical address, filled by this routine. If the logical address was invalid, this

address will be VM_INVALID_PHYSICAL_ADDRESS_PTR.

Description

See Summary.

Return Values

None.

Exceptions

None.

083-701083 Licensed material—property of Data General Corporation 9-5

vm_get_unwired_memory

vm_get_unwired_memory

Syntax

pointer_to_any type vm_get_unwired_memory (bytes, alignment)

uint32_type bytes; /*READ ONLY*/

uint32_type alignment; /*READ ONLY*/

Summary

This routine allocates unwired memory from available address space.

Parameters

bytes — The number of bytes to be allocated; bytes must be a positive value.

alignment — The byte alignment of the allocated space. Constants for the
alionment parameter are defined in i_vm.h.

Description

This routine allocates unwired memory on the alignment specified by the user.

The amount of memory allocated is specified by the bytes parameter. If the

allocation fails, the system panics.

Return Values

memory_ptr — The routine returns a byte pointer to the allocated space.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

VM_PANIC_GET_UNWIRED_MEMORY — The requested memory could not be

allocated.

8-6 '. . Licensed material—property of Data Genera: Corporation _ a, 093-701083

vm_get_wired_memory

vm_get_wired_memory

Syntax

pointer to_any type vm_get_wired_memory (bytes, alignment)

uint32_type bytes; /*READ ONLY*/

uint32_type alignment; /*READ ONLY*/

Summary

This routine allocates wired memory from available address space.

Parameters

bytes — The number of bytes to be allocated; bytes must be a positive value.

alignment — The byte alignment of the allocated space. Constants for the

alionment parameter are defined in i_vm.h.

Description

This routine allocates wired memory on the alignment specified by the user. The

amount of memory allocated is specified by the bytes parameter. If the

allocation fails, the system panics.

Return Values

memory_ptr — The routine returns a byte pointer to the allocated space.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

VM_PANIC_GET_WIRED_MEMORY — The requested memory could not be
allocated.

083-701083 Licensed materiai—property of Data Genera! Corporation 9-7

vm_map._physical_memory

vm_map_physical_memory

Syntax

status_type vm_map_physical_memory

byte_address_type

byte_address_type

uint32_type

logical_addr;

physical_addr;

num_bytes;

bit32_type access_mode;

int32_type sharing;

bit32_type control _flags;

Summary

This routine supports the mmap(2) system call.

Parameters

(logical_addr,

physical_addr,

num_bytes,

access_mode,

sharing,

control flags)

/*READ

/*READ

/*READ

/ *READ

/*READ

/*READ

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

logical_addr — The first logical address in a contiguous block of num_bytes to

be mapped to physical_addr. This address must be on a page boundary.

physical_addr — The first physical address in a contiguous block of num_bytes

to which the logical_addr will be mapped. This address also must be on a page

boundary.

num_bytes — The total number of bytes to be mapped, which must be an integral

multiple of the logical page size.

access_mode — This is the bitwise OR of all appropriate access modes. It may

contain any of PROT_READ, PROT_WRITE, and/or PROT_EXEC, from

sys/mman.h. No checking will be performed as to the appropriateness of the

specified modes, and it is assumed that privilege violations will not occur, or be

enforced by higher level routines.

sharing — Under the current implementation, this must be MAP_SHARED.

MAP_PRIVATE is not yet supported though it is specified as an option.

control_flags — This is a bit-field used to send special control information. One

bit is used for cache control. This bit-field may include information for inhibiting

caching which should be passed on to the page table entries of the mapped

physical memory. A second bit is used to specify whether the passed logical

address is to be in the user or kernel address space. The remaining bits are

| Licensed materialt—property of Data Genera! Corporation 093-701083

vm_map_physical_ memory

reserved for later expansion.

The following list describes the bit positions of the currently supported flags:

Bit 0 — This flag specifies whether user or kernel address space is to be used.

Use VM_MMAP_IS_KERNEL_ADDRESS_SPACE_MASK to specify kernel

addresses; otherwise, user addresses are assumed by default. (Bit 0 is the lowest

order bit.)

Bit 1 — This flag specifies whether to write through or inhibit caching. Use

VM_MMAP_WRITE_THROUGH_MASK to specify write-through caching on

architectures that support it; otherwise, by default, no caching (cache inhibiting)
is assumed.

Bits 2-31 — All other bits are unused and reserved for expansion.

Description

This routine will support the mmap(2) system call. It provides the kernel data

structure modifications to map an area of a process’s address space to real

physical memory. Basically, this is done by searching for a contiguous region of

a process’s data area and setting pointers to the appropriate physical memory

frame.

It may be called by either user or kernel processes; that is, the passed

logical_addr may be either a kernel or user address. A bit in the control_flags

parameter controls this distinction. The logical_addr passed, offset by

num_bytes, must be part of the current address space before this call is made.

Kernel processes should have already allocated unwired memory, while users

should valloc(Q the appropriate range before making the mapping call.

The range addresses to be mapped must have referred to an existing region of a

process’s data area, or else an error will result. Any existing data that was

addressed in this range will be discarded. No other explicit cleanup is needed for

an address space that has been mapped. If the process that called mmap(2) exits,

its mapped region will be implicitly unmapped by the exit path. Likewise, if the

process calls any version of exec(2), the mapped region will also be implicitly

unmapped before the new program begins to execute. Finally, in the case of a

fork(2), the new child will implicitly inherit the parent's mapped address space.

Return Values

OK — All frames were mapped successfully.

VM_EINVAL_MMAP_UNSUPPORTED — This error will be returned if the

parameter sharing is set to MAP_PRIVATE; currently, only MAP_SHARING is

supported. The function will abort before any modifications are made.

VM_EINVAL_MMAP_BYTES_NOT_MULTIPLE — This error code will be

returned if the parameter num_bytes is not an integral multiple (greater than

zero) of the size of a physical page. The function will abort before any

modifications are made.

093-701083 Licensed material—property of Data Genera! Corporation 9-9

vm_map_physical_ memory

VM_EINVAL_MMAP_BAD_ADDR_BOUNDARY — This error code will be

returned if either of the address parameters, physical_addr or logical_addr, is

not aligned on a page boundary. The function will abort before any modifications

are made.

VM_EINVAL_MMAP_SPACE_UNALLOCATED — This error will occur when

the logical_addr is not already a part of the current process’s address space. The

function will abort before any modifications are made.

VM_EINVAL_MMAP_ADDRESS_NOT_DATA — This error will be returned

when the logical_addr is not a part of the calling process’s data area. Only

regions of a process’s address space of the data variety will be accepted for

mapping. The function will abort before any modifications are made.

VM_EINVAL_MMAP_BAD_REGION — This error will be returned in several

circumstances when the range of addresses to be mapped is inappropriate. The

following are specific examples of this: when logical_addr offset by the

num_bytes is greater than the maximum address (4G); or when the region of

addresses to be mapped, logical_addr to logical_addr+num_bytes, does not fit in

the size of the process’s current data area; or when logical_addr cannot be

located in any address area. The function will abort before any modifications are

made.

VM_EINVAL_MMAP_ALREADY_MAPPED — This error will be returned

when any data contained within the passed range of addresses (logical_addr

through logical_addr+num_bytes) is already mapped. A region of a process’s

data area can be remapped, but only if an explicit munmap(2) is done before the

remap attempt. The function will abort, and this error will return before any

modifications are made.

Abort Conditions

None.

9-40 ‘Licensed material—property of Data General Corporation . 093-701083

vm_unmap_physical_memory

vm_unmap_physical_memory

Syntax

status_type vm_unmap_physical_memory (logical_addr,

num_bytes,

control_flags)

byte_address type logical_addr; /*READ ONLY*/

uint32_type num_bytes; /*READ ONLY*/

bit32_type control_flags; 7 *READ ONLY*/

Summary

This routine will support the munmap(2) system call.

Parameters

logica]_addr — The first logical address in a contiguous block of num_bytes to

be unmapped. This address must be on a page boundary.

num_bytes — The total number of bytes to be unmapped. This does not

necessarily have to be identical to the number that were mapped originally;

however, it must be an integral multiple of the logical page size.

control_flags — This is a bit-field used to send special control information. A bit

is necessary to specify whether the passed logical address is to be in the user or

kernel address space. The remaining bits may be used later, and are reserved for

expandability. The following list describes the bit positions of the currently

supported flags:

Bit 0 — This flag specifies whether to use user or kernel address space. Use

VM_MUNMAP_IS_KERNEL_ADDRESS_SPACE_MASK to specify kernel

addresses; otherwise, user addresses are assumed by default. Bit 0 is the lowest

order bit.

Bits 1-31 — All other bits are unused and reserved for expansion.

Description

This routine will support the munmap(2) system call. It will unmap an area of a

process’s address space to which was previously mapped by mmap(2). Only

previously mapped areas can be unmapped. Upon unmapping, the appropriate

address space will be reset to be non-resident but will still be a valid area of the

data area.

It may be called by either user or kernel processes and still work properly; that

is, the passed logical_addr may be either a kernel or user address. A bit in the

083-701 083 Licensed materiali—property of Data Genera! Corporation 9-1 1

vm_unmap_physicalL_ memory

parameter control_flags will be used to make this distinction.

Return Values

OK — All frames were unmapped successfully.

VM_EINVAL_MUNMAP_BYTES_NOT_MULTIPLE — This error code will be

returned if the parameter num_bytes is not an integral multiple of the physical

page size. The function will abort before any modifications are made.

VM_EINVAL_MUNMAP_BAD_ADDR_BOUNDARY — This error code will be

returned if the address parameter, logical_addr, is not aligned on a page

boundary. The function will abort before any modifications are made.

VM_EINVAL_MUNMAP_BAD_REGION — This error code will be returned

when several situations occur: if the range of addresses to unmap (logical_addr

through logical_addr+num_bytes) is not entirely valid; if the starting address

cannot be found in the process’s data area; or if the address range overflows

beyond the 4G upper limit.

VM_EINVAL_MUNMAP_DATA_NOT_MAPPED — This error will occur if an

attempt is made to unmap any portion of an address space that has not been

previously mapped. Only previously mapped regions may be unmapped.

Abort Conditions

None.

9-12 Licensed material—property of Data Serera! Corporation . 093-701083

vm_mark_mod_and_ref_and_unwire_memory

vm_mark_mod_and_ref_and_unwire_memory

Syntax

void vm_mark_mod_and_ref_and_unwire_memory (start_address,

is_user_address,

bytes_to_unwire)

pointer_to_ any type start_address; /* REBRD ONLY */

boolean_type is_user_address; /* READ ONLY*/

uint32_type bytes_to_unwire; /* READ ONLY */

Summary

This routine marks the frames indicated as having been referenced and modified,

and then unwires the frames.

Parameters

start_address — The byte address indicating the start of the memory to be

unwired. The value in start_address is rounded down to a page boundary.

is_user_address — Indicates whether the logical address specified is a user Or
kernel address. If is_user_address is TRUE, the address is a user address. If

FALSE, it is a kernel address.

bytes_to_unwire — The number of bytes to be unwired.

Description

This routine marks frames as having been referenced and modified and then

unwires them. It starts at start_address, goes for bytes_to_unwire number of

bytes.

Memory needs to be marked as modified if it has been wired and then used as an

V/O buffer. I/O uses direct memory access, which does not cause the frame to

be marked as modified automatically. Therefore, this routine will set the

modified bit explicitly.

Return Values

None.

093-701083 Licensed materiai—property of Data Generai Corporation 9-1 3

vm_umark_ref_and_unwire_memory

vm_mark_ref_and_unwire_memory

Syntax

void vm_mark_ref_and_unwire_memory (start_address,

is_user_address,

bytes _to_unwire)

pointer to_any type start_address; /*READ ONLY*/

boolean type is_user_address; /*READ ONLY*/

uint32_type bytes to _unwire; /*READ ONLY*/

Summary

This routine marks the indicated frames as having been referenced and then

unwires them.

Parameters

start_address — The byte address indicating the start of the memory to be

unwired.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is_user_address is TRUE, the address is a user address. If

FALSE, it is a kernel address.

bytes_to_unwire —- The number of bytes to be unwired.

Description

This routine marks the frames as having been referenced and then unwires them.

It starts at start_address goes for bytes_to_anwire number of bytes.

Memory needs to be marked as referenced if it has been wired and then used as

an I/O buffer. I/O uses direct memory access, which does not cause the frame

to be marked as referenced automatically. Therefore, this routine will set the

referenced bit explicitly.

Return Values

None.

9-1 4 + Licensed materiai—property of Data General Corporation - 093-701083

vm_perhaps_get_unwired_memory

vm_perhaps_get_unwired_memory

Syntax

pointer _to_any_ type vm_perhaps_get_unwired_memory (bytes,

alignment)

uint32_type bytes; /*READ ONLY*/

uint32_type alignment; /*READ ONLY*/

Summary

This routine allocates unwired memory.

Parameters

bytes — The number of bytes to be allocated; bytes must be a positive value.

alignment — The byte alignment of the allocated space. Constants for the

alionment parameter are defined in i_vm.h.

Description

Memory is allocated from unwired memory on the alignment specified by the

user. The amount of memory allocated is specified by the bytes parameter.

Retarn Values

memory_ptr — The memory was allocated successfully.

VM_INVALID_M=MORY_PTR — The memory could not be allocated.

Exceptions

None.

093-701083 Licensed materia+—property of Data General Corporation 9-1 5

vm_perhaps_get_wired_memory

vm_perhaps_get_wired_memory

Syntax

pointer to _any_type vm_perhaps_get_wired_memory (bytes,

alignment)

uint32_type bytes; /*READ ONLY*/

uint32_type alignment; /*®READ ONLY*/

Summary

This routine allocates wired memory.

Parameters

bytes — The number of bytes to be allocated; bytes must be a positive value.

alignment — The byte alignment of the allocated space. Constants for the

alignment parameter are defined in i_vm.b.

Description

Memory is allocated from wired memory on the alignment specified by the user.

The amount of memory to be allocated is specified by the bytes parameter.

Return Values

memory_ptr — The memory was allocated successfully.

VM_INVALID_MEMORY_PTR — The memory could not be allocated.

Exceptions

None.

9-16 © - Licensed material—property of Data General Corporation ss “+ 993-701083 —

vm_release_unwired_memory

vm_release_unwired_memory

Syntax

void vm_release_unwired_memory (memory_ptr, bytes)

pointer_to_any type memory_ptr; /*READ ONLY*/

uint32_ type bytes; /*READ ONLY*/

Summary

This routine releases unwired memory that was previously obtained via a

vm_get_unwired_memory or vm_perhaps_get_unwired_memory Call.

Parameters

memory_ptr — A byte pointer to the start of the memory to be released.

memory_ptr must be the same pointer that was returned by the

vi_get_unwired_memory or vm_perhaps_get_unwired_memory call when

memory was originally requested.

bytes — The number of bytes to be released. bytes must be the same number of

bytes as given to the vm_get_unwired_memory Or

ym_perhaps_get_unwired_memory call when memory was originally requested.

Description

This routine releases the given number of bytes of unwired memory, starting at

the given byte address. This memory must have been obtained via a

vm_get_unwired_memory or ym_perhaps_get_unwired_memory Call.

Return Values

None.

Exceptions

None.

0$3-701083 Licensed materia\—property of Data General Corporation 9-1 7

vm_release_wired_memory

vm_release_wired_memory

Syntax

void vm_release_wired_memory (memory ptr, bytes)

pointer_to_any_ type memory_ptr; /*READ ONLY*/

uint32_type bytes; /*READ ONLY*/

Summary

This routine releases wired memory that was previously obtained via a

vm_get_wired_memory or ym_perhaps_get_wired_memory call.

Parameters

memory_ptr — A byte pointer to the start of the memory that is to be released.

memory.ptr must contain the same pointer that was returned by the

vm_get_wired_memory or the vm_perhaps_get_wired_memory call when memory

was originally requested.

bytes — The number of bytes to be released. bytes must be the same number of

bytes as requested in the vm_get_wired_memory or

vm_perhaps_get_wired_memory call when memory was originally requested.

Description

This routine releases the given number of bytes of wired memory, starting at the

given byte address. This memory must have been obtained via a

ym_get_wired_memory or vm_perhaps_get_wired_memory call.

Return Values

None.

Exceptions

None.

9-1 S . " Licensed material—property of Data General Corporation - 693-701683

vm_unwire_memory

sewtainttn,

vm_unwire_memory

Syntax

void vm_unwire_memory (start_address,

is_user_address,

bytes to_unwire)

pointer _to_any type start_address; /*READ ONLY*/

boolean_type is_user_address; /*READ ONLY*/

uint32_type bytes_to_unwire; /*READ ONLY*/

Summary

This routine unwires the memory indicated by start_address for the number of

bytes indicated by bytes_to_unwire.

Parameters

start_address — The byte address indicating the start of the memory to be

unwired.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is_user_address is TRUE, the address is a user address. If

FALSE, it is a kernel address.

bytes_to_unwire — The number of bytes to be unwired.

Description

This routine unwires the memory indicated by start_address for the number of

bytes indicated by bytes_to_unwire. Unwiring is done only on blocks of a

complete page. Therefore, if start_address is not the start of a page,

ym_unwire_memory starts at the next lowest page boundary. Similarly, if

bytes_to_unwire does not end on a page boundary, unwiring continues into the

next higher page boundary.

Return Values

None.

033-701083 Licensed materiai—property of Data General Corporation 9-1 9

vm_wire_memory

vm_wire_memory

Syntax

status_type vm_wire_memory (start_address,is_user_address,

bytes_to_wire)

pointer _to_any type start_address; /*READ ONLY*/

boolean type is_user_address; /*READ ONLY*/

uint32_type bytes_to_ wire; /*READ ONLY*/

Summary

This routine wires the memory indicated by start_address for the number of

bytes indicated by bytes_to_wire.

Parameters

start_address — The byte address indicating the start of the memory to be wired.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is_user_address is TRUE, the address is a user address. If

FALSE, it is a kernel] address.

bytes_to_wire — The number of bytes to be wired.

Description

This routine wires the memory indicated by start_address for the number of

bytes indicated by bytes_to_wire. Wiring is done only on blocks of a complete

page. Therefore, if start_address is not the start of a page, ym_wire_memory

starts at the next lowest page boundary. Similarly, if bytes_to_wire does not end

on a page boundary, wiring continues into the next higher page boundary.

Retarn Values

OK — The memory was successfully wired.

[other error statuses] — A hard I/O error occurred that prevented a page from

being brought in. The specific list of possible errors is too long to give here.

You can decode any status returned here using the error status decoding methods

described in Chapter 13.

End of Chapter

9-20 Licensed materiat—property of Data Genera! Corporation «i i 083-7OTBS

Chapter 10

User-Data Access Validation

Routines

This chapter describes the kernel routines that your driver uses to verify pointers to

data buffers. We start with a brief introduction to buffer verification. Following the

introduction is a "Constants and Data Structures” section, which lists some of the

major constants and data structures used by routines in this section. Check the

appropriate include files (for example, check i_sc.h for structures beginning with the

se acronym) for a complete and current list of all constants and structures.

Overview to Using User Data Access

Validation Routines

Routines in this section are used to validate user-supplied memory addresses and/or
to transfer data between user memory and kernel memory. Validation routines verify

that the buffer memory has permissions appropriate for the requested operation (for

example, read permission is granted for a write operation). All access validation

routines operate on the user address space of the calling process.

For most I/O operations, the kernel will validate user-specified buffers before

performing read/write buffer operations. However, the kernel cannot validate user-

specified buffers for an ioctl operation because ioctl packets may contain buffer

pointers embedded in the packet. Therefore, the driver must validate user buffers

itself for ioctl operations. The device driver validates the range of user space to and

from which data is to be copied before copying the data. Many DG/UX system calls

require that the range of user space be validated before attempting to write to it.

To validate the range of user space, a driver calls sc_check_byte_access with

SC_READ_ACCESS when reading, and with SC_WRITE_ACCESS when writing.

If sc_check_byte_access succeeds, the driver calls sc_read_bytes_from_user to read

and sc_write_bytes_to_user to perform the write.

Note both sc_read_bytes_from_user and sc_write_bytes_to_user may fail if a paging

I/O error occurs while the copy is in progress. This may happen even if a range of

addresses has been validated. If the validation fails, drivers should abort the system

call with an EFAULT status.

At the kernel level, you should be careful to read a given byte of user space memory

only once during a particular system call. If the user space is part of shared memory,

the memory may change between a first read and a second read. Similarly, you

should write to a given byte of user space memory only once during a particular

system call. Double writing may produce inconsistent results if another process is

093-701083 Licensed material—property of Data Genera! Corporation 1 0-1

Overview to Using User Data Access Validation Routines

reading the memory as part of a shared memory area.

You can also use sc_check_access_and_read_string_from_user to copy character

strings from user space, and sc_write_string_to_user to copy character strings to user

space. In these routines, the copy is terminated when a null character is encountered

or a maximum number of characters has been copied. The string routines must be

used when accessing strings to avoid a double read: one read to find the end of the

string for validating the access and a second to actually read in the string.

The routines described in this section are as follows:

@ sc_check_access_and_read_string_from_user

@ sc_check_byte_access

@ sc_read_bytes_from_user

@ sc_write_bytes_to_user

@ sc _write_string_to_user

Routines beginning with sc require the i_sc.h include file.

Constants and Data Structures

The routines in this section use the following constants and data structures. Try to

avoid dependencies on the specifics of these structures, such as size or location of

fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must

verify exact variable definitions in the appropriate include file (for

example, check isc.h for structures beginning with the sc acronym).

