CUSTOM SYSTEMS，INC．
296 STORAGE MODULE
DISK CONTROLLER

TABLE OF CONTENTS
SECTION 1 INTRODUCTION
SECTION 2 SPECIFICATIONS
SECTION 3 INSTALLATION
SECTION 4 DIAGNOSTICS AND SOFTWARE
SECTION 5 TROUBLESHOOTING
SECTION 6 PROGRAM CONTROL
APPENDIX A
3.1 Board Layout
3.1.2 Board Cover
3.2 Device Code Select Switch
3.3 Bank Select Switch
3.4 Port Configuration Switches
3.5 Data Channel Throttle Switch
3.6 AOS Switch Settings
3.7 Interleave, Dual Volume Switches
3.8 Daisy Chaining Drives
3.9 Example for 32 Sector Disk
6.1 Format Sequencer EPROM Map
6.2 Header Formats
LIST OF TABLES
3.1 Bank and Port Configuration Single Doc
3.2 Bank and Port Configuration Double Doc
5.1 Selftest Error Codes
6.1 Read/Write Fault (DIA)
6.2 Drive Fault Table (D|B)

SUB-TABLE OF CONTENTS

1.0 INTRODUCTION
1.1 FEATURES

The Custom Systems, Inc. 296 Storage Module Disk Controller provides a full emulation integration of Data General Nova/Eclipse Minicomputers, SMD Interface Disk Drives and RDOS/AOS/MP/AOS Operating Systems. It is fully compatible with Data General and Data General emulating minicomputers and complies with FCC regulations.

Advantages:
. Cost Savings to 60%
. Faster Systems throughput

- Increased Reliablity
. Increased Capacity
. Hardware or Software Correctable ECC
.Full Two Year Warranty

1.1 FEATURES

.Emulation of Data General 6060, 6061, 6067, 6122, 6160, 6161 Disk Subsystem
. Simultaneous Control of up to (4) SMD Interfaced Disk Drives
. FCC Compliant

- Incorporates an Eleven Bit SMD Tag Bus to accommodate full capacity of the larger Drives
. Mix Drives of differing capacities and transfer rates
. On-Board 32 bit error checking and correcting of burst errors up to 11 bits in length
. High speed Microprocessor design supports maximum transfer rates
. On-Board SELFTEST with error reporting and LED display
. Capable of Three Sector Buffering
.Sector Interleaving
. Switch Selectable DMA Throttle Control
. Support Overlap Seeks

```
.Offset Positioning for Data Error Recovery
.Data Strobe Early/Late for Data Error Recovery
.Two Methods of Power Fail Detection
.Logging of the number of Data Corrections that
have occurred on a per unit basis
.Disk Drive Power Sequencing
.Delayed Power on Pick
.Mix different Drive Formats
. Extended Unit Select Address
. Header CRC Auto Re-try
```


SUB-TABLE OF CONTENTS

2.0 SPECIFICATIONS
2.1 INTERFACE
2.1.1 DRIVE
2.1.2 COMPUTER
2.2 POWER
2.3 PHYSICAL
2.4 ENVIRONMENTAL

2.1 INTERFACE

2.1.1
 DRIVE

Electrical: Standard SMD Interface
Driver/Receiver: Differential
Cabling: EXTERNAL
One 60 Pin Shielded Round Cable ("A" Cable) for the first Disk Drive (Daisy Chained).

One 26 Pin Shielded Round Cable ("B" Cable) for the first Disk Drive (Radial).

I NTERNAL
One 60 Pin Ribbon Cable with D Connector on one end that mounts in the backpanel. The other end plugs into a Padde Board. See Figure 3.1.1.

One to four 26 Pin Ribbon Cables with D Connector on one end that mounts in the backpanel. The other end plugs into a Paddle Board. See Figure 3.1.1.

Multiple Drives: Up to four Drives (Dual Volume counts as two) per controller. The 60 Pin "A" Cable, Daisy Chains from Drive to Drive, with the last Drive in the chain receiving an "A" Cable terminator. The 26 Pin "B" Cable connects radially to each Drive. (No Terminators required). Reference Figure 3.8.

Performance:

2.1.2 COMPUTER

The controller is compatible with any Model DG Nova
or Eclipse computer interface. Data transfer occurs
over the standard or high-speed data channel.
2.2 POWER
+5 VDC e 6.6 Amps
-5 VDC © 0.7 Amps
2.3 PHYSICAL
Dimensions: 15 inches by 15 inches by $1 / 2$ inch
Shipping Weight: 10 Pounds (3.7 kg.) includes cables, diagnostics and documentation.
Cables: 60 Pin Ribbon "A" Cable - 15 feet
26 Pin Ribbon "B" Cable - 15 feet
2.4 ENV IRONMENTAL
Operating Temperature: 0 to 55 degrees C
Relative Humidity: 10% to 90% (non-condensing)
Exceeds all Nova/Eclipse temperature and humidityspecifications.
3.0 INSTALLATION
3.1 UNPACKING AND INSPECTION
3.2 CONFIGURING THE 296 CONTROLLER
3.2.1 SWITCH LOCATION F2 (REFERENCE FIGURE 3.2)
3.2.2 SWITCH LOCATION A1 - BANK SELECT (REFERENCE FIGURE 3.3)
3.2.3 PORT CONFIGURATION SWITCH SELECTION
3.2.4 SWITCH LOCATION G5 (REFERENCE FIGURE 3.5)
3.2.5 SWITCH LOCATION H5 (REFERENCE FIGURE 3.7)
3.3 BOARD INSERTION
3.3.1 PADDLE BOARD INSERTION
3.4 PRIORITY SELECTION
3.5 POWER FAIL PROTECTION
3.6 CABLING (INTERNAL AND EXTERNAL)
3.6.1 SYSTEM GROUNDING
3.7 DRIVE PICK-HOLD
3.8 POWERING UP
$\begin{array}{ll}\text { 3.8.1 SPECIAL CONSIDERATIONS FOR FUJITSU } 2351 \\ & \text { SECTOR SELECTION }\end{array}$
3.8.2 SPECIAL CONSIDERATIONS FOR CDC 9457 (LARK II)
3.9 SYSGEN

It is suggested that the Disk Drive Manufacturer's Manual be referenced for correct switch settings of the Disk Drive. Please read the following 296 Installation Section carefully.
3.1 UNPACKING AND INSPECTION

All parts comprising of the Model 296 are shipped in one container consisting of:
a) Controller
b) Backpanel to Disk Drive Cabling (Optional)
c) Backpanel Paddle Boards
d) Backpanel to Disk Drive Cables (Optional)
e) Diagnostic Software
f) Technical Manual

On receipt of the Model 296 from the carrier, inspect the shipping carton immediately for any evidence of damage or mishandi ing in transit.

If the shipping carton is water stained or damaged, contact the carrier and shipper immediately, specify the nature and extent of the damage and request that the carrier's agent be present when the carton is opened.

Custom Systems' warranty does not cover shipping damage.

For repair or replacement of any Custom Systems product damaged in shipment, call Custom Systems to obtain return authorization instructions.

NOTE: The $1 / 2^{\prime \prime}$ magnetic tape contains; Disk Formats (CSI, CSI High Speed and Alternate), CSI Diagnostics, CSI Reliability and CSDKINIT-Disk Initializer. Refer to Section 4.0.

3.2 CONFIGURING THE 296 CONTROLLER

The configuration of the 296 is eased by having all options switch selectable. This section discusses each option switch and the meaning of each Switch's On and Off position. At the completion of Section 3.2 the configuration of the 296 will be completed. Refer to Figure 3.1 for the location of all referenced Switches and Port Connector Assignments. Insure the Disk Drive you are installing has the Index and Sectoring signals on the A Cable. If these signals are on the B Cable only, the controller board will not install correctly.

CAUTION: The 296 with its FCC cabling scheme will only work in the "I/O Only" Slots of the Nova 4, S120, S140, S280 and S250/C350 with optional "I/O Only" backplane.

Insure you adhere to the following list to validate your warranty:

CPU TYPE(S) "I/O ONLY" SLOTS
Nova 4, S120 (5 slot) 3-5
Nova 4, S120, S140 (16 slot) 12-16
S280 (20 slot) 11-19
S250/C350 *2-16
*Requires optional "l/O Only" backpanel.
3.2.1 SWITCH LOCATION F2 (REFERENCE FIGURE 3.2)

Switch Positions 1 thru 6 control the Device Code selection of the controller. Any of the 77 (octal) possible Device Codes are selectable with the standard Device Codes being 27 (octal) Primary and 67 (octal) Secondary. Establish the desired Device Code.

$$
\begin{aligned}
& \text { 0 Port-0 Config. Switch } \\
& \text { A Port-1 Config. Switch } \\
& \text { (2) Port-2 Config. Switch } \\
& \text { 3 Port } 3 \text { Config. Switch } \\
& \text { A Bank Select Switch } \\
& \text { s Device Code Switch } \\
& \text { 6 Throttle \& ECC Enable Swit } \\
& \text { Anterleave and CMD Switch } \\
& \text { 8. Indicates Pin } 1 \\
& \text { 9. All Unmarked Capacitors } \\
& \text { are . } 05 \text { uf. }
\end{aligned}
$$

BOARD DIAGRAM
FIGURE 3.1.1

Switch Position 7 is used to control looping on the controller's Selftest Feature. With the switch in the On position the Selftest feature will operate continuously. With the switch in the Off position the Selftest will occur once on Power Up. This switch must be in the OFF position.

