¢y Data General

Data General Corporation, Westboro, Massachusetts 01580

Customer Documentation

Programmer’s Reference for the
DG/UX™ System (Volume 3)

093-701102-01

Programmer’s Reference for the
DG/UX™ System (Volume 3)

093-701102-01

For the latest enhancements, cautions, documentation changes, and
other information on this product, please see the Release Notice
(085-series) supplied with the software.

Ordering No. 093-701102

Copyright © Data General Corporation, 1990, 1991, 1992

Unpublished—all rights reserved under the copyright laws of the United States
Printed in the United States of America

Revision 01, February 1992

Licensed material—property of copyright holder(s)

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION
CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS
ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases determine whether any such changes have been
made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND CONDITIONS
GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE
OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT,
EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF
SUCH DAMAGES.

All software is made available solely pursuant to the terms and conditions of the applicable license agreement which
governs its use.

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [FAR] 52.227-7013
(May 1987).

DATA GENERAL CORPORATION
4400 Computer Drive
Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000,
PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General Corporation. CEO Connection,
CEO Connection/LAN, DASHER/One, DASHER/286, DASHER/286-12¢, DASHER/286-12j, DASHER/386,
DASHER/386-16c. DASHER/386-25, DASHER/386-25k, DASHER/386sx, DASHER/386SX-16, DASHER/386SX-
20, DASHER/486-25, DASHER/LN, DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400,
ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/3500, ECLIPSE MV/5000, ECLIPSE MV/5500,
ECLIPSE MV/5600, ECLIPSE MV/7800, ECLIPSE MV/9300, ECLIPSE MV/9500, ECLIPSE MV/9600,
ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/30000,
ECLIPSE MV/40000, Intellibook, microECLIPSE, microMV, MV/UX, PC Liaison, RASS, SPARE MAIL, TEO,
TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of Data General Corporation.

IBM is a U.S. registered trademark of International Business Machines Corporation.
UNIX is a U.S. registered trademark of American Telephone & Telegraph Company.
NFS is a trademark of Sun Microsystems, Inc.

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating System Interface for Computer
Environments, copyright © 1988 by the Institute of Electrical and Electronics Engineers, Inc., with the permission of
the IEEE Standards Department. To purchase IEEE Standards, call 800/678-IEEE.

Portions of this material have been previously copyrighted by: American Telephone & Telegraph Company, 1989,
1990; Regents of the University of California, 1980, 1983, 1986.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages. The functionality of the two
remains the same; only the name has changed. The name Yellow Pages is a registered trademark in the United
Kingdom of British Telecommunications plc and may not be used without permission.

LEGAL NOTICE TO USERS: Yellow Pages is a registered trademark in the United Kingdon of British
Telecommunications plc, and may also be a trademark of various telephone companies around the world. Sun will
be revising future versions of software and documentation to remove references to Yellow Pages.

Programmer’s Reference for the DG/UX System (Volume 3)
093-701102-01

Revision History: Effective with:

Original Release — June 1991 DG/UX 5.4
Revision 1 - February 1992 DG/UX 5.4.1

dirent(4) DG/UX 5.4.1 dirent(4)
NAME
dirent - file system independent directory entry
SYNOPSIS
#include <sys/dirent.h>
#include <sys/types.h>
DESCRIPTION
Different file system types may have different directory entries. The dirent struc-
ture defines a file system independent directory entry, which contains information
common to directory entries in different file system types. A set of these structures is
returned by the getdents(2) system call.
The dirent structure is defined below.
struct dirent {
long d_ino;
off t d_off;
unsigned short d_reclen;
char d_name(1];
}Yi
The d_ino is a number which is unique for each file in the file system. The field d_off
is the offset of that entry in the file system directory. The field d_name is the begin-
ning of the character array giving the name of the directory entry. This name is null
terminated and may have at most MAXNAMLEN characters. This results in file sys-
tem independent directory entries being variable length entities. The value of
d_reclen is the record length of this entry. This length is defined to be the number of
bytes between the current entry and the next one, so that it will always result in the
next entry being on a long boundary.
FILES
/usr/include/sys/dirent.h
SEE ALSO

093-701102

getdents(2).

Licensed material—property of copyright holder(s) 4"27

dumptab(4) DG/UX 5.4.1 dumptab(4)

NAME
dumptab - tape table file for qump2

DESCRIPTION
/etc/dumptab is an ASCII file containing an entry describing media characteristics
for each medium made available to dump2.

This table file contains lines in one of three formats:
a. comment lines (must start with a "#")
b. lines specifying the capacity of the medium:

medium-name buffer-size <capacity>
c. lines giving the density, tape length, and IRG for the medium:

medium-name buffer-size density tape-length <IRG>
Fields are separated by white space. The fields are desribed below:

medium—name
descriptive label for the medium.

buffer-size
size (in 1024-byte blocks) of the buffers written to the medium.

capacity
formatted capacity of the medium (in bytes). The capacity can also be
specified as a number followed by a upper or lowercase b, k, m, or g to
indicate bytes, kilobytes, megabytes, or gigabytes, respectively.

density density at which data is written to the device (in bpi).

tape—length
length of the tape (in feet).

IRG inter-record gap size used by the device (in tenths per inch).
SEE ALSO
dump2(1M).

4'28 Licensed material—property of copyright holder(s) 093-701102

ethers(4) TCP/IP 5.4.1 ethers(4)

! NAME

ethers — Ethernet address to hostname database or YP domain

DESCRIPTION

The ethers file contains information regarding the known (48 bit) Ethernet
addresses of hosts on the Internet. For each host on an Ethernet, a single line should
be present with the following information:

ethernet_address official_hostname

Separate items by any number of blanks and/or TAB characters. A ‘#’ indicates the
beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is “x:x:x:x:x:x” where x is a hexadecimal
number between 0 and ff, representing one byte. The address bytes are always in net-
work order. Host names may contain any printable character other than a space, tab,
newline, or comment character. It is intended that hostnames in the ethers file
correspond to the hostnames in the hosts(4) file.

The ether_line() routine from the Ethernet address manipulation library,
ethers(3N) may be used to scan lines of the ethers file.

EXAMPLE

FILES

The following is a sample /etc/ethers file:

8:0:1b:0:a0:17 dgl
0:0:77:1a:0:6a sales
8:0:20:0:a7:5d sunl

If you use the domain name system, you should specify fully-qualified names in addi-
tion to official hostnames. Here is the same sample /etc/ethers file including
fully-qualified names:

8:0:1b:0:a0:17 dgl

0:0:77:1a:0:6a sales
8:0:20:0:a7:5d sunl
8:0:1b:0:a0:17 dgl.tnt.acme.com
0:0:77:1a:0:6a sales.tnt.acme.con
8:0:20:0:a7:5d4 sunl.tnt.acme.com

For more information about the domain name system, see Managing TCP/IP on the
DG/UX™ System.

/etc/ethers

SEE ALSO

093-701102

ethers(3N), hosts(4)

Licensed material—property of copyright holder(s) 4'29

exports(4) ONC/NFS 5.4.1 exports(4)

NAME

exports, xtab — directories to export to NFS clients

SYNOPSIS

/etc/exports
/etc/xtab

DESCRIPTION

4-30

The /etc/exports file contains entries for directories that can be exported to NFS
clients. This file is read automatically by the exportfs(1M) command. If you
change this file, you must run exportfs(1M) for the changes to affect the mountd
server’s operation.

Only when this file is present at boot time does the rc.nfslockd script execute
exportfs(1M). The rc.nfsserv script starts the NFS file-system server (daemon),
nfsd(1M).

The /etc/xtab file contains entries for directories that are currently exported. This
file should only be accessed by programs using getexportent (see
exportent(3C)). (Use the —u option of exportfs to remove entries from this
file).

An entry for a directory consists of a line of the following form:
directory -option[, option]...

directory is the pathname of a directory (or file).

option is one of

ro Export the directory read-only. If not specified, the
directory is exported read-write.

rw=hostnames [: hostname] . . .
Export the directory read-mostly. Read-mostly means
read-only to most machines, but read-write to those
specified. If not specified, the directory is exported
read-write to all.

anon=uid
If a request comes from an unknown user, use uid as
the effective user ID. Note: root users (uid 0) are
always considered unknown by the NFS server, unless
they are included in the root option below. The default
value for this option is —2. Setting anon to -1 disables
anonymous access. Note: by default secure NFS will
accept insecure requests as anonymous, and those wish-
ing for extra security can disable this feature by setting
anon to —-1.

root=hostnames [: hostname] . . .
Give root access only to the root users from a specified
hostname. The default is for no hosts to be granted
root access.

access=client[:client] . . .
Give mount access to each client listed. A client can be
either a hostname, or a netgroup (see netgroup(5)).
Each client in the list is first checked for in the netgroup
database, and then the hosts database. The default

Licensed material—property of copyright holder(s) 093-701102

exports(4) ONC/NFS 5.4.1 exports(4)

value allows any machine to mount the given directory.

secure
Require clients to use a more secure protocol when
accessing the directory.

A ‘#’ (pound-sign) anywhere in the file indicates a comment that extends to the end of
the line.

EXAMPLE
/usr —access=clients # export to my clients
/usr/local # export to the world
/usr2 —access=hermes:zip:tutorial # export to only these machines
/usr/dgux -—root=hermes:zip # give root access only to these
/usr/new —anon=0 # give all machines root access
/usr/bin -ro # export read-only to everyone
/usr/stuff -access=zip,anon=-3,ro # several options on one line
FILES
/etc/exports
/etc/xtab
/etc/hosts
/etc/netgroup
SEE ALSO

exportfs(1M), nfsd(1M), exportent(3C), hosts(5), netgroup(5).

WARNINGS

093-701102

You cannot export either a parent directory or a subdirectory of an exported directory
that is within the same filesystem. It would be illegal, for instance, to export both
/usr and /usr/local if both directories resided on the same disk partition.

Licensed material—property of copyright holder(s) 4'31

filehdr(4) DG/UX 5.4.1 filehdr(4)

NAME

filehdr - file header for common object files
SYNOPSIS

#include <filehdr.h>
DESCRIPTION

Every common object file begins with a 20-byte header. The following C struct
declaration is used:

struct filehdr {
unsigned short £_magic ; /* magic number x/
unsigned short £ _nscns ; /* number of sections x/

long f_timdat ; /* time & date stamp */
long f symptr ; /* file ptr to symtab x/
long f_nsyms ; /* # symtab entries x/

unsigned short f_opthdr ; /x sizeof(opt hdr) x/
unsigned short f£_flags ; /* flags x/
Y

F_symptr is the byte offset into the file at which the symbol table can be found. Its
value can be used as the offset in fseek(3S) to position an I/O stream to the symbol
table. The UNIX system optional header is 28-bytes. The magic number for the
MB88000 is:

#define MC88MAGIC 0540

The value in f_timdat is obtained from the time(2) system call. Flag bits currently
defined are:

#define F_RELFLG 0000001 /x relocation entries stripped x/
#define F_EXEC 0000002 /x file is executable x/

#define F_LNNO 0000004 /x line numbers stripped x/
#define F_LSYMS 0000010 /x local symbols stripped x/
#define F_AR32W 0001000 /% non-DEC host x/

#define F_BM32B 0020000 /x file contains WE 32100 code x/
#$define F_BM32MAU 0040000 /% file regs MAU to execute x/

SEE ALSO
time(2), fseek(3S), a.out(4).