Chapter 1 lists the various include files.

sc_access_mode_type

typedef bit16_ type sc_access_mode_ type ;

Description

This type contains the access modes that may be specified to the functions that

perform user data validation.

You may use the following defines with this type. They are defined in i-sc-h.

SC_READ_ ACCESS

SC_WRITE_ACCESS

SC_EXECUTE_ACCESS

SC_NO_ACCESS

SC_ACCESS_MODE_MASK

1 0-2 Licensed matenal—property of Data General Cerporation = ; . -.093-7010&83

Constants and Data Structures

sc_check_access_and_read_string_from_user

Syntax

status_type sc_check_access_and_read_string_from_user

(buffer_ptr_ptr, dest_ptr, count_ptr)

pointer _to_any_ptr_type buffer_ptr_ptr; /*READ ONLY*/

pointer _to_any_ type dest_ptr; /*WRITE ONLY*/

uint32_ptr_type count_ptr; / ®*READ/WRITE*/

Summary

This routine checks the user address space starting at buffer_ptr_ptr for count bytes,

or through the terminating null, to verify that read access is available for the entire

string. The string is also copied into the destination buffer.

Parameters

buffer_ptr_ptr — A pointer to the byte pointer that marks the start of the string

for which access is to be checked.

dest_ptr — A pointer to the kernel buffer into which the string is to be copied.

count_ptr — On input, a pointer to the maximum size, in bytes, of the string,

including the terminating null. On output, the size of the string copied into the

kernel buffer, including the terminating null.

Return Values

OK — Read access is available for the entire string. The string has been copied

to the destination with a terminating null.

SC_EFAULT_STRING_TOO_LONG — Read access is available for the

maximum size of the string, but there is no terminating null in that length. The

contents of the destination are undefined.

SC_EFAULT_NO_READ_ACCESS — Read access is available for less than the

maximum size of the string, and no terminating null was found in the area to

which read access was available. The contents of the destination are undefined.

[other error statuses] — The bytes could not be read because of an error. The

specific list of possible errors is too long to give here. You can decode any status

returned here using the error status decoding methods described in Chapter 13.

Exceptions

083-701083 Licensed materiat—property of Data Genera! Corporation 1 0-3

sc_check_access_and_read_string_from_user

None.

10-4 — Licensed. materiakproperty of Data Generali Corperation > oa _ 083-701883 -

sc_check_byte_access

sc_check_byte_access

Syntax

status_type sc_check_byte_access (buffer_ptr_ptr,

count,access)

pointer _to_any ptr type buffer_ptr_ptr; /*READ/WRITE*/

uint32_type count; /*READ ONLY*/

sc_access_mode_ type access; /*READ ONLY*/

Summary

This routine checks the user address space starting at buffer_ptr_ptr for count bytes

to verify that access access is available for the entire area.

Parameters

buffer_ptr_ptr — A pointer to the byte pointer that marks the start of the area

for which access is to be checked.

count — The size, in bytes, of the area to be checked.

access — The access modes to be checked.

Return Values

OK — The requested access is available for the entire area.

SC_EFAULT_NO_ACCESS — One or more bytes of the specified area do not

have the required access.

Exceptions

None.

033-701083 Licenses materia}—property of Data Genera! Corporation 1 0-5

sc_read_bytes_from_user

sc_read_bytes_from_user

Syntax

status_type sc_read_bytes_from_user (source_ptr,

dest_ptr, count)

pointer _to_any type source_ptr; /*READ ONLY*/

pointer_to_any type dest_ptr; /*READ ONLY*/

ulint32_type count; /*READ ONLY*/

Summary

This routine moves the specified number of bytes from the user’s address space to the

kernel address space.

Parameters

source_ptr — A pointer to the location in the user’s address space from which

the data is to be moved.

dest_ptr — A pointer to the location in the kernel address space to which the

data is to be moved.

count — The number of bytes to be moved.

Description

The specified number of bytes are moved from the source to the destination.

Access should be checked before reading.

Return Values

OK — The bytes were successfully read from the user address space into kernel

address space.

[other error statuses] — The bytes could not be read because of an error. The

specific list of possible errors is too long to give here. You can decode any status

returned here using the error status decoding methods described in Chapter 13.

Exceptions

None.

10-6 , ' Usensed material—property of Data General Corporation’ = - 993-701083

sc_write_bytes_to_user

sc_write_bytes_to_user

Syntax

status _ type sc_write_bytes_to_user (source_ptr,

dest_ptr, count)

pointer _to_any type source _ptr; /*READ ONLY*/

pointer to any type dest_ptr; /*READ ONLY*/

uint32_type count; /*READ ONLY*/

Summary

This routine moves the specified number of bytes from the kernel address space to

the user’s address space.

Parameters

source_ptr — A pointer to the location in the kernel address space from which

the data is to be moved.

dest_ptr — A pointer to the location in the user address space to which the data

is to be moved.

count — The number of bytes to be moved.

Description

The specified number of bytes are moved from the source to the destination.

This routine assumes that access has already been checked.

Return Values

OK — The bytes were successfully written to the user’s address space.

[other error statuses] — The bytes could not be written because of an error. The
specific list of possible errors is too long to give here. You can decode any status

returned here using the error status decoding methods described in Chapter 15.

Exceptions

None.

10-7
093-701083 Licensed material-—propesty of Data General Corporation

sc_write_string_to_user

sc_write_string_to_user

Syntax

status_type sc_write_string_to_user (source_ptr, dest_ptr)

pointer _to_any_ type source_ptr; /*READ ONLY*/

pointer_to_any_ type dest_ptr; /*#READ ONLY*/

Summary

This routine moves bytes from the kernel address space to the user’s address space up

to and including the first null byte in the source string.

Parameters

source_ptr — A pointer to the location in the kernel address space from which

the data is to be moved.

dest_ptr — A pointer to the location in the user address space to which the data

is to be moved.

Description

Bytes are moved from the source to the destination until a null byte is found in

the source. The null is transferred to the destination. This routine assumes that

access has already been checked.

Return Values

OK — The bytes were successfully written to the user’s address space.

[other error statuses] — The bytes could not be written because of an error. The

specific list of possible errors is too long to give here. You can decode any status

returned here using the error status decoding methods described in Chapter 15.

Exceptions

None.

End of Chapter

4 0-8 - ' Licensed material—property of Data Genera! Corporation . 093-701083

Chapter 11

Buffer Vector Management

Routines

This chapter describes the kernel routines that your driver uses in manipulating buffer

vectors. We start with a brief introduction to buffer vectors and how to use them.

Following the introduction is a "Constants and Data Structures” section, which lists

some of the major constants and data structures used by routines in this section.

Check the appropriate include files (for example, check ilm.h for structures

beginning with the lm acronym) for a complete and current list of all constants and

structures.

Overview to Using Buffer Vectors

Buffer vectors are data structures that help you manage user-data buffers, especially

buffers that are spread over non-contiguous space. The "v" system calls (ready and

writev) can specify non-contiguous buffer space, while the read and write system calls

specify contiguous buffers. And though buffer vectoring is most useful in the non-

contiguous case, you can use the buffer vector interface for either set of read or write

system calls.

A buffer vector consists of a collection (an array) of individual buffer descriptors with

associated state variables. Each buffer descriptor consists of a buffer pointer and a

buffer size. Individual buffer descriptors define a location from which data can be

read, or into which the data can be written. Buffer vectors for contiguous space (the

read and write system calls) will have a buffer vector array with only one entry (see

io_init_one_entry_buffer_vector).

The current position within the buffer vector is maintained by the associated state

variable. The current position defines where the next byte of data will be read from

or written to. The current position is initialized to the first byte of the first buffer

descriptor.

Buffer vector routines can be grouped into four categories: initialization, reporting of

state information, modifying state information, and data transfer (reading from or

writing to the buffer). All buffer vector routines take a pointer to the respective

buffer vector as a parameter.

Before you can use a buffer vector with non-contiguous space, you must call

io_init_buffer_vector to initialize it. In initialization, the buffer vector’s current

position is set to zero (0) and its logical address and the buffer’s total size are stored

in the buffer descriptor. You call io_init_one_entry_buffer_vector to perform the

same function for a buffer vector with contiguous space and only one buffer

083-707083 Licensed materiai—property of Data Genera! Corporation 1 1 -1

Overview to Using Buffer Vectors

descriptor.

There are a number of routines you can call to get information about the buffer

vector and its current state. You can call io_get_buffer_vector_position to get the

current buffer vector position and io_get_buffer_vector_residual to get the bytes

remaining to be transferred to or from the buffer vector. You can also get the total

size of all the descriptors in the buffer vector by calling

io_get_buffer_vector_byte_count. The value returned will be equal to the current

position plus the bytes remaining. Finally, you can get the address of the current

buffer position and amount of contiguous bytes remaining starting at that position by

calling io_get_buffer_vector_io_info.

Several other routines allow you to change the state information maintained in the
buffer vector. You should use these routines only for exception situations such as

when the buffer vector state needs to be changed due to a data transfer failure.

You call io_reset_buffer_vector_position to set the buffer vector’s current position

back to zero (0). You might use this if a data transfer failed and you want to retry the

entire transfer again. You call io_set_buffer_vector_residual to set the residual

variable that contains the number of bytes remaining to be transferred. Similarly, the

io_add_to_buffer_vector_position allows you to change the current position value by

a specified amount. Take care not to increase the current position by more than the

number of bytes remaining in the buffer vector.

These functions perform the actual data transfer to and from the buffer vector. The

current position is updated in accordance with the amount of data transferred.

You use io_read_from_buffer_vector and io_write_to_buffer_vector to transfer data

between a buffer vector and a specified user buffer. However, you cannot use these

routines for DMA transfers because they don’t update position information. Instead

you use io_get_buffer_vector_io_info and io_add_to_buffer_vector_position to

produce the effect of the regular read/write routines. To do this, first get the current

position and remaining bytes using io_get_buffer_vector_io_info, then perform the

DMA, and finally update the current position with io_add_to_buffer_vector_position.

You repeat this process as necessary given the block size of the transfer. Using

io_get_buffer_vector_io_info and io_add_to_buffer_vector_position allows you to

transfer directly from the device to or from the buffer vector without going though an

intermediate memory buffer.

The routines described in this section are as follows:

@ io_add_to_buffer_vector_position

@ io_get_buffer_vector_io_info

@ io_get_buffer_vector_position

® io_get_buffer_vector_residual

@® io _get_buffer_vector_byte_count

® io_init_buffer_vector

4 1-2 ., Licensed matetiaproperty of Data General Carporation 853701083

Overview to Using Buffer Vectors

® io_init_one_entry_buffer_vector

@ io _read_from_buffer_vector

@ io _reset_buffer_vector_position

@ io _set_buffer_vector_residual

® io_write_to_buffer_vector

Routines beginning with io require the i_io-h include file.

Constants and Data Structures

io_buffer_vector_type

typedef struct

{

union

{

io_buffer_vector_control_type many;

io _buffer_descriptor_type one;

dou;

uintli6_type descriptor_count;

uintl6_type current_descriptor;

uint32_type current_offset;

uint32_type total_remaining;

} io_buffer_vector_type ;

Description

This structure defines a buffer vector, which is a collection of individual buffer

descriptors plus an associated state. A buffer vector may be the source or destination

of a single read or write operation; the individual buffer descriptors define the

locations from which the data is being read or into which the data is being written.

The current position is where the next byte of data will be read from or written to.

The current position is initialized to the first byte of the first buffer descriptor. The

current position within the buffer vector is maintained by the associated state.

The fields in this structure are as follows:

many — This structure contains a pointer to the array of buffer descriptors and the

total of the sizes of all the elements of the array. This field of the union is used only

when descriptor_count is non-zero. io_buffer_vector_control_type is described in

this section.

one — This structure contains the single buffer descriptor when the buffer vector

093-701083 Licensed material—property of Data General Corporation 1 1 -3

Constants and Data Structures

consists of a single descriptor. This field of the union is used only when

descriptor_count is zero. io_buffer_descriptor_type is described later in this section.

descriptor_count — The number of entries in the many array of the

io_buffer_vector_control_type. Not all of these entries are presumed valid; the

total_size field controls the number of entries that are used. This field is used to

determine the actual amount of memory allocated to the array. If this field is zero,

then there is no memory allocated to the array and a single descriptor is stored in the

union field one.

current_descriptor — The index of the descriptor that contains the current position.

io_buffer_yector_control_type is described later in this section.

current_offset — The offset of the current position in the buffer descriptor indexed

by current_descriptor.

total_remaining — The total number of bytes remaining to be moved to or from this

buffer vector since it was initialized.

io_buffer_descriptor_type

typedef struct

[

pointer_to_any_type buffer_ptr;

uint32_type size;

} io_buffer_descriptor_type ;

Description

This structure describes a buffer from which data is to be read or to which data is to

be written.

The fields in this structure are as follows:

buffer_ptr — Pointer to the start of the buffer.

size — The size of the buffer, in bytes.

io_buffer_vector_control_type

typedef struct

{

io_buffer_descriptor_ptr_type descriptors_ptr;

uint32_type total_size;

} io _buffer_vector_control_type ;

11-4 -Licerssed materiah—property of Data Generai Corporation © , mo . 093-701083°

Constants and Data Structures

Description

This structure is used in the many field of buffer_vector_type.

The fields in this structure are as follows:

descriptors_ptr — A pointer to an array of buffer descriptors. The array may

contain as many as UINT16_MAX entries. (See c_generics.h for the definition of

UINT16_MAX.)

total_size — The sum of the size fields in all the elements of the array buffer

descriptors.

0$3-701083 Licensed material—property of Data General Corporation 1 1 5

io_add_to_buffer_vector_position

io_add_to_buffer_vector_position

Syntax

void io add _to_buffer _vector_position

(buffer_vector_ptr, count)

io_buffer_vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

int32_type count; /*READ ONLY*/

Summary
wv

This routine adds the given count to the current position associated with the

given buffer vector.

Parameters

buffer_vector_ptr — A pointer to the buffer vector whose current position is to

be changed.

count — The number of bytes to be added to the current buffer position.

Description

This routine adds the given count to the current position associated with the

given buffer vector. The amount added may be positive or negative. If the new

. value of the current position would be less than zero or greater than the byte

count associated with the buffer vector, the result is undefined. Note that

changing the current position changes the residual count by implication, so that

the relationship between the current position plus residual count and the overall

byte count remains true.

Return Values

None.

Exceptions

None.

11-6 _ Licensed materia-—property ot Data General Corporation: ote G93-7916S3 -

tis

io_get_buffer_vector_io_info

io_get_buffer_vector_io_info

Syntax

void io_get_buffer_vector_io_info (buffer _vector_ptr,

buffer _ptr_ ptr, count_ptr)

io_buffer_vector_ptr_type buffer_vector_ptr;/*READ ONLY*/

pointer_to_any_ ptr_type buffer _ptr_ptr; /*WRITE ONLY*/

uint32_ ptr_type count_ptr; /*WRITE ONLY*/

Summary

This routine takes the current buffer descriptor and returns the buffer pointer

and the number of contiguous bytes left in the buffer from that pointer.

Parameters

buffer_vector_ptr — A pointer to the buffer vector whose I/O information is to

be returned.

buffer_ptr_ptr — A pointer to where the buffer pointer at the current position is

to be returned.

count_ptr — A pointer to where the number of contiguous bytes starting at the

current position is to be returned. This returned value will always be greater than

zero.

Description

This routine returns the actual buffer pointer and contiguous byte count

associated with that position so that direct access I/O operations can be

performed on the buffer.

Drivers can use this routine to produce the same effect as

jio_read_bytes_from_buffer_vector or io_write_bytes_to_buffer_vector, but with

the transfer going directly between the device and the buffer vector instead of

through an intermediate memory buffer. To do this, the driver successively gets

the I/O information for the current position, performs direct access I/O, and
updates the current position with io_add_to_buffer_vector_position.

NOTE: This routine must not be called when the buffer vector residual is zero, as

the returned count is defined to always be strictly greater than zero.

Return Values

083-701083 Licensed material—property of Data General Corporation 1 1 -f

io_get_buffer_vector_io_info

None.

Exceptions

None.

1 1-8 Licensed material-—property of Data Generai Corporation -- °-993-701083

io_get_butfer_vector_position

io_get_buffer_vector_position

Syntax

uint32_type io_get_buffer_vector_position

(buffer_vector_ptr)

io_buffer_vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

Summary

This routine gets the current position of the specified buffer vector.

Parameters

buffer_vector_ptr — A pointer to the buffer vector from which the current

position is to be retrieved.

Return Values

[position] — The current position associated with the given buffer vector.

Exceptions

None.

093-701083 Licensed material—property of Data General Corporation 1 1-9

io_get_buffer_vector_residual

io_get_buffer_vector_residual

Syntax

uint32_type io_get_buffer_vector_residual (buffer_vector_ptr)

io_buffer_vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

Summary

This routine gets the number of bytes remaining in the specified buffer vector.

Parameters

buffer_vector_ptr — A pointer to the buffer vector from which the residual byte

count is to be retrieved.

Description

This routine gets the number of bytes remaining in the specified buffer vector.

This residual count is always equal to the byte count of the buffer vector minus

the current position. The buffer_vector_ptr is assumed to be valid.

Return Values

count — The residual bytes associated with the given buffer vector.

Exceptions

None.

, 4 1 -1 0 ’ Llcensed materiat—property of Date Gerieral Corporation 0$3-701083

io_get_buffer_vector_byte_count

io_get_buffer_vector_byte_count

Syntax

uint32_ type io_get_buffer_vector_byte_ count

(buffer_vector_ptr)

io_buffer_vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

Summary

This routine gets the byte count for the specified buffer vector. This count is the

number of bytes of data that this vector can hold.

Parameters

buffer_vector_ptr — A pointer to the buffer vector from which the byte count is

to be retrieved.

Description

This routine gets the byte count for the specified buffer vector. This count is the

number of bytes of data that this vector can hold. The buffer_vector_ptr is

assumed to be valid.

Return Values

count — The byte count associated with the given buffer vector.

Exceptions

None.

093-701083 Licensed materia}—property of Data Genera! Corporation 11 -1 1

io_init_buffer_vector

io_init_buffer_vector

Syntax

void io_init_buffer_vector (buffer_vector_ptr, total_size,

buffer_descriptors, count)

io_buffer_vector_ptr_type buffer_vector_ptr; /*READ/WRITE*/

uint32_type total_size; /*READ ONLY*/

io_buffer_descriptor_ptr_type

buffer _descriptors;/*READ ONLY*/

uinti6_ type count; /*®READ ONLY*/

Summary

This routine is used to initialize a buffer vector.

Parameters

buffer_vector_ptr — The buffer vector to be initialized.

total_size —- The sum of sizes from the buffer descriptors.

buffer_descriptors — Pointer to the array of buffer descriptors to be associated

with the buffer vector.

count — The number of entries in the buffer_descriptors array.

Description

This routine is used to initialize a buffer vector. The buffer_vector_ptr is

assumed to be valid.

Return Values

None.

Exceptions

None.

4 q -4 2 .. Uictnsed matericl-property of Data Genera! Corporation 083-701083

io_initLone_entry_buffer_vector

io_init_one_entry_buffer_vector

Syntax

void io_init_one_entry_buffer_vector (buffer_vector_ptr,

buffer _ptr, size)

io_buffer _vector_ptr_type buffer _vector_ptr;/*READ/WRITE*/

pointer to any type buffer_ptr; /*READ ONLY*/

uint32_ type size; /*®READ ONLY*/

Summary

This routine is used to initialize a buffer vector that will have only one entry in

the buffer_descriptors array.

Parameters

buffer_vector_ptr — The buffer vector to initialize.

buffer_ptr — A pointer to the buffer that is to be the sole entry in the

buffer_descriptors array.

size — The size, in bytes, of the sole entry in the buffer_descriptor array.

Description

This routine is called if a buffer vector structure is being created with a single

buffer descriptor entry. Using this routine to initialize a single entry buffer vector
allows optimizations to be performed in buffer vector management.

Return Values

None.

Exceptions

None.

093-701083 Licensed material—property of Data General Corporation 1 1 -1 3

io_read_from_butfer_vector

io_read_‘from_buffer_vector

Syntax

status_type io_read_from_buffer_vector (buffer_vector ptr,

buffer ptr, count_ptr)

io_buffer_vector_ptr_type buffer_vector_ptr; /*READ/WRITE*/

pointer _to_any type buffer ptr; /*READ/WRITE*/

uint32_ptr_type count_ptr; /*READ/WRITE*/

Summary

This routine is used to read data from the buffer vector into the specified buffer.

Parameters

buffer_vector_ptr — Pointer to the buffer vector from which data is to be read.

buffer_ptr — Pointer to where data from the buffer vector is to be placed.

count_ptr — On entry, the number of bytes to move. On exit, the actual number

of bytes moved.

Description

Data is moved into the specified buffer starting at the current position of the

specified buffer vector until all the data in the buffer vector has been exhausted

or until count_ptr bytes have been moved. count_ptr is set to the actual number

of bytes moved.

Return Values

OK — The bytes were successfully written to the buffer area.

[other error statuses] — The bytes could not be read because of an error. The

specific list of possible errors is too long to give here. You can decode any status

returned here using the error status decoding methods described in Chapter 13.

Exceptions

None.

1 1-1 4 . Licensed material—property of Data Genera! Corporation _ 993-701683

io_reset_buffer_vector_position

io_reset_buffer_vector_position

Syntax

void io_reset_buffer_vector_position (buffer_vector_ptr)

io buffer_vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

Summary

This routine resets the current position of the buffer vector to zero.