Switch Position 8 controls the Mixed Drive Format feature. When Switch 8 is $O N$ (Alternate Format Disabled) all four Ports will use the same disk format (reference Figure 3.2). Normally Switch 8 is $0 N$. With Switch 8 ON , when set to Bank 1-5, (reference Tables 3.1/3.2) you receive CSI format on all 4 Ports ($0-3$). A Port indicates a connection point (B Cable) for the Disk Drive. With Switch $80 N$, When set to Bank 6, you receive DG format on all 4 Ports (0-3). With Switch 8 ON , when set to Bank 7 , you receive Alternate 1 format for all 4 Ports $(0-3)$. In each case all 4 Ports ($0-3$) are the same format. If a disk format is required on Ports 0 and 1 and a different disk format is required on Ports 2 and 3 , set Switch 8 to the OFF position. When Switch 8 is OFF you enable the Alternate format. Refer to Tables 3.1/3.2 for Alternate Format Bank Selection. For a detailed description of the Disk formats reference Section 3.8 and 6.5. Remember Switch 8 is normally $O N$.

Location F2
Figure shows Device Code 278 , Maintenance Switch Off,
Alternate Format Disabled.

Device Code	S1	S2	S3	S4	S5	S6
OX	OFF	OEF	OFF			
1X	OFF	OFF	ON			
2 X	OFF	ON	OFF			
$3 X$	OFF	ON	ON			
4X	ON	OFF	OFF			
5 X	ON	OFF	ON			
6x	ON	ON	OFF			
$7 \times$	ON	ON	ON			
X0				OFF	OFF	OFF
X1				OFF	OFF	ON
X2				OFF	ON	OFF
X3				OFF	ON	ON
X4				ON	OFF	OFF
X5				ON	OFF	ON
X6				ON	ON	OFF
X7				ON	ON	ON

DEVICE CODE SELECT SWITCH
Figure 3.2

Switch Position 1 is reserved and must be in the $O N$ position. Switch Position 2 thru 4 select one of the seven possible Bank Selects (reference Tables 3.1/3.2). Two Tables reference to Bank and Port Configuration. Table 3.1 is the Single DOC Mode (see Section 6.2 .3 for DOC explanation) for 6060, 6061 and 6067 emulations of 32 sectors or less. When you have RDOS 6.7 or less you must choose Table 3.1. When Dual Volumes of 32 sectors or less are needed use the Single DOC Mode. Table 3.2 is the Double DOC Mode for 6160,6161 and 6122 emulations of more than 32 sectors. Dual 35 sectoring requires Double DOC. In Tables $3.1 / 3.2$ the Bank Select numbers are on the horizontal (X) axis and the Select Configuration numbers are on the vertical (Y) axis. First decide which format will be used (CSI, DG or ALT 1). The CSI format has an extra Sync Bit for error checks.

NOTE: Refer to Section 3.2.1 for the correct position of Switch 8 at Location F2. This switch affects the format.

Under each Bank Select is a list of Disk Drives. Locate which drives will be used, insuring they all come from within the same Bank. When this process is done the Bank Select can be made. Remember, only one Bank can be chosen.

Location Al

Figure shows bank two selected.

SW2	SW3	SW4	BANK SELECTED
ON	ON	ON	0
ON	ON	OFF	1
ON	OFF	ON	2
ON	OFF	OFF	3
OFF	ON	ON	4
OFF	ON	OFF	5
OFF	OFF	ON	6
OFF	OFF	OFF	7

BANK SELECT SWITCH

Figure 3.3

3.2.3 PORT CONFIGURATION SWITCH SELECTION

For example, it is desired to have CSI format on all
Ports and the following Disk Drives connected to -
Port $0=C D C 9762$ (Select Configuration 0)
BANK 1 Port $1=\operatorname{CDC} 9766$ (Select Configuration 1)
Port 2 = Ampex Capricorn 330 (Select Configuration 7)

Tables $3.1 / 3.2$ indicates that these drives are all under Bank Select 1. Therefore, set the Bank Select Switch (location A1) to Bank 1 (see Figure 3.3). Set Port 0 Switch (location B1A) to Select Configuration 0, Port 1 to Select Configuration 1 and Port 2 to Select Configuration 7 (see Figure 3.4).

$$
\begin{aligned}
& \text { Location B1A - Port } 0 \\
& \text { Location B1B - Port } 1 \\
& \text { Location B2A - Port } 2 \\
& \text { Location B2B - Port } 3
\end{aligned}
$$

Select Configuration 0 shown.

SW1	SW2	SW3	SW4	Select Configuration
ON	ON	ON	ON	0
ON	ON	ON	OFF	1
ON	ON	OFF	ON	2
ON	ON	OFF	OFF	3
ON	OFF	ON	ON	4
ON	OFF	ON	OFF	5
ON	OFF	OFF	ON	6
ON	OFF	OFF	OFF	7
OFF	ON	ON	ON	8
OFF	ON	ON	OFF	9
OFF	ON	OFF	ON	10
OFF	ON	OFF	OFF	11
OFF	OFF	ON	ON	12
OFF	OFF	ON	OFF	13
OFF	OFF	OFF	ON	14
OFF	OFF	OFF	OFF	15
		PORT CONFIGURATION SWITCHES		

BANK \& POPT CONTIGURATION

ASSOCIATED BLOCKS INDICATE FOMMSTED CAPACITV
N MEGABYTCS(MB) \& NUMBCR OF STSTEM SECTORS (5)
103735 E-
BANK $\$$ PDRT CONFIGURATION
TABLE 3:2 6IXX EMULATION $00 C$ mooc
4
BANK SELECT \rightarrow

Switch Positions 1, 2 and 3 control the DMA Throttle Setting (i.e. the number of words that will be transferred per a Data Channel Access). Throttle adjustment is dependent on the type of system configuration the controller is installed into. Too low of a throttle setting could result in slow disk performance and too high of a setting could cause a data late on another data channel device. Set the desired throttle setting (normally set to 16).

Switch Positions 4, 5, 6 and 7 are used for identification bits to inform the system of subsystem type under AOS. (See Figure 3.6).

NOTE: These switches do not apply to RDOS. For RDOS Switch Positions 4, 5, 6 and 7 should be ON. (See Figure 3.6).

Switch Position 8 is the ECC Enable Switch. When the ECC switch is On, on-board error correction and Data Strobe Early/Late is enabled. A running count of ECC corrections and successful Data Strobe Early or Late Data Recoveries are logged in scratch pad memory (separate count for each unit). With the switch Off, ECC corrections must be handled by the software. The hardware switch overrides the software enabled/disabled command. (To use the software commands, the switch must be in the On position.) When changing the switch from an Off to an On position, IORESET Switch or Power Off/On must be depressed. Switch 8 is normally $0 N$.

Location G5
Throttle Setting of 16, RDOS ON, ECC Enabled

THROTTLE SETTINGS

SW1	SW2	SW3	NUMBER OF WORDS
ON	ON	ON	2
OFF	ON	ON	4
ON	OFF	ON	8
OFF	OFF	ON	16
ON	ON	OFF	32
OFF	ON	OFF	64
ON	OFF	OFF	128
OFF	OFF	OFF	256

DATA CHANNEL THROTTLE SWITCH
Figure 3.5

Switch Position 1 and 2 should be $O N$ in all cases (AOS and RDOS). Switch 3 enables looping on any subsection of Selftest that is failing. In the OFF position you receive a short Selftest. Switch 3 is normally OFF.

Switch 4 and 5 are used to inform the Microprocessor that the Dual Unit is attached (Dual Unit indicates two volumes, fixed and removable). Examples of two Unit Drives are the Lark I (9455-16), Lark II. (9457), Amcodyne 7110 and CDC CMD (9448 Series).

If a Dual Unit is to be connected, the Drive(s) unit number plug must be an even number. A Dual Unit is treated as two logical units, so a maximum of two Dual Units, or one Dual Unit and two other Drives can be connected. The Sector Switch Setting within the Disk Drive is shown in the System Sector Block in the lower right hand corner of Tables 3.1/3.2. See Section 3.8.2 for special considerations for the CDC 9457 Lark 11.