4-32 Licensed material—property of copyright holder(s) 093-701102

fs(4) DG/UX 5.4.1 1s(4)

NAME
fs — file system format

SYNOPSIS
#include <ufs/disk_format.h>

DESCRIPTION
There is a at most one filesystem for each logical disk. The basic components of a
the file system are the File Manager Information Areas (FMIA’s), Disk Allocation
Regions (DAR’s), and a table of entries containing information about each DAR
called the DAR Information Area.

The FMIA
Two copies of the FMIA are maintained to reduce its vulnerability to corruption.
The copies are placed in the first and last blocks of the file system. The FMIA in the
first block (the Primary FMIA) is contained in the first DAR, but the FMIA con-
tained in the last block of the logical disk (the Secondary FMIA) is not contained in
the last DAR.

The following is the definition of a FMIA. This contains the per-filesystem informa-
tion. When a filesystem is mounted, this structure is used to generate memory data-
bases for the newly mounted entry.

typedef struct
{

df_self_id type self_id;

df_fsid_type fsid;

uint32e_type minor_device_number;
uint32e_type dar_size;

uint32e_type file nodes_per_dar;
booleanlé6e_type fsck_required;
uintl6e_type revision;

byte8e_type fname [DF_FS_LABEL_SIZE];
byte8e_type fpack [DF_FS_LABEL_SIZE];
uint8e_type default_des_exponent;
uint8e_type default_ies_exponent;
uint8e_type default dir_ des_exponent;
uint8e_type default_dir_ ies_exponent;
uint32e_type first anniversary;
uint32e_type second_anniversary;
uint32e_type fs_size;

uint32e_type space_used;

uint32e_type number_of_used_file nodes;
uint32e_type first_log_lda;
uint32e_type second_log_1lda;
uint32e_type log_size;
boolean_field_type shrink_ operation_in_progress;
boolean_field_ type grow_operation_in_progress;
skip_ type reserved:14;

byte8e_type pad_to_block[DF_PADDING_PER_FMIA_BLOCK] ;

} df_fmia_ block_type ;

self_id is the self-identification information. The block kind is DF_FMIA_BLOCK.
The block number is:

#define DF_PRIMARY_FMIA ADDRESS 0

093-701102 Licensed material—property of copyright holder(s) 4'33

fs(4)

4-34

DG/UX 5.4.1 fs(4)

The file node number is:
#define DF_NODE NUMBER_FOR_NON_FILES 012345670123
The following fields are assumed to be correct by fsck(1M).
fsid is the filesystem identifier unique among mounted file systems on a single host. It
is kept on disk so that it will stay the same if possible from mount to mount. If it
doesn’t, NFS accesses using filehandles based on a previous mount will fail.
minor_device_number is the assigned extended minor device number. It is kept on
disk so that it will stay the same if possible from mount to mount. If the value in this
field on disk is not in the valid range for extended minor device numbers, it is file
manager’s responsibility to correct the problem at mount time.
dar_size is the size of a DAR in blocks. The minimum value for this field is:
$define DF_MIN_DAR_SIZE 4032
and the maximum value is:
#define DF_MAX DAR_SIZE(fs_size)
mkfs(1IM) defines the default for this field; for efficiency, it should be a multiple of:
#define DF_BITS_PER_BITMAP_BLOCK 4032
whenever possible; 4 to 12 MB (two to six bitmap blocks’ worth) per DAR seems a
reasonable default DAR size given current disk sizes. As disks grow by orders of
magnitude in size, DAR sizes should likely grow linearly with the square root of the

disk sizes.

file_nodes_per_dar is the number of file nodes for each DAR. This value must be a
multiple of:

#define DF_FILE_NODE_MULTIPLE_REQUIREMENT 64
The minimum value for this field is

#define DF_MIN_FILE NODES_PER_DAR 64
and the maximum value is:

#define DF_MAX FILE_NODES_PER DAR(dar_size)

mkfs(1M) defines this field’s default, which is to have about one file node for each
four user data blocks, similar to 4.2 BSD.

fsck_required indicates that fsck(1M) needs to be run. If this field is not zero
(FALSE), the filesystem needs to be checked before it can be mounted.

revision is the revision number of the FMIA. Used to determine the type of filesys-
tem that the FMIA resides on.

Licensed material—property of copyright holder(s) 093-701102

Preface

This is Volume 3 of the Programmer’s Reference for the DG/UX™ System. The Programmer’s
Reference describes the programming features of the DG/UX system. It contains individual
manual pages that describe commands, system calls, subroutines, file formats, and other
useful topics, such as the ASCII table shown on ascii(5).

This manual is part of a five-volume reference set. The other manuals are the System
Manager’s Reference for the DG/UX System and the User’s Reference for the DG/UX System.
These manuals contain in printed (typeset) form the online entries released with the DG/UX
System in /usr/catman for access by the man command.

The Programmer’s Reference provides neither a general overview of the DG/UX system nor
details of the implementation of the system. For more details about some of the most often
used programming tools, see Programmer’s Guide: ANSI C and Programming Support Tools,
Programmer’s Guide: System Services and Application Packaging Tools, and the Data General
supplements to these two manuals. Other related manuals are listed under “Related
Documents” at the end of this manual.

Man Pages

For historical reasons, each entry is called a “manual page” or “man page,” though an entry
may occupy more than one physical page and may contain more than one entry. If the man
page contains more than one entry, it is alphabetized under its “primary” name; for example,
the utmp manual page describes the utmp and wtmp files.

Manual pages are assigned to classes ranging from 0 through 8 for easy cross-reference. The
class number appears in parentheses following the name; for example, in accept(1M) the “1”
indicates that accept is a command, and the “M” indicates that the man page is in the System
Manager’s Reference.

A command followed by a (1) or (1G) usually means that it is described in the User’s
Reference. (Class 1 commands appropriate for use by programmers are located in the
Programmer’s Reference.) A man page name with a (1M), (4M), (7), or (8) following it means
that the entry is in the System Manager’s Reference. Names with (2) or (3x), (4), (5) [except
editread(5)], or (6F) are in the Programmer’s Reference. Occasionally, DG/UX man pages
refer to other products’ man pages, which are not part of the DG/UX documentation; these
are so noted.

093-701102 Licensed material—property of copyright holder(s) iii

Preface

Manual Organization

Volume 1 contains two chapters:

Chapter 1: Commands (1)
This chapter describes commands that support C and other programming languages.

Chapter 2: System Calls (2) This chapter describes the access to services provided by the
DG/UX kernel, including the C language interface and a description of returned error codes.

Volume 2 contains one chapter:

Chapter 3: Subroutines and Libraries (3) This chapter describes the available subroutines
and subroutine libraries. Their binary versions reside in various system libraries in the
directories /lib and /usr/lib. See intro(3) for descriptions of these libraries and the files in
which they are stored. Although these man pages are alphabetized together, each has a letter
associated with the number 3 indicating the pertinent library:

3C C Programming Language Libraries

3E ELF Library Routines

3G General Library Routines

3M Mathematical Library Routines

3N Networking Support Utilities

3R Remote Procedure Call Routines

3S Standard I/O Library Routines

3W Multinational Language Set (MNLS) Routines

3X Specialized Libraries

Volume 3 contains three chapters and one appendix:

Chapter 4: File Formats (4) This chapter documents the structure of particular kinds of files;
for example, the format of the output of the link editor is given in a.out(4). Excluded are
files used by only one command (for example, the assembler’s intermediate files). In general,
the C language structures corresponding to these formats can be found in the directories
/usr/include and /usr/include/sys.

Chapter 5: Miscellaneous Features (5) This chapter contains a variety of facilities. Included
are descriptions of character sets, macro packages, and other things.

Chapter 6: Communications Protocols (6) This chapter contains a description of the
unix_ipc communications facility.

Appendix A: Contents and Permuted Index Man Pages

These manual pages contain information extracted from the DG/UX man pages in all five
reference volumes.

v Licensed material—property of copyright holder(s) 093-701102

Preface

Man Page Format

Each man page has at least some of the following sections:

NAME gives the primary name (and secondary names, as the case may be) and
briefly states its purpose.

SYNOPSIS summarizes the usage of the program being described.

DESCRIPTION discusses how to use these commands.

EXAMPLES gives examples of usage, where appropriate.

FILES contains the file names that are referenced by the program.

EXIT CODES discusses values set when the command terminates. The value set is
available in the shell environment variable “?” (see sh(1)).

DIAGNOSTICS discusses the error messages that may be produced. Messages that are
intended to be self-explanatory are not listed.

SEE ALSO offers pointers to related information.

NOTES gives information that may be helpful under the particular circumstances
described.

Some man pages may contain other heads such as ENVIRONMENT and CAVEATS.

Man Page Notation Conventions

This manual uses certain symbols and styles of type to indicate different meanings in man
pages. Those symbol and typeface conventions are defined in the following list. You should
familiarize yourself with these conventions before reading the manual.

The description of convention meanings uses the terms “‘command line,” “format line,” and
“syntax line.” A command line is an example of a command string that you should type
verbatim; it is preceded by a system prompt. A format line shows how to structure a
command; it shows the variables that must be supplied and the available options. A syntax
line is a fragment of program code that shows how to use a particular routine; some syntax
lines contain variables.

093-701102 Licensed material—property of copyright holder(s) Vv

Preface

vi

Convention

Meaning

boldface

constant
width/
monospace

italic

[optional]

choicel |choice2

$,%, #

This font is used for section heads and subsection heads. It is
also used to distinguish input from output in examples where the
two are intermixed.

In command formats and code syntax: This typeface indicates text
(including punctuation) that you type verbatim from your
keyboard.

In text: This typeface is used for examples, code samples,
pathnames, and the names of commands, files, directories, and
manual pages.

In all contexts: The following characters, which have special
meanings explained below, do not have special meaning but simply
represent themselves when they appear in constant-width font: <
> [1 {1} |. Inconstant-width font they are are I/O
redirection operators, brackets, braces, and the pipe symbol.

In format lines: This font represents variables for which you
supply values; for example, the names of your directories and files,
your username and password, and possible arguments to
commands.

In format lines: Regular-font brackets surround an optional
argument. Don’t type the brackets; they only set off what is
optional. These brackets should not be confused with constant-
width brackets.

In format lines: The vertical bar indicates a choice between
choicel and choice2.

In format lines and syntax lines: You can repeat the preceding
argument as many times as desired.

In format lines: These regular-font braces surround either two or
more choices or syntax elements that are repeatable as a group.

In command lines and other examples: Angle brackets distinguish
a command sequence or a keystroke (such as <Ctrl-D>, <Esc>,
and <3dw>) from surrounding text. Note that these angle
brackets are in regular type and that you do not type them; there
are, however, constant-width versions of these symbols that you

do type.

In command lines and other examples: These symbols represent
the system command prompt symbols used for the Bourne and
Korn shells, the C shell, and the superuser, respectively. Note
that your system might use different symbols for the command
prompts.

Licensed material—property of copyright holder(s) 093-701102

Preface

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please feel
free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form (United States
only) or contact your local Data General sales representative. A list of related documents
appears at the end of this manual with the TIPS order form.