Parameters

buffer_vector_ptr — A pointer to the buffer vector whose position is to be reset

to zero.

Return Values

None.

Exceptions

None.

093-701083 Licensed materia--property of Data General Corporation 1 4 -1 5

io_set_buffer_vector_residual

io_set_buffer_vector_residual

Syntax

void io_set_buffer_vector_residual (buffer_vector_ptr, count)

io_buffer_vector_ptr_type buffer _vector_ptr;/*READ ONLY*/

uint32_type count; /*®READ ONLY*/

Sammary

This routine sets the number of bytes remaining in the specified buffer vector.

The current position is unchanged.

Parameters

buffer_vector_ptr — A pointer to the buffer vector whose residual byte count is

to be set.

count — The value to which to set the residual.

Description

Because the residual is always equal to the total size minus the current position,

and the current position is unchanged by this routine, this routine changes the

total size by implication.

Return Values

None.

Exceptions

None.

q 1 -1 6 Licensed material—preperty of Data General Corporation . 033-701 083

io_write_to_buffer_ vector

io_write_to_buffer_vector

Syntax

status_type io_write_to_buffer_vector (buffer_ptr,

buffer _vector_ptr, count _ptr)

pointer_to_any type buffer_ptr; /*READ ONLY*/

io_buffer_vector_ptr_type buffer_vector_ptr;/*READ/WRITE*/

uint32_ptr_type count_ptr; /*READ/WRITE=/

Summary

This routine is used to write data from the specified buffer into the buffer veczor.

Parameters

buffer_ptr — Pointer to the buffer from which data is to be read.

puffer_vector_ptr — Pointer to the buffer vector to which data is to be writter.

count_ptr — On entry, the number of bytes to be moved. On exit, the actual

number of bytes moved.

Description

Data is moved into the buffer vector. The transfer starts at the beginning of the

specified buffer and goes until the end of the buffer vector has been reached or

until count_ptr bytes have been moved. count_ptr is set to the actual number of

bytes moved.

Return Values

OK — The bytes were successfully written to the buffer area.

[other error statuses] — An error terminated the write operation. The list of

possible errors is too long to give here. You can decode any status returned here

using the status decoding methods described in Chapter 15.

Exceptions

None.

End of Chapter

093-701083 Licensed materiai—=property of Data General Corporation 1 1 -1 7

Chapter 12

Configuration Routines

This chapter describes the kernel routines you can use during set up and

confisuration. We start with a brief introduction to configuration routines and how

the routines are used. Following the introduction is a “Constants and Data

Structures" section, which lists some of the major constants and data structures used

by routines in this section. Check the appropriate include files (for example, check

i_io.h for structures beginning with the io acronym) for a complete and current list of

all constants and structures.

Overview to the Configuration Process and

Configuration Routines

The routines in this section are used to perform a number of different configuration

tasks required in your driver’s configuration routine (we'll call it xxx_configure). The

system build process creates a list of devices to be configured from the entries in the

system file. At boot time, the system initialization code scans this list and invokes

the driver’s xxx_configure routine for each device of the driver’s type in that list. The

initialization code passes xxx_configure a pointer to the device’s device specification

and its major number. The specification should be in the standard format shown

below:

device_mnemonic [@device_code] ([parameters])

At a minimum, each driver’s xxx_configure routine should: verify that the device

specification it receives is valid; test for device existence, and, if successful, register

the device with various parts of the kernel.

The driver must first verify that the device specification identifies a device of its type.

It does this by parsing the specification using io_parse_device_spec. The

io_parse_device_spec routine returns the device name, device code, and parameters

imbedded in the specification.

If the device specification identifies one of the driver’s devices and it is a physical

device, the driver should verify that the device is attached and working. It is

important to use the kernel-supplied routines for the first access because if a device is

not present when an attempt is made to address it directly, a memory fault and system

panic may occur. The driver can verify that the device exists by reading the device’s

I/O registers using io_do_first_long_board_access for 32-bit registers or

io_do_first_short_board_access for 16-bit registers. If verification is successful, the

driver can use io_check_device_spec to check that the device’s address and device

code are not already in use. If the address and device code are not in use, call

io_check_device_spec to reserve them for the current driver.

0$3-701083 Licensed materiat—property of Data General Corporation 1 2-1

Overview to the Configuration Process and Configuration Routines

If the device exists, the driver must perform several steps to appropriately register it

with the system. If the device generates interrupts, the driver must register the

interrupt service routine with the kernel. This is done by calling

io_register_device_info. Once io_register_device_info is called, any interrupt

generated by the device will cause the driver’s interrupt service routine to be invoked.

Thus, it is important that the driver not register the device until the driver is ready to

handle interrupts. The driver can read the device registration information by calling

io_get_device_info.

The system passes xxx_configure a major number that identifies the driver’s position

in the kernel’s driver lookup table. The driver must then allocate a minor number

that specifies the particular device’s location in the kernel’s device tables. The driver
can allocate a minor number by calling io_allocate_device_number. This routine

returns the next available minor number and also puts a parameter supplied by the

driver into the device table. Typically, the parameter is a pointer to a data structure

associated with the device. The driver can retrieve the stored parameter by calling

io_map_device_number with the major and minor device number as parameters.

Disk drivers may also call io_add_to_register_list to have their disk implicitly

registered. Implicitly registered disks are known to the file system even if they are

not mounted.

The driver creates device nodes in the /dev directory dynamically during system

initialization. The driver can call fs_submit_dev_request to create a device node for

each device.

Most of the registration routines described above have a corresponding deregistration

routine which should be used during the xxx_deconfigure routine or if the device fails

any portion of the configuration process. Examples are:

io_deallocate_device_number, io_deregister_device_info, and io_forget_device_spec.

The routines described in this section are as follows:

@ fs_submit_dev_request

@ io_add_to_register_list

@ io_allocate_device_number

@ io _deallocate_device_number

@ io_register_device_info

e io_deregister_device_info

@ io_check_device_spec

@® io_forget_device_spec

® io _do_first_short_board access

@ io _do_first_long_board_access

12-2 ' Licensed materiah—property of Data General Corporation 0$3-701083

Overview to the Configuration Process and Configuration Routines

® io _get_device_info

@ io_map_device_number

® io _parse_device_spec

@® io_perform_reset

Routines beginning with fs and io require the ifs.bh and i_io.h include files,

respectively.

Constants and Data Structures

The routines in this section use the following constants and data structures. Try to

avoid dependencies on the specifics of these structures, such as size or location of

fields, since these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must

verify exact variable definitions in the appropriate include file (for

example, check i_fs.h for structures beginning with the fs acronym).

Chapter 1 lists the various include files.

fs_dev_request_type

typedef struct

{

fs_dev_request_operation_enum_ type operation;

char type dirname[33];

char type filename[33];

union {

fs_dev_create_request_type create;

}

OP;

}

fs_dev_request_type;

Description

This structure contains the information required to change a node in /dev. The fields

in this structure are as follows:

operation — The type of operation requested; for example, delete or create.

dirname — The directory in which the node should reside. This name will be

appended to /dev/. For example, set dirname to "rdsk” to create a node in
/dev/rdsk. If you want the node in a /dev and not a subdirectory, set dirname[0] to

FS_NULL_CHAR.

093-701083 Licensed material—property of Data Genera! Corporation 1 2-3

Constants and Data Structures

filename — The filename of the node.

op — The information necessary for the operation requested.

fs_dev_request_operation_enum_type

typedef enum

Fs Dev _Request_Operation Create ,
Fs_Dev_Request_Operation_Delete

, fs_dev_request_operation_enum_type ;

Description

This enum type contains the valid operations supported by the /dev manager. The

fields in this structure are as follows:

Fs_Dev_Request_Operation_Create — Request to create a node in /dev. See

fs_dev_create_request_type.

Fs_Dev_Request_Operation_Delete — Request to delete a node from /dev

fs_dev_create_request_type

typedef struct

{

io_device_number type device;

df_file_mode_ type mode_bits;

}

fs_dev_create_request_type ;

Description

This structure contains the information required to create a node in /dev. The

fields in this structure are as follows:

device — The device number of the node.

mode_bits — The initial mode bits of the node. This includes the file type

information.

12-4 " "Licensed materiakproperty of Data Genera! Corporation , 093-701083

Constants and Data Structures

io_dev_adapt_info_type

typedef struct

{

char_ptr_type name;

io_device code_type device_code;

char_ptr_type params [IO_DEV_ADAPT_MAX PARAMS];

char device_spec[I0_DEV_ADAPT MAX SPEC_SIZE];

} io_dev_adapt_info_type |

This structure provides a method to pass data back from the iLio_parse_dev_spec

routine. The fields in this structure are as follows:

name — A pointer to the null terminated string of a device or adapter name.

device_code — The device code.

params — An array of pointers to null terminated strings for each of the parameters.

device_spec — A copy of the device specification where the name, and params

pointers will point.

uc_device_class_enum_type

typedef enum

{

Uc_Integrated_Device_Class = 0,

Uc_Vmebus_Device_Class = 1,

Uc_Invalid_Device_Class = 2,

} uc_device_class_enum_type ji;

Description

This type describes the classes of devices supported by the DG/UX kernel. A device

is uniquely identified by its interrupt class and device code.

As new classes of devices are supported, this type definition will change. Check the

i_uc.h (in /usr/sre/uts/aviion/ii) include file for the latest supported classes.

uc_device_code_type

typedef uint32_type uc_device_code_type ;

Description

12-5033-701083 Licensed materia}—property of Data Genera! Corporation

Constants and Data Structures

This type is used to describe a device code, which, along with its associated device

class, is used to identify an I/O device.

Device codes must be unique within a class, but the same value device code can be

found in multiple classes. Thus, device codes are fit to the device class to which they

apply.

The device codes for integrated devices are pre-defined and will be the same across

all architectures. Note that there is no association between the pre-defined integrated

device codes and physical hardware. The kernel will map the pre-assigned device

code to the device interrupt on a given machine.

VMEbus class devices do not have pre-assigned device codes because the VME

interrupt vector mechanism allows devices to be set up to use any valid VME vector.

In the VMEbus class, the device code is the value of the VME vector. It is up to

drivers to register device information specifying the appropriate VME vector to the

kernel. When a VME class interrupt occurs, the kernel will return the VME vector

of the interrupting device.

Integrated Device Code Literals

This section defines the values for the integrated device type pre-assigned device

codes. The values below apply for all machine architectures. During driver

initialization, a device’s driver links its device code with an interrupt handler by

registering the device. Use the following literals as the device codes for integrated

class devices:

UC_SYSTEM_ERROR_DEVICE_CODE

UC_SYSTEM TIMER DEVICE_CODE

UC_KEYBOARD DEVICE_CODE

UC_ DUART_0_DEVICE_CODE

UC_DUART_1_DEVICE_CODE

UC_PARALLEL PORT _DEVICE_CODE

UC_ETHERNET_0_DEVICE_CODE

UC_ETHERNET_1 DEVICE_CODE

UC_SCSI_0_DEVICE_CODE

UC_DMA_TERMINAL COUNT_DEVICE_CODE

UC_GRAPHICS CARD DEVICE_CODE

UC_CROSS_INTERRUPT_DEVICE_CODE

UC_PER_JP_TIMER_DEVICE_CODE

UC_DUART_TIMER_DEVICE_CODE

UC_SIGHP_DEVICE_CODE

UC_LOCATION_MONITOR_DEVICE_CODE

UC_POWER_FAIL DEVICE_CODE

UC_ZBUFFER_DEVICE_CODE

UC_SCSI_1_DEVICE_CODE

UC_SYNC_0_DEVICE_CODE

UC_SYNC_1_DEVICE_CODE

1 2-6 Sl Licensed material—property of Data Genera! Corporation 093-701083

fs_submit.dev_request

fs_submit_dev_request

Syntax

void fs_submit_dev_request (dev_request_ptr)

fs_dev_request_ptr_type dev_request_ptr; /*READ ONLY*/

Summary

This routine is used to submit a request to create or delete a /dev entry. If the

root is not mounted, then the request will not be performed until the root is

mounted.

Parameters

dev_request_ptr — A pointer to the necessary information to manipulate a /dev

entry. For the create operation, this information includes the file’s major and

minor device numbers, mode bits, type (block or character), containing directory

(for example, ".” or "rdsk”) and the filename of the new file (for example,

5"). For the delete operation, only the filename and containing directory

fields are required.

Description

A request to manipulate a /dev entry is accepted. The request will be processed

immediately if the root has been mounted. Otherwise, the request is added to a

queue for later processing.

Return Values

None.

093-701083 Licensed materia}—property of Data Genera! Corporation 12-7

io_add_to_register_list

io_add_to_register_list

Syntax

void io_add_to_register_list (device_number)

io_device_number type device_number; /*READ ONLY*/

Summary

This routine adds the specified device to the list of disks that will be implicitly

registered as part of system initialization. This routine is optional and is used

only with disks.

Parameters

device_number — Device number of the disk to be registered.

Description

Registration makes a physical disk known to the file system and the logical disk

manager. Thus, implicitly registered disks are known to the file system without

being specifically mounted.

Return Values

None.

Exceptions

None.

1 2-8 Licensed material—property of Data General Corporation : - 0393-701083

io_aliocate_device_number

io_allocate_device_number

Syntax

status type io_allocate_device_number (major, handle,

unit, minor_ptr)

io_major_device_number type major; /*READ ONLY*/

bit32e_type handle; /*READ ONLY*/

uintl6_type unit; — /*READ ONLY*/

io minor _device_number_ptr_type minor_ptr; /*WRITE ONLY*/

Summary

This routine assigns the device a minor device number. The major device

number identifies the family of devices to which the device belongs.

Parameters

major — The device’s major device number.

handle — The device handle which identifies the device to its driver.

unit — The unit number that identifies the device to its controller.

minor_ptr — A pointer to the location where the allocated minor device number

is returned.

Description

See Summary.

Return Values

OK — No errors were discovered, so all returned arguments are valid.

1O_ENXIO_ALL_MINOR_NUMBERS_IN_USE — The minor device number

table for this major device number contains no unused slots and has grown to tne

maximum size.

Exceptions

None.

Abort Conditions

None.

093-701083 Licensed materiat—~property of Data General Corporation 12-9

io_.deallocate_device_number

io_deallocate_device_number

Syntax

void io deallocate_device_number (device_number)

lo _device_number type device_number; /*READ ONLY*/

Summary

This routine terminates the association between the device and its minor device

number.

Parameters

device_number — Contains the major and minor device numbers of the device

being deconfigured.

Description

See Summary.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error codes:

IO_PANIC_MAJOR_NUMBER_EXCEEDS_MAX — An invalid major device

mumber was used.

IO_PANIC_DEVICE_IS_NOT_CONFIGURED — An attempt was made to

deallocate a device which was not configured.

IO_PANIC_DEVICE_IS_NOT_CONFIGURED2 — An active entry in the minor

device number table does not exist at the offset specified by the minor device

number argument.

12-4 0 7 Licensed materia-property of Data General Corporation ° ‘ 093-701083

io_deregister_device_info

io_deregister_device_info

Syntax

void io_deregister_device_info (dev_code, dev_class)

io_device_code_type dev_code; /*READ ONLY*/

uc_device_class_enum_type dev_class; /*READ ONLY*/

Summary

This routine deregisters the device by removing its current interrupt handler and

device information structure from the DIT.

Parameters

dev_code — device code for which the current interrupt handler is to be

disassociated.

dev_class — device class for which the current interrupt handler is to be

disassociated.

Description

This routine reverses the effect of io_register_device_info. It deregisters the

device by removing its current interrupt handler and device information structure

from the DIT. After this call completes, future interrupts on the specified device

code will be directed to the system supplied “nodevice” interrupt handler. If you

make this call on a device code that does not currently have an interrupt handler,

a panic will occur.

Return Values

None.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

IO_PANIC_ILLEGAL_DEREGISTER_DEVICE_INFO — An attempt was made

to deregister a device on a device code that did not have information registered.

093-701083 Licensed materiai~propenty of Data Genera! Corporation 12-11

io_check_device_ spec

io_check_device_spec

Syntax

status_type io_check_device_spec (device_address,

device_code)

opaque_ptr_type device_address; /*READ ONLY*/

io_device_code_type device_code; /*READ ONLY*/

Summary

This routine checks that the address and device code specified for the device are

not already in use.

Parameters

device_address — The address of the primary registers for the device.

device_code — The device code for the device.

Description

This routine checks that the address and device code specified for the device are

not already in use. Such address and device code validation will not prevent

overlap of registers or RAM areas. It does help avoid the most common user

errors in device specification. Only the first address for a device is checked.

Return Values

OK — The address and device code are not already in use.

1O0_ENXIO_DEVICE_IS_ALREADY_CONFIGURED — The address or device

code are already in use.

Exceptions

None.

12-i 2 Licensed materia!—property of Data Genera! Corporation - 053-701 0g3

io_forget_device_spec

io_forget_device_spec

Syntax

status_type io_forget_device_spec (device_address,

device_code)

opaque_ptr_type device_address; 7* READ ONLY */

io_device_code_type device_code; /* READ ONLY */

Summary

Release (that is, forget) a device specification that was claimed as the result of a

previous call to the io_check_device_spec routine.

Parameters

device_address — The address of the primary registers for the device.

device_code — The device code for the device.

Description

When a device is deconfigured, the device_address claimed for the device must

be freed by calling this routine. If you do not free the device address, calls to

io_check_device_spec using this device address will fail.

Return Values

OK — The address/device code pair is freed.

10_ENXIO_DEVICE_IS_NOT_CONFIGURED — The address/device code to be

freed were not found.

Exceptions

None.

0$3-701083 Licensed material—property of Data Genera! Corporation 12-13

io_do_first_short_board_access

io_do_first_short_board_access

Syntax

status_type io_do_first_short_board_access (register_ptr,

register _contents_ptr,

write_to_register)

bitl6e_ptr_type register_ptr; / *READ/WRITE*/

bitl6e_ptr_type register_contents_ptr; /*READ/WRITE*/

boolean _type write_to_register; /*READ ONLY*/

Summary

This routine tests for the existence of the board at a particular memory-mapped

V/O address. Use this routine for boards with short (16-bit) registers.

Parameters

register_ptr — A pointer to the register on the board to be accessed.

register_contents_ptr — A pointer a one-word read/write buffer. For a write

operation, the contents of this buffer will be written to the register. For a read

operation, the data read from the register will be stored in this buffer.

write_to_register — A boolean indicating whether the operation is read or write.

When it is TRUE, the routine writes to the register. When it is FALSE, the

routine reads from the register.

Description

Do the first access to a board register such that if a board is not present, the

system will not hang or panic. The board should not be accessed again if

IO_ENXIO_DEVICE_DOES_NOT_EXIST is returned. This routine assumes

that the register is a short register.

Return Values

OK — The register was accessed successfully.

IO_ENXIO_DEVICE_DOES_NOT_EXIST — The board is not accessible.

Exceptions

None.

1 2-4 4 -"“Léensed materialproperty of Data General Corporation 093-701083

io_do_first_long_board_access

io_do_first_long_board_access

Syntax

status_type io_do first_long_board_access (register_ptr,

register_contents_ptr,

write_to_ register)

bit32e _ptx_type register_ptr; /*READ/WRITE*/

bit32e_ptr_type register_contents_ptr; /*READ/WRITE*/

boolean _type write_to_ register; /*READ ONLY*/

Summary

This routine tests for the existence of the board at a particular memory-mapped

I/O address. Use this routine for boards with long (32-bit) registers.

Parameters

register_ptr — A pointer to the register on the board to be accessed.

register_contents_ptr — A pointer to the contents of the given register. On

input, if write_to_register is TRUE, this value will be written to the register. On

output, when write_to_register is FALSE, this value will be the value read from

the register.

write_to_register — A boolean indicating, when TRUE, to write to the register.

Otherwise a read will be done.

Description

Do the first access to a long board register such that if a board is not present, the

system will not hang or panic. The board should not be accessed again if

IOLENXIO_DEVICE_DOES_NOT_EXIST is returned. This routine assumes

that the register is a long register.

Return Values

OK — The register was accessed successfully.

I0_ENXIO_DEVICE_DOES_NOT_EXIST — The board is not accessible.

Exceptions

None.

083-701083 Licensed materia}—property of Data General Corporation 12-15

io_get_.device_info

io_get_device_info

Syntax

status type io_get_device_info (dev_code, dev_class,

interrupt _handler,

dit_entry_ptr)

io_device_code_type dev_code; /*READ ONLY*/

uc_device_class_enum_ type dev_class; /7*READ ONLY*/

io_service_interrupt_routine_ptr_type

interrupt_handler;/*READ ONLY*/

word_address_ptr_type dit_entry_ptr; /*WRITE ONLY*/

Summary

This routine retrieves the device information pointer associated with the device

specified by the device code and device class.

Parameters

dev_code — The device code of the device for which the device information

pointer is to be retrieved.

dev_class — The device class of the device for which class the device

information pointer is to be retrieved.

interrupt_handler — The service interrupt routine pointer stored at the beginning

of the device information structure. This argument is used to ensure that the

device information pointer returned by this routine really does belong to the

requestor.

dit_entry_ptr — A pointer to where the device information pointer is to be

returned.

Description

The device information pointer registered with the specified device is retrieved.

If the specified device code has no device information registered to it, or if the

service interrupt routine pointer in the device information structure does not

match the service interrupt routine pointer supplied as an argument to this call,

then an error status is returned and the returned device information pointer is

undefined.

Return Values

OK — The device information pointer was successfully returned.