The term Dual is used in Tables 3.1/3.2. Dual indicates two emulations or Dual Volumes which are treated as two units if the drive characteristics permit. For example, Bank 4, Select Configuration 6 is for Dual 6061 (AOS) operation for the Fujitsu 2351 Eagle. The Dual Volume Switch 4 should be ON. Insure you have set switches in accordance to Figure 3.6. In Bank 4, Select Configuration 7, which operates Dual Volumes for the Fujitsu 2351 Eagle (RDOS). It also requires Switch 4 (H5) to be $O N$. In each case (Dual Unit and Dual Volume) you must format the two units.

ID SWITCH SETTINGS FOR 61XX AND 60XX EMULATIONS UNDER AOS NOTE: For RDOS all Switches should be ON. (SWITCH IS LOCATED AT BOARD COORDINATES G5.AND H5)

LOCATION G5

Switch Pos.

	$\begin{aligned} & \quad 7 \\ & \text { OFF = } \\ & \text { FIXED } \\ & \text { DISK } \end{aligned}$	$$	$$	$\begin{aligned} & 4 \\ & O N=6214 \\ & O N=616 X \\ & O F F=6122 \end{aligned}$
6160	OFF	OFF	OFF	ON
6161	OFF	ON	ON	ON
6122	ON	ON	ON	OFF
$\begin{aligned} & 6060 \\ & 6061 \\ & 6067 \end{aligned}$	ON	ON	ON	ON
RDOS	ON	ON	ON	ON

LOCATION H5

2	
IDO	
ON=6161	
OFF=62 $=614$	OFF=2614
$O N$	$O N$

6160-35 Sectors
5 Heads
823 Cylinders
73 Mega Bytes Formatted

6060 - 24 Sectors
19 Heads
411 Cylinders
96 Mega Bytes Formatted

6161 - 35 Sectors
10 Heads
823 Cylinders
147 Mega Bytes Formatted

6122 - 35 Sectors
19 Heads
815 Cylinders
277 Mega Bytes Formatted

6061 - 24 Sectors
19 Heads
815 Cylinders
190 Mega Bytes Formatted

6067-24 Sectors
5 Heads
815 Cylinders
50 Mega Bytes Formatted

Location H5

I.D. Bits, Maintenance Switch OFF, No CMD's, Double DOC Enabled, Maintenance Switch ON, Interleave OFF

INTERLEAVE, CMD, SECTOR VERIFY SWITCHES
Figure 3.7

For Dual Volumes the System Sector Block, in the lower right hand corner of each Bank and Select Configuration, shows two sector numbers. These two sector numbers should be added together to determine the Disk Drive Sector Setting. For example, (Table 3.2) Bank 4, Select Configuration 11 the APS 4830/4835's Sector Switch Setting would be 70. Refer to Section 3.8 .1 and 3.8 .2 for special Disk Drive considerations.

If a Dual Volume Drive has logic plug 0 installed then Switch 4 must be $O N$ and Switch 5 OFF. If a Dual Volume Drive has logic plug 2 installed then $S w i t c h 4$ must be OFF and Switch 5 ON. If there are not any Dual Volume Drives, then both Switch 4 and 5 must be OFF.

Switch 6 is for the Single DOC or Double DOC Mode. Single DOC applies to 32 sectors or less (when in a single volume). RDOS Revision 6.7 or less is used for Single DOC. Double DOC applies to 33 to 64 sectors. Double DOC Mode requires RDOS Revision 7.0 or greater. The 296 is factory set for Double DOC unless otherwise specified. See Tables 3.1/3.2 to identify your Drive and its DOC Mode setting. Remember when using RDOS 6.7 or less you must choose Single DOC. If this switch is $O N$ then you are in the Single DOC Mode. If this switch is OFF then you are in the Double DOC Mode (see *NOTE).

AOS

Single DOC is 6060, 6061, 6067
Double DOC is 6160, 6161, 6122

[^0]Switch 7 controls the run time of Selftest. When the switch is $O n$, the short verison of the RAM test is run. When the switch is Off the long version of the RAM test is run. Normally Switch 7 is $0 N$.

Switch 8 enables the sector interleaving feature. When
Switch 8 is $O N$ it enables sector interleaving by a factor of 3 . See Figure 3.9 for 32 sector example. This interleave factor eliminates the need for surface spiral and is restricted to operation with the number of sectors that meets the following equation:

$$
(X+1) / 3=0 \text { Remainder }
$$

Where $X=$ The desired number of sectors on the drive.

Interleaving may be desired to fine tune a systems performance.
This is to avoid going a full revolution on the disk when the CPU cannot respond fast enough to catch the next sector. Only the drive at Bank 4, Select Configuration 0 utilizes the interleave. Insure Switch 8 is on when using Bank 4, Select Configuration 0 .

When Switch 8 is in the OFF position the sector interleaving feature is disabled. Normally Switch 8 is OFF.

The 296 SMD is to be installed only after inspection, switch settings are verified and you determine if "I/O Only" slots are available. Component damage will occur if a slot other than an "I/O Only" slot is used (refer to Section 3.2). Custom Systems' warranty is void if a non-l/O slot is used. Carefully guide the controller board into the desired slot by allowing the edges of the board to follow the guides evenly. Use the lock tabs on the two outside corners to provide leverage when the board meets the connector. Use equal pressure on both lock tabs until the board seats firmly into the backplane connectors.

3.3.1 PADDLE BOARD INSTALLATION

Two Paddle Boards connect onto the Minicomputer backplane pins (observe which slot the 296 occupies in order to determine which set of backplane pins for connection) one Paddle Board connects to the "A" backplane and one on the "B" backplane. Make sure the $C P U$ backplane pins are straight first, then reference Figure 3.1.1 for proper installation. The Paddle Board, (labeled B) with the 60 pin header, goes on the "B" backplane. The Paddle Board, (labeled A) with the 4-26 pin headers, goes to the "A" backplane.

The controller must receive two priority signals from the Data General minicomputer backplane, data channel priority in (Pin A94) and interrupt priority in (Pin A96). If there are vacant slots between the controller and the processor, priority jumper wires must be installed in the vacant slot(s) to obtain priority continuity between controllers. To jumper across unused slots, connect A93 (data channel priority out) to A94 (data channel priority in) and A95 (interrupt out) to A96 (interrupt priority in). Reference your Data General Manual for additional information if needed.

3.5 POWER FAIL PROTECTION

The 296 Disk Controller contains a double protection power fail scheme. The Data General CPU outputs a signal called "Power Fail" which gives an early warning of power loss. This is used on the 296 to disable the drives write circuitry through the open cable detect ine.

To enable this power fail protection connect A47 of the 296 backplane slot to Pin A5 of a Nova 3 CPU backplane slot or A9 on a Nova 4 power supply slot.

In addition, the 296 contains power fail circuitry to further protect drive data integrity in the event the slot where the board is installed loses power.

INTERNAL DISK CABLING

As shown in Figure 3.1 .1 the 60 pin (female end) conductor cable (referred to as Internal SMD "A" cable) plugs into the "B" Paddle Board. The other end of this cable (D connector) mounts into the backpanel.

The 26 pin (female end) conductor cable (referred to as Internal SMD "B" cable) plugs into the "A" Paddle Board. The other end of this cable (D connector) mounts into the backpanel. (Observe the port assignments on the Paddle Board in order to keep track on the backpanel which port is 0-3.) If more than one Drive is to be connected, we recommend labeling the associated port(s).

EXTERNAL DISK CABLING

As shown in Figure 3.8, the 60 pin "A" cable connects between the appropriate backpanel D connector and the first Drive then continues from Drive to Drive in a daisy chain fashion. The last Drive in the chain must have a terminator installed in place of the daisy chain cable. BE SURE TO OBSERVE THE ARROWS ON THE HEADERS AND PLUGS FOR PROPER ORIENTATION. Each Drive must have a 26 pin "B" cable connected between the Drive and the backpanel D connector in a radial fashion.

Insure that the Port Configuration $S w i t c h e s$ match the corresponding Drive type plugged into that port.

Refer to the Drive Manufacturer's Manual for proper Subsystem grounding if required.

DAISY-CHAINING DRIVES
Figure 3.8

Because the power system safety ground does not necessarily satisfy all system grounding requirements, additional connections are required to earth ground, referred to as system ground. The controller and its attached drive(s) must be connected to a singlepoint ground system. Ground connections are made via ground braids that pass from drive to drive, drive to computer chassis and computer chassis to earth ground. WARNING - To ensure proper ground return to earth, each component in the system must be connected using a daisy chain ground system. Both the AC and DC grounds within each drive must be joined (consult drive manual). The drives must then be joined by a daisy chain grounding braid and connected to the grounding post at the rear of the computer cabinet.
3.7 DRIVE PICK-HOLD

On initial power up, the controller will delay activating pick-hold (spins up drive) for one second. This feature eases the initial current demand on the $A C$ power source.