For a complete list of AViiON® and DG/UX™ manuals, see the Guide to AViiON® and
DG/UX™ System Documentation (069-701085). The on-line version of this manual found in
/usr/release/doc_guide contains the most current list.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, free
telephone assistance is available with your hardware warranty and with most Data General
software service options. If you are within the United States or Canada, contact the Data
General Customer Support Center (CSC) by calling 1-800-DG-HELPS. Lines are open from
8:00 a.m. to 5:00 p.m., your time, Monday through Friday. The center will put you in touch
with a member of Data General’s telephone assistance staff who can answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General sales
representative for the appropriate telephone number.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users, the North
American Data General Users Group (NADGUG). In addition to making valuable contacts,
members receive FOCUS monthly magazine, a conference discount, access to the Software
Library and Electronic Bulletin Board, an annual Member Directory, Regional and Special
Interest Groups, and much more. For more information about membership in the North
American Data General Users Group, call 1-800-932-6663 or 1-508-443-3330.

End of Preface

093-701102 Licensed material—property of copyright holder(s) vil

Contents

Chapter 4 — File Formats

11113 (o] (-3 TR PPN 4-2
0111« (-3 SRS 4-3
T2 1 (- PP 49
AHASES(4) oveennniriietiiiiiiti et e e e e e tra s et b e b e s e e e e s a s e e aan e s s e e aas 4-11
BI(A) +eeveeereeeeeeeteseeeseeseeeessae ettt et aeae sttt te sttt eeeset et et eseseasseneseasasasasasasanassasanans 414
[oTeTely oL 11 T TR 4-17
CRECKESI(4) teureennrreunierrnnerrenereuneeeeereuneerusseennsaeerussesssssesnsssenssssnesssssenssssnsssssansssssns 4-18
13703 131 2100 o . PN 4-19
1370] 03 o T3 1 L1 . N 4-20
COTE(4) teeeriiniriruirrenerrereeetttniseeaseeeesseesssssesssssssareessesssssssassssnsssssnnssserasssesssssnnssssesnss 4-21
CPIO(4) tereiiuieiieirieie ettt et e taee st reaeeseeneaetaassennneaaannssenssssensnssannnsttnnssernnseseans 4-22
A_PaSSWA(4) .eviiiniiiiiiiiii ittt et et et e st sen s s s an s e e ne s e e nra s eans 4-23
41T 1 T () T U ORI 4-24
4T o PN 4-26
QITENT(4) wurinniiiniiiniiiiiiiii ettt ettt tret ettt eeaseetsaneanessasosenssrnssrenssesssasssssnsssenens 4-27
4 101110 71 o C: 3 TP PP PPPPUP PPN 4-28
130110 ¢ P PPPRPPPN 4-29
15 q 0103 ¢ 1] (-) IR USRS R OPPPPPPRN 4-30
FIERAT(A) v.veeeeeeeeieeeiessieseseeeeeeeesesetesesesssesasasessesesesenesesesenesensasnesensssneasasasesasaens 432
ES(4) wevevverereeeeeeese ettt et et et eea e e et ettt et ese et a e e te s et et sttt et eeeteneseneseesteneneeenetetetans 433
ESPEC(4) eeieniiiieriiiiti ettt ettt e et e cee e eree e eraeeetansarasseenneraanesseanssennsnssaennes 4-39
ESEAD(4) eieniiiiiii st tes e s e e e e e s e aa e s e e s ar s s aranane 4-40
Fea 101 o C: 3 TP PPRPRRt 4-43
BEM(4) oot ettt e et e e s e e nn s s et s s e s e s anaaes 445
1) e) T PRSP 4-47
ROSES(4) eieniiineitiniiiii ittt ettt et e raesrenaeeeueeettaeeransaeenraaraneseresanrnsseaninane 4-48
FAL(B) eveeeveeeeeeeeeeeeees e et esese s et e e e e s e e et e e s et et e e st eaea e e s e e eeeeneaea s s easaenannaes 449
IEEEAD(4) v.vveveveeeceiacscsesesesesesssesssessasesessassessassesssssasssasesesstonesesesesesesenssssesssssens 468
INOAE(4) +.vvveeeeceiseiscseesesesesesesesssesasesesssessssaessasasessassasesesstesesesesesssenensassssensaens 471
1 1< (- PR UOP PPt 4-76
JAECII(A) wevveveerenrereereeseseeseesenseseeseeseesensessesseseeseseessessesensesensensensesensenes et enteneesensesens 4-77
BHIEES(4) woveniieniiiiiiiiii ittt st et s tansneeraeeseneseasssssssnnasensssssosnnnsnssannsnes 4-79
HNENUMI(4) ceuniiiniiiiiiiiiiiiiiii ettt rea e eeae s et e se e st e n e s enn s st aa s anesseansa s 4-81
IASTET(4) ervuiienniiunniiiiui ittt tai et etaseseetassresssstnnesstnsossosnssennsssesnsseasssssnnnans 4-82
IES(4) weriiitiiiiiii ettt s e et s ettt e s et e s e e e e sne s st aa s e eeannanns 4-85
IDEAD(4) tevuiiinniiiniiieiitei ittt ettt st s eereeere e setanesenssesnrsrannestenserensserannsnne 4-87
1 1e3 1T T4) R PTOPTRRRR: 4-89
DELZTOUP(4) -eeennriiunreiuniietntitientttuettueereneesraesennsesressseesssssssssesssessanssssssssnnssssennssnns 4-92
NELWOTKS(4) wevvreeiiiriitiiiriiiineiettttiue st eettteese e see e e e e eranenseseeseaesrenasssssssssessnnsansnsssnssns 493
PASSWA(4) cevvrniiiiiiiiiiiiii et et e et e s e s st s aa s e e e e annans 4-94
PREINFO(4) oenniiiiiiiiiiiiiii et e e s e ra e s e ea e s e s e e a e e s ennas 4-97
PKEMAP(4) «.iivennniiiiiiiiiiiiii ettt et eera s e e een e ee s ear e e e e nan e s aeennnnnnnans 4-100
|2 00} 11 L1 C:) TS S 4-103
PTOLOCOLIS(4) eennieiinieiuiiieiee et e reteeetaeaeeeetnereeauresaseeressaerensesseesessnsessssnssnneesssensees 4-104

093-701102 Licensed material—property of copyright holder(s) IX

Contents

PIOTOLYPE(4) cevrrriniiiiiiiiiiiiiiie ettt ettt e eese s ee s e s e et nanaea e e s e e e e s ans s e seanae 4-105
PUDLCKEY(4) weeiivnnianiiiiiniiiiiiiiiciairenieettteeeertraeseeeennneseneeseennessnnsnssnsassnsnssennonns 4-108
TCSHILE(4) evriiiiiiiiiieiiiiee et e e e e 4-109
TEIOC(4) tevnniiniiiiiiiiiiiiii ittt sttt s et e s e e erae s ss s s e assssssesnnssnsennsnnssssesnnnnns 4-112
s 1oL PP PP PPPPPPPRPPRN 4-113
SCOSTILE(4) wevviiinniiiiiniii ittt ettt e et e e e e eeeraan s e e e naas e e e an e eeeraneeneeenannns 4-114
SCT_AUIMIP(4) cereniiiiiitiiiiiiitit ettt ettt et tn e e s e eeeeaenessernnnssseesssnnssenssssneseennns 4-117
SAE-CROOSET(4) .euuviiiiiniiiiiitiiiiiiiiiie ittt ettt se e e erenseeseenansnseenannsssenssssnnssennnen 4-118
SAELAD(4) cevueiiiiiniiiiitii ettt te e e e e e e e re e s e e abe e e s e aan e e e s an e aesannnns 4-119
SETVICES(4) wuveirunnuiiiiuiiiiiiitiiiititnnie ittt et seettateseetenseesseserensssssnnssssssesnsnssssesnnsnnssnnnnns 4-120
SPACE(4) tevenuiiiinniiiitiiii ittt ettt sttt e s ettt e e et e e s e s eerean e e e rrras et erarnneearnnennesaranns 4-121
SEALA(A) +.veveveereeereeeesesersesseeaeseeesetesessteteseteseaseeneneseseseteteneeeneeeneneaeeaeaeaeeeeeesenenen 4122
SEIEHME(4) wuviirinniiiiiiiiiiiie ettt et te et s e e e e re e s e e e e aa s e s e a e s e s aannsaaesaranes 4-123
SVCOTALT(4) .eievnniiiiiiniiiiiituiiiiieee e reteeeseetestesrernnnseseseerennnssesnsssnseesnsnssesnsnnsnnesennnns 4-124
SYIIS(4) «ovienniiimtiiiiiiiiii ittt ettt et ett e e e et e st e et tann e s eeeeeanneaantraeeearrnnsetrnnnsnnesernnns 4-125
SYSEEIM(4) wevvrirrunnniiiiniiiii ittt ettt e et ettt e e et e s e e e e e ran e e e e ara e aarannaeerennsnnnsernnns 4-128
termINfO(4) oovereneuniiiiiiiiitiie ettt e ree e e e e e s et e e e e e e e e an e e a e e aaaans 4-129
tIMEZOME(4) tevvnniiiiriiiiiiiiiiiiiiti ettt ettt eee e ereteeeeerenereseetaseseesananssesnnnnnsseesrrnnanes 4-176
UPAALETS(4) oovrrennriiiiiiiiiiiiiiee ettt et e et ettt eeseeeeseeesenansanessseeearsnssnnnsnseeeranen 4-179
UEIIP(4) «veveveerrereseereseseseseetesesesessesesessesessssnssesessasasassasssssessessssasasessnsssensssssssses 4-180
YPHIES(4) «eiviniiiiiiiiiiiii ettt ee e e e ra e e e e s a e e s e aaa e e e e s annneeaeas 4-182