12-16 - Licensed materiaproperty of Data Genera! Corporation’ - 993-701083

io_get_device_info

IO_ENXIO_DEVICE_CODE_OUT_OF_RANGE — The supplied device code is

not supported on this system.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — No device information pointer

was found for the device code or the device code does not belong to the

requestor.

Exceptions

None.

093-701083 Licensed materiai—property of Data Genera! Corporation 12-17

io_map_device_number

io_map_device_number

Syntax

status_type io_map_device_number (device_number,

handle ptr, unit_ptr)

io_device_number_ type device_number; /*®READ ONLY*/

bit32e_ptr_type handle ptr; /*WRITE ONLY*/

uintl1l6_ptr_type unit ptr; /*WRITE ONLY*/

Summary

This routine translates the previously allocated major and minor device numbers

to device handle and unit number.

Parameters

device_number — Contains the major and minor device numbers of the device.

handle_ptr — Pointer to the location where the device handle is returned.

unit_ptr — Pointer to the location where the unit number is returned.

Description

This routine is typically called by a driver’s open routine to map the major and

minor device numbers to a specific device.

Return Values

OK — No errors occurred.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — An attempt was made to map

a device that is not configured.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

1O0_PANIC_MAJOR_NUMBER_EXCEEDS_MAX — The major device number

argument exceeds the maximum specified by cfio_device_driver_count.

IO_PANIC_MAJOR_NUMBER_EXCEEDS_MAX2 — The major device number

1 2-1 8 , Licensed materiai~—property of Data General Corporation . 093-701683

io_map_device_number

argument exceeds the maximum specified by cf_io_major_number_count.

093-701083 Licensed material—property of Data General Corporation 12-19

io_parse_device_spec

io_parse_device_spec

Syntax

boolean type io_parse_device_spec (spec_ptr,

dev_adapt_info_ptr,

spec_size_ptr)

char_ptr_type spec_ptr; /*READ ONLY*/

io_dev_adapt_info_ptr_type dev_adapt_info_ptr;/*WRITE ONLY*/

int32_ptr_type spec_size_ptr; /*WRITE ONLY*/

Summary

Parse the device or adapter specification string for the positions of all

specification components.

Parameters

spec_ptr — Pointer to a null terminated device or adapter specification string.

dev_adapt_info_ptr — Pointer to a structure where the pointers to the parsed

string are to be returned.

spec_size_ptr — Pointer to the location where the length of the parsed

device/adapter specification is returned. This location remains unchanged on

error.

Description

This routine parses a device or adapter specification string (null terminated) into
components. The components parsed for are: the device/adapter name, device

code, and up to IOL.DEV_ADAPT_MAX_PARAMS parameters. The parse

leaves the original string intact. If a given component was not present, its pointer

will point to a null character. Upon successful parsing, the length, in bytes, of
the parsed specification will be returned in spec_size_ptr.

At a minimum the device/adapter specification must consist of a sequence of

characters followed by an open and a close parenthesis. If a device code is

present it must be prefixed with an

IO_.DEV_ADAPT_DEVICE_CODE_DELIMITER (at-sign, @), consist of two

hexadecimal characters, and occupy the space immediately in front of the open

parenthesis. Any number of parameters up to

IO_DEV_ADAPT_MAX_PARAMS may be present, but they must be separated

by commas. For more detailed information about the device and adapter

specification, refer to Chapter 1. If the parsing fails, then all information within
the dev_adapt_info structure must be assumed to be invalid.

12-206 - Lieensed materia—property of Data Genera! Corporation Se 093-701083

iO0_parse_device_spec

Return Values

TRUE — The specification was successfully parsed.

FALSE — The parsing failed and the state of the spec_ptr string and the
dev_adapt_info_ptr structure elements are unknown.

083-701083 Licensed material—property of Data Genera! Corporation 12-21

io_pertorm_reset

io_perform_reset

Syntax

void io _perform_reset (reset_variety)

uc_reset_enum type reset_type; /*READ ONLY*/

Summary

This routine performs the specified type of reset.

Parameters

reset_variety — An enumeration specifying which type of reset is to be done.

Description

This routine performs the specified type of reset. It uses the clock and await

mechanisms, so it should not be used in an environment where this is not

possible (for example, during shutdown or after reset).

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error codes:

1O_PANIC_BAD_RESET_TYPE — The parameter passed is not recognizable.

12-22 Licensed material—property of Data General Corporation - 7 “993-701083

io_register_device_info

io_register_device_info

Syntax

status type io_register_device_info (dev_code,dev_class,

info_ptr)

io_device_code_type dev_code; /*READ ONLY*/

uc_device_class_enum_type dev_class; /*READ ONLY*/

word_address_type info_ptr; /*READ ONLY*/

Summary

This routine associates a pointer given in info_ptr with the device specified by the

device code and device class. This process establishes an interrupt handler for

the given device code.

Parameters

dev_code — The device code of the device with which a device information

structure is to be associated.

dev_class — The device class of the device with which a device information

structure is to be associated.

info_ptr — A pointer to the device information structure to be associated with

the specified device code. The device information structure must contain a

pointer to an interrupt handler as the first field. This interrupt handler becomes

the handler for interrupts from the specified device code.

Description

This routine creates an entry in the appropriate device class device interrupt table

(DIT) for the device code. If the slot in the DIT is already occupied or if the

device code is larger than the maximum device code supported on this system,

then an error is returned and the association between the device code and device

information structure is NOT established.

Return Values

OK — The device_info was successfully registered.

10_ENXIO_DEVICE_CODE_OUT_OF_RANGE — The supplied device code is

not supported on this system. The device_info is not registered.

IO_ENXIO_DEVICE_CODE_ALREADY_ASSIGNED — An attempt was made

to configure a device on a device code that is already assigned.

©93-701083 Licensed material—property of Data General Corporation 1 2-23

io_register_device_info

Exceptions

None.

End of Chapter

12-24 _”- Beensed materiak—propertyof Data- General Corporation _, 093-761083

Chapter 13

Driver Daemon, Generic Daemon

And Error Processing Routines

This chapter describes the DG/UX kernel routines used for sending messages to the

driver and generic daemons and to the error logging facility. Following the

introduction is a “Constants and Data Structures” section, which lists some of the

major constants and data structures used by routines in this section. Check the

appropriate include files (for example, check i_io.h for structures beginning with the

io acronym) for a complete and current list of all constants and structures.

The routines described in this section are:

® io_quenue_message_to_driver_demon

e io_specify_max_demon_messages

@® io_queue_message_to_generic_demon

© io specify_max_generic_demon_messages

e SC_ENCODE_STATUS

e io_err_log_error

Routines beginning with se require the i_sc.b include file and those beginning with io

require i_io.h.

Overview to Driver Daemon and Generic

Daemon Routines

Driver daemons and Generic daemons are classes of daemon processes that drivers

use in asynchronous I/O requests. They provide the recommended path for

completing asynchronous processing after the interrupt handler.

The two classes of daemon processes have exactly the same interface and method of

operation. Each class has a global queve on which requests are placed. ‘You put

requests on these queues by calling io_queue_message_to_driver_demon Or

io_queue_message_to_generic_demon. Requests consist of a pointer to a routine to

execute and an argument to be passed to the routine. Daemon processes

continuously remove and process entries from the request queue by calling the routine

with the specified argument. Because more than one daemon process may be

removing requests from the same queue, multiple requests may be executed in parallel

083-707083 Licensed material—property of Data General Corporation 1 KE |

Overview to Driver Daemon end Generic Daemon Routines

on systems with multiple processors. Each request, however, is only executed once

and by a single daemon. Ali the daemon processes working off the same queue are in

the same class. Note that the requestor’s routine will run in the daemon’s context not

in the requestor’s context.

The two classes of daemons differ in what kinds of operations the routine in the

request may perform. Routines in Driver Daemon requests must not perform any

operation that might have to wait for the completion of a disk I/O operation. For

example, such routines may not cause a page fault, because servicing the page fault

may require waiting for a disk I/O to complete. In addition, such routines must not

directly or indirectly send signals or perform terminal-related operations. Because of

all these restrictions, the Driver Daemons will generally only be used by disk device

drivers.

Routines in Generic Daemon requests are allowed to wait on disk I/O, send signals,

and perform terminal-related operations. The lesser restrictions make the Generic
Daemons usable by terminal-handling code and other higher level parts of the system.

CAUTION: Disk device drivers must not use the Generic Daemons because a

deadlock condition could result.

As with time-outs, the kernel needs a certain amount of space to process daemon

messages and this space is allocated dynamically at run-time. You must declare the

maximum space needed by calling io_specify_max_demon_messages (for driver

daemon messages) and/or io_specify_max_generic_demon_messages (for generic

daemon messages) before you send any messages to the corresponding daemon.

Once you have allocated the maximum number of messages, you may not request

more and you must not exceed the number specified.

Error Encoding and Logging Routines

This section describes a macro you can use to create system-compatible error

numbers for your device’s errors and a routine you can use to log errors to the system

error facility.

You use the io_err_log_error routine to queue your driver’s error messages on the

pseudo-device err(7) until they can be retrieved by the system error daemon and

written to system error log. You pass your message to io_err_log_error in the form

of a printf string with a format parameter and accompanying variables.

The error encoding macro helps you integrate system-compatible errnos into your

status codes. A compatible errno can be passed all the way back to the user level. In

normal processing, once a status is sent to the user-level, the errno is extracted from

the status and returned to the user.

To create a status containing an errno, use the following format:

SS_EEEE_DDDDDD

Here, SS is a subsystem identifier; your device driver will use "DEV" if it is a

standard driver and "SFM” if it is a STREAMS driver. EEEE is the full name of the

4 3-2 ' > Licensed materiak—property of Data General Corporation 093-701083

Error Encoding and Logging Routines

errno to be returned to the user; use standard errnos found in errno.h. DDDDDD is

a description of the state that caused the status to be returned. An example of a
status code is as follows:

IO_EIO_DEVICE_TIMED_OUT

If you do not want to use the status to return an errno to the user, pass

SC_NO_ERRNO to this macro. Higher levels of code will deal with the status before

it gets back to the user.

Whenever possible, use I/O statuses already defined in dev_status_codes.h found in

aviion/dev. For statuses that you will handle within your driver, use DEV as the

subsystem, SC_NO_LERRNO as the errno and simply chose a status number that is

higher than the last one used in dev_status_codes.h. The DEV_ENCODE macro in

dev_status_codes.h will set up the status for you correctly.

Note that the convention through the rest of the kernel is to use STATUS instead of

the EEEE errno when no errno is used. For example,

IO_STATUS_REQUEST_STILL_IN_PROGRESS will not return a status to the

user. An example of how to create a new status for your device is as follows:

$define DEV_STATUS_FOO_DEVICE_IN_BAR_STATE DEV_ENCODE(SC_NO_ERRNO, 0107)

Constants and Data Structures

This section defines the "no error” constant.

NOTE: Because constants and data structures are subject to change, you must

verify exact variable definitions in the appropriate include file (for

example, check i.sc.h for structures beginning with the se acronym).

SC_NO_LERRNO

$define SC_NO_ERRNO 0

Use this value to indicate that the status does not contain an errno value.

0$3-701083 Licensed material—property of Data General Corporation 1 3-3

io_queue_message_to_driver_demon

io_queue_message_to_driver_demon

Syntax

vp_ec_ptr_type io_queue_message_to_driver_demon

(completion_routine_ptr, data, do_advance)

io_completion_routine_ptr_type completion_routine_ptr;

/*READ ONLY*/

bit32e_type data; /*READ ONLY*/

boolean type do_advance;/*READ ONLY*/

Summary

This routine queues a message to the Driver Daemon.

Parameters

completion_routine_ptr — A pointer to the value to go in the

completion_routine field of the message. When the Driver Daemon dequeues

this message, it will call the routine pointed to by the completion_routine_ptr

field.

data — The value to go in the data field of the message. The Driver Daemon

will use this value as a parameter when it calls the routine pointed to by

completion_routine_ptr.

do_advance — A boolean indicating whether to advance the Driver Daemon

eventcounter. See Description below.

Description

This routine queues a message to the I/O Driver Daemon. A free message is

allocated from the Driver Daemon free list, filled in with the arguments given,

and queued to the I/O Driver Daemon queue.

If do_advance is TRUE and the queue is empty, the null eventcounter pointer is

returned and the daemon eventcounter will be advanced by one.

If do_advance is FALSE, the daemon eventcounter is not advanced under any

circumstances. Rather, if the message queued is the only message in the queue,

the address of the daemon eventcounter is returned. Otherwise, the null

eventcounter pointer is returned.

Return Values

None.

@

“§ 3-4 ‘ Licensed material—-property of Data Generai Corporation . 0$3-751083

io_queuve_message_to_driver_demon

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_DEMON_FREE_LIST_EMPTY — A free message could not be

allocated from the Driver Daemon free list when needed. A device driver has

used more messages than the number of messages it requested to be allocated for

the daemon. See io_specify_max_demon_messages.

Remarks

The do_advance boolean is needed to handle timeouts. When a driver’s timeout

routine queues a message to the daemon, the eventcounter must not be advanced

because the await table lock is already held by the await table routine that found

the timeout entry. Instead, the eventcounter address is passed all the way back

to the await table code, which will perform the advance when the await table is

unlocked.

093-701083 Licensed materia}—property of Data General Corporation 1 3-5

io_specify_max_demon_messages

io_specify_max_demon_messages

Syntax

void io_specify_max demon_messages (count)

uint32_type count; /*READ ONLY*/

Summary

This routine defines the maximum number of messages that the calling driver can

have in the daemon’s queue simultaneously.

Parameters

count — The maximum number of messages. The count parameter must be a

positive integer; it is not possible to reduce the maximum number of messages.

Description

This routine allocates space for the specified number of messages and adds them

to the daemon’s free queue. It must be called by each device driver before that

driver sends a message to the daemon. A given driver may make this call more

than once if the maximum number of messages grows. The maximum number of

messages may not be reduced.

In general, the maximum number of messages a driver will need depends on the

number of devices it must service and on the way the driver handles and clears

interrupts from those devices.

Return Values

None.

Exceptions

None.

4 3-6 ‘Licensed material—property of Data Genera! Corporation 093-701083

io_.queue_message_to_generic_demon

io_queue_message_to_generic_demon

Syntax

vp_ec_ptr_type io_queue_message_to_generic_demon

(completion_routine_ptr,

data, do_advance)

io_completion_routine_ptr_type

completion_routine_ptr;/*READ ONLY*/

bit32e_type data; /*READ ONLY*/

boolean _ type do_advance; /*READ ONLY*/

Summary

This routine queues a message to the Generic Daemon.

Parameters

completion_routine_ptr — The value to go in the completion_routine field of the

message.

data — The value to go in the data field of the message.

do_advance — A boolean indicating whether to advance the generic daemon

eventcounter. See “Description” below.

Description

This routine queues a message to the Generic Daemon. A free message is

allocated from the Generic Daemon free list, is filled in with the arguments

given, and queued to the Generic Daemon queue.

If the do_advance boolean is TRUE, the return value will be the null

eventcounter pointer and the Generic Daemon eventcounter will be advanced if

the message queue is the only message in the queue.

If the do_advance boolean is FALSE, the Generic Daemon eventcounter is not
advanced under any circumstances. Rather, if the message queued is the only

message in the queue, the address of the demon eventcounter is returned.

Otherwise, the null eventcounter pointer is returned.

Return Values

None.

0$3-701083 Licensed materiak—property of Data Genera! Corporation 1 3-7

io_queue_message_to_generic_demon

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error codes:

IO_PANIC_GENERIC_DEMON_FREE_LIST_EMPTY — A free message could

not be allocated from the Generic Daemon free list when needed. The device

driver has used more messages than the number of messages it requested to be

allocated for the daemon.

13-8 Licensed material—property of Data General Corporation . 093-701083

io_specify_max_generic_demon_messages

io_specify_max_generic_demon_messages

Syntax

void io_specify_max_generic_demon_messages (count)

uint32_type count; /*READ ONLY*/

Summary

This routine informs the Generic Daemon of the maximum number of messages

that the calling driver will have in the daemon’s queue.

Parameters

count — The maximum number of messages. This value must be a positive

integer. Once count has been set you can add to but not reduce the maximum

number of messages.

Description

This routine allocates space for the specified number of messages and adds them

to the Generic Daemon’s free queue. It must be called by each device driver

before that driver sends a message to the Generic Daemon. A given driver may

make this call more than once if the maximum number of messages grows.

However, the maximum number of messages may not be reduced.

In general, the maximum number of messages a driver will need depends on the

number of devices it must service and on the way the driver handles and clears

interrupts from those devices.

Return Values

None.

Exceptions

None.

093-701083 Licensed materia-property of Data General Corporation 1 3-9

SC_ENCODE_STATUS

SC_ENCODE_STATUS

Syntax

#define SC_ENCODE_STATUS (subsystem_id, errno, sequence)

(status_type) ((subsystem_id << 18) + (errno << 9) + sequence))

Summary

This macro constructs a status value from the subsystem ID for a subsystem, the

errno to be inserted into the status, and a sequence number to distinguish

multiple statuses with the same subsystem ID.

Parameters

subsystem_id — The subsystem ID for the subsystem.

errno — The errno that is to be inserted into the status. The value of errno must

be less than or equal to 511.

sequence — A sequence number to distinguish multiple statuses with the same

subsystem ID. The sequence number must have a value between 1 and 511.

Description

The status is constructed so the sequence number occupies bits 0-8, the errno

occupies bits 9-17, and the subsystem ID occupies bits 18-26. Bits 27-31 are

unused and set to 0. The errno parameter specifies the errno value that will be

returned to the user. To get the subsystem ID and sequence numbers, the user

should call the dg_ext_errno system call.

Return Values

status — The newly encoded status.

13-10 -* Licensed material—property of Data General Corporation 093-701083

io_err_log_error

io_err_log_error

Syntax

boolean type io_err_log_error (priority, format,

value_00,value_01,value_02,

value_03,value_04,value_05,

value_06,value_07,value_08,

value_09,value_10,value_1ll,

value_12,value_13,value_14,

value_15,value_16,value_1i7)

uint32e_type priority; /* READ ONLY */

char _ptr_ type format; /* READ ONLY */

bit32e type value_00; /* READ ONLY */

bit32e type value_01l; /* READ ONLY */

bit32e type value_02; /* READ ONLY */

bit32e_ type value_03; /* READ ONLY */

bit32e_ type value_04; /* READ ONLY */

bit32e_type value_05; /* READ ONLY */

bit32e type value_06; /* READ ONLY */

bit32e type value_07; /* READ ONLY */

bit32e_ type value_08; /* READ ONLY */

bit32e type value_09; /* READ ONLY */

bit32e_type value_10; /* READ ONLY */

bit32e type valiue_ii; /* READ ONLY */

bit32e_ type value_12; /* READ ONLY */

bit32e type value_13; /* READ ONLY */

bit32e_type value_14; /* READ ONLY */

bit32e type value_15; /* READ ONLY */

bit32e_type value_16; /* READ ONLY */

bit32e_type value_17; /* READ ONLY */

Summary

If an error queue element is available on the free queue, the indicated message is

formatted and copied into it, and the element is placed on the ready queue.

Parameters

priority — The priority of this error message. See syslog.h for priority

definitions.

format — A printf format string that specifies the format to be used for the

message.

value_00-17 — The parameters to be substituted into the printf string format.

093-701083 Licensed materiai—property of Data Genera! Corporation 13-1 1

io_err_log_error

Description

If the error daemon syslogd has not opened the err pseudodevice, the message is

formatted and printed on the console. If an empty record is available, the

priority number and the message are formatted into it. Long messages are

truncated. The formatted record is placed on the ready queue, and the event

counter is advanced. If there are no available records, the message is ignored.

Return Values

TRUE — If an error queue element was available.

FALSE — If no error queue element was available.

End of Chapter

13-12 Licensed material—-property of Data General Corporation 0$3-701083

Chapter 14

Select Manager Routines

This chapter is contains routines used by a select routine for a standard DG/UX
driver and may not be appropriate for a STREAMS driver. Throughout the chapter

we will refer to the driver’s select routine as the dev_xxx_select routine.

This chapter describes the DG/UX kernel routines used for accessing device select

lists. We start with a brief introduction to select operations and the select manager

routines. Following the introduction is a “Constants and Data Structures” section,
which lists some of the major constants and data structures used by routines in this

section. Check the appropriate include files (for example, check i_io-h for structures

beginning with the io acronym) for a complete and current list of all constants and

structures.

Overview to Using the Select Manager

Routines

The select manager facility consists of a set of utility routines that a driver may use to

help implement its dev_xxx_select routine. Select operations allow a user to wait for

multiple I/O requests from a device without directly suspending. The kernel’s select

routines help your driver manage select operations by maintaining lists of outstanding

select operations for each device. Note that some devices (for example, disks) always

return TRUE when selected because the operations compiete quickly and cannot be

interrupted. Drivers for such devices will not need the routines in this section

because their select operations do not need to keep lists of waiting users.

The select manager keeps a list of the processes waiting for I/O events on a particular

device. To use the select manager routines, during initialization you must allocate a

data structure of type io_select_list_type for each physical device that may be

selected. This structure is the head of the select-request list and holds information

the select manager needs to handle the list. You must initialize each select list by

calling io_select_init before the list is used.

When a user makes a select request, the kernel passes control to the driver’s

dev_xxx_select routine. If the select condition is satisfied, dev_xxx_select will return

TRUE immediately. If the select condition is not satisfied, dev_xxx_select can place

an entry on the device’s select list by calling io_select_register. The entry records the

intent of the select: read, write, or exception. It also contains a pointer to the

eventcounter to be raised when the select condition is satisfied.

