IRIS R8
POLYFILES DOCUMENT

POINT/Z- \

DATACORPORATON W 7

POINT 4 DATA CORPORATION

2569 McCabe Way / Irvine, Callifornia 92714

IRIS R8
POLYFILES DOCUMENT

/i

Revision 07

NOTICE

Every attempt has been made to make this manual complete,
accurate and up-to-date. However, all information herein is
subject to change due to updates. All inquiries concerning this
manual should be directed to POINT 4 Data Corporation.

PRELIMINARY

Copyright © 1981, 1982 and 1983 by POINT 4 Data Corporation
(formerly Educational Data Systems, Inc). Printed in the United
States of America. All rights reserved. No part of this work
covered by the copyrights hereon may be reproduced or copied in
any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information and
retrieval systems--without the prior written permission of:

POINT 4 Data Corporation
2569 McCabe Way
Irvine, CA 92714
(714) 863-1111

Revision 07 PRELIMINARY
POINT 4 Data Corporation ii Polyfiles Document

et

)

REVISION RECORD

PUBLICATION NUMBER: None

-

01
02
03

04

05

06

07

Revision 07

Draft Version
Preliminary Version

Update incorporating corrections on
pages 1-12, 1-14, 1-17, 1-21, 1-31 and
1-32

Update to add additional status values
to CALL 91 table on page 1-7

Update incorporating corrections to
pages 1-20, 1-28, 1-31, and 2-2

Clarification of the indexed files-to-
polyfiles conversion procedure on page
1-31

Addition of Section 1.11 (pages 1-34
thru 1-36), Special CALL 91 Modes

04/15/82

08/30/82
10/27/82

01/27/83

02/28/83

06/17/83

PRELIMINARY

POINT 4 Data Corporation iii Polyfiles Document

LIST OF EFFECTIVE PAGES

Changes, additions, and deletions to information in this manual
are indicated by vertical bars in the margins or by a dot near
the page number if the entire page is affected. A vertical bar
by the page number indicates pagination rather than content has
changed.

Page Rev Page Rev Page Rev
Cover -
Title 07
ii thru vii 07
viii,ix 02
1-1 thru 1-6 02
1-7 04
1-8 thru 1-11 02
1-12 03
1-13 02
1-14 03
1-15,1-16 02
1-17 03
1-18,1-19 02
1-20 05
1-21 03
1-22 thru 1-27 02
1-28 05
1-29,1-30 02
1-31 06
1-32 05
1-33 02

1-34 thru 1-36 07
2-1 thru 2-16 02

A-1 thru A-7 02
Comment Sheet 07
Mailer -

Back Cover -

Revision 07 PRELIMINARY
POINT 4 Data Corporation iv Polyfiles Document

)

PREFACE

The Polyfile is one of the latest enhancements to the IRIS
Operating System. It was developed to answer the need for a
large data base capability. The best features of the IRIS
Contiguous and Indexed file types have been combined, resulting
in an extended record capacity per file and allowing for larger
sized keys in greater numbers.

This document is an introduction to the use and structure of
Polyfiles. It is organized as follows:
Section 1 - a user's guide describing the practical aspects of
using and manipulating Polyfiles
Section 2 - general information: theory and structure of
Polyfiles, their advantages, and a summary of
special Polyfile features.

Appendix A - An exercise in building a Polyfile.

Related manuals include:

Title Pub, Number
IRIS Installation/Configuration Manual SM-030-0009
IRIS Operations Manual SM-030-0010
IRIS 7.3 User Manual
IRIS Business BASIC Manual SM-030-0012
IRIS System Commands Manual SM-030-0011
Revision 07 PRELIMINARY

POINT 4 Data Corporation v/vi Polyfiles Document

€)

CONTENTS

Section Title Page
1 SECTION 1 1-1
1.1 INTRODUCTION 1-2
1.2 POLYFILE NAMES 1-3
1.3 BUILDING POLYFILES 1-4
1.3.1 Building a Polyfile from Contiguous Files 1-4
1.3.1.1 Step 1 - Build a Contiguous File 1-4
1.3.1.2 Step 2 - Convert to Polyfile Volume 1-5
1.3.1.3 Step 3 - Structure Polyfile 1-8
1.3.2 BUILDPF 1-9
1.3.2.1 Volume Types Input 1-11
1.3.2.1.1 Base Directory 1-11
1.3.2.1.2 Extension Directory 1-11
1.3.2.1.3 Data Volume 1-12
1.3.2.2 Volume Size Input 1-13
1.3.2.2.1 Base Directory Volume 1-13
1.3.2.2.2 Directory Extension Volume 1-13
1.3.2,2.3 Data Volume . 1-14
1.3.2.3 Building and Structuring Volumes 1-15
1.3.2.4 Polyfile Extension Mode 1-16
1.4 ACCESSING POLYFILES 1-17
1.4.1 Open a Polyfile 1-17
1.4.2 Read a Polyfile 1-18
1.4.3 Read Only Access 1-18
1.4.4 Write Statement 1-18
1.4.5 Search Statement 1-19
1.4.6 Close Statement 1-21
1.5 QUERYPF 1-22
1.5.1 Individual Volume Display 1-23
1.5.2 Polyfile Global Display 1-24
1.5.3 Complete Dump 1-25
1.6 BULDPFERR 1-27
1.7 KILLPF 1-29
1.8 CONVERTING BASIC PROGRAMS - BCONVERT 1-30
1.9 CONVERTING INDEXED FILES TO POLYFILES 1-31
1.10 USING OTHER SYSTEM PROCESSORS 1-32
1.10.1 CHANGE 1-32
1.10.2 QUERY 1-32
1.10.3 LIBR 1-32
1.10.4 INSTALL 1-33
1.11 SPECIAL CALL 91 MODES 1-34
Revision 07 PRELIMINARY

POINT 4 Data Corporation vii Polyfiles Document

2 SECTION 2 2-1
2.1 INTRODUCTION 2-2
2,2 POLYFILE STRUCTURE 2-3
2,2.1 Polyfile Header Blocks 2-4
2.2.2 Data File Table - 2-5
2.2.2.1 Item Control Blocks 2-6
2,2.,2.2 Bit Maps 2-7
2.2.3 Base Directory Volumes 2-9
2.2.4 Directory Structure 2-10
2.3 DATA VOLUME ACCESS BY RECORD 2-13
2.4 DIRECTORY VOLUME ACCESS BY KEY 2-14
2.5 SUMMARY 2-15
APPENDICES

A POLYFILE EXERCISE A-1
Revision 02 PRELIMINARY

POINT 4 Data Corporation viii Polyfiles Document

FIGURES

Number Iitle Page
2-1 Differences Between Polyfiles and
Indexed Files 2-2
2-2 Bit Map Layout 2-8
2-3 Layout of a Base Directory Volume 2-9
2-4 Directory Structure 2-11
2-5 Directory Block Layout 2-12
TABLES

Number Iitle Page
1-1 File Parameters 1-6
1-2 CALL 91 Status Values 1-7
1-3 V2 Status Values 1-20
1-4 CALL 91 Error List 1-27
1-5 Search Mode Status List 1-28
Revision 02 PRELIMINARY

POINT 4 Data Corporation ix Polvfilee Documen#

SECTION 1

This section is a guide to the use of Polyfiles. The various

sections are devoted to the creation, use, and manipulation of
Polyfiles.

Revision 02

PRELIMINARY
POINT 4 Data Corporation 1-1

Polyfiles Document

1.1l INTRODUCTION

A Polyfile is made up of many files. Each file is a contiguous
type file and is called a volume. Each volume may reside on a
different Logical Unit (LU) and the various volumes are tied
together into one entity by the filename, access date, and a
master volume.

The master volume is always volume 0 and it contains information
about all the other volumes making up a Polyfile. The various
types of volumes are:

The Master Volume

Base Directory Volume
Directory Extension Volumes
Data Volumes

Unstructured Volumes

Backups must be performed frequently and on a regular basis to
preserve the integrity of Polyfiles., Please refer to the IRIS
Operations Manual for recommended backup procedures.

Three BASIC programs have been written to aid you in the
construction and manipulation of Polyfiles. They are BUILDPF,
QUERYPF, and KILLPF. All three make use of the S$TERMS mnemonics.

There are some important points to remember when building a
Polyfile. These are:

@ A Polyfile must have a unique name

e A Polyfile may not be built on LU/0. The various volumes may
reside on LUs 1 - 127

e Polyfiles may have Data Volumes that are mapped but, in any
one Polyfile, the Data Volumes must be either mapped or
unmapped

e Maximum number of volumes in a Polyfile is 64 (volumes 0 -
63). The size of a volume is limited by the size of the LU
on which it resides (Maximum size = 65335 records including
the header and map blocks)

e Record size must be uniform throughout a Polyfile. The first
record in a Data Volume is numbered 0. Records may extend
over block boundaries.

e Keys in the Directory Volumes (Base or Extended) may be up to
121 bytes in length.

For a more extensive discussion on Polyfile structure please see
Section 2.

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-2 Polvfiles Document

St

1.2 POLXFILE NAMES

Polyfile names are subject to the same conventions as other IRIS
files. A name is a string of upper or lower case characters
which may consist of alpha characters, numerics, and periods. A
Polyfile name includes an LU number and a trailing @-sign. The
maximum number of characters allowed is 13 plus €nn (i.e. a total
string of up to 16 characters). However, the 13 characters
before the €-sign must include the optional password and the
<CTRL-E> codes associated with the password. The two characters
after the €@-sign may be a volume number or some other identifier.
If an exclamation mark is used for read only access (see Section
1.4.3) then '!' is considered part of the two characters
following the €@-sign.

Examples of acceptable Polyfile names are:

PFname<CTRL~E>restr<CTRL-E>@d
pf.Namel€30
Pf2name@4!

If a polyfile is created as contiquous files, the trailing @-sign
is added automatically when these separate files are structured
into a Polyfile (see Section 1.3).

When a Polyfile is built using the BUILDPF utility (see Section
1.3.2), then the format for its name is:

n/PF.name@

The name of a Polyfile should be unique. It should be different
from any filename existing on those LUs on which the Polyfile
volumes may be built.

For Example: If a file with the name ABC exists on LU/3 and a
volume of your Polyfile is to be built on LU/3, then you may not
call the Polyfile ABC@. The @-sign does not make the file name
unique and the name ABC@ will be rejected by the system.