11108 {0 (=) T PO PSPPSR 52
ASCH(S5) wvveeereiernmniiiiiititit ettt sttt e e e e e e e e e e e e et e aaa e e e e e e e reaaaa e aaeeeeeeannnnsen 53
dg MKNOA(5) teuviiiiiiiiiiiiiiiiiiiiii st e s e e se s e e ae e s e e ra s s e eerenssaseenas 54
AZ_StAt(5) .errriniiiiiiiiii et et e e e se s e e n s s e an e e e e e e e e neasennas 5-6
EHNK(S5) wuvreiiiiiiiiiiiiiiitet ettt e e e e s e e e e e e e e e e b a e e e e s e e e raa s e e e e e eaaanaae 59
13 1140} 1T () RO 511
LT (o1 1 [T PP PO 5-17
1107111 () SO ST 5-19
BEET(S5) covvrnnniiiiiiiiiiiiiie ettt sttt e e e e e s e e e eaaa e e e e e e s e e e nna s e eaaans 520
BOSNAME(5) eevvneiiiiiiiiiiiiiiei ittt ce et e e e eerar e e e e e e e e eat e eearan e e eeennnnaees 525
1aDGINFO(S) wevviiiiiiiiiiiii ittt e et et s e s e e e s e e s s e s e aaaens 5-26
168ENA(5) couniiiiiii ittt et s e eae e e et at e s et e e aa e e e nn e e e nn e eran s nnnaaes 5-28
MAth(5) ceiieiiiiiiiii et eee e e e s et e e na s e e s e e e e e enn s eeaaeesanans 5-29
MUSALZN(5) .evirrnniiiiiiiiiii e s e e e e ae e s e e s e s e e e s s aeananseeeeanasaeanas 5-30
DL_EYPES(5) weniieruniiiiitiiiiiiiii ettt et ea e e e e et e e a e e e e s e s aa e s e e et aneseaannnasaans 533
PIDECAP(S) wuveirnniiiiiiiiiiiiitiii ettt et rteete s e teane s e eeeannsessaennnsssaassnnassensnsesanennananes 5-34
103103 () TSP UPPRN 5-36
TEEEXP(5) wevveremurieiiriiieieintieitieuttttasetittaastestenneseeernnnsnssserasssesransseernnsssessnsnsnsernnnn 5-37
SAE(5) ueieierntiiiiiiei ettt e s e e e e e e s s e e e e s ran e s senanane 541
SIZINFO(S5) tevvunniiiiiiiiiie ettt e s e e e re e an s s e e e e ra s e e eeeaes 543
3741 T 1 () TR 5-46
SEAL(S) rreiiiniiie it st e et s e s s s e er e e s e e e s e ranansaa e eeeeans 547
L F:] () PRSP PRUURRRPUPPRPNt 5-49
SEAATE(S) teevrnnniiiiiiiii ettt e e s st e e e s n s e e e e s s e s a s nneseaaaaaas 5-51
SYSIOZ.CONE(S) wuvniiiiiiiiiiiiiiiiiiri ettt ettt ee e st e e e ne e s s e e e senan e e s aaeees 5-53
TAI(S) wveverereereeeeieeseeeseseees e eaeseae et eseeeae s e eaeae e sene et eeaeaeae et et enet et eeseeaeeeaeaeaeeaeeneeeens 5-55
1425 11071 o1 () T OO PO U URPURTPPRRR: 5-58
1374515 () U PO URRRRN 5-72

X Licensed material—property of copyright holder(s) 093-701102

Contents

UCONLEXL(S) wevvniiiiinuiiiiiiiiiiiiiiiie ettt ert e et eeesra e s eaeraseeesasssnanesesnannanes 5-73
111 11 () RN 5-74
A1 LT (<) PR 5-75
20 1 4] (<) L PRt 5-76
L 2] 1 () PR 5-78

.
1000 40 (<) TP 6-2
AOLB(OP) ..eiueiirenirienitiuiieieeeeenuesereesteesenseaseseensserssssssnssssnssssnssssnssssesssssesnsssssenssasaes 6-5
inet(6F 6-6
INEL(OE) oneniiii ettt ettt te i teeeseetttrrasessseasasesssnssscasnancnns
2] ()) PP 6-7
112 (5)) TP 6-8
L3 E:1 o1 (<3 o0 T PPN 6-9
1703 01 (<) 20 T PP 6-10
10161 ()) T PP 6-12
ipc(6F 6-13
11101 1o 1] () 2 R

Appendix A — Contents and Permuted Index Man Pages

(320) (131 (1) PPN A2
110 (o (1) PO PSP SPPR PRSPPI A-23
Index

Related Documents

093-701102 Licensed material—property of copyright holder(s) X1

Table
4-1
42

6-1

Xii

Tables

Summary of TCP/IP File Format Manual Pagescccccuuueeiirriennnieerneceeennnne 41
Summary of ONC/NFS File Format Manual Pagescccccceirinniiiiinnnnneennnnn. 4-1
Summary of Communications Protocol Manual Pagesccccceeuueeennrinnnriennennns 6-1

Licensed material—property of copyright holder(s) 093-701102

Chapter 4
File Formats

This chapter contains in printed form the online manual entries for DG/UX, TCP/IP, and
NFS file formats. The entries are in alphabetical order except for intro(4), which is first.

For other file format manual pages (4M), see the System Manager’s Reference for the DG/UX
System.

Table 4-1 lists the TCP/IP man pages included in this chapter.

Table 4-1 Summary of TCP/IP File Format Manual Pages

Name Description

aliases(4) Addresses and aliases for sendmail

ethers(4) Ethernet address to hostname database or NIS domain
hosts(4) Host name database

networks(4) Network name database

protocols(4) Table of protocols

services(4) Service name database for DG/UX system
svecorder(4) File specifying name/address resolution order

Table 4-2 lists the ONC/NFS man pages included in this chapter.

Table 4-2 Summary of ONC/NFS File Format Manual Pages

Name Description

bootparams(4) Boot parameter database

exports(4) Directories to export to NFS clients
netgroup(4) List of network groups

publickey(4) Public key database

rpc(4) RPC program number database

statd(4) statd directories and file structures
updaters(4) Configuration file for updating

ypfiles(4) The NIS database and directory structure

093-701102 Licensed material—property of copyright holder(s) 4'1

intro(4) DG/UX 5.4.1 intro(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C structure declarations for the
file formats are given where applicable. Usually, the header files containing these
structure declarations can be found in the directories /usr/include or
/usr/include/sys. For inclusion in C language programs, however, the syntax
#include <filename.h> or #include <sys/filename.h> should be used.

SEE ALSO
intro(4M).

4‘2 Licensed material—property of copyright holder(s) 093-701102

a.out(4) DG/UX 5.4.1 a.out(4)

NAME
a.out — assembler and link editor output

SYNOPSIS
#include <elf.h> /* for ELF executables*/

#include <a.out.h>/* for COFF executables */

DESCRIPTION
The filename a.out is the default output filename from the link editor 1d(1). The
link editor will make a.out executable if there were no errors in linking. The output
file of the assembler, as(1), also follows the common object file format of the
a.out file although the default filename is different.

ELF (Executable and Linking Format) Files
Programs that manipulate ELF files may use the library that e1f(3E) describes. An
overview of the file format follows. For more complete information, see the refer-
ences given below.

Linking View Execution View
ELF header ELF header
Program header table Program header table

optional
Secftfo.n L Segment 1
Secftl.o.n L Segment 2
Section header table Section header table
optional

An ELF header resides at the beginning and holds a “road map” describing the file’s
organization. Sections hold the bulk of object file information for the linking view:
instructions, data, symbol table, relocation information, and so on. Segments hold
the object file information for the program execution view. As shown, a segment may
contain one or more sections.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program header
table; relocatable files do not need one. A section header table contains information
describing the file’s sections. Every section has an entry in the table; each entry gives
information such as the section name, the section size, etc. Files used during linking
must have a section header table; other object files may or may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header has a
fixed position in the file.

When an a.out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitialized,
the latter actually being initialized to all 0’s), and a stack. The text segment is not
writable by the program; if other processes are executing the same a.out file, the
processes will share a single text segment.

The data segment starts at the next maximal page boundary past the last text address.
(If the system supports more than one page size, the “maximal page” is the largest

093-701102 Licensed material—property of copyright holder(s) 4"3

a.out(4) DG/UX 5.4.1 a.out(4)

supported size.) When the process image is created, the part of the file holding the
end of text and the beginning of data may appear twice. The duplicated chunk of text
that appears at the beginning of data is never executed; it is duplicated so that the
operating system may bring in pieces of the file in multiples of the actual page size
without having to realign the beginning of the data section to a page boundary.
Therefore, the first data address is the sum of the next maximal page boundary past
the end of text plus the remainder of the last text address divided by the maximal
page size. If the last text address is a multiple of the maximal page size, no duplica-
tion is necessary. The stack is automatically extended as required. The data segment
is extended as requested by the brk(2) system call.

COFF (Common Object File Format) Files
A common object file consists of a file header, a UNIX system header (if the file is
link editor output), a table of section headers, relocation information, (optional) line
numbers, a symbol table, and a string table. The order is given below:

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts of an object file (line numbers, symbol table and string table) may
be missing if the program was linked with the —s option of 1d(1) or if they were
removed by strip(1l). Also note that the relocation information will be absent after
linking unless the —r option of 1d(1) was used. The string table exists only if the
symbol table contains symbols with names longer than eight characters.

The sizes of each section (contained in the header, discussed below) are in bytes.

When an a.out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitialized,
the latter actually being initialized to all 0’s), and a stack. On the M88K computer the
text segment typically starts at location 0x00010000 plus the byte offset in the a.out file
of the text section data.

The first 16 bits of a.out files is the magic number. For non-executable a.out files
and executables linked in the m88kbcs SDE, the magic number is 0555.For execut-
ables linked in the dgux SDE, the magic number is 0541. See sde(1). The optional
header of an a.out file produced by 1d(1) also has a magic number whose value is
0413. The headers (file header, optional header, and section headers) appear at the
beginning of a.out files and determine the address of the text segment when it is
loaded into memory. The first text address will equal 0x00010000 plus the size of the
headers, and will vary depending upon the number of section headers in the a.out

4‘4 Licensed material—property of copyright holder(s) 093-701102

a.out(4)

093-701102

DG/UX 5.4.1 a.out(4)

file. In an a.out file with three sections (.text, .data, and .bss), the first text address
is at 0x000100B8 on the M88K computer.The text segment is not writable by the pro-
gram; if other processes are executing the same a.out file, the processes will share a

single text segment.

On the M88K computer the stack begins at location 0xF000000 and grows toward
lower addresses. The stack is automatically extended as required. The data segment
is extended only as requested by the brk(2) system call.

For relocatable files the value of a word in the text or data portions that is not a refer-
ence to an undefined external symbol is exactly the value that will appear in memory
when the file is executed. If a word in text or data involves a reference to an
undefined external symbol, there will be a relocation entry for the word, the storage
class of the symbol-table entry for the symbol will be marked as an ‘“‘external sym-
bol”, and the value and section number of the symbol-table entry will be undefined.
When the file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the word in the file.

The format of the filehdr header is

struct filehdr

{

unsigned short
unsigned short

long
long
long

unsigned short
unsigned short

}:

The format of the optional header is

f_magic;
f nscns;

/* magic number x/
/* number of sections x/

f _timdat; /* time and date stamp x/
f_symptr; /* file ptr to symtab x/

f nsyms; /* # symtab entries x/
f_opthdr; /% sizeof(opt hdr) x*/
f_flags; /* flags x/

typedef struct aouthdr

{
short
short
long
long
long
long
long
long

} AOUTHDR;

magic;
vstamp;
tsize;
dsize;
bsize;
entry;
text_start;
data_start;

/%
/%
VA
/*
/%
/*
/%
/*

magic number x/

version stamp x/

text size in bytes, padded x/
initialized data (.data) x/
uninitialized data (.bss) %/

entry point x/

base of text used for this file x/
base of data used for this file x/

Licensed material—property of copyright holder(s) 4'5

a.out(4) DG/UX 5.4.1 a.out(4)

The format of the section header is

struct scnhdr

{
char s_name[8]; /% section name x/
long s_paddr; /* physical address x/
long s_vaddr; /* virtual address x/
long s_size; /* section size x/
long s_scnptr; /* file ptr to raw data x/
long s_relptr; /* file ptr to relocation x/
long s_lnnoptr; /% file ptr to line numbers x/
unsigned long s_nreloc; /* # reloc entries x/
unsigned long s_nlnno; /* # line number entries x/
long s_flags; /* flags x/

}:

Object files have one relocation entry for each relocatable reference in the text or
data. If relocation information is present, it will be in the following format:

struct reloc

{

long r_vaddr; /* (virtual) address of reference x/
long r_symndx; /* index into symbol table x/
unsigned short r_type; /* relocation type x/

unsigned short r_offset; /* high 16 bits of expression %/
}i -

The start of the relocation information is s_relptr from the section header. If there is
no relocation information, s_relptr is 0.