When an I/O event occurs on the device (for example, the driver receives data, learns
the device is ready for writing, or discovers an exceptional condition on a device), the

driver calls io_select_satisfy with the corresponding intent (read/write/exception)

093-701083 Licensed materiat—property of Data General Corporation 14-14

Overview to Using the Select Manager Routines

flagged. Io_select_satisfy traverses the device’s select list to advance the

eventcounters and hence wake up the processes interested in that event.

Note that io_select_satisfy leaves the entry on the select list whether it is satisfied or

not. To remove the entry dev_xxx_select calls io_select.cancel. Until it is cancelled

the entry’s eventcounter will continue to advanced when the indicated select condition

is satisfied. Every io_select_register must eventually be followed by a call to

io_select_cancel so old entries are not left on the list.

CAUTION:

It is essential that you note the following items:

The select manager operations do NOT lock the select-request lists.

The device driver must lock the list structure to ensure that accesses to

the select list are single-threaded or ensure that at most one of the select

manager functions is in progress on a particular select list at one time.

If, for example, io_select_register is trying to add a new entry to the

select list at the same time io_select_satisfy is trying to traverse the list,

indeterminate results may occur, possibly even a kernel panic.

Io_select_satisfy will frequently be called from an interrupt service

routine. If you call it from a service routine, be sure to mask out the

device’s interrupts before you call other routines with its select list. If

you don’t, the interrupt level may encounter a partially processed list.

The following routines are described in this section:

® io_select_cancel

@ io_select_init

@ io_select_register

@ io_select_satisfy

Routines beginning with io require the i_io-h include file.

Constants and Data Structures

io_select_intent_type

typedef bitlé_type io_select_intent_type ;

IO_SELECT INTENT READ

IO_SELECT_INTENT_WRITE

I0_SELECT INTENT EXCEPTION

I0_SELECT_INTENT_NONE

14-2 Licensed material—property of Data Genera! Corporation 093-701083

Constants and Data Structures

Description

This type describes the select options that may be specified to a device driver’s

dev_xxx_select routine. The READ, WRITE, and EXCEPTION options start a

select for the corresponding operation. You can use any combination of these three

options in a single dev_xxx_select call. IO.LSELECT_INTENT_NONE is used as a

return value from io_select_cancel when no intent has been satisfied.

083-701083 Licensed material—property of Data General Corporation 14-3

io_select_cancel

io_select_cancel

Syntax

io_select_intent_type io_select_cancel (select_list_ptr,

ec_ptr)

io_select_list_ptr_type select_list_ptr; /*WRITE ONLY*/

vp_ec_ptr_type ec ptr; 7*READ ONLY*/

Summary

This routine removes the process identified by ec_ptr from the select list.

Parameters

select_list_ptr — A pointer to a select List.

ec_ptr — A pointer to a process’s select eventcounter.

Return Values

The type of select intent satisfied (or none).

1 4-4 Licensed material—property of Data General Corporation 093-701083

io_selectinit

io_select_init

Syntax

void io_select_init (select_list_ptr)

io _select_list_ptr_type select_list_ptr; /*WRITE ONLY*/

Summary

This routine initializes the given select list.

Parameters

select_list_ptr — A pointer to a select list.

Return Values

None.

093-701083 Licensed material—property of Data Genera! Corporation 1 4-5

io_select_register

io_select_register

Syntax

void io_select_register (select_list_ptr, intent, ec_ptr)

io _select_list_ptr_type select_list_ptr; / *READ/WRITE/*

io_select_intent_type intent; /*READ ONLY*/

vp_ec_ptr_type ec_ptr; /*READ ONLY*/

Summary

This routine registers a select with the given intent and eventcounter on the given

select list.

Parameters

select_list_ptr — A pointer to a select list.

intent — The intent of the select.

ec_ptr — A pointer to the select eventcounter of the selecting process.

Description

See the "Constants and Data Structures” section for a list of defines for intent.

Return Values

None.

1 4-6 Licensed material—property of Data General Corporation . 093-701083

io_select_satisfy

io_select_satisfy

Syntax

void io_select_satisfy (select_list_ptr, intent)

io_select_list_ptr_type select_list_ptr; /*WRITE ONLY*/

io_select_intent_type intent; 7*READ ONLY*/

Summary

This routine searches the given select list for processes interested in the given

I/O event. The select eventcounters for those processes are advanced.

Parameters

select_list_ptr — A pointer to a select list.

intent — The type of select to satisfy.

Return Values

None.

End of Chapter

083-701083 Licensed material—-property of Data Genera! Corporation 14-7

Chapter 15

Nodevice Routine Stubs

This chapter lists pre-written stub routines that drivers may use for required driver

interface routines. Instead of writing your own routine, you can use one of the

routines listed anytime your driver does not process the I/O operation indicated in the

routine’s name. For example, if your device cannot be used as a dump device, you

can use the io_nodevice_open_dump routine instead of supplying your own open

dump stub. To use the nodevice stub, you simply supply the nodevice routine’s name

in the driver’s routines vector structure.

The nodevice routines support both block and character operations so they can serve

as stubs for both types of requests. The routines in this section generally return at

least an error and, in some cases, a panic. Before you use one of these routines,

make sure its error return is acceptable and appropriate for your device.

The following routines are described in this section:

@® io_nodevice_open

@ io_nodevice_close

@ io_nodevice_read_write

@ io_nodevice_select

® io_nodevice_ioctl

® io_nodevice_start_io

@® io_nodevice_configure

@® io_nodevice_deconfigure

@ io_nodevice._name_to_device

@® io_nodevice_device_to_name

@ io_nodevice_open_dump

@ io _nodevice_write_dump

® io_nodevice_read_dump

@ io _nodevice_close_dump

093-701083 Licensed material—property of Data Genera! Corporation 1 5-1

Nodevice Routine Stubs

@ io _nodevice_powerfail

@ io_nodevice_mmap

@ io_nodevice_munmap

@ io_nodevice_maddmap

@ io_nodevice_service_interrupt

Constants and Data Structures

There are no special constants or data structures required for these routines.

1 5-2 " - Leensed material—property of Data General Corporation 093-701083

io_nodevice_open

io_nodevice_open

Syntax

status_type io_nodevice_open (device_number, channel_flags,

device_handle_ptr)

io_device_number_type device_number; /*READ ONLY*/

io_channel_flags_type channel flags; /*READ ONLY*/

io_device_handle ptr_type device_handle_ ptr; /*WRITE ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to open

a non-existent device.

Parameters

device_number — The major and minor device number from the special file that

is being opened.

channel_flags — A set of flags specifying whether the I/O to the device will be

reads, writes, or both.

device_handle_ptr — A pointer to the location where the device handle is to be

returned. Because io_nodevice_open always fails, no device handle is ever

returned.

Description

This routine returns a status indicating that the device does not exist.

Return Values

IO_ENXIO_DEVICE_DOES_NOT_EXIST — This value is always returned.

Exceptions

None.

093-701083 Licensed material—property of Data General Corporation 1 5-3

io_nodevice_ciose

io_nodevice_close

Syntax

status type io_nodevice_close (device_handle, channel_flags)

io_device_handle type device_handle; /*READ ONLY*/

io_channel flags_type channel_flags; /*READ ONLY*/

Summary

This routine is a stub for handling erroneous I/O operations. Either the driver

does not support this operation or the device does not exist. Calling this routine

will cause a system fatal error.

Parameters

device_handle — The device handle for the device that is being closed.

channel_flags — The flags with which the device was opened.

Description

Panic is invoked.

Return Values

None.

Exceptions

None.

Abort Conditions

This routine always panics with the following panic code:

IO_PANIC_NODEVICE_CLOSE — An attempt was made to close a major

device number for which no driver exists.

1 5-4 “Licensed material—property of Data General Corporation se 093-701082

io_Nodevice_read_write

io_nodevice_read_write

Syntax

status_type io_nodevice_read write (request_info_ptr)

io_request_info_ptr_type request_info_ptr; /*READ ONLY*/

Summary

This routine is a stub for handling erroneous I/O operations. Either the driver

does not support this operation or the device does not exist. Calling this routine

will cause a system fatal error.

Parameters

request_info_ptr — A pointer to a packet containing the information necessary

to specify a read or write request.

Description

Panic is invoked.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic is always called with the following panic code:

I0_PANIC_NODEVICE_READ_WRITE — An attempt was made to do a read

or write operation on a major device number for which no driver exists.

093-701083 Licensed material~property of Data General Corporation 1 5-5

io_nodevice_select

io_nodevice_select

Syntax

void io_nodevice_select (device_handle, select,

, ec_ptr, intent _ptr)

io_device_handle type device_handle; /*READ ONLY*/

boolean_type select; /*READ ONLY*/

vp_ec_ptr_type ec_ptr; /*READ ONLY*/

io_select_intent_ptr_type intent_ptr; /*READ WRITE*/

Summary

This routine is a stub for handling erroneous I/O operations. Either the driver

does not support this operation or the device does not exist. Calling this routirie

will cause a system fatal error.

Parameters

device handle — The device handle of the device that is the target of select.

This handle must be a device handle that was returned by the open routine of this

driver.

select — If TRUE, this is the start of a select operation; conditions that are not

immediately TRUE should be recorded so that the eventcounter can be advanced

when they become TRUE. If FALSE, this is the end of a select operation; any

previously remembered conditions should be forgotten.

ec_ptr — Specifies the eventcounter to be advanced by the driver when the select

is satisfied if it is not immediately satisfied.

intent_ptr — On input, intent_ptr specifies whether a select is to be instituted for

a combination of read, write, or exceptional conditions.

Description

Panic is invoked.

Return Values

None.

1 5-6 7 Licensed material—property of Data General Corperation 093-701083

io_nodevice_select

Exceptions

None.

Abort Conditions

Panic is always invoked with the following panic code:

IO_PANIC_NODEVICE_SELECT — An attempt was made to do a select
operation on a device for which no driver exists.

093-701083 Licensed material—property of Data General Corporation 1 5-7

io_nodevice_ioctl

io_nodevice_ioctl

Syntax

status type io_nodevice_ioctl (device_handle, command,

parameter, return_value_ ptr)

io_device_handle type device_handle; /*READ ONLY*/

bit32e_type command; /*READ ONLY*/

bit32e_type parameter; / *READ/WRITE*/

int32e_ptr_type parameter; /*WRITE ONLY*/

Summary

This routine is a stub for handling erroneous I/O operations. Either the driver

does not support this operation or the device does not exist. Calling this routine

will cause a system fatal error.

Parameters

device_handle — The device handle of the device that is the target of the /O

control operation.

command — A command to the device. The interpretation of the command is

specific to the driver.

parameter — An argument to the command. The interpretation of the

parameter is specific to the driver and the command. The parameter may be

used to transfer information in either direction between the caller and the device.

In particular, it may be a pointer to a buffer supplied by the caller.

return_value_ptr — A pointer to the value to be returned to the user.

Description

This routine causes a system panic.

Return Values

None.

15-8 Licensed material—property of Data Genera! Corporation : i _ 093-701083

io_nodevice_ioctl

Exceptions

None.

Abort Conditions

Panic is always invoked with the following panic code:

IO_PANIC_NODEVICE_IOCTL — An attempt was made to do an ioctl
operation on a device for which no driver exists.

093-701083 Licensed materia-=property of Data General Corporation 1 5-9

io_nodevice_startio

io_nodevice_start_io

Syntax

status type io_nodevice_start_io (op_record_ptr)

io_operation_record_ptr_type op_record_ptr; /*READ ONLY*/

Summary

This routine is a stub for handling erroneous I/O operations. Either the driver

does not support this operation or the device does not exist. Calling this routine

will cause a system fatal error.

Parameters

op_record_ptr — A pointer to the operation record for the asynchronous

request. The operation record contains fields indicating the minor device that is

the target of the operation, the operation to be performed, the offset on the

device from which the operation is to commence, the size of the transfer, the

address of the main memory buffer, and the address of the routine that is to be

called when the operation completes.

Description

This routine causes a system panic.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic is always invoked with the following panic code:

IO_PANIC_NODEVICE_START_IO — An attempt was made to do an start_io

operation on a device for which no driver exists.

1 Sof 0 Licensed materiah—property of Data General Corporation 093-701083

io_nodevice_configure

io_nodevice_configure

Syntax

status_type io_nodevice_configure (device_name ptr,

major_number)

char_ptr_ type device_name ptr;/*READ ONLY*/

io_major_device_number type major_number; /*READ ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to

configure a non-existent device.

Parameters

device_name_ptr — A pointer to the character string name of the device to be

configured.

major_number — The major device number on which the device is to be

configured.

Description

This routine always returns an error.

Return Values

10_ENXIO_DEVICE_NAME_NOT_RECOGNIZED — This status is always

returned.

Exceptions

None.

Abort Conditions

None.

083-701083 Licensed materiatproperty of Data Genera! Corporation 15-11

io_nodevice_deconfigure

io_nodevice_deconfigure

Syntax

status_type io_nodevice_deconfigure (device_name ptr)

char ptr_type device_name ptr; /*READ ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to

deconfigure a non-existent device.

Parameters

device_name_ptr — A pointer to the null-terminated string specifying the device

to be deconfigured.

Description

This routine always returns an error.

Return Values

IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED — This status is always

returned.

Exceptions

None.

45-12 ' Lieensed materiak—property of Data General Corporation - *093-701083

io_nodevice_name_to_device

io_nodevice_name_to_device

Syntax

status_type io_nodevice_name_to_device (device_name_ptr,

number ptr)

char_ptr_type device_name ptr; /*READ ONLY*/

io_device_number ptr type number ptr; /*WRITE ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to do

name-to-device conversion on a non-existent device.

Parameters

device_name_ptr — A pointer to the null-terminated device name that is to be

translated.

number_ptr — A pointer to where the corresponding device number is to be

written.

Description

This routine always returns an error.

Return Values

IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED — This status is always

returned.

Exceptions

None.

093-701083 Licensed materia—property of Data Genera! Corporation 1 5-1 3

io_nodevice_device_to_name

io_nodevice_device_to_name

Syntax

status_type io_nodevice_device_to_name (device_number,
name ptr, size)

io_device_number_type device_number; /*READ ONLY*/

char_ptr_type name ptr; /*WRITE ONLY*/

uint32_type size; /*READ ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to do

device-to-name conversion on a non-existent device.

Parameters

device. number — The device number to be translated into a device name

character string.

name_ptr — A pointer to where the null-terminated character string name is to

be written.

size — The maximum number of bytes, including the terminating null, that is to

be written to name_ptr.

Description

This routine always returns an error.

Return Values

1O_ENXIO_DEVICE_IS_NOT_CONFIGURED — This status is always returned.

Exceptions

None.

15-1 4 ’ Leensed materia-property of Data General Corperation _ 083-701083

io_Nodevice_open_dump

io_nodevice_open_dump

Syntax

status_type io_nodevice_open_dump (device_name)

char ptr. type device_name; /*READ ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to dump

to a non-existent device or to a device that does not support dumps.

Parameters

device_name — The character string name of the device to which the dump is

being written. .

Description

This routine always returns an error.

Return Values

IO_STATUS_DUMP_NOT_SUPPORTED — This status indicates that the device

does not support dumps. This status is always returned.

Exceptions

None.

Abort Conditions

Nozne. This routine must not panic because it is invoked as part of the panic

sequence.

083-701053 Licensed materiai--property of Data Genera! Corporation 15- 15

io_nodevice_write_dump

io_nodevice_write_dump

Syntax

status _type io_nodevice_write_dump (buffer_ptr, buffer_size)

pointer _to_any type buffer_ptr; /*READ ONLY*/

uint32_type buffer_size; /*READ ONLY*/

Summary

This routine is a stub for handling devices that do not exist. It is a system fatal

error to call this routine.

Parameters

buffer_ptr — A pointer to the buffer of data to be written to the system dump.

buffer_size — The size, in bytes, of the buffer.

Description

This routine should never be called because io_nodevice_open_dump always

fails.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_NODEVICE_WRITE_DUMP — An attempt was made to write dump

information to a non-existent device.

15-16 "Licensed material—property of Data General Corporation 093-701083

io_nodevice_read_dump

io_nodevice_read_dump

Syntax

status_type io_nodevice_read_dump (buffer_ptr, buffer_size)

pointer to_any_ type buffer ptr; /* WRITE ONLY */
uint32_type buffer size; /* READ ONLY */

Summary

This function is a stub for handling devices that do not exist. It is a system fatal

error to call this function.

Parameters

buffer_ptr — A pointer to the buffer to which data is to be read.

buffer_size — The size, in bytes, of the buffer.

Description

This function should never be called because io_nodevice_open_dump always

fails.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error codes:

IO_PANIC_NODEVICE_READ_DUMP — An attempt was made to read dump

information from a non-existent device.

093-701083 Licensed material—property of Data Genera! Corporation 15-17

io_nodevice_close_dump

io_nodevice_close_dump

Syntax

status_type io_nodevice_close_dump ()

Summary

This routine is a stub for handling devices that do not exist. It is a system fatal

error to call this routine.

Parameters

None.

Description

This routine should never be called because io_nodevice_open_dump always

fails.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_NODEVICE_CLOSE_DUMP — An attempt was made to close a

non-existent dump device.

15-18 eensed materiatproperty of Data General Corporation 093-701083

io_nodevice_powertail

io_nodevice_powerfail

Syntax

status_type io_nodevice_powerfail ()

Summary

This routine is a stub routine that simply returns OK, because there is nothing to

do in order to perform powerfail restart on nodevice.

Parameters

None.

Description

The status OK is returned.

Return Values

OK — This value is always returned.

Exceptions

None.

Abort Conditions

None.

0$3-701083 Licensed material—property of Data Genera! Corporation 1 5-1 9

io_nodevice_mmap

io_nodevice_mmap

Syntax

status_type io_nodevice_mmap ()

Summary

This routine is a stub for handling the mmap system call. The errno EINVAL is

returned.

Parameter

None.

Description

This routine always returns an error.

Return Values

IO_EINVAL_MMAP_NOT_SUPPORTED — The mmap operation is not

supported for this device.

Exceptions

None.

1 5 -20 Licensed material—property of Data Genera! Corporation ‘ 093-701083

io_nodevice_munmap

io_nodevice_munmap

Syntax

status_type io_nodevice_munmap ()

Summary

This routine is a stub for handling the munmap system call. The ermo EINVAL

is returned.

Parameters

None.

Description

This routine always returns an error.

Return Values

IO_EINVAL_MUNMAP_NOT_SUPPORTED — The munmap operation is not

supported for this device.

Exceptions

None.

0$3-701083 Licensed material—~property of Data General Corporation 1 5-21

io_nodevice_maddmap

io_nodevice_maddmap

Syntax

status_type io_nodevice_maddmap ()

Summary

This function is a stub for incrementing reference counts to memory mapped

sections. The errno EINVAL is returned.

Parameters

None.

Description

EINVAL is returned.

Return Values

IO_EINVAL_MMAP_NOT_SUPPORTED — The maddmap operation is not

supported for this device.

Exceptions

None.

15-22 Licensed material—property of Data Genera! Corperation 693-701083

io_nodevice_service_interrupt

io_nodevice_service_interrupt

Syntax

void io_nodevice_service_interrupt (device_code, device_class)

io_device_code_type device_code; /*READ ONLY*/

uc_device_class_enum_type device_class; /*READ ONLY*/

Summary

This routine handles unexpected interrupts from devices that are not configured
into the kernel.

Parameters

device_code — The device code of the interrupting device.

device_class — The device class of the interrupting device.

Description

This routine runs at interrupt level. It handles interrupts from devices that are

not configured and, therefore, which should not be generating interrupts. This

routine does not obey the standard interface for service interrupt routines.

Because it must service interrupts from all devices, it uses a device code as the

argument instead of a device information structure pointer.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_NODEVICE_LINTERRUPT_OVERRUN — Too many unexpected

interrupts were received in too short a time. This panic probably indicates the

existence of a hardware problem that is generating spurious interrupts.

End of Chapter

093-701083 Licensed materia—property of Data Genera! Corporation 15-23

e

Chapter 16

Miscellaneous Routines

This chapter describes the DG/UX kernel routines used for a variety of driver

operations including: checking self-IDs; converting hexadecimal strings to their

integer values; formatting a print line; creating a system panic; and determining

whether the calling process has super-user privileges.

The routines described in this section are:

fs_check_self_id

io_hex_str_to_int

misc_format_line

pm_is_super_user

sc_panic

Routines beginning with fs, misc, pm, sc, and io require the i_fs.h, i.misc.h, i_pm.b,

i_sc.h, and i_io.h include files, respectively.

Constants and Data Structures

There are no special constants or data structures required for these routines.

093-701083 Licensed material—property of Data General Corporation 1 6-1

fs_check_self_id

fs_check_self_id

Syntax

boolean _ type fs_check_self_id (blocks_ptr, self_id_ptr,

count_ptr)

pointer _to_any type blocks_ptr; /*READ ONLY*/

af_self_id ptr_type self_id_ptr; /*READ ONLY*/

uint32_ptr_type count_ptr; / *READ/WRITE*/

Summary

This routine checks the self-ID for the given set of blocks.

Parameters

blocks_ptr — Pointer to the beginning of the first block to be checked.

self_id_ptr — Pointer to the self-ID that the first block is expected to have.

count_ptr — On input, the number of bytes to be checked. On output, the

number of bytes that checked out OK. On both input and output, count_ptr

must be a multiple of the block size, though this is not checked.