EXAMPLE FOR 32 SECTOR DISK
Figure 3.9

Turn System power $0 N$. The 296 will perform an initial "Selftest" by briefly lighting a red LED. A good test is indicated by the LED turning OFF. For more detalls refer to Section 5.0. Once a good test is indicated, format your Disk. We recommend using the CSI format due to its added features of; more error checks on header, conforms to necessary drive characteristics and does not require patching. For CSI Disk Formatter refer to Section 4.0, 4.2 and Appendix A. For the next installation step (RDOS) we recommend running Disk Reliability in order to exercise and test the disk system. Refer to Section 4.3 and Appendix A. If you are using AOS we recommend you run Diagnostics in addition to Reliablity. Under AOS run Diagnostics first and Reliablity second. Refer to Diagnostics Section 4.1. The final step involves the use of CSDKINIT for RDOS or DFMTR for AOS. Before you load any RDOS or AOS onto a Model 296 disk you must initialize the disk by running CSDKINIT (RDOS) or DFMTR (AOS). For CSDKINIT refer to Section 4.4. For DFMTR refer to Data General's Manual.

3.8 .1	SPECIAL CONSIDERATIONS FOR FUJITSU 2351 SECTOR SELECTION
	When setting up the sector switch settings within the
	Fujitsu 2351 Eagle add one sector to the system sector
	block in Table 3.1/3.2. For Example, Bank 4, Select
	Configuration 0 (see Table 3.2) indicates 47 sectors
	(volume). The sector switch setting within the Fujitsu Eagle
	should be set to 48. With the Fujitsu Eagle set at 48 your
	characteristics with the CSI format will indicate 20 heads,
	842 cylinders and 47 sectors.
	For Bank 4, Select Configuration 6, 7 and 8 you should
	also have one sector added when configuring the sector
	setting within the Fujitsu Eagle. Adding one sector is
	only true for the Fujitsu 2351 Eagle. When setting up
	the sector switch settings within a Disk Drive use the
	system sector indicated in the small Block in the lower right
	hand corner of each Bank and Select Configuration (Port)
	shown on Tables 3.1/3.2. When Dual emulations or Dual
	volumes are used add the two system sectors together.
	For example, (Table 3.1) Bank 4, Select Configuration 16
	the Fujitsu Eagle sector switch setting would be 49.
3.8 .2	SPECIAL CONSIDERATIONS FOR CDC 9457 (LARK II)
	Insure options W-4 and W-8 are installed within the Disk
	Drive. W-4 identifies Auto Seek on-head change. W-8
	identifies two volumes ($C D C$ terms it CMD). The Sector
	Switch setting within the CDC Lark 11 i is 32 sectors
	(32S) as shown in the System Sector Block of Table 3.1

Listed below is an example of part of the RDOS System Generator.

1. Number of 6060/6061/6067/6122/6160/6161 Disk Controllers (0-2)
2. Device Primary ("0") or Secondary ("1")
3. Controller \#1 6160/6161 Type? ("0"=NO, "1"=YES)
4. Number of Devices for Controller \#1 (1-4)
5. Number of other types of Moving Head Disk Controllers (0-2)
6. Device Primary ("0") or Secondary ("1")

NOTE: On line 3 answer NO when using RDOS. When you answer NO you allow up to four Disk Drives (6160 or 6161) to be connected to the 296. If you answer YES you allow only two Disk Drives (6160 or 6161) to be connected.

SUB-TABLE OF CONTENTS

```
4.0 DIAGNOSTICS AND SOFTWARE
    4.1 DISK DIAGNOSTIC
    4.2 DISK FORMATTER
    4.3 DISK RELIABILITY
    4.4 CSDKINIT - RDOS DISK INITIALIZER
    4.5 CSDSKED - RDOS STAND-ALONE DISK EDITOR
    4.6 ECC - ECC ERROR CORRECTIONS COUNTER FUNCTIONS
```

There are three levels of diagnostics; On-board Selftest, System Diagnostics and System Rellability Programs. Included in the 296 package is a Master M248 tape containing these diagnostics and other CSI supplied software.

To load a program from the tape you should:
Mount M248 tape on drive.
Set console switches to 100022 or 100062.
Press RESET and then LOAD switches.
(See Appendix A for specific Program Load Procedures)

The M248 tape menu will be displayed:
FILE \# PROGRAM
2 Disk Diagnostic
3 Disk Formatter
4 Disk Reliability
5 CSDKINIT - Disk Initializer
6 CSDSKED - Stand-alone Disk Editor
7 Previous "SV" and "TX" Files in Dump Format
8 ECC Programs in Dump Format:
RDOSECC.SV - for RDOS
AOSECC.PR - for AOS
File \# (CR):

You should enter the file number of the program you wish to execute for files $2,3,4,5$ or 6.

To load files from file 7 or 8 , use the standard CLI
commands:
LOAD/R/V MTO:N (for RDOS)
X RDOS LOAD/V @MTAO:N +.SV +.PR +.TX/C (for AOS)

This diagnostic program is provided to find fallures
that are related to the basic operations of the
Disk Controller. The ID Bits (AOS) shown in the sample below will aid in checking the switch settings. Switch settings for $A O S$ are described in the Installation Section, Figure 3.6.

Load the program from the tape provided. (See M248 tape loading in Section 4.0).

The following is a sample dialogue for 6160 (AOS):
C.S.I...DISK DIAGNOSTIC REV. XX

STARTING ADDRESSES:
200-DIAGNOSTIC (INITIALIZE) 201-DIRECT ODT ENTRY 202-RANDOM SEEK EXERCISERS

SEEK EXER 1 IS A SINGLE DRIVE EXERCISER
SEEK EXER 2 IS A TWO DRIVE EXERCISER WITH SEEK OVERLA: 500-DIAGNOSTIC (RESTART)

ENTER DEVICE CODE (27):
ANY DUAL VOLUME UNITS? ENTER 1
ENTER UNIT NUMBERS ($0,1,2,3$) TO RUN: 0,2
SET SWPAK AS PER 8.0, OR HIT (CR) TO CONT.
TESTING UNIT O
MAX \# OF SECTORS/TRACK WITH THIS CONTROLLER IS 64.
--6122 I.D. BIT--
DIB BIT $7=0$
--6160, 6161 \& 6214 I.D. BITS--
ALT1 DIB BIT $1=1$
ALT1 DIB BIT $2=1$
ALT1 DIB BIT $3=1$
ALT1 DIB BIT $6=0$
ALT1 DIB BIT $7=0$
UNIT HDS CYLS SEC/TRK FORMAT
$\begin{array}{lllll}0 & 5 & 35 & 35 & \text { C.S.I. }\end{array}$
These are the units and characteristics found, do you
want to loop on reading them? Enter 1. See Diagnostic
Text at the end of the Manual for further detalls.
The Disk Formatter Program is a utility designed program to format and check Disk Packs to be used on the Disk Systems.
The following is a sample dialogue:
C.S.I...DISK FORMATTER REV. XX
STARTING ADDRESSES:
500-FORMATTER/CHECK PROGRAM 501-CHECK PROGRAM ONLY 502-ERROR LOG। RECOVERY 503-COMMAND STRING INTERPRETER
ENTER DEVICE CODE (27):
SET SWPAK AS PER SECT 8.0 OR HIT (CR) TO CONTINUE
START TIME? - MON,DAY,YR HR,MIN
\# PASSES TO FORMAT COMPLETION? - 6
CONTROLLER ECC CORRECTION IS ENABLED
DO YOU WANT TO SOFTWARE DISABLE (YES/NO)? YES
UNIT TYPE HDS CYLS SEC/TRK FORMAT

0	0	5	823	32	D.G.
2	1	5	815	24	D.G.

ENTER UNIT NUMBERS $(0,1,2,3)$ TO RUN: 0,2
UNIT: 0
ENTER TYPE OF DISK: 0
UNIT: 2
ENTER TYPE OF DISK: 1
FORMATTING UNIT 0,2
See Formatter Text at end of Manual for further details.

The Disk Reliability program is a maintenance program designed to exercise and test the Disk System. The program will test from one to four drives.

The following is a sample dialogue:
C.S.I...DISK RELIABILITY REV. XX

STARTING ADDRESSES:

```
500-RELIABILITY TEST
501-RELIABILITY TEST WITH OPTIONS
502-DISK ADDRESS TEST
503-COMMAND STRING INTERPRETER
504-FORMAT ONLY
505-RUN ALL TESTS
506-SEEK EXERCISER
507-RANDOM SEEK EXERCISER
510-ERROR COUNT/LOG RECOVERY
```

ENTER DEVICE CODE (27):
STARTING ADDRESS $=505$
SET SWPAK AS PER 8.0, OR HIT (CR) TO CONT.
ARE MAPS TO BE EXERCISED (YES/NO)? YES
NOVA 3 TOTAL OF $1 \mathrm{KIS}=64$
START TIME? - MON,DAY,YR HR,MIN
ANY DUAL VOLUME UNITS (YES/NO)? NO
CONTROLLER ECC CORRECTION IS ENABLED
DO YOU WANT TO SOFTWARE DISABLE (YES/NO)? NO
UNIT TYPE HDS CYLS SEC/TRK FORMAT

0	0	5	823	32	D.G.
2	1	5	815	24	D.G.