The format of each symbol in the symbol table is

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment

{
union /* all ways to get a symbol name x/
{
char _n_name [SYMNMLEN]; /% name of symbol x/
struct
{
long _n_zeroes; /* == OL if in string table %/
long _n_offset; /* location in string table x/
} _n_n;
char *_n_nptr[2]; /% allows overlaying x/
} _n;
long n_value; /* value of symbol x/
short n_scnoum; /* section number x/
unsigned short n_type; /* type and derived type x/
char n_sclass; /* storage class x/
char n_numaux; /* number of aux entries x/
char n_padl; /* pad to 4 byte multiple x/
char n_pad2; /* pad to 4 byte multiple x/

};

4‘6 Licensed material—property of copyright holder(s) 093-701102

a.out(4) DG/UX 5.4.1

#define
#define
#define
#define

n_name
n_zeroes
n_offset
n_nptr

_n._n name
_n._n n._n_zeroes
_n._n n._n offset
_n._n nptr[l]

a.out(4)

Some symbols require more information than a single entry; they are followed by aux-
iliary entries that are the same size as a symbol entry. The format follows:

union auxent {
struct {
long x_tagndx;
union {
struct {

unsigned longx_lnno;
unsigned longx_size;

} x_1nsz;
long x_fsize;
} x misc;
union {
struct {
long x_lnnoptr;
long x_endndx;
} =x_fen;
struct {

unsigned shortx_dimen[4];

} x_ary:
struct {

unsigned long

} x_aryl;

} x_fcnary;

unsigned short x_tvndx;
char x_padl;

char x_pad2;

} x_sym;

struct {
unsigned long x_dimen2[5];
} x_ary2;

union {
char x_fname [FILNMLEN];
struct {
long _x zeroes;
long _x offset;
} _x x;
char
} x file;
} x file;

*_x xptr[2];

struct {

long X_scnlen;

093-701102 Licensed material—property of copyright holder(s)

x_dimenl[2];

/+% 0 if name is in string tablex/
/* offset into string table x/

/% allows for overlaying x/

4-7

a.out(4) DG/UX 5.4.1 a.out(4)

unsigned short x_nreloc;
unsigned short x nlinno;

} x_scn;

struct {
long x_tvfill,;
unsigned short X_tvlen;
unsigned short x_tvran[2];

} x_tv;

)i

Indexes of symbol table entries begin at zero. The start of the symbol table is
J—symptr (from the file header) bytes from the beginning of the file. If the symbol
table is stripped, f_symptr is 0. The string table (if one exists) begins at f_symptr +
(fonsyms « SYMESZ) bytes from the beginning of the file.

SEE ALSO
as(l), att_dump(1), cc(1), 1d(1), 1d-coff(1), brk(2), el£(3E), filehdr(4),
ldfcn(4), linenum(4), reloc(4), syms(4).

The “Object Files” chapter in the Programmer’s Guide: ANSI C and Programming
Support Tools.

4'8 Licensed material—property of copyright holder(s) 093-701102

acct(4) DG/UX 5.4.1 _ acct(4)

NAME
acct — per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form defined by
<{sys/acct.h>, whose contents are:

typedef wushort comp_t; /x "floating point" x/
/* 13-bit fraction, 3-bit exponent x/

struct acct

{

char ac_flag; /* Accounting flag x/

char ac_stat; /* Exit status x/

ushort ac_uid; /* Accounting user ID x/

ushort ac_gid; /* Accounting group ID x*/

dev_t ac_tty; /* control typewriter x/

time t ac_btime; /* Beginning time x/

comp_t ac_utime; /* acctng user time in clock ticks x/
comp_t ac_stime; /% acctng system time in clock ticks x/
comp_t ac_etime; /* acctng elapsed time in clock ticks x/
comp_t ac_mem; /* memory usage in kbytes x/

comp_t ac_io; /* chars trnsfrd by read/write x/
comp_t ac_rw; /* number of block reads/writes x/

char ac_comm[8]; /% command name x/

}i
Also defined are the following symbolic names:

AFORK /x has executed fork, but no exec %/ ASU /* used super-—
user privileges %/ ACCTF /% record type: 00 = acct x/

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by an
exec(2). The ac_comm field is inherited from the parent process and is reset by any
-exec. Each time the system charges the process with a clock tick, it also adds to
ac_mem the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem / (ac_stime + ac_utime) can be viewed as an approximation to
the mean process size, as modified by text-sharing.

093-701102 Licensed material—property of copyright holder(s) 4-9

acct(4) DG/UX 5.4.1 acct(4)

The structure tacct.h, which resides with the source files of the accounting com-
mands, represents the total accounting format used by the various accounting com-

mands:
VA
* total accounting (for acct period), also for day
%/
struct tacct {
uid_t ta_uid; /% userid x/
char ta_name[8]; /* login name x/
float ta_cpul2]; /* cum. cpu time, p/np (mins) x/
float ta_kcore[2]; /% cum kcore-minutes, p/np x/
float ta_con[2]; /* cum. connect time, p/np, mins x/
float ta_du; /* cum. disk usage x/
long ta_pc; /* count of processes x/
unsigned short ta_sc; /* count of login sessions x/
unsigned short ta_dc; /% count of disk samples x/
unsigned short ta_fee; /*x fee for special services x/

};
SEE ALSO
acct(2), exec(2), fork(2).
acct(1M) in the System Manager’s Reference for the DG/UX System.
acctcomn(l) in the User’s Reference for the DG/UX System.

NOTES
The ac_mem value for a short-lived command gives little information about the actual
size of the command because ac_mem may be incremented while a different com-
mand (like the shell) is being executed by the process.

4" 1 O Licensed material—property of copyright holder(s) 093-701102

aliases(4) TCP/IP 5.4.1 aliases(4)

NAME

aliases — addresses and aliases for sendmail

DESCRIPTION

093-701102

These files contain mail addresses or aliases, recognized by sendmail(1M), for the
local host:

/etc/passwd Mail addresses (usernames) of local users.

/etc/aliases Aliases for the local host, in ASCII format. This file can be
edited to add, update, or delete local mail aliases.

/etc/aliases.{dir,pag}
The aliasing information from /etc/aliases, in binary,
dbm(3X) format for use by sendmail(1M). The program
newaliases maintains these files.

"/ .forward Addresses to which a user’s mail is forwarded.

mail.aliases If you are running ONC/NFS, this Network Information Ser-
vice (NIS) aliases map contains addresses and aliases available
for use across the network.

As distributed, sendmail(1M) supports the following types of mail addresses:
e Local usernames. These are listed in the local host’s /etc/passwd file.

® ILocal filenames. When mailed to an absolute pathname, a message can be
appended to a file.

o Commands. If the first character of the address is a vertical bar, (|),
sendmail(1M) pipes the message to the standard input of the command the bar
precedes.

e Internet mail addresses of the form:
name@domain

If domain does not contain any ‘.’ (dots), then it is interpreted as the name of a
host in the current domain. Otherwise, the message is passed to a mailhost that
determines how to get to the specified domain. Domains are divided into sub-
domains that are separated by dots, with the top-level domain on the right. Top-
level domains include the following:

.com Commercial organizations.
.edu Educational organizations.
.gov Government organizations.
.mil Military groups.

.org Other organizations.

For example, the full address of K. Owen could be:

owen(@cs.unc.edu

if he can be reached through the subdomain named "cs" at the University of
North Carolina.

® uucp(l) addresses of the form:
... [hostt 1hosttusername

Addresses such as these are sometimes referred to as "Usenet" addresses.
uucp(1l) provides links to numerous sites throughout the world for the remote
copying of files.

Licensed material—property of copyright holder(s) 4'1 1

aliases(4) TCP/IP 5.4.1 aliases(4)

Other site-specific forms of addressing can be added by customizing the sendmail
configuration file. See the sendmail(1M) man page and "Configuring and Using
sendmail" in Managing TCP/IP on the DG/UX System for details. Standard addresses
are recommended.

The /etc/aliases file is formatted as a series of lines of the form
aliasname: address[, address]

aliasname is the name of the alias or alias group, and address is the address of a reci-
pient in the group. Aliases can be nested. That is, an address can be the name of
another alias group. Because of the way sendmail performs mapping from upper-
case to lowercase, an address that is the name of another alias group must not contain
any uppercase letters.

Lines beginning with white space are treated as continuation lines for the preceding
alias. Lines beginning with # are comments.

Given an alias of the following form:

aliasname: address, address, address
an alias such as the following:

owner-aliasname: erraddress

directs error-messages resulting from mail to aliasname to erraddress, instead of back
to the person who sent the message.

An alias of the form:
aliasname: :include:pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname
alias. This allows a private list to be maintained separately from the aliases file.

When an alias (or address) is resolved to the name of a user on the local host, send-
mail checks for a .forward file, owned by the intended recipient, in that user’s
home directory, and with universal read access. This file can contain one or more
addresses or aliases as described above, each of which is sent a copy of the user’s
mail.

Care must be taken to avoid creating addressing loops in the .forward file. (See
"ONC/NFS-specific Information" below for additional information specific to
ONC/NFS.)

A backslash before a username in the .forward file inhibits further aliasing. Sup-
pose user owen had the following . forward file:

Postmaster
\owen

Mail for owen will be redirected to Postmaster, but a copy also is sent to owen.
The sendmail program will not alias a username following the backslash.

ONC/NFS-specific Information
If you are running ONC/NFS, the following information applies in addition to the
mail.aliases file cited above:

4‘1 2 Licensed material—property of copyright holder(s) 093-701102

aliases(4) TCP/IP 5.4.1 aliases(4)

FILES

Normally, the aliases file on the master NIS server is used for the mail.aliases
NIS map, which can be made available to every NIS client. Thus, the
/etc/aliases* files on the various hosts in a network will be largely used to provide
host specific aliases. Domain-wide aliases should ultimately be resolved into user-
names on specific hosts. For example, if the following were in the domain-wide alias
file:

mlee:ml@mlmachine

then any NIS client could just mail to mlee and not have to remember the machine
and username for Mike Lee.

When forwarding mail between machines, be sure that the destination machine does
not return the mail to the sender through the operation of any NIS aliases. Other-
wise, copies of the message may “bounce.” Usually, the solution is to change the
NIS alias to direct mail to the proper destination.

/etc/passwd
/etc/aliases
/etc/aliases.dir
/etc/aliases.pag
~/.forward

SEE ALSO

BUGS

093-701102

uucp(1), dbm(3X), sendmail(1M).

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000
characters. Nested aliases can be used to circumvent this limit.

Licensed material—property of copyright holder(s) 4' 1 3

ar(4)

NAME

DG/UX 5.4.1 ar(4)

ar — DG/UX common archive file format

DESCRIPTION

4-14

The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor 1d.

Each archive begins with the archive magic string.