Description

A self-ID is an identifying number used to identify different non-data disk blocks

used in disk administration (for example, header blocks). For each block, this

routine checks its self-ID against the prototype self-ID. If any block fails,

FALSE is returned along with the number of bytes that passed the check. If all

blocks pass, then TRUE is returned along with the number of bytes that were

checked.

Return Value

TRUE — All blocks were successfully checked.

FALSE — At least one block failed a self-ID check.

1 6-2 . Licensed material—property of Data Genera! Corperaton 7 093-701083

jio_hex_str_to_int

io_he <_str_to_int

Synta:

bociean_type io_hex_str_to_int (str_ptr, int_value_ptr)

che>_ptr_type str_ptr; /*®READ ONLY*/

uint32_ptr_type int_value_ptr; /*WRITE ONLY*/

Summary

Ret. the integer value of the null terminated hexadecimal string at str_ptr.

Parame 2rs

str_>tr — A pointer to the beginning of the string to convert.

int. alue_ptr — Pointer to location where the integer value is to be returned.

De :ription

Sc .a string str_ptr consisting only of the characters 90” - °9”, °a’ - °F, and ’A’ -

>F° and terminated with a null character, returning its unsigned 32-bit value at

int -alue_ptr. If any other characters are encountered or the value exceeds what

ca: be expressed in a 32-bit unsigned value then int_value_ptr is unchanged and
an “rror is returned.

Returr Values

F- LSE — Successful conversion occurred.

T JE — The string conversion failed.

093-701083 Licensed materia—property of Data General Corporation 16-3

misc_formatline

misc_format,_line

Syntax

uint32_type misc_format_line

(result_buf, rb_size, format,

char_ptr_type

uint32_type

char_ptr_type

bit32e_type

bit32e_type

bit32e_ type

bit32e_type

bit32e type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

Summary

result_buf;

rb_size;

format;

value_00;

value_01;

value_02;

value_03;

value_04;

value_05;

value_06;

value_07;

value_08;

value_09;

value_10;

value_1i;

value_12;

value_13;

value_14;

value_15;

value_16;

value_17;

value_18;

value_19;

value_00, value_0il,

value_03, value_04,

value_06, value_07,

value_09, value_10,

value_12, value_13,

value_15, value_16,

value_18, value_19)

/*WRITE ONLY*/

/*READ

/*READ

/ *READ

/*READ

/*READ

/*READ

/*READ

/*READ

/*READ

/*READ

/*READ

/*READ

/*REBD

/ *READ

/*READ

/*READ

/*READ

/*READ

/*REBD

/*READ

/*READ

/*READ

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

ONLY*/

value_02

value_05

value_08

value_1ll

value_14

value_17

This routine provides limited sprintf(3) functionality; it formats output and

performs value substitutions. It formats a line, creating a string by substituting

values according to field descriptors. The field descriptors in the input format are

a subset of the field descriptors that the standard library routine printf provides.

Currently provided are %c, %s, Yd, %o, %x, Yu and the ability to specify field

length and zero padding.

16-4 Licensed material—property of Data General Corporation 0$3-701083

misc_format line

Parameters

result_buf — Resulting formatted output placed here.

rb_size — Size of the buffer.

format — The format string. This format string is the same as those used in

printf.

value_00...value_19 — Place holder for 0 to 19 format substitution values. Use

value_00 for the first value, value_01 for the second value, etc.

Return Values

None.

Exceptions

None.

093-701083 Licensed material—property of Data General Corporation 16-5

pm_is_super_user

pm_is_super_user

Syntax

boolean_type pm_is_super_user ()

Summary

This routine determines whether the calling process has superuser permission. If

sO, it notifies the kernel that the process has used superuser permission so it can

be recorded for accounting information.

Parameters

None.

Return Values

TRUE — Caller is superuser.

FALSE — Caller is not superuser.

Exceptions

None.

Abort Conditions

None.

4 6-6 Licensed material—property of Data Genera} Corporation - 093-701083

sc_panic

sc_panic

Syntax

void sc_panic (panic_code)

sc_panic_code_type panic_code; /*READ ONLY*/

Summary

This routine is the panic routine that you call when serious errors or

inconsistencies are detected. A panic message is written to the system console,

and the emergency shutdown sequence is entered.

Parameters

panic_code — A value identifying the cause of the panic. This value will be

written to the system console along with the panic message. Non-standard

devices should use a panic code between 0 and 511 decimal to avoid collision

with existing system panic codes.

Description

The panic lock is obtained to ensure that only one processor enters the panic and

emergency shutdown code. If any other processors are running, they are

stopped. The routine sc_write_line is called to write the panic message to the

system console and the emergency shutdown routine is entered.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

End of Chapter

0$3-701083 Licensed materiat—property of Data General Corporation 16-7

Appendix A

Defining Device Specification

Parameters

Appendix B of Installing the DG/UXTM System describes device specifications and lists

the default memory-mapped I/O addresses, interrupt levels, and interrupt vectors for

Data General-supplied devices. It also lists default values for SCSI IDs. This

appendix describes the conventions for selecting default values for these variables for

a new device.

Additional details on specific peripherals and their drivers are given in the man pages

for the device listed under the device’s mnemonic. For example, the Ciprico ESDI

disk (mnemonic cied) is described in cied(7).

Peripheral defaults are specific to the interrupt class (see Chapter 1). So this

appendix breaks down default tables by interrupt class: VMEbus and Integrated.

093-701083 Licensed materiai—property of Data Genera! Corporation A-1

VMEbus Class |/O Defaults

VMEbus Class I/O Defaults

On AViiON systems, the VMEbus control area (memory-mapped address area) is

grouped into subareas based on the VME data width to be used by the device, for

example, a16 or a32. Figure A-1 shows the VMEbus control area. Addresses of the

al6 and a32 data width areas are fixed by the kernel.

64 Kb

4 Mb

Utility Space A16

12 Mb A32

16 Mb

A24

*980 Mb A32
Note: Not to scale;
low A32 should be

much larger

Cannot be used

for VME space

<< — OXF TFT

~<— Oxffff0000

<— Oxfic00000

<— 0xff000000

<— Oxfe000000

<— Logical address
corresponding to highest

physical address

0

Figure A-1 VMEbus Memory-Mapped I/O Addresses and Data Width Areas

A-2 Licensed material—property of Data Genera! Corporation 093-701083

Table A-1 shows the device mnemonics for various standard VMEbus devices with

VMEbus Ciass I/O Defaults

their default memory-mapped I/O address, interrupt level, and interrupt vector. The

"A16 Address” and “A32 Address” columns in Table A-1 indicate whether the base

address is in al6 or 232 space. Some devices, such as the Hawk LAN, require two

I/O address areas, for example, one in Al6 memory and one in A32 memory. The

“Length in Bytes” column gives the length of the device’s memory-mapped area. The

base address plus the number of bytes defines the memory area reserved for the

device.

NOTE: cimd (SMD disk) and cied (ESDI disk) devices share the same default

interrupt vectors and base addresses. The cird driver handles both SMD

or ESDI disks and thus it too shares these defaults. Thus, the default

values listed for cird apply to the cimd and cied drivers as well. If you have

both SMD and ESDI devices, use the cird mnemonic and treat the two

types of disks as instances of a cird device.

Table A-1 VMEbus I/O Addresses and Interrupt Level/Vector Defaults

Device A16 Address A32 Address interrupt Length

Level/Vector

Ciprico Controller (cied, cimd, cird)

cird(0) OxFFFFEFOO 2/0x18 512 bytes

cird(1) OxFFFFF100 2/0x19

cird(2) OxFFFFFBO00 2/0x1A

cird(3) OxFFFFFDOO 2/0x1B

Ciprico SCSI Adapter (cisc)

cisc(0) OxFFFFF300 2/0x28 512 bytes

cisc(1) OxFFFFF500 2/0x29

cisc(2) OxFFFFF700 2/0x2A

cisc(3) OxFFFFF900 2/0x2B

cisc(4) OxFFFFEDOO 2/0x2C

cisc(5) OxFFFFD700 2/0x2D

cisc(6) OxFFFFD900 2/0x2E

cisc(7) OxFFFFDBO0O0 2/0x2F

cisc(8) OxFFFFDDO00 2/0x20

cisc(9) OxFFFFDFO00 2/0x21

cisc(A) OxFFFFE100 2/0x22

cisc(B) OxFFFFE300 2/0x23

cisc(C) OxFFFFES00 2/0x24

cisc(D) OxFFFFE700 2/0x25

cisc(E) OxFFFFE900 2/0x26

cisc(F) OxFFFFEBOO 2/0x27

093-701083 Licensed material—property of Data Genera! Corporation A-3

VMEbus Class /O Defaults

A-4

Device Ai6 Address AS2Address interrupt Length

Level/Vector

High-Availability Disk-Array Adapter (hada)

hada(O) OxFFFF1000 2/0x70 1024

hada(1) OxFFFF1400 2/0x71

hada(2) OxFFFF1800 2/0x72

hada(3) OxFFFF1C00 2/0x73

interphase VME Ethernet Controller (hken)

hken(0) OxFFFF4000 0x55900000 3/0x15 4Kbytes
hken(1) OxFFFF5000 055980000 3/0x16 in A16

hken(2) OxFFFF4200 0xE1100000 3/0x10 area
hken(3) OxFFFF4400 0xE1180000 3/0x11

hken(4) OxFFFF4600 0xE1200000 3/0x12 512 bytes

hken(5) OxFFFF4800 0xE1280000 3/0x15 in A352

hken(6) OxFFFF4A00 0xE1300000 3/0x14 area
hken(7) OxFFFF4C00 0xE1380000 3/0x17

VME VSC Synchronous Controller (ssid)

ssid(0) 0x55B00000 3/0x50 4Kbyvtes

ssid(1) 0x55B10000 3/0x51

ssid(2) 0x55B20000 3/0x52

ssid(3) 0x55B30000 3/0x53

ssid(4) 0x55B40000 3/0x54

ssid(5) 0x55B50000 3/0x55

ssid(6) 0x55B60000 3/0x56

ssid(7) 0x55B70000 3/0x57

ssid(8) 0xE2080000 3/0x58

ssid(9) 0xE2090000 3/0x59

ssid(A) OxE20A0000 3/0x5A

ssid(B) 0xE20B0000 3/0x5B

ssid(C) OxE20C0000 =. 3/0x5C

ssid(D) OxE20D0000 3/0x5D

ssid(E) 0xE20E0000 3/0xSE
ssid(F) OxE20F0000 3/0x5F

Licensed materiai—property of Data Genera! Corporation 093-701083

VMEbus Class I/O Defaults

Device A16Address A32 Address interrupt Length

Level/Vector

Systech Asynchronous Terminal Controller (syac)

syac(0) 0x60000000 4/0x60 128Kbytes

syac(1) 0x60020000 4/0x61

syac(2) 0x60040000 4/0x62

syac(3) 0x60060000 4/0x63

syac(4) 0x60080000 4/0x64

syac(5) OxE30A0000 4/0x65

syac(6) OxE30C0000 4/0x66

syac(7) OxE30E0000 4/0x67

syac(8) 0xE3100000 4/0x68

syac(9) 0xE3120000 4/0x69

syac(A) 0xE3140000 4/0x6A

syac(B) 0xE3160000 4/0x6B

syac(C) 0xE3180000 4/0x6C

syac(D) 0xE31A0000 4/0x6D

syac(E) 0xE31C0000 4/0x6E

syac(F) O0xE31E0000 4/0x6F

VME Token Ring Controller (vitr)

vitr(0) 0x61000000 _3/0x40 512 bytes
vitr(1) 0x61002000 3/0x41
vitr(2) OxE4004000 3/0z42
vitr(3) OxE4006000 3/043
vitr(4) OxE4008000 3/044
vitr(5) OxE400A000 3/0x45
vitr(6) OxE400C000 3/046
vitr(7) OxEA00E000 _3/0x47

Conventions for Selecting VMEbus I/O Addresses

The following conventions and restrictions apply to selecting your VMEbus memory-

mapped I/O address, interrupt level, and interrupt vector:

@ To select your base memory-mapped I/O address, you simply find an unreserved

area of memory in the correct data width area. We recommend that you use the

highest data width area possible to maximize device speed. Thus, use Extended

Addressing (a32) mode if possible. Use Short Addressing (a16) mode only if

your device does not support any higher data width.

NOTE: The a32 logical address space is used by the DG/UX kernel. Therefore, if

you are using a memory mapped address in 232, you must map the a32

physical address you want to another logical address. You do this using

vm_get_unwired_memory to get a logical address and then using

vm_map_physical_ memory to map this address to the desired physical

address.

0$3-701083 Licensed material —property of Data General Cerporation A-5

VMEbus Class 1/O Defaults

@ In setting your VME address modifiers, always use the Supervisory mode.

e On DG/UX systems, the standard interrupt levels for different devices are as

follows:

2 for disks

3 for networks

4 for terminal controllers

2 for SCSI adapters

We recommend that you follow these defaults if you have one of the devices listed

above. If you have a non-standard device, you may choose whichever interrupt level

you want. Bear in mind that when you mask your device, you will be masking all

others using the same interrupt level.

@ The VME vector number uniquely identifies a controller or adapter for the whole

VME bus. As with I/O addresses, vector numbers for Data General-supplied

devices are pre-assigned and usually come correctly jumpered from the factory or

are set by driver software. Unlike memory-mapped I/O addresses, the vector

numbers of some devices can be set by the device driver at configuration time.

On the AVION system, you can select VME vector numbers from 0 through 255.
To get a vector number for your device, simply refer to Table A-1 and select an

unused vector number less than 255.

A-6 Licensed materiah—property of Date General Corporation ; 093-701083

integrated Class 1/O Defaults

integrated Class I/O Defaults

Base addresses and device codes for Integrated Class devices are specific to the

AViiON ziachine on which they are defined. Check the CPU manual for your

particular nachine for that machine’s integrated device addresses. The Guide to
AViiONE and DG/UXTM System Documentation lists the hardware manuals for all

AViiON :.:achines (see also the on-line version, /usr/release/doc_guide). In your
code, use =he Integrated class defines to specify your devices’ device code. Installing

the DG/U.27TM System also lists the device codes for Data General-supplied drivers.

Table A-2 shows the device mnemonics and default memory-mapped I/O address for

an AViiC V 300 series machine. The length of the address space is given in

parenthes s following the base address.

Table A-2 AViiON Station 1/O Address Defaults

Mn monic | Base Address (bytes) | Description

- N/A Power Fail

- N/A Parity Error

- N/A Z8536 C10 Interrupt

kbc Oxfff82800 (1K) Keyboard

duz :(0) Oxfff82000 (255) DUART

duz°=(1) Oxfff82C00 (255) DUART

Ip Oxfff82400 (1K) Parallel Port

ine: Oxfff8c000 (4K) Ethernet Controller

ins: Oxfff8a000 (4K) SCSI Controller

nes Q) Oxfffb0000 (64) NCR53C700 SCSI Interface

ncs 1) Oxfffb0080 (64) NCR53C700 SCSI Interface

| dge -0) Oxfffb0100 (64) 2nd Gen. Ethernet Cntrlier

dge “1) Oxfffb0140 (64) 2nd Gen. Ethernet Cntriler

- N/A DMA Terminal! Count Reached

- N/A DMA Write Protect Error

- N/A DMA Valid Bit

| orf Oxfff89000 (4K) Graphics

- N/A Software Interrupt

The follo” ing conventions and restrictions apply to selecting your memory-mapped
VO addr: ss.

@ The zarentheses following each base address show the number of bytes that the

devic: uses. The base address plus the number of bytes equals the entire

mer. ‘ry area reserved for the device.

093-701083 Licensed material=property of Data General Corporation

Disk and Tape Command Set Compatibility

Disk and Tape Command Set Compatibility

In order for a tape device to be compatible with the DG/UX SCSI tape driver (st), it

must conform to the ANSI SCSI-1 Command Set specification (X3.131- 1986). In
addition, it must also support the following commands listed as optional in the ANSI

specification

e Inquiry Command

e Space Command

e Test Unit Ready Command

@ Mode Sense/Select Commands

In order for a disk device to be compatible with the DG/UX SCSI disk driver (sd), it

must conform to the ANSI SCSI-1 Command Set specification (X3.151- 1986". In

addition, it must also support the following commands listed as optional in the ANSI

specification

@ Inquiry Command

@ Mode Sense/Select Commands

e Prevent/Allow Medium Removal Commands

e Read Capacity Command

e Test Unit Ready Command

End of Appendix

A-8 ‘Licensed material—property of Data Generali Corporation . €23-701083

Appendix B

Preparing Master File and

System File Entries

Master files are administrative files that contain the base information about a class of

devices. All master files for all products are kept in the master.d directory along

with the main DG/UX master file, /usr/etc/master.d/dgux. These files and their

entries are discussed in the master(4) man page. While we discuss master file entries

below, you should check this man page for the latest details on entry format as they

may be subject to change.

If you are writing a standard device driver, a STREAMS driver or module, or a

communications protocol driver, you will need to make a master file entry to enter

information defining the kind of device (or operation) your driver supports. You will

need to create a master file with vour driver’s master file entry and store it in the

master.d directory.

NOTE: All files listed in the master.d directory are included in the configuration

process. Therefore, do not keep old or backup copies of your master file

in master.d as this will cause duplicate entry names. The master file has

three kinds of sections to which you may want to add entries. They are:

® Device Section: holds descriptions of device drivers whether STREAMS or
standard DG/UX drivers. You must make an entry for you driver in this section.

There is also a Protocol section that holds descriptions of protocols supported by

the socket (2) system call and STREAMS Module section that holds descriptions

of the STREAMS modules. You do not make entries in these sections except
perhaps if you have a STREAMS module as well as a STREAMS driver.

© Keywords section: defines and sets all configurable parameters. Keyword entries

are optional.

e Alias section: allows you to define aliases for master file device entries. Alias

entries are optional.

We discuss these entries in the next section.

Describing Your Device: The Device Section Entry

You will probably want to list one of the master files in master.d to see the layout of

the different sections. We provide a sample entry below for discussion purposes.

Lines that start with # are comments.

093-701083 Licensed materia—property of Data Genera! Corporation B-1

Preparing Master File and System File Entries

$

Disks:

Name Restriction Concurrency

Prefix Flags Set
£ en ae ee ee oe am comer en ae ee a ee eee eee

sd n default

cird n default

#

xdev n default

=

#

Device description entries have three fields: device name, restriction flags, and

Concurrency. The device name is the driver’s mnemonic as described in Chapter 2.

It is the common connection between the system file entry, the master file entry and

the driver’s code — so be sure it’s correct. The xdev entry above is a non-standard

device we have added to the master file. We’ll use this entry as an example to

describe the fields in the device section. Entry information is case sensitive. The

three xdey values are:

xdev on default

xdev

entry name — This field identifies a family of devices, specifically, all devices

that use the same device driver. The entry name or name prefix is a two- to

eight-letter device mnemonic. It is also used as part of the corresponding device

driver’s name, in the device specification (the device mnemonic field) and in

corresponding system file entries. The device mnemonic uses any characters that

are valid for C language filenames.

n restrictions flag — This flag signals configuration restrictions for this device.

The flags are specified as a string of characters with the following definitions

(these options are case sensitive). The master file man page lists the current

options available but a sample set is listed in Table B-1.

default

STREAMS Concurrency Set — This field defines a set of STREAMS processes

that may of run concurrently (that is they are mutually exclusive). Conversely,

drivers that belong to separate sets may run concurrently. The name given in the

field specifies the concurrency set to which the driver will belong. The

concurrency set name has no meaning for non-STREAMS drivers which by

convention are assigned the set named default. A set may contain drivers,

modules or both. Two special sets exist: module and streams. Drivers in the

module set have sets defined on a per-board basis. For example, syac code can

run concurrently on syac(0) and syac(1) but different lines (different minor

numbers) on the same board will run exclusively. Drivers in the streams set have

sets defined on a per-stream basis. For example, syac code for all lines and

boards will run exclusive of each other. All other name values specify a named

set.

B-2 Licensed materia\property of Data Genera! Corporation " . 0393-701083

Preparing Master Fite and System File Entries

Table B-1 Restriction Flags

Option Meaning

o Specifies that the driver will allow only one

device of this type to be configured. For

example, the system console is defined as

being the only device of its type.

r Indicates that the device is required and

will be placed in the system whether or not

the system file specifies it. If the device is

not specified, default values will be given

for device specification values.

Ss This option indicates that the device is a

DG/Ux-style STREAMS device.

S This option indicates that the device is a

System V-style STREAMS device.

N This STREAMS device uses the new

(System V.4) style open/close interface.

Zz This device may be configured either

explicitly or implicitly as part of nested

declaration of another device. For

example, "st(insc()),4)” declares "insc()"

implicitly.

n No restrictions apply. Choose this option

if you do not use any of the others listed

above.

Parameters: The Keyword Section Entry

If you want to create a parameter for your driver code that can be set at system

configuration time, you can add a keyword entry to both the master file and system

file. For example, the pseudoterminal driver has a variable giving the number of

pseudoterminals to be configured. Most device drivers will not use the keyword

section.

The master file entry for a parameter should be placed in the keyword section. This

entry has four fields:

@ The variable name. The variable name is used in the corresponding system file

entry.

093-701 083 Licensed materiai—property of Data General Corporation B-3

Preparing Master File and System File Entries

e The default value for this variable. This value is used if you do not add a

corresponding system file entry to declare the variable’s actual value.

@ The variable’s data type. If you don’t specify this field, the kernel uses long

integer for the data type.