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-3 Polyfiles Document

1.3 BUILDING POLXFILES

There are two ways in which a Polyfile may be built. You may
build a Polyfile by first building a number of Contiguous files
(see Section 1.3.1 for the procedure).

The recommended way for building a Polyfile is to use the BUILDPF
utility (see Section 1.3.2).

1.3.1 BUILDING A POLYFILE FROM CONTIGUOUS FILES

Three steps are involved in creating each Polyfile volume when
the BUILDPF utility program is not used. They are:

1. Build a contiguous file with the polyfile name less the "@"
by using the FORMAT processor or the BASIC "BUILD" statement.

2. Transform the contiguous file into a polyfile volume via the
polyfile call (CALL 91). The V parameter in CALL 91 assigns
the volume numbers.

NOTE

Volume 0, the Master Volume, must be built
first.

3. Structure the polyfile volume via Search Mode 0.

1.3.1.1 Step 1 - Build a Contiguous File

The first step in building a polyfile is to BUILD a contiguous
file. For example:

BUILD #CO,"([R:L] $ddd.cc <pp> LU/Polyfilename"
where:

C0 - Channel Number

R - Number of data records to be in this volume
L - Length of a data record in words

ddd - Dollars charged for file access

cc - Cents charged for file access

pp - Protection level

LU =~ Logical Unit on which to build the volume

Revision 02 . PRELIMINARY
POINT 4 Data Corporation 1-4 Polyfiles Document

1.3.1.2 Step 2 - Convert to Polyfile Volume

The contiguous file is then converted to a Polyfile volume by a
CALL command (see below) which must be executed while the file is
still in the BUILD mode. After the call is executed, channel CO
must be closed to make the volume permanent on the disc. When
building the master volume (0), channel Cl should be closed.
Enter the following statements:

IF ERR 0 STOP
caLL ¢,co,C1,v,s,P

where:
C = CALL number (91)
C0 - Channel number on which the file is open
Cl - Channel number on which the master volume is open
V - Volume number
S - Status after the CALL is completed
P - File parameter array (see Table 1-1)

NOTE

The variable S and the array P must be
declared in a DIM statement; otherwise, the
'IF ERR' branch will take effect and S will
return error 17, 18, or 19 (see Table 1-2).
The format for the DIM statement is:

1234 DIM S,PInl]

where n is a value of 10 or greater. This
permits validation of the P array dimensions.

e If CALL 91 detects any errors, an error #38 (error detected
by a called subroutine) will be returned.

e CALL C checks to see that the Filename matches and that the
volume is three or more blocks in size.

e If CO is less than 0, then only file parameters are returned.
e If CO is greater than or equal to 0, and if
V>0 - this volume is linked to volume O.
V=0 - a master volume is created.
V<0 - CALL C assigns the next available volume number and
returns the number of that volume in V.

o If the volume is a data volume, then the record length of the
volume must match that of the master volume.

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-5 Polyfiles Document

e When CO0 is non-negative, S should be set:

S=0 - Volume is to be a Base Directory

or Directory Extension

S<>0 - Volume is to be a Data Volume

e If S is returned from the call with value 0, then file
parameters are to be found in the array P. The parameters,
ordered by index are shown in Table 1-1.

TABLE 1-1. FILE PARAMETERS

Contents

of P Description

0 VLU (Volume/Logical Unit)

1 BNR (Base Volume/Logical Unit)

2 LU flag (0O=installed; <>0=not installed)

3 ACNT

4 TYPE

5 NBLK

6 LRCD

7 NRCD

8 LDAT

9 LDAT+1
10 Keylength of 1lst directory in volume (FMAP+4)
11 Keylength of 2nd directory in volume (FMAP+5)
72 Keylength of 63rd directory in volume (FMAP+102)
76 Logical Unit number
77 DHDR

Revision 02

PRELIMINARY

POINT 4 Data Corporation 1-6 Polyfiles Document

If S is returned nonzero, then an error is indicated. The
possible status values for S are shown in Table 1-2.

TABLE 1-2. CALL 91 STATUS VALUES

Contents
of S Description
0 No error
1 Invalid channel number
2 File not being built
3 Illegal volume number
4 File Cl is not a polyfile
5 File name invalid
6 Invalid variable type
7 Invalid number
8 Volume already exists on the desired LU, possibly
as part of another polyfile of the same name
9 File CO not found (deleted?)
10 Not enough nodes to link into extended DFT
11 Volume already exists for this polyfile
12 Volume V not found
13 Account numbers do not match
14 Volume in extended DFT but not on disc
15 No available volume number for this polyfile
16 Volume V is not defined
17 P is not allocated as the next variable after S
18 P is not an array
19 P is not dimensioned P[10] or greater
20 File CO is not contiguous
21 File Cl is open elsewhere
22 File CO0 is already a polyfile
23 HSLAS do not match for assign operations
24 VLU or BNR do not match for assign operations
25 Cannot move volume 0
26 Illegal move operation
27 File CO is not write protected
28 Illegal write enable operation

Revision 04

PRELIMINARY

POINT 4 Data Corporation 1-7 Polyfiles Document

1.3.1.3 Step 3 - Structure Polyfile
Structuring a polyfile is done with SEARCH mode 0 in BASIC.
However, in the case of polyfiles, SEARCH mode 0 requires that a
volume number be given and that key sizes be given in bytes. The
format is:

SEARCH #C,m,d;v$,vl,v2
where:

m=0,d+128 - Define volume number d to be a data volume.
0<=d<=63, vl=number of records.

e If vl=0, the number of records is computed and
returned in vl.

e If v2=0, a free record map is not built.

e If v2<>0, a free record map is built with vl
free records in it.

m=0,d+64 -~ Define volume number d to be an extension of the base
directory volume in v2., 0<=d<=63.

m=0,d - Define directory d: volume number in v2, key length
in vl (in bytes) 1<=d<=63.

m=0,d=0 - Organize all directories for the volume number given
in v2. :

Revision 02 PRELIMINARY

POINT 4 Data Corporation 1-8 Polyfiles Document

1.3.2 BUILDPF

BUILDPF is a utility written in BASIC to assist the user in the
creation or extension of a polyfile. A BUILDPF exercise is
provided in Appendix A which steps through all the different
commands discussed in this section.

All responses to the system prompts require a <RETURN> for them
to be "entered".

At the system prompt (#) enter
BUILDPF

The system responds
BUILDPF - Build Polyfiles Utility

It then requests a filename with the prompt:
POLYFILENAME [must have "LU/" (not 0)1]:

A Polyfile must not be built on LU/0. The range of possible LUs
is from 1 to 127.

The name must be terminated by an "€" as with all polyfile names.

BUILDPF then attempts to open the file. If the polyfile is
found, then BUILDPF enters polyfile extension mode (see Section
1.3.2.4). 1If the file is not found, BUILDPF prompts

POLYFILE NOT FOUND
DO YOU WISH TO CREATE A NEW ONE? (Y/N)

If the answer is N (no), then the user is returned to SCOPE. 1If
the answer is Y (yes), BUILDPF requests a record size:

RECORD SIZE (in words for the entire Polyfile):

@ Possible record sizes range from 1 to 16383 words (214

-l)o
® A record size must be given even if the polyfile will not
contain Data Volumes.

e The record size of both Base Directory volumes and Directory
Extension volumes should be 256 words. This means that the
size of these types of volumes is limited only by the
available space on an LU,

Volume 0 is an exception to this, it must always have the
record length which is declared for the entire polyfile
regardless of volume type. A polyfile record length of less
than 256 words will restrict volume 0 to:

Size (in blocks) = (65535 * (record size) / 256)

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-9 Polyfiles Document

After a record size has been entered, BUILDPF will print the
following message:

VOLUME: 0

This output is to remind the user that he is entering parameters
for volume 0, the master volume. Next BUILDPF will request
volume type information, For details on further prompts and
responses, see Section 1.3.2.1.

Revision 02) PRELIMINARY
POINT 4 Data Corporation 1-10 Polvfiles Document

oyt

1.3.2.1 Volume Types Input
When BUILDPF requests a volume type, the prompt is:
VOLUME TYPES: "B" Base Directory
"E" Extension Directory

*D" Data Volume
VOLUME TYPE:

l.3.2.1.1 BASE DIRECTORY
If type "B", BUILDPF prompts:

STARTING DIRECTORY NUMBER FOR THIS VOLUME:
The request is for the lowest numbered directory to be based in
the volume. The specified directory number must be in the range
1l to 63 and must not be defined in an existing base directory
volume,
BUILDPF then displays:

DIRECTORY NUMBERS AVAILABLE FROM NO THRU N1
"NO" is the specified starting directory number and the range "NO
thru N1" is the range of contiguously available directory numbers
starting with NO., BUILDPF will give the following prompt for
each of the volume numbers in the range NO - Nl:

DIRECTORY xx KEY SIZE IN CHARACTERS [<RETURN> TO TERMINATE]:

Valid key sizes range from 2 to 121. Pressing <RETURN> only will
terminate the definition of directories. BUILDPF then prompts:

THIS DIRECTORY SETUP OK?
Input of <RETURN> only, "Y", or "y" approves the directory setup.

Any other input causes a return to the prompt for directory
number NO.

l1.3.2.1.2 EXTENSION DIRECTORY
If type "E", then BUILDPF prompts:
VOLUME TO EXTEND:

The volume entered must exist and must be a base directory
volume.

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-11 Polyfiles Document

1.3.2.1.3 DATA VOLUME
If type "D", BUILDPF prompts:
DATA VOLUME(S) TO HAVE MAPS? ["Y"/"N"I]:

This prompt appears once only because the answer given to this
question will then apply to all data volumes in the polyfile.

Refer to Section 2.2.2.2 for a discussion on data volume maps.

Revision 03 PRELIMINARY
POINT 4 Data Corporation 1-12 Polyfiles Document

1.3.2.2 Volume Size Input

BUILDPF next requests volume size information. This may be input
in three general forms: number of records, number of keys, or
number of disc blocks.

There are two types of valid size information for Base Directory
Volumes or Directory Extension Volumes:

Number of keys
Number of disc blocks (less header)

l1.3.2.2.1 BASE DIRECTORY VOLUME
A base directory volume will cause the following prompt:

VOLUME SIZE IN INDEXES (KEYS)
[NEGATIVE FOR SIZE IN BLOCKS]:

If the volume size is given in keys, the size of the volume is
computed using the following assumptions:

l. The number of keys specified is the maximum number of keys
across all directories of the base volume.