#define ARMAG "1<arch>\n" /% magic string x/
#define SARMAG 8 /* length of magic string x/

Following the archive magic string are the archive file members. Each file member is
preceded by a file member header which is of the following format:

#define ARFMAG "“\n" /% header trailer string */

struct ar_hdr /* file member header x/

{
char ar_name[16]; /x '/’ terminated file member name x/
char ar_date[12]; /% file member date x/
char ar_uid[6]; /* file member user identification x/
char ar_gid[6]; /* file member group identification x/
char ar_mode[8]; /* file member mode (octal) x/
char ar_size[10]; /% file member size x/
char ar_fmag[2]; /* header trailer string x/

}:

All information in the file member headers is in printable ASCII. The numeric infor-
mation contained in the headers is stored as decimal numbers (except for ar_mode
which is in octal). Thus, if the archive contains printable files, the archive itself is
printable.

If the file member name fits, the ar_name field contains the name directly, and is ter-
minated by a slash (/) and padded with blanks on the right. If the member’s name
does not fit, ar_name contains a slash (/) followed by a decimal representation of the
name’s offset in the archive string table described below.

The ar_date field is the modification date of the file at the time of its insertion into
the archive. Common format archives can be moved from system to system as long
as the portable archive command ar is used.

Each archive file member begins on an even byte boundary; a newline is inserted
between files if necessary. Nevertheless, the size given reflects the actual size of the
file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

Each archive that contains object files [see a.out(4)] includes an archive symbol
table. This symbol table is used by the link editor 14 to determine which archive
members must be loaded during the link edit process. The archive symbol table (if it
exists) is always the first file in the archive (but is never listed) and is automatically
created and/or updated by ar.

The archive symbol table has a zero length name (i.e., ar_name([0] is ’/’),
ar_name[1]==’ ', etc.). All “words” in this symbol table have four bytes, using
the machine-independent encoding shown below. (All machines use the encoding

Licensed material—property of copyright holder(s) 093-701102

ar(4)

093-701102

DG/UX 5.4.1 ar(4)

described here for the symbol table, even if the machine’s “natural’” byte order is
different.)

P i D 3
0x01020304 01 02 03 04

The contents of this “file”” are as follows:
1. The number of symbols. Length: 4 bytes.

2. The array of offsets into the archive file. Length: 4 bytes x “the number of sym-
bols”.

3. The name string table. Length: ar_size — 4 bytes x (“the number of symbols” +
1).
As an example, the following symbol table defines 4 symbols. The archive member at

file offset 114 defines name and object. The archive member at file offset 426
defines function and a second version of name.

Offset +0 +1 +2 +3

0 4 4 offset entries
4 114 name
8 | 114 object
12 426 function
16 426 name
20 n a m e
24 \0 | o b j
28 e c t | \O
32 £ u n c
36 t i o n
40 \0 n a m
44 e [\O

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null terminated strings as there are
elements in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string table
are all the defined global symbols found in the common object files in the archive.
Each offset is the location of the archive header for the associated symbol.

If some archive member’s name is more than 15 bytes long, a special archive member
contains a table of file names, each followed by a slash and a new-line. This string
table member, if present, will precede all “normal” archive members. The special
archive symbol table is not a “normal” member, and must be first if it exists. The
ar_name entry of the string table’s member header holds a zero length name
ar_name[0]==’/’, followed by one trailing slash (ar_name[1]=='/'), followed by
blanks (ar_name[2]==’ ', etc.). Offsets into the string table begin at zero. Exam-
ple ar_name values for short and long file names appear below.

Licensed material—property of copyright holder(s) 4"'1 5

ar(4) DG/UX 5.4.1 ar(4)

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 £ i 1 e n a m e
10 s a m P 1 e / \n 1 o
20 n g e r f i 1 e n a
30 m e X a p 1 e / \n
Member Name ar_name Note
short—name short-name/ Not in string table
file name sample /0 Offset 0 in string table
longerfilenamexample /18 Offset 18 in string table
SEE ALSO
ar(1), 1d(1), strip(l), sputl(3X), a .out(4).

NOTES
strip will remove all archive symbol entries from the header. The archive symbol

entries must be restored via the —ts options of the ar command before the archive
can be used with the link editor 1d.

4'1 6 Licensed material—property of copyright holder(s) 093-701102

bootparams(4) ONC/NFS 5.4.1 bootparams(4)

NAME

bootparams — boot parameter data base
SYNOPSIS

/etc/bootparams
DESCRIPTION

The bootparams file contains the list of client entries that diskless clients use for
booting. For each diskless client the entry should contain the following information:

name of client
a list of keys, names of servers, and pathnames.

The first item of each entry is the name of the diskless client. The subsequent item is
a list of keys, names of servers, and pathnames.

Items are separated by TAB characters. A line-continuation character () can be used,
but it must be preceded by TAB or SPACE characters (see EXAMPLE).

EXAMPLE

FILES

Here is an example of the /etc/bootparans file:

myclient root=myserver:/srv/release/PRIMARY/root/myhost \
swap=myserver:/srv/release/PRIMARY/swap/myhost \
dump=myserver:/srv/release/PRIMARY/dump/myhost

Root specifies the pathname of the executable file to boot. This file must exist to
boot the client. Swap gives the pathname of the swap area file. The swap file is a
fixed-sized file that must be pre-allocated to an appropriate size. Dump specifies the
pathname of the system dump file, where system information is written following a
system crash. This file must exist to dump the system crash information. During a
system crash, this entry is optional for DG/UX clients; however, non-DG/UX clients
may require it. If there is no dump entry, an attempted dump will fail.

/etc/bootparams

SEE ALSO

093-701102

bootparamd(1M).

Licensed material—property of copyright holder(s) 4'1 7

checklist(4) DG/UX 5.4.1 checklist(4)

NAME
checklist — list of file systems processed by fsck and ncheck

DESCRIPTION
Checklist may reside in directory /etc and contain a list of special file names.
Each special file name is contained on a separate line and corresponds to a file sys-
tem. Each file system will then be automatically processed by the fsck(1IM) and
ncheck(1M) commands. You have to create the checklist file yourself; the sys-
tem does not create it for you.

If you have your special files in fstab, you do not need to create a checklist file
to get fsck to process them.

SEE ALSO
fsck(1IM) and ncheck(1M) in the System Manager’s Reference for the DG/UX Sys-
tem.
fstab(4).

4"1 8 Licensed material—property of copyright holder(s) 093-701102

compver(4) DG/UX 5.4.1 compver(4)

NAME
compver — compatible versions file

DESCRIPTION
compver is an ASCII file used to specify previous versions of the associated package
which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with which
the current version is backward compatible.

Since some packages may require installation of a specific version of another software
package, compatibility information is extremely crucial. Consider, for example, a
package called "A" which requires version "1.0" of application "B" as a prerequisite
for installation. If the customer installing "A" has a newer version of "B" (version
1.3), the compver file for "B" must indicate that "1.3" is compatible with version "1.0"
in order for the customer to install package "A".

NOTES
The comparison of the version string disregards white space and tabs. It is performed
on a word-by-word basis. Thus "Version 1.3" and "Version 1.3" would be con-
sidered the same.

EXAMPLE

A sample compver file is shown below.

Version 1.3
Version 1.0

SEE ALSO
pkginfo(4).

093-701102 Licensed material—property of copyright holder(s) 4'1 9

copyright(4) DG/UX 5.4.1 copyright(4)

NAME
copyright - copyright information file
DESCRIPTION
copyright is an ASCII file used to provide a copyright notice for a package. The

text may be in any format. The full file contents (including comment lines) is
displayed on the terminal at the time of package installation.

SEE ALSO
pkginfo(4).

4'20 Licensed material—property of copyright holder(s) 093-701102

core(4)

NAME

DG/UX 5.4.1 core(4)

core — format of core image file

DESCRIPTION

The system writes out a core image of a terminated process when any of several
errors occur. See signal(2) for the list of reasons; the most common are memory
violations, illegal instructions, and user-generated quit signals. The core image is
called core and is written in the process’s working directory (if possible; normal
access controls apply). A process with an effective user id different from the real
user id will not produce a core image.

The first section of the core image is a copy of the system’s per-user data for the pro-
cess, including the registers as they were at the time of the fault. The remainder
represents the actual contents of the user’s core area when the core image was writ-
ten. The text segment is not dumped.

The format of the information in the first section is described by the user structure of
the system, defined in /usr/include/sys/user.h.

SEE ALSO

093-701102

sdb(1l), dbx(1), setuid(2), signal(2).
crash(1M) in the System Manager’s Reference for the DG/UX System.

Licensed material—property of copyright holder(s) 4'21

cpio(4) DG/UX 5.4.1 cpio(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the —c option of cpio(1) is not used, is:

struct {
short h_magic,
h_dev;
ushort h_ino,
h_mode,
h_uid,
h_gid;
short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];
char h_name[h namesize rounded to word];
} HAr;

When the -c option is used, the header information is described by:

sscanf(Chdr,"%60%60 %60 %60 %60 %60%60%60%1110%60%1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile, Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respec-
tively. The contents of each file are recorded in an element of the array of varying
length structures, archive, with other items describing the file. Every instance of
h_magic contains the constant 070707 (octal). The items h_dev through h_mtime
have meanings explained in stat(2). The length of the null-terminated path name
h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!!. Special files,
directories, and the trailer are recorded with #_filesize equal to zero.

SEE ALSO
stat(2).
cpio(1l), £ind(1) in the User’s Reference for the DG/UX System.

4'22 Licensed material—property of copyright holder(s) 093-701102

d_passwd(4) DG/UX 5.4.1 d_passwd(4)

NAME

d_passwd - log-in programs and passwords for dial-up devices
SYNOPSIS

/etc/d_passwd
DESCRIPTION

This file contains an entry for programs (such as shells) that 1ogin(1) can invoke for
users logging into the system via dial-up devices. Each entry includes the pathname
of the shell program for which a dialup password is required and the encrypted pass-
word that the user must provide in order to invoke the program. You have to create
a d_passwd file yourself; the system does not create one for you.

A dial-up device is any device that has an entry in the /etc/dialups file. See
dialups(4). You have to create a dialups file yourself; the system does not create
one for you.

When a user logs into a dial-up device, login searches the d_passwd file to see if it
contains an entry for the shell program specified in the user’s passwd entry. If such
an entry is found, login requires that the user provide a second ("dial-up") password
in addition to their personal password. The program name in the user’s passwd
entry and the program name in the d_passwd file must match exactly. E.g.,
/bin/csh and /usr/bin/csh will not be matched even though they reference the
same file.

The program /usr/bin/sh is treated as a special case. If d_passwd contains an
entry for /usr/bin/sh, the password for that entry will be used as the default dial-
up password for all users whose passwd shell program doesn’t match any of the
other d_passwd entries. In the case where no matching entry is found for a user
and no /usr/bin/sh entry exists, the user is not prompted for a dial-up password.

Here is a sample d_passwd entry:
/bin/csh: xxxxxx:

where xxxxxx is the encrypted password.

SEE ALSO

093-701102

login(1l), dialups(4).