ENTER UNIT NUMBERS ($0,1,2,3$) TO RUN: 0,2
UNIT: 0
ENTER TYPE OF DISK: 0
UNIT: 2
ENTER TYPE OF DISK: 1
TESTING UNIT 0,2
See Reliability Text at the end of Manual for further details.
$\frac{\text { 4.4 }}{\frac{\text { CSDKINIT }-\operatorname{RDOS} \text { DISK INITIALIZER }}{\text { Initializing a Model } 296 \text { Disk- }} \text { - }}$

Before you load any RDOS system onto a Model 296 disk, you must initialize the disk by running CSDKINIT. This is a stand-alone program which performs all the functions of Data General's DKINIT. Please refer to Data General manual on loading an RDOS system for full details on the functionality of disk initialization.

Remember that only CSDKINIT will work correctly for Model 296 disks. If you are building your system from an RDOS release tape, do NOT run file 4 on the D.G. tape after running CSDKINIT. Data General's DKINIT cannot be run on a Model 296 disk. CSDKINIT can, however, be used to initialize any DG supported disk.

STEP 1 - LOADING
A) If loading from a M248 tape:

Perform the steps described for loading M248 tape in Section 4.0 .

YOU RESPOND:

5
B) If loading from disk: (CSDKINIT.SV must have been previously loaded onto the disk.
Mount the disk pack which contains CSDKINT.
Set console switches to correct device code.
Press RESET and LOAD switches.
PROGRAM DISPLAYS:
FILENAME?
YOU RESPOND:
CSDKINIT or (DIR:CSDKINT, if the program file is located in directory, DIR, other than the master).
STEP 2 - DISK TYPE
PROGRAM DISPLAYS:DISK INITIALIZER - REV. NN.NN/with C.S.I. DiskSupport-REV. 1DISK DRIVE MODEL NUMBER?
YOU RESPOND:
6XXX
NOTE: Enter the X's as shown above.
A) If the disk type is not valid-
PROGRAM DISPLAYS:ILLEGAL DISK TYPE
Step 2 will be repeated until your response is acceptable.
B) if the disk type is valid -
PROGRAM DISPLAYS:
6XXX (CSI Emulation) Drive Type
STEP 3 - DISK UNIT
PROGRAM DISPLAYS:
DISK UNIT?
YOU RESPOND:
DZx, where x indicates drive number: 0, 1, ..., 7 :
A) If the disk unit is not valid -

ILLEGAL DISK UNIT DECLARATION
Step 3 will be repeated until your response is acceptable.
B) If the disk unit is valid -

PROGRAM DISPLAYS:
\# HEADS
\# SEC/TRK
\# CYLINDERS
MGB/BLK
99
99
999
Megabytes if disk >4000 blks. Blocks if disk <4000 blks.

STEP 4 - ECC CORRECTION
CSDKINIT will allow you to disable/enable ECC correction on the controller, if it is currently enabled/disabled via software. If ECC correction is disabled in the hardware, this cannot be changed.

For most situations it is recommended that you software disable ECC correction while running CSDKINIT. This will allow the initializer to flag those bad blocks which are potential problems even though they might be correctable at the time of running CSDKINIT. However, it is also possible to run with ECC correction enabled In cases where there is a need for using marginal media.
The three possible dialogues are:
A) PROGRAM DISPLAYS:CONTROLLER ECC CORRECTION IS HARDWARE DISABLED.YOU RESPOND:NONE
B) PROGRAM DISPLAYS:CONTROLLER ECC CORRECTION IS ENABLED.DO YOU WANT TO SOFTWARE DISABLE? (YES/NO)
YOU RESPOND:
YES To disable ECC correction while running CSDKINIT
NO To leave ECC correction enabled while running CSDKINITC) PROGRAM DISPLAYS:ECC CORRECTION IS SOFTWARE DISABLE.
DO YOU WANT TO ENABLE? (YES/NO)
YOU RESPOND:YES To enable ECC correction while runningCSDKINITNO To leave ECC correction disabled whilerunning CSDKINIT
STEP 5 - COMMANDS AND SUBSEQUENT OUTPUT
The commands which can be selected are identical to thoseof DKINIT.From this point on CSDKINIT will perform exactly as DKINIT.

CSDSKED provides the same functions for the 296 disk as Data General's DSKED does for standard DG disks. It can also be used for any DG supported disk. Please refer to the Data General Stand-alone Disk Editor Manual for a complete description of the commands.

We will describe the steps necessary to run CSDSKED.

STEP 1 - LOADING
A) If loading from a M248 Tape:

Perform the steps described for loading M248 tape in Section 4.0.

YOU RESPOND:
5
B) If loading from disk: (CSDSKED.SV must have been previously loaded onto the disk).

Mount the disk pack which contains CSDSKED.
Set console switches to correct device code.
Press RESET and LOAD switches.
PROGRAM DISPLAYS:
FILENAME?
YOU RESPOND:
CSDSKED or (DIR:CSDSKED, if the program file is located in directory, DIR, other than the master).

STEP 2 - DISK TYPE
PROGRAM DISPLAYS:
DISK EDIT - REV NN.NN WITH C.S.I. DISK SUPPORT - REV. 1
DISK DRIVE MODEL NUMBER?
YOU RESPOND:
6XXX
NOTE: Enter the X 's as shown above.
A) If the disk type is not valid -

PROGRAM DISPLAYS:
ILLEGAL DISK TYPE
Step 2 will be repeated until your response is acceptable.
B) If the disk type is valid -

PROGRAM DISPLAYS:
6XXX (CSI Emulation) Drive Type

STEP 3 - DISK UNIT
PROGRAM DISPLAYS:

DISK UNIT?
YOU RESPOND:
DZx, where x indicates drive number: $0,1, \ldots . .7$:
A) If the disk unit is not valid -

PROGRAM DISPLAYS:
ILLEGAL DISK UNIT DECLARATION
Step 3 will be repeated until your response is acceptable.
B) If the disk unit is valid -

PROGRAM DISPLAYS:
\# HEADS \# SEC/TRK \# CYLINDERS MGB/BLK $99 \quad 99$ 999

Megabytes if disk >4000 blks. Blocks if disk <4000 blks.

STEP 4 - ECC CORRECTION
CSDSKED will allow you to disable/enable ECC correction on the controller, if it is currently enabled/disabled via software. If ECC correction is disabled in the hardware, this cannot be changed.

The three possible dialogues are:
A) PROGRAM DISPLAYS:

CONTROLLER EC CORRECTION IS HARDWARE DISABLED
YOU RESPOND:
NONE
B) PROGRAM DISPLAYS:

CONTROLLER ECC CORRECTION IS ENABLED
DO YOU WANT TO SOFTWARE DISABLE? (YES/NO)
YOU RESPOND:
YES To disable ECC correction while running CSDSKED

NO To leave ECC correction enabled while running CSDSKED
C) PROGRAM DISPLAYS:

ECC CORRECTION IS SOFTWARE DISABLED
DO YOU WANT TO ENABLED? (YES/NO)
YOU RESPOND:
YES To enable ECC correction while running CSDSKED

NO To leave ECC correction disabled while running CSDSKED

STEP 5 - COMMANDS AND SUBSEQUENT OUTPUT
The commands which can be selected are identical to those of DSKED. From this point on CSDSKED will perform exactly as DSKED.
4.6 ECC - ECC ERROR CORRECTIONS COUNTER FUNCTIONSThe Model 296 controller maintains a counter of ECCcorrections for each drive connected to the board(s).These are the corrections performed by the firmware andare therefore invisible to the system except throughthese counters. The counters are automatically clearedby the reset switch on the front panel or if the controlleris powered down.
The CSI supplied ECC program (RDOSECC.SV for RDOS andAOSECC.PR for AOS) allows you to monitor the media bydisplaying or modifying the counters. Some installationsmay decide to reset the counters to zero on some regularbasis: daily, weekly, monthly or whatever.
STEP 1 - EXECUTING THE PROGRAM UNDER CLI
A) RDOS Version
ENTER: RDOSECC
B) AOS Version
ENTER: X AOSECC

CUSTOM SYSTEMS - ECC FUNCTIONS
1 - DISPLAY CONTROLLER ECC CORRECTIONS
2 - RESET CONTROLLER ECC CORRECTIONS
3 - STOP
NOTE - SELECT ONLY THOSE DRIVES WITH CSI CONTROLLER BOARDS. RESULTS ARE UNPREDICTABLE ON OTHER BOARDS!