2. The key size used for volume size computation is the largest
key size defined in the directories of the base directory
volume. '

3. The size of the fine and intermediate directory levels is
based on a fullness factor of .5 which is stored in the
variable K9. K9 is defined early in the program and may be
adjusted by the user if the need arises.

l.3.2.2.2 DIRECTORY EXTENSION VOLUME
A directory extension volume causes the following prompt:

BASE VOLUME BB AND ITS CURRENT EXTENSIONS HAVE
A TOTAL OF NNN BLOCKS WHICH HOLD A MAXIMUM OF
APPROXIMATELY KKKK KEYS,

NEW MAXIMUM NUMBER OF INDEXES (KEYS)
[NEGATIVE FOR SIZE IN BLOCKS]:

The input, representing a new maximum number of keys, must have a
value greater than kkkk. The new value is used to compute the
total number of blocks needed to hold the keys. The difference
between the new computed total blocks and kkkk is used to
determine the size of the new volume. If the size is given in
blocks, the size applies only to the volume being defined.

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-13 Polyfiles Document

1.3.2.2.3 DATA VOLUME

The size of the volume must be stipulated at this point. It may
be given in total number of records or total number of blocks
required. BUILDPF requests input as follows:

VOLUME SIZE IN RECORDS
[NEGATIVE FOR SIZE IN BLOCKS]:

If a positive number is entered, BUILDPF assumes the total number
of records was stipulated. Based on the record size entered
previously and the total number of records entered here, BUILDPF
calculates the number of blocks required for the volume.

If a negative number is entered, then BUILDPF accepts this as the
number of BUILDPF blocks required for this volume.

Revision 03 PRELIMINARY
POINT 4 Data Corporation 1-14 Polyfiles Document

1.3.2.3 BUILDing and Structuring Volumes
The building and structuring phase of polyfiles is the critical
phase of BUILDPF. If an <ESC> or <CTRL-C> is pressed while
theprogram is in this phase, a misformed polyfile may result.
The beginning of the phase is indicated by the message:
ALLOCATING VOLUME. PLEASE WAIT.
When allocation is complete, BUILDPF displays:
VOLUME xx ALLOCATION COMPLETE.,

Structuring then takes place indicated by one of the following
messages:

STRUCTURING VOLUME xx AS BASE DIRECTORY VOLUME. PLEASE WAIT.
STRUCTURING VOLUME xx AS A DIRECTORY EXTENSION. PLEASE WAIT.
STRUCTURING VOLUME xx AS A DATA VOLUME. PLEASE WAIT.

After a base directory volume or directory extension volume has
been built and structured, the following prompt will appear:

EXTEND BASE VOLUME bb MORE ["Y"/"N"; <RETURN> = exitl:
A "Y" response causes BUILDPF to assume volume type "E"
(directory extension) and base volume bb (see Section 1.3.1.4 for
Volume Types Input). An "N" response returns to the initial
prompts for a Logical Unit and the opportunity to build another
type volume.
When structuring is complete, BUILDPF displays the messages:

STRUCTURING COMPLETE.

LOGICAL UNIT (NONZERO) FOR VOLUME [<KRETURN> = EXIT] :

This last prompt gives you the opportunity either to continue
with building other volumes or to exit the BUILDPF program.

At this point it is again safe to use <ESC> or <CTRL-C>.

Revision 02 ' PRELIMINARY
POINT 4 Data Corporation 1=18 Paolvfilee Daciiment

l.3.2.4 Polyfile Extension Mode

After volume 0 has been structured, BUILDPF enters extension
mode. If the polyfile is found, then BUILDPF prints the message:

FILE FOUND., POLYFILE EXTENSION MODE.
You are now in polyfile extension mode. You may now add volumes
to the polyfile or structure ones which for some reason are
unstructured.

BUILDPF then prompts:

EXIT]:

LOGICAL UNIT (NONZERO) FOR VOLUME [<RETURN>

The LU number input must be in the range 1 to 127. Pressing
<RETURN> only causes the program to exit to SCOPE. BUILDPF next
prompts

VOLUME NUMBER [0-63; <RETURN> = don't carel:

BUILDPF is asking for the volume number of the new volume to be
created or the volume number of an existing but unstructured
volume.

The recommended input is <RETURN>, to allow BUILDPF to choose the
lowest available volume number for the selected volume type.

After the volume number is input, BUILDPF will request volume
type and volume size before building and structuring the volume.

Revision 02 PRELIMINARY
POINT 4 Data Corpvoration 1-16 Polvfiles Document

g

P

1.4 ACCESSING POLYFILES

The opening of a Polyfile for a BASIC user is the same as the
opening of any other IRIS file type but three extra conditions
must be met:

1. The Master Volume (Volume 0) must reside on the Logical Unit
(LU) specified in the OPEN statement. The default (if no LU
is specified) is the user's assigned LU.

2. All the LUs where the volumes of a Polyfile reside must be
installed.

3. Hours Since Last Access (HSLA) of all the volumes must be
identical to ensure Polyfile integrity.

NOTE

HSLA may be violated because of a faulty
backup or backdown.

1.4.1 OPEN A POLYFILE

For a BASIC user, a Polyfile is opened with the following
command:

OPEN c#,Pfnameé@

When a Polyfile is opened, the HSLA (Hours Since Last Access) is
updated for all the volumes in the Polyfile. The value of HSLA
must always be the same for all the volumes contained in a
Polyfile.

A single volume in a Polyfile may be opened by stipulating the
volume number as follows:

OPEN c#,lu/Pfname@vo

where lu is the Logical Unit on which the volume resides and vo
is the volume number.

Adding an exclamation mark (!) after the €-sign or the volume
number permits the opening of a polyfile or an individual volume
in a polyfile with a "read-only" status (see Section 1.4.3).

A polyfile name with an exclamation mark added does not overlay
the original file.

Revision 03 PRELIMINARY
POINT 4 Data Corporation 1-17 Polyfiles Document

l1.4.2 READ A POLYFILE

The READ command is used when a record in a Polyfile is to be
accessed by the record number. For key access see Section 1.4.4.

The format for the READ statement is as follows:
READ #c,r,0;Vv1,v2,...;
where ¢ - channel number
r - record number
o - byte offset from the beginning of the record
vl and v2, etc. are numeric or string variables
NOTE

In a Polyfile, data record numbers start at
zero.

For a detailed discussion on the READ statement, please see the
IRIS User Manual (1978), Sections 12.7 and 12.8.

l1.4.3 READ ONLY ACCESS

There may be times when it is desirable to examine the data in a
Polyfile volume. This can be done by adding an exclamation mark
(!) to the name assigned to individual Polyfile volumes. For
example: :

OPEN #1, “"PFFILE@5!"

will open PFFILE volume number 5 on channel 1 in a write-locked
(read only) condition.

The HSLA is not updated because the file integrity is not
violated by a read-only access.

l1.4.4 WRITE STATEMENT

The format for the WRITE statement is similar to the read
statement. For example:

WRITE #c,r,0;Vv1,v2,¢ce0:

where ¢ - Channel number
r - Record number
o - byte offset from the beginning of the record
vl and v2 are numeric or string variables

For more information see Section 12.8 of the IRIS User Manual
(1978) .

Revision 02 _ .. PRELIMINARY
POINT 4 Data Corporation 1-18 Polyfiles Document

1.4.5 SEARCH STATEMENT
The SEARCH statement may be used by the BASIC user in two ways:

1. To structure a Polyfile
2. To access a Polyfile by key

Search mode 0, used for structuring a Polyfile, is discussed in
Section 1.3. Search modes used for accessing a Polyfile by key
include:

SEARCH mode 1 - Return key length in bytes

m=1,d>0 - Reads key length in bytes of directory d into vl.
If d directory does not exist then vl is not
changed and v2 is changed to 13.

m=1l,d=0 - Miscellaneous functions that return values
similar to indexed files. The function is
specified in v2:

v2=0 - First real record number on indexed
files. This is always zero for a
Polyfile.

v2=1 - Number of free records. This is the sum
of all available records across all Data
Volumes in the Polyfile.

v2=2 - Allocate and return record number of the
first available free record. v2=3 if
there is no free record to be allocated.

v2=3 - Releases record vl. v2=19 if the record
was already free. v2=20 if the Polyfile
does not have that record number.

SEARCH mode 2 - Looks for a matching key and returns the
associated record number

SEARCH mode 3 - Searches for the next highest key and returns it
with the associated record number

SEARCH mode 4 - Inserts a new key
SEARCH mode 5 - Deletes a key

SEARCH mode 6 - Searches for next lowest key and returns the
associated record number. If there are no keys
less than v$ then the value in v2 is set to 2.
If there is a lower key, set the value in v2 to
1. (To be implemented).

SEARCH mode 7 - Not in use

SEARCH mode 8 - Places the next used record number greater than
vl in vl (to be implemented)

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-19 Polyfiles Document

For BASIC users the format of this type of SEARCH command is:
SEARCH #c,m,d;v$,vl,v2

where

c - channel number

m - SEARCH mode

d - directory volume number
vl - number variable; receives the result of the search, i.e.

the

record number

v2 - number variable; receives the status of the search.

These values are shown in Table 1-3.

TABLE 1-3. V2 STATUS VALUES

Status Description
0 No error, operation successful
1 Operation not successful
2 End of directory (on insert, indicates directory is
full)
3 End of data (no free records available)
4 File not indexed
5 Polyfile structure error
6 Directory number not in sequence
7 File is not contiguous
8 Volume is already indexed
9 Illegal key length (less than 2 or greater than
121)
10 Too many directories (limit is 63 per
volume/polyfile)
11 Volume not found (possible structure error)
12 Volume too small
13 Directory not found
14 File not indexed
15 Data volume number is less than pre-existing data
volume
16 Data volume map request not consistent with
pre-existing volumes
17 Data volume does not have record length matching
that of the polyfile
18 Block/record out of range
19 Record was not allocated (already released)
20 Volume has no map

Revision 05

PREL IMINARY

POINT 4 Data Corporation 1-20 Polyfiles Document

1.4.6 CLOSE STATEMENT
The format for the CLOSE statement is:
CLOSE #c

where ¢ is the channel number.