® The implied value. This value is used if you add a system file entry but do not

give that entry a value. This field is optional and exists primarily to give

conficuration flexibility for certain special devices such as the Network Filesystem

(ONCTM/NFS®).

Some sample keyword section entries are shown below:

$

$ Variable Default Implied

Name Value Type Value
£ ne ee ee a ne ie ma mm ee a ce meen ce ee

=

cf_sc_nodename []} “no node" char

ef_sci_daylight_savings_kind 1 uintl6_type

maxup 50 uintlé6_type

You reference your variable as an external variable by inserting a line similar to the

following in your device driver:

extern uintl6_type maxup;

During kernel configuration, all parameters listed in the master files will automatically

be assigned their default values, unless explicitly overridden in a system file entry. To

override a parameter’s default value, you must add an entry to the system file’s

tunable parameters section with the parameter name and desired value (see the

system(4) man page). For example, to change the maximum number of user

processes (maxup master file entry), add the the following system file entry:

maxup 150

At configuration time, the config program combines the master and system entries to

produce the file conf.c. As a result of the system file entry shown above, conf.c will

contain a constant maxup with an updated value of 150. After configuration, you can

check conf.c to see if your variable has been properly set (see Appendix C).

B-4 Licensed material—property of Data General Corporation 093-701083

Preparing Master File and System File Entries

Master File Aliases: The Alias Section

The Alias section of the master file allows you to create aliases for your master file

entry name. For example, the Ciprico ESDI (cied) and Ciprico SMD (cimd) disk

controllers both use the same device driver, cird. Defining an alias for them allows

you to access the driver while still using a mnemonic that clearly identifies the

controller in the system file entry. The aliases might be as follows:

Alias Alias

Name Value

cied cird

cimd cixrd

In the system file, an SMD controller can be specified as follows:

cimd()

Adding a System File Entry

Where the master file describes the class of devices, the system file describes specific

information about a particular device. The system administrator must add an entry to

the system file for each device to be configured.

The system file contains two sections: the device selection section and the tunable

parameters section. We have already described how to add an entry to the tunable

parameters section to set a parameter defined in the master file (see "Parameters: The

Keyword Section”). As described, entries to this section are optional.

The system file entry contains information that the driver will need to access the

device, particularly hardware I/O addresses. The system file entry consists of a

device specification (described below) that encodes the necessary device information

in its syntax. See the system(4) man page for more information.

You must add entries to the device selection section for each physical device of your

driver’s device type. A typical set of device entries for our xdev device might be as

follows:

xdev@72()

xdev@73 (£££f6000,4)

Here, xdev is the entry name for the master file device description entry. The

number 72 is the device code for the first controller, and 73 is the device code of the

second controller of tzis particular class of device. The empty parentheses () in the

first entry indicate that the default parameters, including the default base address,

apply for this device. The second instance of the xdev device shows a non-standard

base address and a second parameter of four (4). The parameter’s meaning will be

specific to the driver’s implementation.

093-701083 Licensed materiah~property of Data General Corporation B-5

Adding a System File Entry

End of Appendix

B-6 Licensed materia}—property of Data General Corporation 093-701083

Appendix C

Rebuilding the System and

Checking Configuration

This appendix describes the procedure for rebuilding the kernel with your driver

integrated into it. It also describes several ways in which you can check to see if the

system and master file setup was correctly handled. We will use xxx as your device

mnemonic.

Compile-time Checklist

You compile the file containing your driver routines (in dev_xxx_driver.c) and global

data (in dev_xxx_global_data.c) with your dev_xxx_def.h and the appropriate system

include files to produce object files that will be linked into the system image. The

appropriate system include files must include:

® Include files for the kernel itself

All drivers must include three files that contain constants and data structures

used by the kernel itself. These files are c_generics.h, os_generics.b, and

architecture.h. These files are found in /usr/sre/uts/aviion/ext.

® Include files for kernel-supplied routines

If you use a kernel-supplied routine, you will need to include an include file

specific to that routine’s class. The routine’s class is indicated by the first few

letters of its name. The include file for a class of routines starts with these same

few letters. For example, if you use a virtual memory ("vm") routine, like
vm_wire memory, you must include the i_vm.h include file. The possible include

files are listed in Table C-1 below.

Table C-1 Routine Classes and Their include Files

Routine Class Acronym _ include File

File system fs ifs.b

VO io i_io.h

Lock management lm iim.h

093-701083 Licensed materia}—property of Data Genera! Corporation C-1

‘Compile-time Checklist

Miscellaneous misc imisc.h

Process management pm i_pm.b

System control sc ise.h

Virtual memory vm ivm.h

Virtual process vp ivp.h

Micro-code uc iuc.h

These files are stored in /usr/sre/uts/aviion/ii.

There are also three defines (STANDALONE, KERNEL and

~PRODUCT_DGUX) used during compilation as shown in the next section. If

you want to avoid specifying these defines in the compile line, you can add them

to one of your source files.

If you use ANSI C function prototypes in your driver’s source code, you will also

need the define, .STDC_. As before,you can define this either in your source

files or at compile time. If _STDC_ is defined, the kernel-supplied include files

in /usr/src/uts/aviion/ii will also appear to use ANSI style function prototype

declarations.

Rebuilding and Rebooting the System

You use the standard system-generation procedure, sysadm, to build a new system

image. However, before you use sysadm, you must complete the following steps:

1. Make your changes to the system file and master file as described in Appendix B.

We recommend you create your own master file for your master file entries and

put it in usr/etc/master.d. You may give this file any name you want as long as it

does not match any existing file names in the master.d directory.

Compile your driver file dev_xxx_driver.c to create the object file

dev_xxx_driver.o.

If you compile using the GNU compiler that comes with the DG/UX system, we

recommend you use the following compile command line:

gcc -c ~DSTANDALONE -DKERNEL —D_PRODUCT_DGUX

~fno-omit-frame-pointer

~mno-underscores

-I/fusr/sre/uts/aviion dev_xx_adriver.c

If you compile using the Green Hills compiler, we recommend you use the

following compile command line:

ghee -c —-DSTANDALONE -DKERNEL ~—D_PRODUCT_DGUX

~ga -X58 ~-xX153 -xX405

~I/usr/sre/uts/aviion dev_xaxx_driver.c

C-2 ' Licensed material\—property of Data Genera! Corporation . """ 993-703083

Rebuilding and Rebooting the System

3. Place your driver object file and any archive files you may need into the directory

/asr/sre/ats/aviion/Ib.

4. Create a file called Libs.driver_name that lists all the object files and archive files

you want included in the build. Place this file in the directory

/asr/src/uts/aviion/cf. You can get the format of this file by examining other

Libs. files.

Once you have completed these steps you are ready to build a new system. Installing

the DG/UXTM System describes how to use sysadm to build a new kernel. The output

of the build is a new system image that you will move to the root directory (/).

After the new system image is ready, you can shut down the current system and

reboot.

Checking the Configuration Process

To verify that your device is properly configured, check both conf.c and the special

files for your devices. We describe both of these sources below.

The Contf.c File

The conf.c file contains the system tables generated by the config program. You can

use these structures to verify your configuration and to determine the location of your

driver’s routines. It is found in /usr/sre/uts/aviion/Build. A partial listing of conf.c

structures and variables is given below with descriptions on how to use the

information to verify proper configuration.

The Configurable Variable Section

The configurable variable section lists the variables as defined in the keyword section

of the master files and modified in the tunable parameters section of the system file.

You can check this section for the proper setting of any parameters you set. A

partial listing of this section is given below:

/ *

/* Configurable Variable Section */

/* */

/* */
char ef_sc_machine[] = “AViiON” ;

char cf_sc_sysname[] = "dgux" ;

char cf_sc_release[] = "4.30";

char cf_sc_version[] = "00";

uintl16_type ef _sci_daylight_savings_time_kind = 1;

uint8_type cf_sfm_ max_modules_per_strean = 9;

uint32_type ef _sfm_max data _message_length = 4096;

uint32_ type cf_sfm_max_control_message_length = 1024;

083-701083 Licensed materia—property of Data Genera! Corporaton C-3

uintl6 type

uinti6_type

Checking the Configuration Precess

cf_ps_max_semaphore_sets

cf_ps_max_semaphores_per_ set

Device Driver Tables

= 10;

The kernel uses an internal table of device driver structures to configure new devices

into the system. The Device Driver Table in conf.c listed below shows this table of

driver entries. You should use this table to verify that your driver has been added to

the list. Each such entry contains (as its first structure element) a pointer to the

routines vector for that driver. Chapter 2 explains how vou supply a routines vector

for your driver.

/* Device Drivers Table */

/*

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

struct

{

void

void

void

void

void

void

void

void

void

void

*/

cfv_sd_routines_vector;

cfv_st_routines_vector;

cfv_cisc_routines_vector;

efv_duart_routines_vector;

efv_syscon_routines_vector;

cfv_devtty_routines_vector;

cfv_mem_ routines_vector;

cfv_ldm routines_vector;

cfv_err_routines_vector;

cfiv_xdev_routines_vector;* £€ 4+ + # RH F 8H HF
driver_table type

void *

void *

char *

int

int

int

};

routines_vector_ptr;

streamtab_ptr;

streams_set_name;

is_streams_device :1;

uses_svr4_interface :1;

padding 230;

struct driver _table type cf_io_driver_table []

{

C-4

{

(void *) &cfv_sd_routines_vector,

(void *) 0,

“default”,

0,

0,

0

J,

_ Licensed material—property of Data Genera! Corporation 093-701083

093-701083

Checking the Configuration Process

{

(void *) &cfiv_st_routines_vector,

(void *) OQ,

“default”,

0,

0,

0

j,

{

(void *) &cfv_cisc_routines vector,

(void *) 0,

"default",

0,

0,

0

},

{

(void *) &cfv_duart_routines_ vector,

(void *) 0,

“default”,

0,

0,

0

},

{

(void *) &efv_syscon_routines_vector,

(void *) 0,

"default",

0,

0,

0

},

{
(void *) &cfv_devtty routines vector,

(void *) 0,

"default",

0,

0,

0

},

{
(void *) &cfv_mem routines vector,

(void *) 0,

“default”,

0,

0,

0

yy

C-5Licensed materia!—property of Data Genera! Corporation

Checking the Configuration Process

{

(void *) &cfv_ldm_ routines_vector,

(void *) 0,

“default”,

0,

0,

1)

},

{

(void *) &cefv_err_routines_vector,

(void *) 0,

"default",

0,

0,

0

},

{

(void *) &cfiv_xdev_routines_vector,

(void *) 0,

“default”,

0,

0,

0

},

};

uintl6e_ type cf_io_driver_table_count = 10;

The Configuration List

The configuration list shows all the devices configured on the system. Check for all

your system file entries.

/* */
/* Configuration List */

/* */

char * cf init _configuration_list [] =

{

“syscon()”,

"“cied()”,

“devtty()",

“mem()",

“1ldm()",
“"st(cise(0,0),*)",

"syac(0)",

C-6 Licensed material—property of Data General Corporation 0S3-701083

Checking the Configuration Process

"err()",
“con()",

“xdev@72()",

"xdev@73(Oxff£F6000,4)",

“pts()",

"pte()",

"prf()",
"hken()",

“meter()”,

"lLoop()",
one

};

Your Special Files

At reboot time, the system will call the driver’s configuration routine which should

generate a special file for all devices of your driver’s type in the /dev directory. One.

way to check configuration is to list the files for your devices to verify their setup.

There should be a special file for each unit serviced by your driver. The devices

shown here will reflect those you specified in the system file and should be named

according the correct device specification. Listing the special files with the Is -!

command will display the major and minor device numbers of each unit, as well as

the access permissions. You can also verify that appropriate special files exist for

block versus character access for a device.

End of Appendix

093-701083 Licensed material—property of Data Genera! Corporation C-7

Appendix D

Using STREAMS in the DG/UX

Multiprocessor Environment

DG/UX STREAMS is fully compatible with industry standard STREAMS. As

Chapter 1 notes, the Programmer’s Guide: STREAMS (UNIX System V Release 4)

describes how to write code for such industry standard STREAMS. You need only

create a master file entry with default settings for each STREAMS module and driver

to integrate industry standard code transparently into the DG/UX system.

However, DG/UX STREAMS also allows you to access some additional features of

the DG/UX kernel that are not available under the basic industry standard

STREAMS. Chapter 1 mentions that you can add some additional routines via a

routines vector. The Writing a Device Driver for the DG/UX System manual describes

how to create this routines vector and these additional routines. This appendix looks

at a second, more important option under DG/UX STREAMS, how to take

advantage of the symmetric multiprocessor environment without changing your code.

The feature that allows you to do this is called concurrency sets. Concurrency sets are

controlled solely through your master file entries.

This appendix describes what concurrency sets are and how to use them and then

discusses how different concurrency sets affect performance.

What Are Concurrency Sets?

Industry standard STREAMS does not yet support symmetric multiprocessing and

portability is very important in a STREAMS program. As we’ve seen, one of the

keys to programming in a fully symmetric environment is guaranteeing that only one

process has access to critical sections of code or shared data at the same time.

Normally, to run concurrently you would have to add locks to your code to guarantee

exclusivity when the process is accessing critical code or data. But adding locks makes

the code less portable. Concurrency sets allow you to define which modules/drivers

can run concurrently and which cannot by setting a flag in their master file entry.

Thus, concurrency sets support multiprocessing STREAMS while maintaining

complete portability.

A concurrency set is most easily understood as a set of modules that are associated

with a common lock. Notice that different modules sharing a common lock means

that modules in the same set cannot run at the same time because only one member

of the set can hold the common lock at a time. On the other hand, modules that do

not share the same lock can run at the same tiem. Thus, paradoxically members of

the samme concurrency set cannot run concurrently while members of different

concurrency sets can.

086-000426 updates Licensed material—property of Data Genera! Corporation D-1
093-701083-00

What Are Concurrency Sets?

The master file entry lets the kernel’s STREAMS management code know which

modules/drivers share a common lock. Whenever a message is passed between

modules, this management code checks to see if the receiving module’s lock is

available. If it is, the new module can run. If it is not, the new module is put on a

deferral list awaiting its lock’s release.

This is the basic idea of concurrency sets. In order to describe their use we need to

look more carefully at STREAMS modules and drivers in action. To do this let us

first introduce some basic terminology.

Terminology

The three basic components of a stream are: a stream head, modules, and a driver.

e Stream Head — The stream head is the code segment at the top of the stream. It

is the interface between user space and kernel space for a stream and provides

synchronization between the stream and kernel/user space.

® Module — A module is a stream component that manipulates data. Users can

push one or more modules onto the stream between the stream head and the

driver using a special ioctl system call. Every module has a read queue and a

write queue. The read queue holds data that is going up the stream and the write

queue holds data that is going down the stream. A module’s job is to respond to

messages coming in on its own read/write queues and send messages to the

read/write queues of modules above and below it on the stream.

© Driver — The driver is a special case of a module; it is the module at bottom of

the stream. Because it is at the bottom, it serves as the external interface for the

stream. Drivers often address hardware devices, but they may also address

pseudodevices.

@ Messages — Messages are the items that are passed along the stream. They

contain data and other state information about the type of message etc.

Messages can be passed downstream (from the stream head towards the driver)

or upstream (from the driver towards the stream head). Modules perform

various operations on message information as it is passed up and down the

stream.

Figure D-1 shows a basic stream. The stream head is at the top, the driver is at the

bottom, and in between you have some number of optional modules.

D-2 Licensed material—property of Data General Corporation 086-000426 updates
093-701083-00

What Are Concurrency Sets?

User Process

| i User Space

l Kernel Space

Downstream Stream
Head

1 |
module

(optional)

1 |
V Driver Upstream

y 7
External

Interface

A

Figure D-1 Basic STREAM Layout

086-000426 updates Licensed material—property of Data General Corporation -093-701083-00 ‘pe D 3

What Are Concurrency Sets?

Figure D-2 shows an example of a more complicated set of streams, the type that

frequently arise in real world applications. This example shows multiple streams

feeding into a TCP/IP communications driver.

timod
fd 1 sockets fd2 (TPI)

Space t t of t
Kernel

Space

Stream Socket Stream Stream timod

Head Manager Head Head (TPH

XXX Socsys

_A

TCP/IP

y J ixe

x.25 ARP

LAPB Ether

SSID .

Driver Driver

Figure D-2 Multiplexor STREAM

Because several streams end at TCP/IP, it is a driver. But the TCP/IP module also

branches out into several other streams. A module that maps one or more upper

streams to one or more lower streams is called a multiplexor.

086-000426 updates

093-701083-00
D-4 Licensed materiai—property of Data Genera! Corporation

How Different Types of Concurrency Sets Work

How Different Types of Concurrency Sets

Work

A concurrency set associates a lock with a set of modules. It provides mutual

exclusion for all the modules belonging to the set. A single lock protects all the

modules in the set from colliding with each other.

There are four types of concurrency sets, that is, four ways that you can associate a

lock with a module. The four types are: per-stream, per-module, set and default

concurrency. Note that the label “none” is reserved for future use and should not be

used as a concurrency set name.

You define a module/driver’s concurrency in its master file entry by entering “stream”

for per-stream, "module" for per-module, a set name for set concurrency and "default"

for default concurrency. Thus, in the example shown below, hken is per-stream, sd is

per-module, the xdev driver belongs to a set concurrency set named "george" and the’
cird driver used "default" concurrency.

#

Disks:

Name Restriction Concurrency

Prefix Flags Set
oe ee ee ae ee ve ae oe meee eee eee

hken D stream

inen n module

ttcodpat n george

ldterm n default

#

#

If a module or driver has per-stream concurrency, it uses the same lock as its stream

head. Figure D-3 shows per-stream concurrency.

086-000426 updates Licensed material—property of Data General Corporation D-5
093-701083-00

How Different Types of Concurrency Sets Work

Per—stream Concurrency

* Within each stream, the stream—head, module,

and driver all share a common lock.

Stream 1 Stream 2

1 | , I
module module

(MOD-A) (MOD-A)

driver | driver
(DRV-A) (DRV—A)

Figure D-3 Per-stream Concurrency

A stream-head is by definition in per-stream concurrency. This cannot be changed.

In this example, the module, MOD-A, and the driver, DRV-A, have also been

defined as per-stream concurrency in their master file entries. Notice that both

streams have instances of MOD-A and DRV-A. Per-stream concurrency means that

the instances of MOD-A and DRV-A share a lock with their respective stream heads.

The big box around each stream shows that the stream’s components are in the same

D-6 Licensed material—property of Data General Corporation 086-000426 updates
093-701083-00

How Different Types of Concurrency Sets Work

concurrency set and in a different concurrency set from the neighboring stream. This

means that STREAM-1 and STREAM-2 can run concurrently because they use

different locks. Conversely, the stream-head, MOD-A, and DRV-A in each stream

run separately because they all share the same lock.

In per-module concurrency, all instances of a module or driver have the same lock.

Figure D-4 shows per-module concurrency.

Per—module Concurrency

* All instances of a module share a common

lock.

-——
086-000426 updates

093-701083-00

Stream 1 Stream 2

Stream

Head

=
module

(MOD-A)

module

(MOD-A) | :

cece dhecee?

—t

a

driver

(DRV—A)

driver

(DRV—A)

Figure D-4 Per-module Concurrency

Licensed material—property of Data General Corporation

How Different Types of Concurrency Sets Work

The module, MOD-A and the driver, DRV-A have been defined as having per-

module concurrency. Both STREAM-1 and STREAM-2 contain instances of the

module, MOD-A. The box around these two instances of MOD-A show that they

‘share the same lock, which means each instance will run exclusive of the other. The

same logic holds for the two instances of DRV-A as well. The stream heads are, as

always, per-stream concurrency and thus use a different lock from both MOD-A and

DRV-A. Consequently, the stream-head, MOD-A, and DRV-A of STREAM-1 can

all run concurrently. In this example, exclusivity holds only between instances of

MOD.-A and DRV-A.

Note that module concurrency for drivers is handled on a major number basis. Thus,

if you have the same driver with different major numbers for it, then only instances

with the same major number will have the same lock.

The final type of concurrency is called set concurrency. In set concurrency, modules

belong to the set named in the master file. The set name can be any legitimate UNIX

name string. Figure D-5 shows set concurrency in which modules MOD-A and

MOD-B are both part of the the "george" concurrency set.

Set Concurrency

common lock.

Stream 1

* All instances of one or more modules share a

Stream 2

Stream

Head

Stream

Head

A

Seeneoen eaeneeceovaeananeneneanne @¢
t

-——|

module

(MOD-A)

module

(MOD-A)

1
module

(MOD-B)

module

(MOD-B)

driver

(DRV—A)

driver

(DRV—A)

@eeooaes SCOSHSBDSCSHSSSSSHASSHTHSSSOCOHHHELOEHOHOOR

toesneeeneeecaoeevaaeneaeuanedn
Figure D-5 Set Concurrency

Licensed material—property of Data General Corporation 086-000426 updates

093-701083-00

How Different Types of Concurrency Sets Work

Default concurrency is actually a special case of set concurrency. All modules with

default concurrency belong to the same set. Thus, members of the default set run

exclusively of each other and concurrently with other sets.

Note that if you define a driver to be in set concurrency, all instances of that driver

will have the same lock regardless of the major number. Only in per-module

concurrency does the major number make a difference.

Recommendations on How to Use

Concurrency Sets.

We recommend you define all modules/drivers as per-stream concurrency except in

the three special case conditions listed below. Using per-stream concurrency provides

more concurrency than the default concurrency set and it avoids complicated

overhead costs that can arise in other forms of concurrency. Note that stream heads

are always defined as per-stream concurrency.