ENTER SELECTION

YOU RESPOND:

1) To display the ECC corrections counter(s)
2) To modify the ECC corrections counter(s)
3) To terminate the program and return to the CLI

STEP 3 - ENTERING THE UNIT
If you selected 1 or 2,
PROGRAM DISPLAYS:
ENTER UNIT:
YOU RESPOND:
DZn ($n=0,1, \ldots, 7$) for RDOS
DPFN ($n=0,1,2,3,10,11,12,13$) for AOS Carriage return or new line to return to Main Menu.

The program will display the (decimal) value of the corrections counter for the drive selected. This step will be repeated until the response to ENTER UNIT is carrlage return or new line.

STEP 4 - MODIFYING THE COUNTER

If your response to the Main Menu was 2 - there will be another message after Step 3:

ENTER NEW VALUE:
You respond with the (decimal) value to which you want the counter set. The number must be between 0 and 65,535.

This step will be repeated until you enter a carriage
return or new line which will return you to Step 3.

SUB-TABLE OF CONTENTS

5.0 TROUBLESHOOTING

RMA INFORMATION
-

Selftest checks out all the internal functions of the controller board once for every time power is applied to the board. If short RAM test is enabled the test takes approximately 300 MS. If long RAM test is selected (See Section 3.4.2 for switch setting) the test takes one minute.

If Selftest passed, the red LED will go out. If a failure was detected, the LED will blink a repetitious code indicating the subtest and corresponding circuit that failed.

Looping on error can be achieved by setting SW1 at H5 (See Section 3.4.2) and depressing the $1 / 0$ reset switch which causes the microprocessor to loop on that particular subtest.

Looping on Selftest can be achleved by setting SW7 on F2 (See Section 3.2.1) which causes the microprocessor to continuously loop on the entire Selftest unless an error occurs. The LED will pulsate on each pass.

Reference Table 5.1 for Selftest Error Codes.

CODE	TES T	POSS IBLE FAILURE
1	REGISTER TEST	The data in register F did not compare with register Q. 2901 or 2902 may be bad.
2	RAM TEST	Data read from RAM did not compare with data written. 2114, PBUS or RAM data bus may be bad.
3	2940 ADDRESS GENERATOR TEST	Data read from 2940's did not compare with data written. 2940 may be bad.
4	CONDITION FF, BIT TEST AND 32 BIT SHIFT TEST	The state of the condition flip flops were not correct. Command Full, Busy, Done, Control Full, Overflow (2901), DCHDN (2940) may be bad. The bit testing logic may have failed. The bit shifting mechanism may have failed. (2901)
5	SEQUENCE ERROR TEST	A forced sequence error did not occur within a specified amount of time. Format sequencer may be bad. (No Clock)
6	SYNC DETECT TEST	A sync detect was not made in a specified amount of time or the terminate FF may not have set. The sync register or compare logic may be bad or the terminate FF may be bad.
7	ECC TEST	The generated ECC pattern did not compare with the expected pattern. The shift registers, ECC logic, or multiplexers may be bad.
If th	elftest LED does not b	nk or go out, then the
2925	ck circuitry or the 291	might be bad.

SELFTEST ERROR CODES
TABLE 5.1

CUSTOMER SERVICE

Our warranty attests the quality of materials and workmanship in our products. If malfunction does occur, our service personnel will assist in any way possible. If the difficulty cannot be eliminated by use of the following service instructions and technical advise is required, please phone Custom Systems giving the serial number, board name, model number and problem description. You will be placed in contact with the appropriate technical assistance.

PRODUCT RETURN

Pre-return Checkout.
If controller malfunction is suspected, the use of test software is needed to determine if the controller is the problem and what in particular is wrong with the controller. The tests applicable to this board are listed on the next page of the manual. Please run the test sequence BEFORE considering product return.

Returned Material Authorization.
Before returning a product the Custom Systems for repair, please ask for a "Returned Material Authorization" number. Each product returned requires a separate RMA number. Use of this number is correspondence and on a tag attached to the product will ensure proper handling and avoid unnecessary delays.

Returned Material Information.
Information concerning the problem description, system configuration, diagnostic program name, revision level and results, l.e., error program counter number should be included with the returning material. A form is provided for this information on the next page of the manual.

Packaging.
To safeguard your materials during shipment, please use packaging that is adequate to protect it from damage. Mark the box "Delicate Instrument" and indicate the RMA number (s) on the shipping label.

All possible effort to test a suspected malfunctioning controller should be made before returning the controller to Custom Systems, Inc. for repair. This will: 1) Determine if in fact the board is defective (many boards returned for repair are not defective, causing the user unnecessary system down-time, paper work, and handiling while proper testing would indicate the board is working properly). 2) Increase the speed and accuracy of a product's repalr which is often dependent upon a complete understanding of the user checkout test results, problem characteristics, and the user system configuration. Checkout results for the 296 SMD Controller should be obtained by performing the following tests. (Include error program counter numbers and accumulator contents if applicable).

FUNCTION

SMD

TES T

Selftest
Diagnostics
Reliability

Other test performed:

Please allow our service department to do the best job possible by answering the following questions thoroughly and returning this sheet with the malfunctioning board.

1. Does the problem appear to be intermittent or heat sensitive? (If yes, explain).
2. What operating system are you running under? (AOS RDOS, DDOS, DTOS).
3. Describe the system configuration (i.e. peripherals, 1/0 controllers, model of computer, etc.)
4. Has the controller been returned before?

To be filled out by CUSTOMER:
Model \#:
Serial \#:
RMA \#:

Returned by:
6.0 PROGRAM CONTROL

6.1	INSTRUCTION FORMAT
6.2	ACCUMULATOR FORMATS

6.2 .1	DOA - SPECIFY COMMAND AND DRIVE	
6.2 .2	DOB - LOAD	STARTING MEMORY ADDRESS
6.2 .3	DOC - LOAD	DRIVER ADDRESS
	6.2.3.1	DOC - SPECIFY CYLINDER
	6.2.3.2	DOC - FIRST DOC SPECIFIES EXTENDED SURFACE, SECTOR and count
	6.2.3.3	DOC - SECOND DOC SPECIFIES LOWER FIVE BITS OF SURFACE, SECTOR AND COUNT
6.2 .4	READ Status - NON-ALTERNATE MOde	
	6.2.4.1	DIA - READ DATA TRANSFER STATUS
	6.2.4.2	DIB - READ DRIVE Status
	6.2.4.3	DIC - READ SURFACE,SECTOR AND COUNT

6.2.5 READ STATUS - ALTERNATE MODE ONE 6.2.5.1 DIA - READ CURRENT MEMORY
6.2.5.2 DIB - READ EXTENDED MEMORY ADDRESS
6.2.5.3 DIC - NOT CURRENTLY IMPLEMENTED
6.2.6 READ STATUS - ALTERNATE MODE TWO 6.2.6.1 DIA - READ ECC REMA INDER UPPER
6.2.6.2 DIB - READ ECC REMAINDER LOWER
6.2.6.3 DIC - NOT CURRENTLY IMPLEMENTED
6.3 DETAILED COMMAND DESCRIPTIONS
6.3.1 DATA TRANSFER COMMANDS
6.3.1.1 READ COMMAND
6.3.1.2 WRITE COMMAND
6.3.1.3 VERIFY
6.3.1.4 FORMAT
6.3.1.5 READ BUFFERS
6.3.2 DRIVE COMMANDS
6.3.2.1 RECALIBRATE
6.3.2.2 SEEK
6.3.2.3 OFFSET FORWARD
6.3.2.4 OFFSET REVERSE
6.3.2.5 WRITE DISABLE
6.3.2.6 RELEASE DRIVE
6.3.2.7 TRESPASS
6.3.2.8 STOP DISK
6.3.2.9 EXAMINE RAM COMMAND
6.3.3 ALTERNATE MODES
6.3.3.1 ALTERNATE MODE ONE
6.3.3.2 ALTERNATE MODE TWO
6.4 ERROR CORRECTION CODE (ECC)
6.5 FORMAT SEQUENCER
6.5.1 READ/WRITE FORMATS
6.5.2 DRIVE CHARACTERISTICS


```
AC = Accumulator: 0, 1, 2 or 3.
DSKP = Device Code: Primary - 27 Octal
                                    Secondary - 67 Octal
                                    (Other avallable by switches)
                                    BINARY REPRESENTATION OF AN I/O INSTRUCTION
\begin{tabular}{|l|l|l|llllllllllllll|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline 0 & 1 & 1 & \(A C\) & \(O P\) & \(C O D E\) & FUNC & & & DEV ICE CODE \\
\hline
\end{tabular}
```

INTERRUPT MASK BIT 7
MSKO AC
Execution of the Mask Instruction with Bit 7 equal to a

```one in the selected accumulator will set the interruptmask within the controller board. This will inhibit anyfurther interrupt requests by the controller until theinterrupt mask is cleared, either by an lORST instructionor execution of the mask instruction with accumulatorBit 7 equal to a zero.
```

IORESET INSTRUCTION
IORST
Execution of an lORST instruction serves as a master reset to the controller board. Upon completion of an IORST the controller will attempt to select unit zero and default the command register to a read operation.