Revision 03 PRELIMINARY
POINT 4 Data Corporation 1-21 Polyfiles Document

1.2 OQUERYPF

QUERYPF is a system utility which generates information about the
status of existing Polyfiles. The information can be generated
in three forms:

e Individual Volume Display
e Global Display
e Informational Dump

The output generated may go to the terminal, a file, or a device
such as SLPT.

At the system prompt (#), enter:
QUERYPF

The system responds
QUERYPF - Query Polyfiles Utility
Polyfile name [should have LU/I:

The polyfile master volume (0) should be present on the specified
logical unit. If no LU is specified, the master volume must be
found on the default (assigned) logical unit.

A

Please note that the polyfile name input here must have a e
trailing "@" as must all polyfile names.

After the polyfile master volume has been found, QUERYPF prompts:
Output file [<RETURN> = output to terminall:

Carriage return (<RETURN>) alone causes output to go to the
terminal. A file name or a device name may be specified for the
output. After an appropriate response, there is a brief pause
while the program gathers file information to display. The next
prompt is:

Please input volume number [0-63]
or <RETURN> for global display
or -1 for complete dump
or ESCape to exit to SCOPE :

St

Revision 02 PRELIMINARY

DATAIM A NMadoms COAarvrrmarads A Anm 7.9 DAlwwfFiIlace DAMNITIMAan

1.5.1 INDIVIDUAL VOLUME DISPLAY

Input of a volume number causes dis

play of volume characteristics
if the volume exists. For example:

Volume: 0 DHDR: 1/001130 Logical unit 1 installed.
Privilege level: 2 Group: 1 User 4 Protection: 77
Size: 23 disc blocks
Volume is a Base Directory volume with 3 directories.
Base Volume 0 and its current extensions have a total of 73 blocks
for keys which will hold a maximum of approximately 694 keys.
Directory: Key length (in characters)

7: 10 8: 31 9: 25

Revision 02

PRELIMINARY
POINT 4 Data Corporation 1-23 POlVEilae TAAtm ~ o o

1.5.2 POLYFILE GLOBAL DISPLAY

If <RETURN> is pressed, global information for the file is

displayed:

DEC 28, 1981 12:14:29
Polyfile: 1/DEMOFILE@
Volume 0 LU: 1 Total data records allocation: 589

Total data records allocation: 614

Record size is 20 words Total volumes: 7 Last accessed: 0.09 hours ago

Vol LU/ NBLK Type | Vol LU/ NBLK Type | Vol LU/ NBLK Type | Vol LU/ NBLK Type

l/ 43
1/ 100

B71 1 vV 19 EOIl 2 1V 42 DMI| 3 1V 8 Bl
B25| 5 I/ 25 EOI 9 1 11 DM

The table above is largely self-explanatory but the type column
needs explanation. The type column may contain any of the

following:

Bnn

Ebb

DM

p**

*kk

Base directory volume whose lowest directory
number is nn.

Directory extension volume whose base
volume is bb

Data volume. If the "M" is present, the
volume has a map.

Unstructured volume. Use BUILDPF to structure it.
Partially structured file. This can only occur
from a disaster of some sort when building a
polyfile.

Illegal volume type.

If the volume number is followed by an asterisk (*), that volume
will prevent the polyfile from opening. Possible reasons for the

flag are:

1.
2.

Revision 02

The HSLA does not match the master volume.

Volume was not found on the LU specified by the master

volume,

Volume's LU not installed.

Account number does not match master volume.

Volume is unstructured.

PRELIMINARY

POINT 4 Data Corporation 1-24 Polyfiles Document

1.5.3 COMPLETE DUMP

An input of a "-1" causes a global display output followed by
individual volume information for each volume in the polyfile.
In the following example, volume 4's LU is not installed. Note
that some of the information in the individual volume display for
volume 4 has no meaning.

DEC 28, 1981 12:14:29
Polyfile: 1/DEMOFILE@
Volume 0 LU: 1 Total data records allocation: 589
Total data records allocation: 614
Record size is 20 words Total volumes: 7 Last accessed: 0.09 hours ago
Vol LU/ NBLK Type | Vol LU/ NBLK Type | Vol LU/ NBLK Type | Vol LU/ NBLK
0 1/ 43 B71 1 LV 19 0l 2 IV 42 DMI| 3 YV 8 Bl
4 1/100 B4 | 5 1/ 25 EOI 9 1/ 11 DM

Volume: 0 DHDR: 1/014060 Logical unit 1 installed.
Privilege level: 2 Group: 1 User 4 Protection: 77
Size: 43 disc blocks
Volume is a Base Directory volume with 3 directories.
Base Volume 0 and its current extensions have a total of 81 blocks
for keys which will hold a maximum of approximately 486 keys.
Directory: Key length (in characters)

7: 10 8: 31 9: 25

Volume: 1 DHDR: 1/013661 Logical unit 1 installed.
Privilege level: 2 Group: 1 User 4 Protection: 77

Size: 19 disc blocks

Volume is a Directory Extension of volume O.

Volume: 2 DHDR: 1/014133 Logical unit 1 installed.
Privilege level: 2 Group: 1 User 4 Protection: 77

Size: 42 disc blocks

Volume is a Data volume which holds 524 records.

Volume is mapped. Map size is 1 blocks.

Volume: 3 DHDR: 1/014205 Logical unit 1 installed.
Privilege level: 2 Group: 1 User 4 Protection: 77
Size: 58 disc blocks
Volume is a Base Directory volume with 4 directories.
Base Volume 3 and its current extensions have a total of 87 blocks
for keys which will hold a maximum of approximately 1001 keys.
Directory: Key length (in characters)

1: 17 2: 12 3: 7 4: 5

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-25 Polvfiles Document

If a logical unit given in the building process was not installed
(in this case LU/2), then an asterisk (*) will appear next to the
volume and the informational display will be meaningless. An
example of the global display follows (the individual volume
information would be the same as in the previous example):

Vol LU/ NBLK Type | Vol LU/ NBLK Type | Vol LU/ NBLK Type | Vol LU/ NBLK Type
0 1/ 483 B71 1 YV 19 EOIl 2 1V 42 DMI 3 LV 8 Bl
4% 2/ B4 | 5 1/ 25 EOIl 9 1V 11 DM

If LU 2 was not installed then the display for volume 4 will be
as shown below. Notice that the information given does not make
any sense.

Volume: 4 DHDR: 2/2222?? ** Logical unit 2 NOT installed. **
Volume is a Base Directory volume with 1 directories. -
Base Volume 4 and its current extensions have a total of-2 blocks for keys
which will hold a maximum of approximately-125 keys.
Directory: Key length (in characters)

44: 0

If LU 2 was installed, then the display for volume 4 will be as
follows:

Volume: 4 DHDR: 2/000043 Logical unit 2 installed.
Privilege level: 2 Group: 1 User 4 Protection: 77

Size: 100 disc blocks

Volume is a Base Directory volume with 4 directories.

Base Volume 4 and its current extensions have a total of 98 blocks
for keys which will hold a maximum of approximately 98 keys.
Directory: Key length (in characters)

44:120
Volume: 5 DHDR: 1/014336 Logical unit 1 installed.
Privilege level: 2 Group: 1 User 4 Protection: 77

Size: 25 disc blocks
Volume is a Directory Extension of volume 0.

Volume: 9 DHDR: 1/013704 Logical unit 1 installed.
Privilege level: 2 Group: 1 User 4 Protection: 77

Size: 11 disc blocks

Volume is a Data Volume which holds 116 records.

Volume is mapped. Map size is 1 blocks.

When all the volumes have been displayed, the initial prompt is
repeated to give you a choice of redisplaying it or exiting:

Please input volume number [0-63]
or <RETURN> for global display
or -1 for complete dump
or ESCape to exit to SQOPE:

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-26 Polyfiles Document

1.6 BUILDPFERR

Both BUILDPF and QUERYPF attempt to open the file
0/POLYFILERRORS. This file contains error messages for both
processors., If the file is not found, then error codes are
output, and must be looked up by the user. To create
0/POLYFILERRORS, the program BUILDPFERR should be run from the
utility account (0,2).

Table 1-4 gives the list of CALL 91 errors. Table 1-5 lists the

possible search mode statuses contained in the BUILDPFERR file.
Both tables give the associated file record numbers.

TABLE 1-4. CALL 91 ERROR LIST

CALL 91 File

Error Rec. # Description
1 1 Bad Channel #
2 2 File not being built
3. 3 Bad Volume #
4 4 Cl file not polyfile
5 5 Bad filename
6 6 Bad var type
7 7 Bad number
8 8 Volume pre-exists on LU. May be part of
another polyfile or fragment
9 9 File CO not found
10 10 No nodes
11 11 Volume already defined for this polyfile
12 12 Not used
13 13 Account numbers differ
14 14 Vol in Data File Table (DFT) but not on disc
15 15 No available vol numbers
16 16 Volume not defined. It is missing
17 17 P does not immediately succeed S in VDT
18 18 P is not an array
19 19 P is not dimensioned at least P[10]
Revision 02 PRELIMINARY

POINT 4 Data Corporation 1-27 Polyfiles Document

TABLE 1-5. SEARCH MODE STATUS LIST

Status Rec.# Description

0 100 No error, operation successful

1 101 Operation not successful

2 102 End of directory (on insert, indicates
directory is full)

3 103 End of data (no free records available)

4 104 File not indexed

5 105 Polyfile structure error

6 106 Directory number not in sequence

7 107 File is not contiguous

8 108 Volume is already indexed

9 109 Illegal key length (less than 2 or greater
than 121)

10 110 Too many directories (limit is 63 per
volume polyfile)

11 111 Volume not found (possible structural error)

12 112 Volume (built) too small

13 113 Directory not found

14 114 File not indexed

15 115 Data volume number is less than the
preexisting data volume

16 116 Data volume map request not consistent with
preexisting volumes

17 117 Data volume does not have record length
matching that of the polyfile

18 118 Block record out of range

19 119 Record was not allocated (already released)

20 120 Volume has no map

Revision 05

POINT 4 Data Corporation 1-28

| PREL IMINARY
Polyvfiles Document

P,

R,

4.7 KILLPF

KILLPF is a system utility specially designed to delete
Polyfiles. You can use the KILL processor but then you must KILL
each volume in a Polyfile separately and you must make sure that
Volume 0 is deleted last.