The three exceptions to this recommendation are as follows:

e All multiplexors must be defined as per-module, set or default concurrency.

They cannot be defined as per-stream concurrency because they don’t belong

exclusively to any one stream-head (they map multiple upper streams to multiple

lower streams).

@ Because you must provide mutual exclusion for shared data, instances of modules

that share data, or multiple modules that share data must belong to the same

concurrency set.

e If you must be guaranteed that a putnext procedure runs immediately when

called, then adjacent modules must be in the same concurrency set. The need to

guarantee that the putmext runs immediately sometimes arises in state driven

situations; for example, a module needs to know that a particular action has

occurred when it thinks it has occurred, and it relies on the return value of the

putnext. Thus, if you set up the putnext procedure to return an integer and it

must come back accurately, then two adjacent modules must be in the same set.

Notes on Creating STREAMS Code on the

DG/UX System

STREAMS kernel programming is generally the same as other kernel programming.

If you are creating STREAM code from scratch and portability is not an issue, you

can use fine-grained locks, eventcounters and most of the other facilities described in

the body of this manual. However, there are a few kernel facilitites, such as buffer

vectors and select management routines, that are not appropriate for STREAMS

code. STREAMS restrictions, if any, are noted in the chapters that cover particular

topics. Be sure to create master file entries for all STREAMS modules and drivers.

Stream-heads do not require master file entries because their concurrency set is

always per-stream concurrency. Use the system file entry to request either a default

086-000426 updates Licensed material—property of Data General Corporation D-9
093-701083-00

Notes on Creating STREAMS Code on the DG/UX System

routines vector or your own. See Writing a Standard Device Driver for the DG/UX

System for more information on how to create your own routines vector.

In addition, you should observe the following guidelines:

@ Use the standard STREAMS utilities to manipulate queues and pass messages to

other modules. Using your own routines to traverse the stream and manipulate

queues is particularly dangerous in a multiprocessing environment. In particular,

always use putnext() to pass messages between modules. Do not create your own

queue_t structures and manipulate them with standard STREAMS utilities.

© Use only the putq and qenable STREAMS utilities in your interrupt handler at

interrupt level. No other STREAMS utilites may be used.

e Explicitly protect shared data in interrupt handlers.

@ Don’t make assumptions about major number assignments for device drivers.

Notes on Porting STREAMS Code to the

DG/UX System

The list of programming guidelines given above holds for ported code as well as newly

created code. Check your program for violations of these guidelines before

attempting to port. In particular, note the restrictions on STREAMS utilities at

interrupt level.

In addition, there are four AT&T STREAMS utilities that do not hold on the

DG/UX system. These are: splstrQ, splxQ, sleep), and wakeupQ). Splstr(and

splx(are used to enable and disable interrupts. In AT&T’s single-processor

environment, such routines can be used to provide mutual exclusion. However, on a

symmetric multiprocessor system, disabling interrupts does not provide exclusivity (as

Chapter 1 describes). SleepQ and wakeupQ do not work in the DG/UX environment

for similar multiprocessing reasons.

Remove instances of splstr0 and splx0. Review the code to see if the exclusion that

these functions provided must be replaced through concurrency sets or by adding your

own locks using the kernel-supplied locking routines. Replace instances of wakeupQ)

with su_str_wakeup(Q). Replace instances of sleep(Q) with su_str_get_next_event() and

su_str_sleep() as shown in the coding examples below. Be sure to use

su_str_get_next_event() to get the event before using su_str_sleep(Q to await it. The

first example shows the AT&T version of the code, followed by the DG/UX

equivalent.

D-1 0 Licensed material—property of Data General Corporation 086-000426 updates
093-701083-00

Notes on Porting STREAMS Code to the DG/UX System

AT&T CODE

n = splstr();

while (condition)

{

if (sleep(resource, PCATCH))

{

/*a Signal was detected*/

}

}

[optionally perform mutually exclusive operations

after event has occurred.]

splx (nn);

DG/UX CODE

next_event = su_str_next_event (resource);

while (condition)

{

if (su_str_sleep(resource, next_event))

{

/*a signal was detected*/

}

}

[mutual exclusion is now guaranteed. }

The routines used in these examples are described on the next several pages.

086-000426 updates Licensed material—property of Data General Corporation D-1 1
093-701083-00

Su_str_sleep

su_str_sleep

Syntax

int su_str_sleep(

caddr_t resource, /* READ ONLY*/

vp_ec_value_type next_ec_value /* READ ONLY*/

)

Summary

This routine awaits an event specified by the eventcount value next_ec_value or

the eventcounter specified by resource or a process interrupt event.

Parameters

resource — A pointer to the resource being awaited.

next_ec_value — The value of the eventcount to await.

Description

This routine awaits a su_str_wakeup(resource) operation that advances the

eventcounter associated with resource to next_ec_value. This routine should be

used only by a module or driver open/close routine.

Return Values

0 — sleep was awakened by wakeup

1 — sleep was awakened by an interrupt signal (process is either

being terminated or ut must handle a signal).

D-1 2 Licensed material—property of Data Genera! Corporation 086-000426 updates
093-701 083-00

su_str_wakeup

su_str_wakeup

Syntax

void su_str_wakeup(

caddr_t resource /* READ ONLY*/

)

Summary

This routine causes the eventcount associated with resource to be advanced.

Parameters

resource — A pointer to a resource being freed.

Description

See Summary.

Return

None.

Exceptions

None.

086-000426 updates Licensed material—property of Data Genera! Corporation D- 1 3
083-701083-00

su_str_next_event

su_str_next_event

Syntax

vp_ec_ value_type su_str_next_event(

caddr_t resource /* READ ONLY*/

Summary

This routine returns the next value of an eventcount associated with resource.

Parameters

resource — A pointer to a resource being sought.

Description

See Summary.

Return

The value that the eventcount associated with resource will attain when it is next

advanced is returned.

Exceptions

None.

D-1 4 Licensed material—property of Data General Corporation 086-000426 updates
093-701083-00

Index

Note: Boldfaced page numbers (e.g., 1-

5) indicate definitions of terms or other

key information.

A

Adding configurable parameters B~4

Aliases B-5

architecture.h C-1

B

Block /O 2-3

Buffer descriptors 114

Buffer vectors 11-1

Building a new system image C-3

Cc

c.generics.h 1-8, C-1

Character /O 2-3

Clock events 6-2

Conf.c B4, C-3

Config program C-3

Configuration list C-6

Constants and data structures

for buffer vectors 11-5

for eventcounters 5-4

for system clock valzes 6-3

for wired and unwired memory 9-3

Creating a dev entry 12-7

D

Debugger processes 7-2

Device

adding to list of disks 12-8

Device handle 12-18

Device information stricture 2-7

Device information tabie 2-7

Device Special File 2-3

Device table 12-2

DG/UX system call

083-701083 Licensed materiai—property of Data General Corporation

DG/UX system call (cont.)

ioctl 10-1

open 2-3

read 11-1

readv 11-1

write 11-1

writev 11-1

DIT 2-7

DMA accesses 9-2, 11-2

Driver Daemon 2-2, 13-1

number of messages 13-6

queuing a message to 134

E

Encoding

efror statuses 13-2

err 2-7

Error Daemon 2-7

Errors

encoding 2-7, 15-2

logging 2-7

system error file 2-7

user-level 2-7

Eventcounter 2-2, 5-1, 14-2

converting into clock value 5-9

name 5-4

reading 5-10, 5-15

value 5-4

Eventcounters 5-1

Events 2-2, 5-1

defining 5-4

F

File Descriptor 2-3

fs_check_self_id 16-2

fs_dev_create_request_type 12-4

fs_dev_request_operation_enum_type

12-4

fs_dev_request_type 12-3

fs_submit.dev_request 12-7

index-1

Index

G

Generic Daemon 2-2, 13-1

Include files C-1

Integrated Device Code Literals 12-6

Interrupt handler 2-2, 15-1

Interrupt handler, registering 2-7

Interrupts 2-2, 13-1

disabling &8

enabling $9

handling 81

in a multiprocessor system 1-10

io_add_to_buffer_vector_position 11-6

io_add_to_register_list 12-8

io_allocate_device_number 12-9

io_buffer_descriptor_.type 114

io_buffer_vector_controLtype 11-4

io_buffer_vector_type 11-3

io_check_device_spec 12-12

io_deallocate_device_number 12-10

io_deregister_device_info 12-11

io_dev_adapt_info_type 12-5

io_do_first_long_board_access 12-15

io_do_first_short_board_access 12-14

io_err_log_error 13-11

io_forget_device_spec 12-13

io_get_buffer_vector_byte_count 11-11

io_get_buffer_vector_io_info 11-7

io_get_buffer_vector_position 11-9

io_get_buffer_vector_residual 11-10

io_get_device_info 12-16

io_hex_str_to_int 16-3

io_init_buffer_vector 11-12

io_init_one_entry_buffer_vector 11-13

io_map_device_number 12-18

io_mask_interrupt_variety 8-5

io_nodevice_maddmap 15-22

io.nodevice_mmap 15-20

io_nodevice_munmap 15-21

io_nodevice_read_dump 15-17

io_parse_device_spec 12-20

io_perform_reset 12-22

io_queue_message_to_driver_.demon 134

io_queue_message_to_generic_demon

13-7

io_read_from_buffer_vector 11-14

io_register_device_info 12-23

io_reset_buffer_vector_position 11-15

index-2 . ‘Licensed materiak—property of Data General Corporation

io_select_cancel 144

io_selectinit 14-5

io_select_intent_type 14-2

io_select_register 14-6

io_select_satisfy 14-7

io_set_buffer_vector_residual 11-16

io_specify_max demon_messages 13-6

io_specify_max_generic_demon_messages

13-9

io_unmask_interrupt_variety 8&6

io_write_to_buffer_vector 11-17

ioctl 10-1

J

Job processor (JP) 1-9

K

Kernel include files 1-8, C-1

architecture.h C-1

c_generics.h 1-8, C-1

os_generics.h 1-8, C-1

M

Major number 2-3, 12-18

Master file B-1

alias section B-1, B-5

device section B-1

keyword section B-3

keywords section B-1

Memory

allocating 9-1

releasing 9-1

unwired 9-1, 9-6, 9-15, 9-17, 9-19

wired 9-1, 9-7, 9-16, 9-18, 9-20

Memory-mapped /O 9-1

Minor number 2-3, 12-18

assigning 12-9
misc_clock_value_type 63

misc_formatine 164

Modes

changing 12-3

N

Nodes 2-2

major number 2-3

minor number 2-3

093-701083

G

open 2-3

os.gearerics.h 1-8, C-1

p

Page alignment literals 9-3

Panic 16-7

pmgetmy_perp 74
pm_get_my_pid 7-3

pm_is_interrupted 7-5

pm_is_super_user 16-6

pm_is_terminated 7-7

pm_send_signal _by_index 7-8

pm_send_signal_ by_process_id 7-10

pm_send_signal_with_siginfo 7-11

pm_signal_by_process_group 7-9

Process groups 7-1

Process IDs 7-1

Process index 7-1 _

R

read 11-1

Rebuilding the system C-2

Registering interrupt handlers 2-7

Routines

fs_check_self_id 16-2

fs_submit_dev_request 12-7

io_add_to_buffer_vector_position 11-6

io_add_to_register_list 12-8

io_allocate_device_number 12-9

io_check_device_spec 12-12

io_deallocate_device_number 12-10

io_deregister_device_info 12-11

io_do_first_long_board_access 12-15

io_do_first_short_board_access 12-14

io_err_log_error 13-11

io_forget_device_spec 12-13

io_get_buffer_vector_byte_count 11-11

io_get_buffer_vector_io_info 11-7

io_get_buffer_vector_position 11-9

io_get_buffer_vector_residual 11-10

io_get_device_info 12-16

io_init_buffer_vector 11-12

io_init_one_entry_buffer_vector 11-13

io.map_device_number 12-18

iomask_interrupt_variety &5

io.nodevice_maddmap 15-22

io.nodevice_mmap 15-20

093-701083 Licensed material—property of Data Genera! Corporation

index

Routines (cont.)

io_nodevice_munmap 15-21

io_nodevice_read_dump 15-17

io_queue_message_to_driver_demon

io_queue_message_to_generic_demon

io_read_from_buffer_vector 11-14

io_register_device_info 12-23

io_reset_buffer_vector_position 11-15

io_select_cance] 144

io_selectLinit 14-5

io_select_register 14-6

io_select_satisfy 14-7

io_set_buffer_vector_residual 11-16

io_specify_max_demon_messages 13-6

io_specify_max_generic_demon_messages

13-9

io_unmask_interrupt_variety 8-6

io_write_to_buffer_vector 11-17

misc_format.line 16~4

pm_get_my_perp 7-4

pmget._my_pid 7-3

pm_is_interrupted 7-5

pm_is_super_user 16-6

pm_is_terminated 7-7

pm_send_signal_by_index 7-8

pm_send_signal_by_process_id 7-10

pm_send_signal with siginfo 7-11

pm_signal_by_process_group 7-9

sc_check_access_and_read_string_from

user 10-3

sc_check_byte_access 10-5

sc_panic 16-7

sc_read_bytes_from_user 10-6

sc_write_bytes_to_user 10-7

sc_write_string_to_user 10-8

vm_get_unwired_memory 9-6

vm_get_wired_memory 9-7

vm_mark_mod_and_ref_and_unwire

memory 9-13

vm_mark ref_and_unwire_memory

9-14

vm_perhaps_get_unwired_memory 9-15

vm_perhaps_get_wired_memory 9-16

vm_release_unwired_memory 9-17

vin_release_wired_memory 9-18

vm_unwire_memory 9-19

vm_wire_memory 9-20

vp_add_to_ec_value 5-5

vp.advance_ec 5-6

Index-3

Index:

Routines (cont.)

vp_are_ec_values_equal 5-17

vp_are_interrupts_disabled 8-7

vp.await_ec 5-7

vp_canceltimeout 6-6

vp_convert_clock_value_to_ec_value

5-8

vp_convert_ec_value_to_clock_value

5-9

vp_create_clock_event 6-8

vp_disable_interrupts 8-8

vp_enable_interrupts 38-9

vp_establish_timeout 6-5

_get_next_ec_value 5-10

vp_has_event_occurred 5-11

vp_increment_ec_value 5-12

vp_initialize_ec 5-15

vp_initialize_sequencer 5-14

vp_read_ec 5-15

vp_read_system_ciock 6-9

vp_specify_max_timeouts 6-7

vp.ticket_sequencer 5-16

Ss

sc_access_mode_type 10-2

sc_check_access_and_read_string_from

user 103

sc_check_byte_access 10-5

SCLENCODE_STATUS 13-10

SC_NO_LERRNO 13-3

sc_panic 16-7

sc_read_bytes_from_user 10-6

sc_write_bytes_to_user 10-7

sc_write_string_to_user 10-8

SCSI ID 2-6

SCSI unit numbers 2-6

Select list 14-7

initializing 14-5

registering a select 14-6

removing processes from 144

Sequencers 5-2

Signals 7-1

handling 7-5

termination 7-7

Special files 2-2

Status encoding 13-2

Statuses 2-7

Superuser permission 16-6

Synchronization 5-1

sysadm C-3

Index-4 Licensed material—property of Data General Corporation

Syslog.conf 2-7

Syslogd 2-7

System clock

managing 6-1

returning value of 6-9

System error file

syslog.conf 2-7

System file

device selection section B-5

tunable parameters section B-5

T

Tickets 5-2

Time-out services 6-2

Timeout

cancelling 66

establishing 6-5

Types

fs_dev_create_request_type 12

fs_dev_request_operation_enum_type

12-4

fs_dev_request_type 12-3

Integrated Device Code Literals 12-6

io_buffer_descriptor_type 114

io_buffer_vector_controLtype 114

io_buffer_vector_type 11-3

io_.dev_adapt_info_type 12-5

io_select_intent_type 14-2

misc_clock_value_type 6-3

Page alignment literals 9-3

sc_access_mode_type 10-2

SC_NO_LERRNO 13-3

uc_device_class_enum_type 12-5

uc_device_code_type 12-5

uc_interrupt_enum_type &4

vp_event_type 5-4

U

uc_device_class_enum_type 12-5

uc_device_code_type 12-5

uc_interrupt_enum_type 8&4

Unit numbers 2-6

Unwired memory

allocating 9-6, 9-15

releasing 9-17

093-761083

Vv

Virtual processor (VP) 1-9

vin_get_physical_byte_address 9-5

vm_get_unwired_memory 9-6

vin_get_wired_ memory 9-7

vin_map_physical memory 9-8

vim_mark_mod_and_ref_and_unwire

memory 9-13

vm_mark_ ref_and_unwire_memory 9-14

vm_perhaps_get_unwired_memory 9-15

vm_perhaps_get_wired_memory 9-16

vm_release_unwired_memory 9-17

vm_release_wired_memory 9-18

vm_unmap_physical_ memory 9-11

vm_unwire_memory 9-19

vin_wire.memory 9-20

vp_add_to_ec_value 5-5

vp_advance_ec 5-6

vp_are_ec_values_equal 5-17

vp_are_interrupts_disabled &-7

vp_await_ec 5-7 —

vp_cancel_timeout 6-6

vp_convert_clock_value_to_ec_value 5-8

vp_convert_ec_value_to_clock_value 5-9

vp_create_clock_event 6-8

vp.disable_interrupts &-8

vp_enable_interrupts &-9

vp_establish_timeout 6-5

vp_event_type 5-4

vp_get_next_ec_value 5-10

vp_has_event_occurred 5-11

vp_increment_ec_value 5-12

vp-initialize.ec 5-13

vp.initialize_sequencer 5-14

vp.read_ec 5-15

vp_read_system_clock 6-9

vp_specify_max_timeouts 6-7

vp_ticket_sequencer 5-16

W

Wired memory

allocating 9-7, 9-16

releasing 9-18

write 11-1

093-701083 Licensed material—property of Data General Corporation

index

index-5

TO ORDER
1. An order can be placed with the TIPS group in two ways:

2) MATL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT
2. AS a customer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order ~- Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING
3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:

Total Quantity Shipping & Handling Charge

1-4 Units $5.00

5-10 Units $8.00

11-40 Units $10.00

41-200 Units $30.00

Over 200 Units $100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS
4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-$499.99 10%

Over $500 20%

TERMS AND CONDITIONS

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS
7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary

or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the

appropriate DG Subsidiary or Representative for processing.

TIPS ORDER FORM

‘COMPANY NAME ‘COMPANY NAME
ATTN: ATIN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE zip STATE ziP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) Ext.

ORDER TOTAL

Less Discount -

$ 5.00 $0 - $149.99 Tex Exempt # See
5-10 terns $ 8.00 $150 - $499.99 10% or Sales Tax SUB TOTAL
11-40 Items $ 10.00 Over $500.00 (if applicable) Your local* +
41-200 items $ 30.00 sales tax

200+ terns $100.00 Shipping and +

[Cheek for faster delivery | handling - See A
Additional charge to be be determined at time of TOTAL - See C
shipment and added to your bi

0 UPS Blue Labe! (2 day shicping)
0 Red Label loverrigit ee
= : : EN THANK YOU FOR YOUR ORDER

a is order (Include hardcopy P.O.) PRICES SUBIECT T' TO © CHANGE WITHOUT PRIOR NOTICE.
| a ncies. PLEASE ALL WEEKS DELIVERY

5 Visa °r & MasterCard ($20 minimurn on credit cards) NO REFUNDS NO NO RETURNS.
Account Number Expiration Date * Data General is required by law baw to collect applicable sales

use tax om all purchases es where DG vnaintnins
ri T TEE TELE Lie ee [TTT] apnge of Susiress, win covers wil o0 states. ease euce

Yiyoy are uncertain about We covtect tax arrount, please cali

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed.)

Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance
with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order
Form. These terms and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer

accepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software
which is the subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under

this Agreement, exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exernption.

3. DATA AND PROPRIETARY RIGHTS .

Portions of the publications and materials supplied under this Agreernent are proprietary and will be so marked. Customer shall

abide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all

designs, engineering details and other data pertaining to the products described in such publication. Licensed software
materials are provided pursuant to the terms and conditions of the Prograrn License Agreement (PLA) between the Customer

and DGC and such PLA is made a part of and incorporated into this Agreement by reference. A copyright notice on any data
by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CL! Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a

period of ninety (90) days from the date of shipment by DGC. DGC will repiace defective media at no charge to you, provided
it is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exctusive remedy and

DGC’s sole obligation and liability for defective media. This limited media warranty does not apply if the media has been
damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO
LIABILITY ARISING OUT OF CONTRACT, NEGUGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT

EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.

THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY
DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE

FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT
NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR

DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION

ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational

Services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of

law rules. Such contract is not assignable. These terms and conditions constitute the entire agreement between the parties

with respect to the subject matter hereof and supersedes all prior oral or written communications, agreements and

understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional terms and

conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting, or

additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS internals Series documents may be specific to

a particular revision of the product. Consequently user programs or systems based on this information and material may be

revision-locked and may not function property with prior or future revisions of the product. Therefore, Data General makes no

representations as to the utility of this information and material beyond the current revision level which is the subject of the

manual. Any use thereof by you or your company fs at your own risk. Data General disclaims any liability arising fromm any such

use and | and my company (Customer) hold Data General completely harmiess therefrom.

~ Programming in

the DG/UXTM

Kernel

Environment

093-701083-00

Cut here and insert in binder spine pocket

¢» DataGeneral
Data General Corporation, Westboro, Massachusetts 01580