0000 READ START
0001 RECALIBRATE PULSE
0010 SEEK PULSE
0011 STOP DISC
0100 OFFSET FORWARD PULSE
0101 OFFSET REVERSE PULSE
0110 WRITE DISABLE PULSE
0111 RELEASE DRIVE PULSE
1000 TRESPASS PULSE
1001 SET ALT MODE 1 NONE
1010 SET ALT MODE 2 NONE
1011 EXAMINE RAM PULSE
1100 DATA VERIFY START
1101 READ BUFFERS START
1110 WRITE START
1111 FORMAT START
NOTE: See Section 6.3 for detalled command description 9-10 Drive Selection

00 - Drive Unit 0
01 - Drive Unit 1
10 - Drive Unit 2
11 - Drive Unit 3
DOA will reserve a previously unreserved drive
Bit Position 9 is not used if 616X

11-15 Reserved for future consideration
6.2.2 DOB - LOAD STARTING MEMORY ADDRESS

 DOBF AC, DSKP
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | $A C$ | 1 | 0 | 0 | F | | DEVICE | CODE | | | | | |

Accumulator

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

	MEMORY ADDRESS BITS
EXTENDED MEMORY ADDRESS BIT	

Execution of this instruction will load the controllers address counter with the contents of the specified accumulator and will be used as the starting memory address for a command that requires a data channel transfer operation.
6.2.3 DOC - LOAD DRIVE ADDRESS
$\frac{6.2 .3 .1 \text { DOC - SPECIFY CYLINDER }}{\text { DOCF AC, DSKP }}$

0	1	2	3	4	5	6	7	8	9	10	11	12

Accumulator (if previous DOA specified a Seek)

6.2.3.2 DOC - FIRST DOC SPECIFIES EXTENDED SURFACE, SECTOR
AND COUNT (DOUBLE DOC MODE ONLY)

Accumulator (if previous DOA specified a Read, Write, Format or Data Verify)

6.2.3.3 DOC - SECOND DOC SPECIFIES LOWER FIVE BITS OF SURFACE, SECTOR AND COUNT (FIRST AND ONLY DOC IF SINGLE DOC MODE)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	SURFACE ADDR	SECTOR ADDR	COUNT												

0- Not Used
1-5 Starting Surface Address
6-10 Starting Sector Address
11-15 Two's complement of number of sectors to be transferred
6.2.4 READ STATUS - NON ALTERNATE MODE
6.2.4.1 DIA - READ DATA TRANSFER STATUS

DIAF, AC, DSKP

0	1	2	3	4	5	6	7	8	9	10	11	12	13

Accumulator

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	-		Control Full												
1	-		R/W Done												
2	-		Unit 0 Atten Done												
3	-		Unit 1 Atten Done												
* 4	-		Unit 2 Atten Done												
* 5	-		Unit 3 Atten Done												
6	-		Bus Error												
7	-		lllegal Sector Adr												
8	-		ECC Error												
9	-		Bad Sector Flag												
10	-		Cyl Addr Error												
11	-		Surf/Sect Addr Error												
12	-		Verify Error												
13	-		R/W Timeout												
14	-		Data Late												
15	-		Read/Write Fault												

Will be a one when the controller receives a pulse function. Will be a zero once the controller completes the function to the drive that was specified by the command (Recal, Seek, Stop Disk, Offset, WRT DIS, Release, Trespass and Exam Ram).

A one indicates that the done flag was set following a data transfer command.

A one indicates that the respective drive completed a successful seek or recalibrate operation. If the drive was unsuccessful in its attempt to seek, a positioner fault status will be indicated. A recalibrate operation will clear the fault.

An incorrect number of memory transfers resulted on the data channel when set to a one.

The starting sector address (DOC) exceeded the capacity of the drive if set to a one. Done sets immediately.

BAD SECTOR FLAG

CYLINDER ADDRESS ERROR

A sector of data read from the disk did not correlate with the appended polynomial. This means that the data read does not agree with the data that was originally written.

The controller detected the bad sector flag set to a one within the sectors address header. (Done will set immediately). This implies that the format program originally determined that the surface within this sector could not support errorless data.

The Cylinder Address contained within the Sectors Header did not match the requested cylinder given by the previous seek command. Bit 11 will set, instead, if there is no match due to a media flaw.

The Read/Write Operation will
be terminated immediately.

VERIFY ERROR

READ/WRITE TIMEOUT
data late
READ/WRITE FAULT FLAG

This status bit may be set by one of the following cases:

1) The Surface or the Sector

Address contained within the
Sectors Header did not match
the current contents of the
controller's Surface/Sector
Register (initiated by a DOC).
2) The CRC polynomial did not ed.
correlate with the Header Address.
3) The Data Sync on a Read Command could not be detected.

The Read/Write operation wlll be terminated immediately.

Data in memory did not agree with the data on the disk. (See Verify Command).

A Read or Write type of operation did not complete within one second.

Not implemented.
A one indicates that at least one bit is set in bit positions 6 through 14 or a drive fault occurred during a Read/Write transfer operation.

Refer to Table 6.1 for detalled description.

	$\begin{aligned} & \text { STATUS BIT } \\ & \text { POS ITION } \end{aligned}$	CONTROLLLER ACTION	ERROR RECOVERY
BUS ERROR	6	Sets done immediately	New command re-try Read/Write Transfer. May correct the problem.
ILLEGAL SECTOR ADDRESS	7	Sets done immediately	New command if error reoccurs. Check the drive characteristic switches to make sure it agrees with drive type.
ECC ERROR	8	Sets done at the end of sector transfer	New command. Re-tries with servo offset may correct the data. If this error is detected on a surface analysis, the bad sector flag should be set.
BAD SECTOR FLAG	9	Sets done immediately	New command. This sector should be ignored.
CYLINDER ADDRESS ERROR	- 10	Sets done immediately	New command. The system should diagnose this as a positioner fault.
SURF/ SECTOR ADDRESS ERROR	11	Sets done immediately	New command. Bad sector flag should be set if surface analysis.
VERIFY ERROR	12	Sets done at the end of the sector transfer	New command. Check ECC error also to determine if the error occurred due to a flaw in the media.
READ/ WRITE TIMEOUT	13	Sets done immediately	New command.

TABLE 6.1
$\frac{6.2 .4 .2 \text { DIB - READ DRIVE STATUS }}{\text { DIB AC, DSKP }}$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | $A C$ | 0 | 1 | 1 | F | | DEV ICE CODE | | | | | | |

Accumulator

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
* 0	-			al	d S	†at									
* 1	-		Dr	ve	Res	erv									
* 2	-		Tre	spa	assed										
3	-		Rea												
4	-		Bus												
* 5	-		Pos	$i+$	one	r	$f f$								
6	-			te	Dis	abl									
* 7	-		ID												
* 8	-		11	S	ur/C	y 1	Add								
* 9	-			ega	1	- mm	and								
* 10	-		DC	Vol	tag	e F	aul								
*11	-		Pac	k	Unsa										
12	-		Pos	$i \dagger 1$	oner	r F	aul								
* 13	-		Ser	vo	Clo	ck	Faul								
* 14	-		Wr	te	Fau										
15	-		Dr	ve	Faul										

DRIVE RESERVED

TRES PASSED
READY

BUSY

POSITIONER OFFSET

WRITE DISABLED

ID

INVALID STATUS A one indicates that Status Bits 1 through 15 should be ignored because the drive is not selected or it is in the process of being selected.

This Bit is a one if 6122 is selected, a zero for all other emulations.

The requested surface or cylinder address exceeds the capacity of the drive. Read/Write operation will terminate immediately.

This flag would set if the format on the disk did not agree with what the controller expected. Check the switch settings to make sure the proper format was selected by the drive during a write type of operation. DRIVE FAULT One or more bits are set in positions 8 through 14 or the drive detected an abnormal condition.