KILLPF will report on each volume as it is deleted. The
procedure is as follows:

At the system prompt, enter:

KILLPF

The system responds by acknowledging the command and asking for
the Polyfile name:

KILLPF - Kill Polyfile Utility
Polyfile name [should have "LU/"1:

Enter the Polyfile name; the display will look something like
this:

Polyfile name [should have "LU/"]1: 1/PFname@ Validating polyfile structure.
Please wait.

March 16, 1982 21:55:10

Polyfile: PFname@

Volume 0 LU: 1 Total data records allocation: 0

Record size is 256 words Total volumes: 3 Last accessed: 0.46 hours ago

Vol LU/ NBLK Type | Vol LU/ NBLK Type | Vol LU/ NBLK Type | Vol LU/ NBLK Type
0 1/ 25 B1ll 1 YV 24 EOI| 2 1/ 42 DMI| 3

Type "YES" to confirm deletion:

After you have typed in the full word “YES" and pressed <RETURN>,
each volume will be listed as it is deleted:

Volume 2 deleted
Volume 1 deleted
Volume 0 deleted

Polyfile deletion sequence complete
#

At the end of the sequence you are returned to the normal system
prompt.

NOTE

If a volume is marked by an asterisk (i.e.,
the LU is not installed), the prompt to
confirm deletion will be repeated. Before
the delete process can continue, the LU must
be installed.

Revision 02 PRELIMINARY
POINT 4 Data Corporation 1-29 Polyfiles Document

1.8 CONVERTING BASIC PROGRAMS - BCONVERT

The BCONVERT processor provides an easy way to convert standard
R7 BASIC programs to the R8 BASIC program format. Program sizes
will increase slightly but with the capability of dynamic
partitioning under IRIS R8, this presents no problem.

BCONVERT may be invoked by any user but it will convert only
those programs that are on the user's account.

When BCONVERT has completed its operation, it chains to BASIC.
You may then list the converted program if it was not PROTECTed.

If you wish to save the program, then exit to SCOPE with the EXIT
command and invoke the SAVE processor.

A sample dialogue using BCONVERT is shown below. The'user input
is underlined.

#BCONVERT R7PROGRAM -- Converting R7.x to R8.0 format
#
SAVE _R8PROGRAM
SAVED !! CHECK CODE = ACDX
#
Revision 02 PRELIMINARY

POINT 4 Data Corporation 1=-20 PolvfFilee Daciimen

1.9 CONVERTING INDEXED FILES TO POLYFILES

Two major phases are involved in converting an Indexed file to a

Polyfile:

file conversion and program conversion. The steps for

each phase are shown below:

A, File Conversion

1. Build a Polyfile with key and data record sizes matching

the

current Indexed File.

2. Construct and execute a program which will

Read each key and its associated data from the
Indexed File

Get a free record from the Polyfile
Write the data record into the Polyfile
Insert the key into the Polyfile

Allow at least a 3% (precision) variable for the
Polyfile record number

Use separate variables for Indexed File access and
Polyfile access to prevent V1 and V2 being greater
than 65535 for Indexed File access

B. Program Conversion

1. Modify OPEN statements to reference the Polyfile.

2. Remove Search Mode 7s from the program. Polyfiles have
the capacity to redistribute keys automatically.

NOTE

Search Mode 7 has no effect on Polyfiles. A
program containing Search Mode 7 may safely
be used; however, Search Mode 7 is
unnecessary and should be eliminated.

When used with an Indexed File, Search Mode 7
usually (but not always) allows more keys to
be inserted after a V2=2 (directory full) is
encountered. For Polyfiles, Search Mode 7
has no effect on getting a V2=2, Programs
which assume that Search Mode 7 always allows
more keys to be inserted after V2=2 are
incorrect for both Indexed files and

Polyfiles and should be changed.

3. A variable intended for Polyfile record numbers should be
large enough to hold 3% (precision) numbers.

Revision 06

PRELIMINARY

POINT 4 Data Corporation 1-31 Polyfiles Document

1,10 USING OTHER SYSTEM PROCESSORS

In general, it will not be necessary to use other system commands
to manipulate or list a Polyfile. This section briefly describes
the commands that may be used.

1.10.1 CHANGE
If you wish to change the name of a Polyfile you must change the
name on each volume. Therefore, run the QUERYPF utility and get

a global display to make sure that you have a list of all the
volumes in that Polyfile and their associated LU numbers.

The Polyfile must not be in use while its name is being changed.

File access protection for a Polyfile is the protection given to
the Master Volume, the other volumes should have the default
protection level of 77.

Invoke the CHANGE processor giving the LU number, Polyfilename@,
and the volume number. See also Section 2.2 of the IRIS User
Manual (1978).

1.10.2 QUERY
The system processor 'QUERY' may be used on individual volumes of

a Polyfile. Each volume will appear as a simple contiguous file.
To get Polyfile type information, use QUERYPF.

1.10.3 LIBR

If LIBR is used, each volume of a Polyfile will appear as an
individual file in the LIBR display as follows:

Filename@xx

where xx may be a two-digit number, or it may be zero.

Revision 05 PRELIMINARY
POINT 4 Data Corporation 1-32 Polvfiles Document

1.10.4 INSTALL

If a LU number is changed during an INSTALL, the following
warning message is given:

WARNING CHANGING LOGICAL UNIT NUMBER MAY INVALIDATE POLYFILE
VOLUME Pfname@

A Polyfile with a volume on the changed LU will not OPEN because
the information in the Master Volume is now incorrect and the
system cannot find the volume.

When the LU is reset to its original number, the Polyfile will
open.

Revision 02 PRELIMINARY
POTINT 4 Data Coarnararinn 1,717 DAt or€ 2T o T oo v

l.11 SPECIAL CALL 91 MODES

CALL 91 is the polyfile call that may be used to link a new
polyfile volume from a BASIC program (as discussed in Sections
1.3.1 through 1.3.1.3). Three special CALL 91 modes have been
added to the basic CALL 91. They are used primarily by the
ASSIGNPF and COPYPF programs.

® ASSIGNPF is used to reassign the number of a logical unit
which has one or more polyfile volumes resident. The program
must be run if logical unit numbers have been changed during
an INSTALL procedure (see the IRIS Operations Manual).

e COPYPF is used to move polyfiles from one logical unit to
another. This procedure is discussed in the IRIS System
Commands Manual.

All requirements for the normal CALL 91 apply to the three
special modes.

1.11.1 CALL 91 - SPECIAL MODE 1

Allows an individual volume of an existing polyfile to be moved
(copied) to another logical unit. The original (source) volume
remains on the source logical unit. The new volume must first be
built on the destination logical unit without being closed. The
new volume must have the same filename as the original polyfile
(i.e., all the characters preceding the @-sign must be the same).
That name must not already be in use on the destination logical
unit. CALL 91 special mode 1 is then used to link the new volume
to the existing polyfile.

The syntax of a CALL 91 special mode 1 statement is as follows:
CALL 91]CO,-Cl ,V,S,P

where

CO0 - Channel on which the new volume is open with build bit
set (i.e., it must not have been closed)

-Cl - Channel on which the entire polyfile is open*

V - Number of the new volume which must be the same as the
source volume

S - Status to be returned (S=0 if no error 38)

P - Array in which file parameters are returned (see Table
1-1)

To preserve polyfile integrity, CALL 91 will cause an error 38
and return S=22 if the polyfile is open by another user.

If the call is successful, the entire polyfile remains
open-locked until the channel is closed.

Special mode 1 differs from a normal CALL 91 because the value in
Cl is negated.

*Negative value indicates special CALL 91 mode

Revision 07 PRELIMINARY
POINT 4 Data Corporation 1-340 Polyfiles Document

1.11.2 CALL 91 - SPECIAL MODE 2

Allows polyfile master volume and nonzero volume headers to be
updated after a logical unit number is changed during an INSTALL
procedure.

The syntax of a CALL 91 special mode 2 statement is as follows:

CALL 91 ,CO,"’C]. ,V’S,P

where
C0 - Channel on which the polyfile to be reassigned is open
~Cl - Channel on which the master volume (volume 0) is open in
read-only mode¥* (e.g., OPEN #Cl, "PFNAMEEQO!")
V - Number of the volume to be reassigned
S - Status to be returned (S=0 if no error 38)
P - Array in which file parameters are returned (see Table

1-1)

A special mode 2 statement causes volume 0 to remain open-locked
until the channel is closed.

To reassign volume 0, it must be open on both channels (i.e.,
channels C0 and Cl).

To preserve polyfile integrity, CALL 91 will cause an error 38
and return S=22 if the polyfile is open by another user.

Special mode 2 differs from special mode 1 in that the file
opened on channel CO is not newly built (i.e., the build bit is
not set).

*Negative value indicates special CALL 91 mode

Revision 07 PRELIMINARY
POINT 4 Data Corporation 1-350 Polyfiles Document

1.11.3

CALL 91 - SPECIAL MODE 3

Allows writing to an individual volume of a polyfile that is open

in read-

only mode. The individual volume is opened on channel

C0; no file may be open on channel Cl. This is accomplished by
entering a pseudo-value (e.g., 777) into Cl.

The syntax of a CALL 91 special mode 3 statement is as follows:

caLL 91,co0,C1,v,S,P

where
CO0 - Channel on which the volume is open in read-only mode
Cl - Channel on which no file is open (may = 777)
V - Number of the volume to be written to¥*
S - 777 on entry (overrides read-only mode); status of call
on exit
P - Array in which file parameters are returned unchanged
(see Table 1-1)
*Must be the same volume number as the volume open on CO.
Revision 07 PRELIMINARY

POINT 4 Data Corporation 1-36 @ Polyfiles Document

SECTION 2

Section two of this preliminary Polyfile documentation is a
general introduction to the concept of the new Polyfile
capability. It includes an introduction, comparison with Indexed
Files, information on Polyfile structure, and a summary of

Polyfile features.

Revision 02 _ PRELIMINARY
DPOTITNT 4 Data Cornoration 2-1 Polvfiles Document

2.1 INTRODUCTION

The newest addition to the family of IRIS files is the Polyfile
capability. It is POINT 4's answer to the needs of the more

sophisticated applications which require large data bases.

Among the advantages of the Polyfile is the removal of the
previously existing size restrictions while refining the keyword
access of the Indexed files and keeping their intrinsic sort

functions intact.