Licensed material—property of copyright hoider(s) 4'23

depend(4) DG/UX 5.4.1 depend(4)

NAME

depend - software dependencies files

DESCRIPTION

depend is an ASCII file used to specify information concerning software dependen-
cies for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of
the package is described after the entry line by giving the package architecture and/or
version. The format of each entry and subsequent instance definition is:

type pkg name
(arch)version
(arch)version

The fields are:

type Defines the dependency type. Must be one of the following charac-
ters:

P Indicates a prerequisite for installation, for example, the refer-
enced package or versions must be installed.

I Implies that the existence of the indicated package or version
is incompatible.

R Indicates a reverse dependency. Instead of defining the
package’s own dependencies, this designates that another
package depends on this one. This type should be used only
when an old package does not have a depend file but it relies
on the newer package nonetheless. Therefore, the present
package should not be removed if the designated old package
is still on the system since, if it is removed, the old package
will no longer work.

pkg Indicates the package abbreviation.
name Specifies the full package name.

(arch)version Specifies a particular instance of the software. A version name cannot
begin with a left parenthesis. The instance specifications, both arch
and version, are completely optional but must each begin on a new line
that begins with white space. A null version set equates to any version
of the indicated package.

EXAMPLE

4-24

Here is a sample depend file:

I msvr 3B2 Messaging Server
ctc Cartridge Tape Utilities
dfm Directory and File Management Utilities
ed Editing Utilities
ipc Inter—-Process Communication Utilities
lp Line Printer Spooling Utilities
shell Shell Programming Utilities
sys System Header Files
Release 3.0
sysadm System Administration Utilities
term Terminal Filters Utilities

‘v o

Lol

Licensed material—property of copyright holder(s) 093-701102

depend(4) DG/UX 5.4.1 depend(4)

terminfo Terminal Information Utilities
usrenv User Environment Utilities
uucp Basic Networking Utilities
x25 X.25 Network Interface
Issue 1 Version 1
Issue 1 Version 2
P windowing AT&T Windowing Utilities
(3B2)Version 1
R cms 3B2 Call Management System

v L v I o

SEE ALSO
pkginfo(4).

093-701102 Licensed material—property of copyright holder(s) 4'25

dialups(4) DG/UX 5.4.1 dialups(4)

NAME

dialups - devices requiring a dial-up password.
SYNOPSIS

/etc/dialups
DESCRIPTION

This file contains the pathnames of devices that require an additional password, called
a dial-up password, from users who attempt to log into it. An example entry might be
/dev/ttyl6. For such devices, the login(l) command prompts the user for the
dial-up password after the user has provided a valid log-in name and personal pass-
word.

Dial-up passwords must appear in the /etc/d_passwd file along with the programs
(such as a shell) that login will execute after a succesful log-in at the given device.

You have to create the dialups and d_passwd files yourself; the system does not
create them for you.

SEE ALSO
login(1l), d_passwd(4).

4'26 Licensed material—property of copyright holder(s) 093-701102

fs(4)

DG/UX 5.4.1 fs(4)

fsck(1M) will attempt to correct the following fields if they are invalid:

fname is used by statfs(2), fstatfs(2), labelit(IM), volcopy(1M),
frec(1M), Initialized to zeros, when used it is considered an ASCII string not neces-
sarily terminated by a NULL byte.

foack is used by statfs(2), fstatfs(2), labelit(IM), volcopy(1M),
frec(1M), Initialized to zeros, when used it is considered an ASCII string not neces-
sarily terminated by a NULL byte.

The following exponent fields pertain to the size of elements used to access user data
blocks. Data elements are equal sized sets of contiguous blocks of a file. These data
elements are either pointed to directly from the file node or indirectly through an
index structure. Index elements are arrays of block numbers. The index structure is
hierarchical; an index block number may point to another index element or, if the
bottom is reached, point to a data element. The direct or indexed access of data ele-
ments depends on the size of the file and the block being accessed; blocks at the
beginning of the file can be accessed through the direct access to provide faster access
for smaller files since they are generally more common. The following fields control
the sizes of these elements, allowing the user to choose values more suitable for the
types of files that will typically fill the file system. For more information about data
access from the inode, see inode(4).

default_des_exponent specifies the default data element size for non-directory files.
The default data element size in blocks is 2 raised to the default_des_exponent power.
The default value for this field is:

#$define DF_DEFAULT DEFAULT_DES_EXPONENT 4
The maximum value is:

#$define DF_MAX_DES_EXPONENT 31

although it is also limited to the base 2 logarithm of the largest power of two that is
less than or equal to:

#define DF_USER_BLOCKS_PER_DAR(dar_size, file_nodes_per_dar)
default_ies_exponent specifies the default index element size for non-directory files.
The default index element size in blocks is 2 raised to the default_ies_exponent
power. The default value for this field is:

#$define DF_DEFAULT DEFAULT IES_EXPONENT 0
The maximum value is:

g$define DF_MAX_IES_EXPONENT 15

although it is also limited to the base 2 logarithm of the largest power of two that is
less than or equal to:

#define DF_USER_BLOCKS_PER DAR(dar_size, file nodes_per_dar)

093-701102 Licensed material—property of copyright holder(s) 4'35

fs(4)

4-36

DG/UX 5.4.1 fs(4)

default_dir_des_exponent specifies the default data element size for directories and
CPDs. The default data element size in blocks is 2 raised to the
default_dir_des_exponent power. The default value for this field is:

#define DF_DEFAULT DEFAULT DES_EXPONENT 4
The maximum value is:

$define DF_MAX DES_EXPONENT 31

although it is also limited to the base 2 logarithm of the largest power of two that is
less than or equal to

#define DF_USER_BLOCKS_PER DAR(dar_size, file nodes_per_dar)
default_dir_ies_exponent specifies the default index element size for directories and
CPDs. The default index element size in blocks is 2 raised to the
default_dir_ies_exponent power. The default value for this field is:

#define DF_DEFAULT DEFAULT_ IES_EXPONENT 0
The maximum value is:

#define DF_MAX_IES_EXPONENT 15

although it is also limited to the base 2 logarithm of the largest power of two that is
less than or equal to:

#define DF_USER_BLOCKS_PER_DAR(dar_size, file nodes_per_dar).

fs_size is the number of blocks in the filesystem. £sck(1M) will check this against
the disk size as reported by the device driver.

space_used is the total (user and system) space used on this filesystem, including any
space wasted at the end due to an incomplete DAR.

number_of_used_file_nodes is the number of file nodes used in the file system, not
including the wasted file nodes with node numbers 0 and 1.

first_anniversary is the first anniversary of each file in blocks. When a file first con-
sumes this much space, the filesystem should change the DAR from which it gets
space for the file. The minimum value of this field is 2 raised to the
default_des_exponent power; the default value is:

#define DF_DEFAULT FIRST_ ANNIVERSARY(dar_size)
second_anniversary the second anniversary of each file in blocks. A file should
change the DAR from which the filesystem gets space each time its space utilization
crosses a multiple of the second anniversary. The second anniversary must be greater
than or equal to the first anniversary. The default value of this field is:

#$define DF_DEFAULT_SECOND_ANNIVERSARY(dar_size)

Licensed material—property of copyright holder(s) 093-701102

fs(4) DG/UX 5.4.1 fs(4)

first_log_lda and second_log_lda give the logical disk address of the two halves of the
fast recovery log. They will be zero if the file system was not mounted for fast
recovery when the filesystem was last mounted or if /f4fsck/fP has been run over the
file system.

log_size is the size in 512-byte blocks of each half of the fast recovery log.
Shrink_operation_in_progress is set if the filesystem is in the process of being shrunk.

grow_operation_in_progress is set if the filesystem is in the process of being grown.

The Disk Allocation Region (DAR)
The DAR is similar to the BSD cylinder group; however, the DAR is not necessarily
associated with a physical disk cylinder as it is in BSD. The purpose of the DAR is
to spread files throughout the filesystem while maintaining a locality between inodes
and the data blocks associated with them.

The DAR consists of three parts: a bitmap, a file node table, and the data blocks
allocated to files as they are needed.

The bitmap records the space allocation in the DAR. A bit in the bitmap represents
a block in the DAR (this includes the blocks allocated for the bitmap and the file
node table). If the bitmap value is 1, it is used; otherwise, it is free. The size of the
bitmap is a function of the size of the DAR and is provided (in blocks) by:

#define DF_DAR_BITMAP_SIZE(dar_size)

The file node table contains entries for each file in the DAR. A file node entry
(called an inode) contains information about the file. The first block of the table is
after the bitmap. The number of file nodes in the DAR is a field in the FMIA. The
number of blocks allocated to the table (in blocks) is:

#define DF_DAR_FILE_NODE_TABLE_SIZE(file_ nodes_per_ dar)
The file node table element (the inode) is discussed in inode(4).
The data blocks take up the remaining blocks of the DAR.

With the exception of the blocks of the DAR Information Area and the Secondary
FMIA, all blocks in the file system are contained in DAR’s. The number of DAR’s
in a file system is a function of the size of the file system, the size of each DAR, and
the file nodes contained in each DAR. This is provided by:

#define DF_NUMBER_OF_DARS(fs_size, dar_size, nodes_per_dar)

The last DAR of the file system may be the smaller than the other DAR’s. If the
space before the DAR Information Area and the Secondary FMIA is large enough to
contain the DAR'’s bitmap and file node table, then the DAR will be created; other-
wise, the space between the end of the last DAR and the beginning of the DAR
Information Area is wasted. Since the bitmap in the last DAR is the sanie size as the
other DAR’s, if the last DAR is smaller the bitmap will have bits indicating the allo-
cation of data blocks that do not exist (in fact it is legal for no data blocks to exist in
the last DAR). In this case, the non-existent blocks are marked as allocated. The
following macros provide values associated with the space before the DAR Informa-
tion Area:

#define DF_LAST DAR_SIZE(fs_size, dar_size, nodes_per_dar)

093-701102 Licensed material—property of copyright holder(s) 4'37

fs(4) DG/UX 5.4.1 s(4)

#define DF_FS_WASTED_SPACE(fs_size, dar_size, nodes_per_dar)

The DAR Information Area
At the end of the file system, a table of entries exist for each DAR in the file system.
It is located such that its last block of entries is before the last block of the file sys-
tem containing the Secondary FMIA. This location is provided by:

#define DF_DARE TABLE ADDRESS(fs_size,dar_size,file_nodes_per_dar)
A definition for a DAR entry is:

typedef struct
{

uint32e_type file_nodes_used;

uint32e_type space_used;

uint32e_type directories_used;

df file node_number_type free file node_ number;

byte8e_type reserved [DF_RESERVED_ BYTES_PER_DAR];

} df_dar_entry_type:
file_nodes_used Number of file_nodes in use from the DAR the entry represents.

space_used is the number of data blocks in use from the DAR. This explicitly
excludes DAR Information Area blocks, the block containing the Secondary FMIA,
and blocks marked as allocated in the last DAR but do not exist. This field includes
the following system blocks: the Primary FMIA for the first DAR only, the DAR’s
bitmap blocks and the DAR’s file node blocks.

directories_used is the number of directories in the DAR.
free_file_node_number is the file node number of next free file node in the DAR.

This functions as the head of the DAR’s free file node list.

SEE ALSO
fstatfs(2), mount(2), statfs(2), inode(4). frec(lM), fsck(1M),
labelit(1IM), mkfs(1IM), volcopy(1M) in the System Manager’s Reference for the
DG/UX System.