These and other improvements are best

illustrated by the comparisons shown in Figure 2-1.

Indexed Files
Maximum key size is 30 bytes.

Key sizes must be specified in
word increments (multiples of
2 bytes).

Maximum number of maximum size
(30-byte) keys per file is
1830.

Maximum number of data records

Uses the 512-word ABA buffer.

Cannot take full advantage of
the R8 buffer pool.

Has operational Mode 7 for
key distribution which
necessitates the suspension
of time-sharing.

Directories cannot be changed
in size.

The Free List could be clobbered
by improper programming.

~ Data records start at a variable
number depending on the size of
the directory.

Polyfiles
Maximum key size is 121 bytes.

Key sizes may be specified in
exact number of bytes,
eliminating problems created
by garbage in extra byte.

Maximum number of keys per
polyfile depends on the Kkey
size:

121-byte keys = 8 million
60-byte keys = 20 million
32-byte keys = 40 million

Maximum number of data records
is 4,128,768.

Does not use ABA.

Takes full advantage of the RS
buffer pool.

Mode 7 is never needed because
keys are redistributed
automatically.

New directory extension
volumes may be added
dynamically.

Free space is allocated by a
bit map which cannot be
clobbered by user programming.

Data records always start at
0.

Figure 2-1. Differences Between Polyfiles and Indexed Files

Revision 05

DOATNT A Dat+a Cornnratrion b P |

PRELIMINARY

Poalvfilee Dociiment

2.2 POLYFILE STRUCTURE

A polyfile may be composed of a maximum of 64 volumes, numbered
0-63; Volume 0 is always the Master Volume. Polyfile volumes are
allocated by the IRIS Operating System as Contiguous Files and
are subject to some of the restrictions (i.e. an individual
volume cannot exceed 65535 records or the size of the Logical
Unit) imposed on Contiguous files in general.

A Polyfile is file type 32.

Volumes of a polyfile may reside on different LUs. Each of these
LUs must have enough contiguous space allotted to the user to
accommodate a Polyfile volume. It is recommended that the
volumes of a Polyfile reside on one physical drive so that
backups may be performed frequently and without problems.

A polyfile volume can be one of four legal types:

l. Unstructured

2. Base Directory

3. Directory Extension
4. Data

Unstructured - An unstructured volume has been linked into
the polyfile via the polycall (CALL 91) but
has not been structured as a data, base
directory, or directory extension volume.
For more information on linking and
structuring see Section 1.3.

Data Volumes - A data volume holds records. The same
record size must be used for all the volumes
in the entire polyfile. The size of a data
volume is limited by two factors: number of
records (65535) and available contiguous
space on an LU,

Polyfiles do not have free record chains as
do indexed files. Instead, polyfiles have
the option of having record maps. All data
volumes in a polyfile are either mapped or
unmapped.

Records are numbered sequentially through
ascending data volumes., For example, if a
polyfile has three data volumes numbered 2,
6 and 7 which contain 100, 200 and 300
records respectively, then records 0-99 will
be found in volume 2, 100-299 in volume 6,
and 300-599 in volume 7.

Revision 02) PRELIMINARY
POINT 4 Data Corporation 7.7 Polvfiles Document

Base Directory - A base directory volume contains the master
and first (leftmost) fine block for one or
more directories (up to 63). The numbers of
these directories must be increased
sequentially by one. Multiple base
directory volumes may coexist in a polyfile
if their directories are mutually exclusive.

Directory Extension - A directory extension volume is a space
extension of the base directory volume.
When a new block is needed in a directory,
allocation is first attempted from the base
directory volume and then from any extension
volumes in ascending order.

2.2.1 POLYFILE HEADER BLOCKS

The header block of the Master Volume (volume 0) contains
information about all the other volumes in a polyfile.

Polyfile volume linkage information is stored in polyfile header
block locations 200-377. These locations are always 0 in normal
contiguous files. In a polyfile volume, word 200 of the header
block is, by definition, nonzero. The linkage information is
stored in word-pairs as follows:

Word 0 (VLU): Volume Logical Unit (if this word is 0 then
volume does not exist)

Bits 15-13: Volume type:

0 = Unstructured volume

2 = Base directory volume

3 = Extension directory volume
4 = Data volume

Bits 12-8: Number of blocks in the bit map
Bit 7: Always one for a volume that exists
Bits 6-0: Logical Unit of this volume

Word 1 (BNR): Base Number of Records - depends on volume type
Data volume: Number of data records

Base directory volume:
Bits 15-8: Base directory number for this volume
Bits 7-0: Number of directories in this volume
(maximum number of directories = 63)

Extension directory volume:
Bits 15-8: Base directory number for this volume
Bits 7-0: Volume # that this volume extends

Revision 02 PRELIMINARY
POINT 4 Data Corporation 2-4 Polvfiles Document

Word-pairs in the Master Volume (0) header block locations
200-201 describe volume 0; 202-203, volume 1l; 204-205, volume 2;
e o o 3 376-377, volume 63. This information is used to open the
polyfile (see Section 1.4).

There are only two word-pairs in volumes other than 0. The first
word-pair (200-201) describes the master volume. The second
describes the volume itself (202-203).

In addition to the use of words 200-377 in the header block of a
polyfile volume, words 74-172 (FMAP+4 through STAD, see Appendix
A) are used to store the key lengths of the different directories
in a base directory volume during directory setup. QUERYPF (see
Section 1.5) reads these words when it displays polyfile
directory information.

2.2.2 DATA FILE TABLE (DFT)

When any file is opened under IRIS a Data File Table (DFT) is
employed to retain pertinent information about the file. Since a
DFT is normally 8 words in size and a polyfile has a potential
size of 64, the DFT is extended by chaining system nodes to it.
The DFT Channel Node Pointer (CNP) is used for this purpose. A
word-triple is kept for each polyfile volume. System nodes are
32 (decimal) words long. This means that 10 triples may be put
in a node. One of the remaining two words is the link to the
next node.

The layout for a DFT node word-triple is:
Word 0 (VLU): (If this word is 0 then volume does not exist)

Bits 15-13: Volume type:
0 Unstructured volume

2 = Base directory volume
3 = Extension directory volume
4 = Data volume

Bits 12-8: Number of blocks in the bit map
Bit 7: Always one for a volume that exists
Bits 6-0: Logical Unit of this volume

Word 1 (BNR): Depends on volume type
| Data volume: Number of data records
Base directory volume:
Bits 15-8: Base directory number for this volume
Bits 7-0: Number of directories in this volume
Extension directory volume:
Bits 15-8: Base directory number for this volume
Bits 7-0: Volume # that this volume extends
Word 2 (HRDA): Header block RDA of this volume

Revision 02 PRELIMINARY
POINT 4 Data Corporation 2-5 Polvfiles Document

NOTE

VLU and BNR are copied
directly from the header of
the master volume.

The word-triples are ordered by volume. The first triple is for
volume 0, the second for volume 1, the third for volume 2, etc.

The DFT extension nodes are allocated when a Polyfile is OPENed.
Two or more DFTs will share the same extension nodes for the same
polyfile. Additional nodes are not allocated when two or more
users have accessed the Polyfile concurrently.

An OPEN command will allocate sufficient nodes to provide word
triples for volumes 0 through the highest numbered volume in the
polyfile. This means that the lower the highest numbered volume
in a polyfile is, the fewer number of nodes are used when it is
opened.

Other cells in the DFT whose usage will change when a polyfile is
opened are described in the following sections.

2.2.2.1 Item Control Blocks

The discsubs for reading and writing polyfile records, READP and
WRITP, require an ICB with the following format:

0 15-0 Lower 16 bits of the record number
1 15-0 Item number or byte displacement
2 15-8 Upper 6 bits of the record number
7-0 Item type (5=decimal, ll=string, l2=binary)
3 15-0 Desired length (# of words or bytes if type is
string)
4 15-0 Address of Source/Destination (relative byte

address if string)

Revision 02 . PRELIMINARY
POINT 4 Data Corporation 2«6 Polvfiles Document

“p#

2.2.2.2 Bit Maps

Polyfiles use bit maps to allocate records in data volumes and
disc blocks in directory volumes.

e All directory volumes must contain maps

e For Data Volumes in a Polyfile, maps are optional (i.e.,
either all data volumes in a polyfile have maps or none of
them do).

The polyfile allocation routine will allocate the first available
record or block as specified in the bit map. This differs from
indexed files in which the most recently released record is the
one allocated.

A polyfile map may range in size from 1 to 16 blocks. The size
is given in bits 12-8 of the VLU word. Each bit maps one block
or record. A zero bit flags an available record. The first word
maps the map blocks, and any additional bits in this word begin
mapping available blocks or records (see Figure 2-2).

The map block bits indicate which blocks in the map have free
space.

Zero indicates that the corresponding block has at least
.one free bit.

One indicates that the corresponding block is "full",

For example, in a data volume with a map size of 5 and records 0,
1, 15 and 17 allocated:

15 0
lolololololololololliliololololol

Word One

Word Two lolololololololololllolliolololol

Additional map blocks, after the first block, map only free
space, one bit per record or block. Thus any map block can map
4096 units where a unit may be a disc block for a directory
volume or a data record for a data volume. The first 1 to 16
bits in the first map block point to the units listed within it.

Revision 02 PRELIMINARY
POINT 4 Data Corooration 5.7 PalvFfilee Daciiment

Up to 4095 bits in the last bit map block may reference

nonexistent records or blocks and are thus always marked as in
use,

Ay,

Figure 2-2., Bit Map Layout o
gt

Revision 02 PRELIMINARY
POINT 4 Data Corporation 2-8 Polyfiles Document

2.2.3 BASE DIRECTORY VOLUMES

A base directory volume always contains the master block and the
first fine block of each of its directories. See Figure 1-3 for
a layout of a Base Directory Volume.

The BNR word describing the volume in the master volume gives the
base directory number (B) and the number of directories (N). The
VLU word gives the number of blocks in the bit map (M). With
this information it is possible to compute the block in the file
containing the master block and first fine block for any
directory in the volume.

Given directory D in the volume, the master block for the

directory = HRDA+M+(D-B)*2 and the first fine block =
HDRA+M+(D-B) *2+1

- - - G- - Bee G G G G G e G ST Gue S G GEO Gwe G Sun GUS Gme Ghe Sme G G e Gee G5V e SIS G 2 Gwe GU Gue Gus GeS Gee Gre G GeS Gee Ghe Gie N Gee G SSe Gue SR

e me e G G G G G G G G G G G G G - G - G- G G- —— ST G G G Ghe G G GIS G GuA Gas e G Ge G Gee GIS Gu Gev e G Gme Gme G G

e e e - — ———— —— ——— — ——— —— G G — - G ———"— G - Gue o - Gme G- Gae Gan e Gen G G G e S G G G ———
——— Gme G S . G G G G . G G G G S G- Gee G . G G G - — G G o G . G- G Gus G e G G W G GwE Gue Gw G G G Ghe Ga Gme Gu Gw =

Pool of disc blocks for use by any fine or
intermediate level in Directories B through B+N-1

+—AVA———— 4 — 4 —+ —VA——F— —F—F——— 4 —+
e
+—AVA—— b —+ = VA=t —F —F — —F —— — 4 — &

Figure 2-3, Layout Of A Base Directory Volume

Revision 02 PRELIMINARY
POINT 4 Data Corporation 2-9 Polvfiles Document

2.2.4 DIRECTORY STRUCTURE

The structure of a directory is a B-tree with bidirectional links
across each level. The fine level is always level 0. Levels are
numbered sequentially, incrementing by one from the fine level
which is level 0. This means that the master block's level
number is dependent on the number of intermediate levels. The
maximum permissible level number is 127 (see Figure 2-4).

There must always be one master and at least one fine block for
each directory.

All links in a polyfile directory consist of a volume number and
a volume relative block number.

All blocks in a polyfile directory, with the exception of the
master block and first fine block, may be in the base directory
volume or any of its extension volumes. The layout of a
Directory Block is shown in Figure 2-5.

Key entries on the fine level contain a record number. Other
levels contain a link to a block on the next lower level. A key
found in a master or intermediate block is the last key found in
the block linked on the next lower level.

A terminator key is always present as the last key on all levels.
The terminator key consists of all rubouts; i.e., the maximum
value that is possible, which is illegal for a key used in a
SEARCH command.

Revision 02 PRELIMINARY
POINT 4 Data Corporation 2-=10 Polvfiles Document

—~
,

—
-
—

1
Level 2

o | O
IKITI |
Master lelEI |
lyIRI I
11IMI |
111%] [
/ \
/ \
- \
I I
\' v
Level 1 I 0 | <= > I 0 |
IKIKI I IKITI |
Intermediate lelel | lelEI |
lylyl | ly IR I
10111 | 11IMI |
15111 | 181%| |
/ \ / \
/ \ / \
/ L / AN
/ \ / \
/ \ / \
/ \ / \
I | | |
Level 0 \" v \"/ \"/
I 0 | (K=========) | s=====—=== I < > | 0 |
IKIKIKIKIKIKI IKIKIKIKIKIKI IKIKIKIKIKIKI IKIKIKIKIKITI
Fine lelelelelelel lelelelelelel lelelelelelel lelelelelelEl
lylylylylylyl lylylylylylyl lylylylylylyl lylylylylyIRI
lolololololol lololololllll 1212121112111 1112121212IM|
1011121314151 1617181910111 1213141516181 19101112131%]

L] L] Ll L] L] B v

*NOTE: TERM is a terminator key which has a value greater than
the maximum legal key.

Figure 2-4. Directory Structure

Revision 02

PRELIMINARY
POINT 4 Data Corporation

2-11 Polvfiles Document

(FNL) IF| N L | F=Fine level flag. Zero
——————————— + for master and intermediate
DFvv | levels of directory,
----------- + one for fine level.
N=# of active keys in block.
——————————— + L=Key length in bytes. Maximum
DPvv | size is 121 bytes.
——————————— + M=Master level flag. One
(PFDP) | P I for master level, zero for
e ————— + intermediate and fine levels.
(PFKEY) | P D=Directory Number.
tmm————————— tem— e ——— + DFvv=Volume number of next
|
.‘.

(MDDFV) [Ml| D
(PFDF) |

(PIDPV) | I

O —+ 0+ —+ —+
m

[

| block in this level of this
I directory.
| DF=Relative disc address of
| next block of this level of
I this directory. (Zero in
| last block in level.)
| I=Intermediate level number.
- + Fine level is zero, master
| P2 | level is the highest number.
o tem———————— + DPvv=Volume number of previous
| block in this level of this
I directory.
| DP=Relative disc address of
I previous block of this level
| of this directory. (Zero in
| first block in level.)
| K=Key value (ASCII string,
+ odd number of bytes).
| Pyv=Pointer overflow. Volume
| number of block at next
| level in master and
| intermediate levels, or upper
| six bits of real record
----------------------- + number in fine level.
|
+
|
|
|
|
|
|
|
+
|
|

I
I
I K1l
I
I

P=Pointer. Relative disc
address of block at next
level in master and
intermediate levels, or lower
16 bits of real record number
in fine level.

I Pnvv |

N
=3

There may be as many as
INT (251/L1l) entries
in a block. Where L1 =
INT((L+4)/2). Even when
| full there may be up to L1-1
| words unused at the end of
| each directory block.

Figure 2-5. Directory Block Layout

Revision 02 PRELIMINARY
POINT 4 Data Corporation 2-12 Polyfiles Document

2.3 DATA VOLUME ACCESS BY RECORD

Each Data Volume in a Polyfile has the same record size as all
the other volumes in the Polyfile.

Each Data Volume contains an integral number of records which is
recorded in the BNR word (see Section 2.2.1).

Maps are optional but if one data volume is mapped then all data
volumes in a Polyfile must be mapped. If a map is present, then
data records start at the beginning of the first block after the
map block(s). The maximum number of map blocks is 16.

As in the IRIS Contiguous File, a record may exceed one block and
cross block boundaries.

Records in a Polyfile are considered to be logically contiguous
through all Data Volumes in ascending order.

To access record 'R', two steps are required:

a. Finding the correct Data Volume
b. Finding the correct record within the volume

To find the correct volume, the base record number of each volume
is computed in sequence by summing the Base Number of Records
(BNR) of all preceding Data Volumes. Therefore, new Data Volumes
cannot be added which have a volume number less than the highest
pre—-existing data volume. A good rule of thumb is to number all
data volumes as low as possible.

Revision 02 PRELIMINARY
POINT 4 Data Corporation 2-=13 Polvfiles Document

2.4 DIRECTORY VOLUME ACCESS BY KEX

If a record is to be accessed by key, the Directory volume is
searched as follows:

a. Read master block

b. Scan block for first key >= target

c. If fine block then key is found

d. Get block from next level and go to step b

Search mode 2 (match) uses the above routine and returns the
record number associated with the key on the fine level.

Search mode 3 (next) uses the same routine but the test in step b
is changed to >.

Search mode 4 (insert) uses the same routine with modifications:

e If any block is full (except a fine block) then the block is
split

e If the block to be split is the master block, a new (higher)
level master block is created. The master block must be in a
specific block. To maintain this condition on a master level
split, two new blocks are allocated, and the contents of the
master block split between them.

® The master block is reset to two keys, the last key in the
first of the new blocks and the terminator key (last in the
second block). :

The purpose of the modifications is to assure that in every block
in the insertion path there exists the space for at least one
more key. If the key space were not assured, a key insertion
that fails for lack of space would corrupt the directory
structure.

Search mode 5 (delete) also uses the same routine with a further
set of modifications. Two factors, alpha and beta, are used to
control the redistribution of keys between blocks on a level.
The redistribution is accomplished in the following sequence:

e Non-Masterblocks are scanned
o Keys are redistributed

e Adjoining blocks are combined where necessary

e Intermediate levels are eliminated if necessary

Revision 02 PRELIMINARY
POINT 4 Data COrDO[ation 2714 DAYy fF3 T Aac DA SNIIT A M

R,

2.2 SUMMARY

1.

2.
3.
4.

8.

Polyfiles may have up to 64 (0-63) volumes in one Polyfile.
e Maximum size of a Polyfile can exceed 4 million records

e Each volume may reside on a different Logical Unit (IRIS
R8 permits up to 127 Logical Units)

@ A Polyfile Master Volume is always Volume 0

e All Logical Units containing volumes of a Polyfile must
be installed, otherwise the Polyfile cannot be opened

e A Polyfile may not be built on LU/O
The file type for a Polyfile is 32
The maximum number of directories is 63
Data volumes in one Polyfile are either mapped or unmapped.

e Maximum number of records in an unmapped Data Volume may
be 65535 depending on record size

e Maximum number of records in a mapped Data Volume may be
60000 to 65000 depending on:

a. Size of Logical Unit
b. Number of map blocks required (maximum is 16)
c. Record Size

e Data Volumes are added in ascending volume numbers. Data
Volumes should be given low numbers. After Volume 63 has
been built no further data volumes may be added even if
there is a gap in the lower sequence.

Maximum key size is 121 bytes with a potential for over 12
million keys per Polyfile

e Keylengths are returned by SEARCH mode 1

e SEARCH mode 1 will return a V2 of 13 (directory not
found) rather than V2 of 5 (structure error)

Highest numbered volume of a Polyfile determines the number
of system nodes allocated when a Polyfile is open. By
keeping the volume numbers low, the system overhead is
reduced.

Polyfile integrity is checked by the HSLA (Hours Since Last
Access) value. This value is 32 bits in size and has a
resolution of .1 second. If the HSLA of the volumes does not
match, the Polyfile will not open.

Polyfiles take full advantage of the buffer pool.

Revision 02 PRELIMINARY
POINT 4 Data Corovoration 2718 PAalufFfilace DANIIMAan &

9. New Directory Extension Volumes may be added dynamically.

10. Key capacity has been improved by expanding the number of
possible levels (0-26) between the master and fine levels.

11. It is recommended that:

e Polyfile names be made to differ from each other and from
other file types

® Polyfiles should be backed up frequently at regqular
intervals to avoid the loss of data

e As many volumes of any one Polyfile as possible should
reside on the same physical unit

Revision 02 . PRELIMINARY
POINT 4 Data Corporation 2-16 Polyfiles Document

POLYFILE EXERCISE

The following exercise will acquaint the first-time user with the
process of building a polyfile. Follow the steps given in their
sequence and note the system responses. Each user response
requires a <RETURN> for it to be entered. Where a <RETURN> is
shown as the response it needs to be pressed just that one time,
otherwise the press <RETURN> is not shown. At the # sign enter:

Step Command System Prompt (and comments in parentheses)

1 BUILDPF

2 1/DEMOFILE®

3 Y
4 20
5 B
6 7
7 10
8 31

Revision 02

BUILDPF - Build Polyfile Utilities
Polyfilename [must have "LU" (not 0)1]:

Polyfile not found. Do you wish to create
one?