4'38 Licensed material—property of copyright holder(s) 093-701102

fspec(4) DG/UX 5.4.1 fspec(4)

NAME
fspec - format specification in text files

DESCRIPTION
You many want to maintain text files on the DG/UX system with tabs that are not set
at every eighth column. You must usually convert such files to a standard format, fre-
quently by replacing all tabs with the appropriate number of spaces, before they can
be processed by DG/UX system commands. A format specification in the first line of
a text file specifies how tabs are to be expanded in the rest of the file.

A format specification consists of a sequence of parameters separated by blanks and
surrounded by the brackets <: and :>. Each parameter consists of a keyletter, pos-
sibly followed immediately by a value. The following parameters are recognized:

trabs The t parameter specifies the tab settings for the file. The value of tabs
must be one of the following:

1. A list of column numbers separated by commas, indicating tabs set
at the specified columns;

2. A - followed immediately by an integer », indicating tabs at inter-
vals of n columns;

3. A - followed by the name of a canned tab specification.

Standard tabs are specified by t-8, or equivalently, t1,9,17,25,etc.
The canned tabs are defined by the tabs(1) command.

sSsize The s parameter specifies a maximum line size. The value of size must
be an integer. Size is checked after tabs have been expanded, but before
the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prependea to each
line. The value of margin must be an integer.

d The d parameter takes no value. It indicates that the line containing the
format specification is to be deleted from the converted file.

e The e parameter takes no value. It indicates that the current format is to
prevail only until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and mo0. If
the s parameter is not specified, no size checking is performed. If the first line of a
file does not contain a format specification, the above defaults are assumed for the
entire file. The following is an example of a line containing a format specification:

*x <:t5,10,15 s72:> «

For programming language source files, if you can disguise a format specification as a
comment, you don’t need to code the d parameter.

SEE ALSO
ed(1), newform(1l), tabs(1) in the User’s Reference for the DG/UX System.

093-701102 Licensed material—property of copyright holder(s) 4"39

fstab(4) DG/UX 5.4.1 fstab(4)

NAME
fstab - static information about file systems

SYNOPSIS
#include <mntent.h>

DESCRIPTION
The file /etc/fstab describes the file systems and swapping areas used by the local
machine. The system administrator can modify it with a text editor or by invoking the
sysadm(1M) system administration utility. It is read by commands that mount,
dump, restore, and check the consistency of file systems, as well as by the system in
providing swap space. The file consists of a number of lines like this:

fsname dir type opts freq passno

for example:
/dev/dsk/usr /usr dg/ux rw 1 1

would indicate a mount for a local file system, and
titan:/usr/titan /usr/titan nfs rw,hard 0 0

would indicate an NFS file system mount.

A High Sierra CDROM would be indicated using the following line:
/dev/pdsk/4 /cdrom cdrom ro 0 O

A DOS floppy would be indicated using the following line:
/dev/pdsk/3 /pdd/floppy dos rw 0 0

A swap area could be indicated using the following line:
/dev/dsk/swapl swapl_area swap sw 0 0

The fstab format was changed in order to support NFS file systems as well as local
file systems. The old-style fstab entries are supported, but not recommended.

The entries from this file are accessed using the routines in getmntent(3C), which
returns a structure of the following form:

struct mntent {
char *mnt_fsname; /* file system name */
char *mnt_dir; /* file system path prefix */
char *mnt_type; /* dg/ux, nfs, swap, cdrom, or ignore */
char *mnt_opts; /* rw, ro, hard, soft, bg, fg */
int mnt_freq; /* highest dump level */
int mnt_passno; /* pass number on parallel fsck */
¥
Fields are separated by white space; a #, as the first non-white character, indicates a
comment. The mnt_type field determines how the mnt_fsname and mnt_opts fields
will be interpreted. The following is a list of the file system types currently sup-
ported, and the way each of them interprets these fields:

4‘40 Licensed material—property of copyright holder(s) 093-701102

fstab(4)

093-701102

DG/UX 5.4.1 fstab(4)

Type Field Interpretation
dg/ux mnt_fsname Must be a block special device
unless this is a ramdisk, in which

case, it is a symbolic link to the
mounted memory file system.
mnt_opts Valid options are ro, rw, bg, and fg.
If this has the ramdisk option, other
options include use_wired_memory,
max_file_space and max_file_count.

cdrom mnt_fsname Must be a block special device.
mnt_opts Valid options are ro, bg, fg.

dos mnt_fsname Must be a block special device.
mnt_opts Common options are ro, rw, bg, fg.
nfs mnt_fsname The hostname of the server and the

pathname on the server of the direc-
tory to be served. A colon separates
the pathname and hostname.

mnt_opts Valid options are ro, rw, hard, soft,
bg, fg.
swap mnt_fsname Must be a block special device swap
section.

mnt_opts Ignored.

If the mnt_type is specified as ignore, the entry is ignored. This is useful to show
disks not currently used.

Entries identified as swap are made available as swap space by the swapon(IM) com-
mand at the end of the system reboot procedure.

When the mnt_fsname field is interpreted as a block special device, programs that
require the corresponding character special device must construct the name by chang-
ing dsk to rdsk in the pathname.

If the mnt_opts field is a comma-separated list of options that includes rw or ro, the
file system is mounted read-write or read-only. If this includes hard or soft, the
NFS file system is mounted hard or soft. If the list includes bg or fg, and failed
attempt to mount will cause mount to retry in the background or in the foreground.
For more details on these options, see mount(1M).

The field mnt_freq indicates how often each file system should be dumped by the
dump2(1M) command (and triggers that command’s w option, which determines what
file systems should be dumped). Most systems set the mnt_freq field to 1, indicating
that file systems are dumped each day. Some programs, like sysadm, may use a
different set of entries here.

The final field mnt_passno is used by the consistency checking program fsck(1IM) to
allow overlapped checking of file systems during a reboot. All file systems with a
mnt_passno of 1 are checked first simultaneously, then all file systems with
mnt_passno of 2 are checked, and so on. A value of 0 indicates that the file system
will not be checked. The <mnt_passno> of the root file system should be 0, as the

Licensed material—property of copyright holder(s) 4'41

fstab(4) DG/UX 5.4.1 fstab(4)

root cannot be checked since it is already mounted.

Programs read the /etc/fstab file but never write to it. It is the duty of the system
administrator to maintain this file. The order of records in /etc/fstab is important
because fsck and mount process the file sequentially; file systems must appear after
file systems they are mounted within. For example, if you have an entry for
/usr/spool, it must appear after the entry for /usr.

FILES
/etc/fstab

SEE ALSO
dump2(1M), fsck(1M), mount(1IM), swapon(1M), sysadm(1M), getfsent(3C),
getmntent(3C).

4'42 Licensed material—property of copyright holder(s) 093-701102

group(4) DG/UX 5.4.1 group(4)

NAME

group — group file
SYNOPSIS

/etc/group

DESCRIPTION
Group is an ASCII file containing a one-line entry for each group recognized by the
system. The file format is as follows:

groupname : password : gid : user-list

where:
groupname The name of the group.
password An encrypted password.
gid The group’s numerical ID within the system; it must be unique.
user-list A comma-separated list of users allowed in the group.

If the password field is empty, no password is demanded. Because of the encrypted
passwords, the group file can and does have general read permission and can be
used, for example, to map numerical group IDs to names.

Malformed entries cause routines that read this file to halt, in which case group
assignments specified further along are never made. grpck can be used to verify
entries in the group file. See pwck(IM) in the System Manager’s Reference for the
DG/UX System.

ONC/NFS Features
If you are using the DG/UX Open Network Computing/Network File System
(ONC/NFS), a group file can have a line beginning with a plus sign (+), which
means to incorporate an entry or entries from the Network Information Service
(NIS). There are two styles of + entries. By itself, + means to insert the entire con-
tents of the NIS group file at that point; +groupname means to insert the entry (if
any) for groupname. If a + entry has a non-empty password or user-list field, the con-
tents of that field override the corresponding field from the NIS. The gid field cannot
be overridden in this way.

An entry can also begin with a minus (-); ~groupname means to disallow groupname.
All subsequent entries for the indicated groupname, whether originating from the NIS
or the local group file, are ignored.

EXAMPLE
primary:q.mJzTnu8icF. :10: fred,mary
+myproject:::bill,steve
+:
If these entries appear at the end of a group file, then the group primary will have
members fred and mary, and a group ID of 10. The group myproject will have
members bill and steve, and the password and group ID of the NIS entry for the
group myproject. All groups listed in the NIS are pulled in and placed after the
entry for myproject.

FILES
/etc/group

SEE ALSO
setgroups(2), crypt(3C), crypt(3X), passwd(4), groups(l), newgrp(l),
passwd(1), su(l), pwck(1M).

093-701102 Licensed material—property of copyright holder(s) 4'43

group(4) DG/UX 5.4.1 group(4)

NOTES
The passwd(l) command won’t change group passwords.

Normally, group-ids less than 100 are reserved for system-level use (DG/UX
software).

4-44 Licensed material—property of copyright holder(s) 093-701102

hfm(4) DG/UX 5.4.1 hfm(4)

NAME
hfm — high sierra file manager

DESCRIPTION
The DG/UX kernel provides configurable support for High Sierra and ISO 9660 for-
matted Compact Discs (CDs). The high sierra file manager lets the system adminis-
trator mount a CD into the UNIX file system hierarchy. A mounted CD will appear
as a readonly UNIX file system. The mode of all files from the CD will be readonly
and executable for user, group and other.

Filenames in High Sierra or ISO 9660 format are uppercase, but for convenience,
they are translated to lowercase by the high sierra file manager. All input filenames
are similarly translated to uppercase. High Sierra and ISO 9660 mounted file systems
can be NFS exported in the same way as any normal DG/UX file system. The mount
point must be added to /etc/exports and the exportfs(1M) command must be
executed after the file system is mounted. This will be automatic if the mount of the
CD is in your /etc/fstab file. Since most current CDs available in high sierra or
ISO 9660 format are for PC’s, the high sierra file manager will be most useful when
used with a DOS emulator.

In order to use the high sierra file manager, you must configure the hfm() pseudo dev-
ice into your kernel.

sd(insc(),*)

st(insc(),*)

inen()

loop()

pmt()

pri()

meter()

hfm() # this is the line that must be added.

Once the kernel is built and running, you may use the mount(1M) command to add
the high sierra or ISO 9660 file system to the UNIX file system hierarchy.

mount -t cdrom /dev/pdsk/4 /pdd/cdrom

The special device mentioned in the mount command is the block special representa-
tion of the CD device in /dev/pdsk. The type "cdrom" must be used with mount to
route the mount request to the correct file manager.

You may add a line to the /etc/fstab file to have the mount occur when the system is
brought up to init level 3.

/dev/pdsk/4 /pdd/cdrom cdrom ro x 0

The umount(1M) command may be used to unmount the CD from the file system
hierarchy

umount /pdd/cdrom
To export the file system on the CD, in lieu of adding it to /etc/exports:
exportfs -iv /pdd/cdrom

When the mount(1M) command is issued, the CD device will lock the CD platter
into the unit until a successful umount(1M) is issued.

The high sierra file manager does not support the path table or the extended attribute
record from files on the CD, as these are unnecessary to th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>