Creating NEW polyfile
Record size (in words) for entire Polyfile:
Volume: 0

Volume types: "B" Base Directory
"E" Extension Directory
"D" Data

Volume type:

(We have decided to build the Base Directory)
Starting directory number for this volume:

(We have started with directory #7)
Directory numbers available from 7 thru 63

Directory 7 Key size in characters
[<RETURN> to terminatel:

(The key size for vol. 7 is to be 10
characters long)

Directory 8 Key size in characters
[<RETURN> to terminatel:

(The key size for vol. 8 is to be 31
characters)

Directory 9 Key size in characters
[<RETURN> to terminatel:

(As can be seen the system will call out the
next volume automatically until the user
terminates this process. For the purpose of
this exercize we will continue until we get to
directory 10)

APPENDIX A

POINT 4 Data Corporation A-1 Prelim. Polyfiles Document

Step Command = System Prompt (and comments in parentheses)

9

10

11

12

13

14

15

25

<RETURN>

250

<RETURN>

Revision 02
POINT 4 Data Corporation A-2 Prelim. Polyfiles Document

(Key size for this directory is set at 25)

Directory 10 Key size in characters
[<RETURN> to terminatel:

(At this point we decide that we have enough
directories for this volume)

This directory setup ok? [<KRETURN> = okl:

(Either a 'Y' or a <RETURN> may be used. (We
will enter a 'Y',)

Volume size in indexes (keys)
[Negative for size in blocksl:

(The size has been entered in '‘'keys’',
therefore a positive number was used)

Allocating volume. Please wait.

Volume 0 allocation complete.

Structuring volume 0 as Base Directory Volume.
Please wait.

Directory: 7 8 9 Structuring
complete.

Extend Base Volume 0 more ["Y""N"; <KRETURN>
exitl:
(We decide to extend)

Logical Unit (non-zero) for volume [<RETURN>
exitl:

(This volume is to be extended on LUl)

Volume number [0-63; <RETURN> = don't carel:
Base Volume 0 and its current extensions have
a total of 41 blocks which will hold a maximum
of approximately 246 keys.

(The following prompt requests the number of
keys or blocks for the new Extension
Directory. That number must be added to the
number of keysblocks given in step 12, i.e.
the number given there was 250, we decide we
want 100 more and the number to be entered is
therefore 350).

New maximum number of indexes (keyes)
[Negative for size in blocksl:

APPENDIX A

Step Command — System Prompt (and comments in parentheses)

16

17

18

19

20

21

22

23

350

<RETURN>

500

Revision 02
POINT 4 Data Corporation A-3 Prelim. Polyfiles Document

Allocating volume. Please wait.

Volume 1 allocation complete.

Structuring volume 1 as a directory extension.
Please wait.

Structuring complete.

Extend Base Volume 0 more ["Y""N"; <RETURN>
exitl:

(We do not wish to extend anymore)

Logical Unit (nonzero) for volume [<RETURN>
exitl]:

(This volume is to reside on LUl)
Volume number [0-63; <RETURN> = don't carel:

(We don't care about the vol. number and let
the system assign the next number)

Volume types: "B" Base Directory
"E" Extension Directory
"D" Data

Volume type:

(We wish to build a Data Volume)
Data Volume(s) to have maps? ["Y""N"]:
(Yes, the Data Volumes are to have maps)

Volume size in indexes (keys)
[Negative for size in blocksl:

(The size has been entered in 'keys',
therefore a positive number was used)

Allocating volume. Please wait.

Volume 2 allocation complete.

Structuring volume 2 as Data Volume. Please
wait.

Structuring complete.

Logical Unit (non-zero) for volume [<RETURN> =
exitl:

(This volume is to be extended on LUl)

Volume number [0-63; <RETURN> = don't carel:

APPENDIX A

mgnmmindmmummpt_md_mmmmm_iunmhﬁaﬁﬁl

24

25

26

27

28

29

30

31

32

<RETURN>

17

12

<RETURN>

Revision 02
POINT 4 Data Corporation A-4 Prelim. Polyfiles Document

(We will let the computer assign volume
numbers)

Volume types: "B" Base Directory
"E" Extension Directory
"D" Data

Volume type:

(Starting with a Base Directory again)
Starting directory number for this volume:
(Starting with directory 1 this time)
Directory numbers available from 1 thru 63

Directory 1 Key size in characters
[<RETURN> to terminatel:

(The key size for directory 1 is to be 17
characters long) '
Directory 2 Key size in characters
[<RETURN> to terminatel:

(The key size for directory 2 is to be 12
characters)

Directory 3 Key size in characters
[<RETURN> to terminatel:

(The key size for directory 3 is to be 7
characters long)

Directory 4 Key size in characters
[<RETURN> to terminatel:

(The key size for directory 4 is to be 5
characters)

Directory 5 Key size in characters
[<RETURN> to terminatel:

(This time we terminate here)

This directory setup ok? [<KRETURN> = okl:

(Either a 'Y' or a <RETURN> may be used. We
will enter a 'Y'.)

Volume size in indexes (keys)
[Negative for size in blocksl:

APPENDIX A

P o

Step Command System Prompt (and comments in parentheses)

33

34

35

36

37

38

39

40

41

1000

<RETURN>

44

60

<RETURN>

Revision 02
POINT 4 Data Corporation A-5 Prelim. Polyfiles Document

(The size has been entered in 'keys',
therefore a positive number was used)

Allocating volume. Please wait.

Volume 3 allocation complete.

Structuring volume 3 as Base Directory Volume.
Please wait.

Directory: 1 2 3 4 Structuring
complete.

Extend Base Volume 3 more ["Y""N"; <RETURN>
exit]l:

(We decide not to extend)

Logical Unit (non-zero) for volume [<KRETURN>
exitl:

(This volume is to be extended on LU2)
Volume number [0-63; <RETURN> = don't carel:
Volume types: "B" Base Directory

"E" Extension Directory

"D" Data
Volume type:
(We have decided to build yet another Base
Directory)
Starting directory number for this volume:
(We have started with directory #44)
Directory numbers available from 44 thru 63

Directory 44 Key size in characters
[<RETURN> to terminatel:

(The key size for directory #44 is to be 60
characters long)

Directory 45 Key size in characters
[<RETURN> to terminatel:

(The size of '60' was an error, so we cancel
this and start over

This Directory setup ok? [<KRETURN> = okl:
terminatel:

Starting Directory number for this volume:

APPENDIX A

Step Command = System Prompt (and comments in parentheses)

42

43

44

45

46

47

48

49

50

51

44

120

<RETURN>

<RETURN>

100

Revision 02
POINT 4 Data Corporation A-6 Prelim. Polyfiles Document

Directory numbers available from 44 thru 63

Directory 44 Key size in characters
[<RETURN> to terminatel:

(The key size for vol. 44 is to be 120
characters long)

Directory 45 Key size in characters
[<RETURN> to terminatel:

This directory setup ok? [<KRETURN> = okl

Volume size in indexes (keys)
[Negative for size in blocksl:

Allocating volume. Please wait.

Volume 4 allocation complete.

Structuring volume 4 as Base Directory Volume.
Please wait.

Directory: 44 Structuring complete.

Logical Unit (nonzero) for volume [<RETURN> =
exitl]

Volume number [0-63; <RETURN> = don't carel:

Volume types: "B" Base Directory
"E" Extension Directory
"D" Data

Volume type:

(We have chosen to build an Extension
Directory)

Volume to extend:

(The Extension Directory is to be #0)

Base Volume 0 and its current extensions have
a total of 58 blocks which will hold a maximum
of approximately 348 keys.

New maximum number of indexes(keys)
[Negative for size in blocksl:

(This time the size is being given in blocks)

Allocating volume. Please wait.

Volume 5 allocation complete.

Structuring volume 5 as Base Directory Volume.
Please wait.

Structuring complete.

Extend Base Volume 0 more ["Y""N"; <KRETURN> =
exitl]:

APPENDIX A

Step Command = System Prompt (and comments in parentheses)

52

53
54

55

55

57

N

<RETURN>

Logical Unit (non-zero) for volume [<RETURN)> =
exitl:

Volume number [0-63; <RETURN> = don't carel:

Volume types: "B" Base Directory
"E" Extension Direcory
"D" Data

Volume size in records
[Negative for size in blocksl:

Allocating volume. Please wait.

Volume 9 allocation complete.

Structuring volume 9 as a data volume. Please
wait.

Structuring complete.

Logical Unit (nonzero) for volume [<RETURN> =
exit]:

(Exit from this exercise)

Now do a QUERYPF for a complete dump and the result should be the
same as shown in Section 1.5 if both LUl and LU2 were installed.
If LU2 was not installed then you will get meaningless
information for volume 4.

Finally, delete the Polyfile volumes created for this exercise by
using KILLPF as shown in Section 1.7.

Revision 02
POINT 4 Data Corporation A-7 Prelim. Polyfiles Document

APPENDIX A

St

COMMENT SHEET

MANUAL TITLE__ Preliminary Polyfiles Document
PUBLICATION NO. - = REVISION__Q7

FROM: NAME/COMPANY:
BUSINESS ADDRESS:
CITY/STATE/ZIP:

COMMENTS: Your evaluation of this manual will be appreciated by POINT 4 Data
Corporation. Notation of any errors, suggested additions or deletions, or general
comments may be made below. Please include page number references where
appropriate.

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on Dotted Lines and Tape

| ” || | NO POSTAGE
NECESSARY

IF MAILED IN
UNITED STATES :
BUSINESS REPLY MAIL
FIRST CLASS PERMITNO. 5755 SANTA ANA. CA. —— .
POSTAGE WILL BE PAID BY ADDRESSEE: — | £
SEEEs————— .
R CE e
-] :
POINT 4 Data Corporation m—
PUBLICATIONS DEPARTMENT — O
2569 McCabe Way EE——
Irvine, CA 92714

POINT 4 DATA CORPORATION

2569 McCabe Way / Irvine, California 92714 / (714) 863-1111