Refer to Table 6.2 for more detalled description.

```
6.2.4.3 DIC - READ SURFACE, SECTOR AND COUNT
    DICF AC, DSKP
```

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	1	$A C$	1	0	1	F		DEV ICE			CODE			

Accumulator

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
NU	CURRENT SURFACE ADDR	CURRENT SECTOR ADDR	TWO'S COMPL EMENT OF SUMBER OF SECTORS REMAA INING											

6.2.5 READ STATUS - ALTERNATE MODE ONE

See detailed description of Alternate Mode One Command.
Previous DOA specified ALT Mode One for Sections 6.2.5.1
through 6.2.5.3.
6.2.5.1 DIA - READ CURRENT MEMORY ADDRESSDIAF AC, DSKP
Accumulator

After the execution of this instruction the value of the accumulator will contain the memory address to where the next data word transfer will take place. The memory address counter is incremented by one after each data channel transfer.
6.2.5.2 DIB - READ EXTENDED MEMORY ADDRESSDIBF AC, DSKP
Accumulator

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

| | HD SEC
 MSB MSB | CNT
 MSB |
| :--- | :--- | :--- | :--- | :--- | :--- |

The AC will contain the current most Significant Bits for the Surface (Bit 4), Sector Address (Bit 5) and Two's Complement Count (Bit 10). These Bits will allow the System to reference up to 64 heads or sectors.
6.2.5.3 DIC - NOT CURRENTLY IMPLEMENTED
6.2.6 READ STATUS - ALTERNATE MODE TWO
See detailed description of Alternate Mode Two
Command. Previous DOA specified ALT Mode Two for
Sections 6.2.6.1 through 6.2.6.3.
STATUS BIT
POSITION
∞
∞
σ
11 Recal Command
ERROR RECOVERY
None
None
None

Fault Status is issued to
the controller along with
Seek Error.
None
ERROR RECOVERY
New Command
New Seek or
Recal Command
New Command

$$
\begin{aligned}
& \text { A Recal Command, } \\
& \text { if the controller } \\
& \text { caused the Fault } \\
& \text { (i.e. exceeding } \\
& \text { the Surface or } \\
& \text { Cylinder Address or } \\
& \text { Write Command while } \\
& \text { Write is disabled). }
\end{aligned}
$$ If it is detected

 or Write Command, Pack
Unsafe will also Set
and the Command will
terminate immediately.
s! pиешшој ә7!мм/реәу Reformat the surface
or select the proper
format on the controller.
The format on the surface
did not agree with the
format selected on the
controller.
DRIVE FAULT TABLE (DIB)
ILLEGAL SURFACE
ILLEGAL CYLINDER
ILLEGAL COMMAND
PACK UNSAFE
POSITIONER FAULT
SERVO CLOCK

```
6.2.6.1 DIA - READ ECC REMA INDER UPPER
    DIAF AC, DSKP
```

Accumulator

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x^{31}	x^{30}	x^{29}	x^{28}	x^{27}	x^{26}		x^{24}	x^{23}		x^{21}	x^{20}	x^{19}	x^{18}	x^{17}	x^{16}

6.2.6.2 DIB - READ ECC REMA INDER LOWER

DIBF AC, DSKP
Accumulator

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x^{15}	x^{14}	x^{13}	x^{12}	x^{11}	x^{10}	x^{9}	x^{8}	x^{7}	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	X	x^{0}

6.2.6.3 DIC - NOT CURRENTLY IMPLEMENTED

6.3 DETAILED COMMAND DESCRIPTIONS

The command set (16 in all) provided by the controller is basically broken up into three groups:

1. Data Transfer Command
2. Drive Commands
3. Alternate Mode Commands

The Command is stored in the controller via a DOA instruction. Before any Command is initiated, the selected Unit must have valid status and be ready.
6.3.1 DATA TRANSFER COMMANDS

Start (Set Busy) will initiate any one of the following commands: Read, Write, Format, Verify or Read Buffers up to 64 contiguous sectors may be transferred.

Read/Write Initialization Steps:

1. Control full and Drive status must be tested for proper state before commencing with a Read/Write Command.
2. Send the Starting Surface and Sector Address along with the two's complement of the number of sectors transferred. (See DOC)
3. Send the Starting Memory Address of where the data should be stored or retrieved. (See DOB)
4. Send the Command type and the desired Drive Unit Number. (See DOA)
5. Issue a Start Pulse.

Read/Write Termination Possibilities (Done Set):

1. All the sectors implied by the two's complement sector count were transferred.
2. A Drive or Read/Write Error was encountered. DIC command should be issued to determine which sector the error occurred at.
3. Busy was cleared by an IORESET instruction or a clear pulse was issued to the controller during the Read/Write transfer. Done will not set in this case.

6.3.1.1 READ COMMAND

When busy sets, the controller will wait for on cylinder if the previous seek command has not been completed yet. It will then search for the starting sector address specified by the previous DOC instruction. The header is read and compared with the starting sector address, starting surface address and stored cylinder address to insure that the proper sector has been physically located. Before the data can be accepted the header must match the specified address, the header CRC must be good and no bad sector flags encountered. If the header is in error or the bad sector flag is a one, the appropriate status bit and done flag is set immediately. When the drives RD/WRT head reaches the data field the serlal data is sent to the SMD interface formed into parallel words by the controller and transferred to the buffer. When all 256 words are contained within the buffer, the ECC Code appended in the data is checked to insure proper data by reading the results of the remainder. A data error occurred if the remainder is not equal to zero. In the case of an error the controller will transfer the data into memory and then set ECC Error Flag and Done. If the ECC Enable switch was closed (refer to switch settings), the controller will attempt to correct the data within its own buffer prior to transferring it to memory.

If it determines that it is not correctable, the controller will re-try on its own with a Data Strobe Early and if unsuccessful, again with a Data Strobe Late. If the data is still not correctable, then it will set ECC Error Flag and Done. If more sectors are to be transferred, the controller will begin searching for the next sector while the data from the previous sector is transferred to memory.

6.3.1.2 WRITE COMMAND

When busy sets, the controller will wait for the positioner to be on cylinder if the selected drive is still in the process of seeking. Upon the completion of the previous seek operation, the controller will transfer 256 words of data from memory to a sector buffer. The starting address of memory was specified by the previous $D O B$ instruction. The controller searches for the desired sector and performs a head verification (same as the read command) before data is written on to the surface of the disk. Once the correct sector is found, the controller will select the sector buffer previously written by the data channel control. The contents of this buffer is then written on to the disk surface proceeded by a gap and data sync. The controller incorporates two sector buffers. Therefore, the data channel logic can write into one buffer while data is transferred to the disk from the other.
6.3.1.3 VERIFYWhen busy sets, the controller initially starts out asif it were a read command (i.e. wait for on cylinder,verify header etc). Once a full sector is transferredfrom the disk to a controller buffer a comparison ismade agalnst system memory. This is accomplished byreading a word from memory starting from the previousDOB and comparing each word of sector. If a word doesnot compare, data transfer status (D|A) Bit 12 andDone will set.
6.3.1.4 FORMAT
The objective of the format command is to write the header information (surface, sector and cylinder address) on a sector. Up to 64 contiguous sectors may be formatted per command. Data that was contained within the sector will be lost (replaced by all zeros). Refer to Figure 6.2 for format detalls. Format is also used to set the bad sector flag.

6.3.1.5 READ BUFFERS

Reads the contents of the currently used buffer and transfers all 256 words to memory specified by the starting address. Primarily used for diagnostic purposes.
6.3.2 DRIVE COMMANDS
IOPULSE (sets control full) initiates any one of the following commands: Recallbrate, Seek, Stop, Offset, Write Disable, Release, Examine Ram and Trespass.

6.3.2.1 RECALIBRATE

Moves the heads to cylinder 0 , selects Head 0 , and issues a fault clear to the drive.

An lORESET switch will automatically cause a recalibrate command to be issued to Unit 0 .

This command moves the heads more slowly than a seek to 0 , so it should not be used for data acquisition.

6.3.2.2 SEEK

Moves the heads to the cylinder specified by the DOC.
The controller stores the cylinder address for that particular unit, initiates the seek operation and clears control full. While that unit is busy seeking the controller can accept another seek command for a different unit (overlapped seeks) or commence with a Read/Write Command for the unit busy seeking.

See the SMD specification for the Seek Timing.

```
6.3.2.3 OFFSET FORWARD
    Offsets the heads forward off the track center-line.
    This operation is cleared by the next command. (The
    drive does not allow write operations when the
    positioner is offset).
```

Offsets the heads reverse off the track center-line. This operation is cleared by the next command. (The drive does not allow write operations when the positioner is offset.) Offset forwared or reverse may be used as an attempt to recover data that cannot be corrected by the error correction algorithm.

6.3.2.5 WRITE DISABLE

Not implemented.
6.3.2.6 RELEASE DRIVE

Clears the reserved condition of the specified drive which this processor had previously reserved.

6.3.2.7 TRESPASS

The controller issues a priority select to the specified drive. The drive will immediately be reserved until a release command is issued or the drive timout feature times out.

```
6.3.2.8 STOP DISK
```

All drives connected that are selected for remote operation will unload the heads and spin down via the pick-hold line. A console reset, IORESET instruction,
or another command will spin the disk back up.

6.3.2.9 EXAMINE RAM COMMAND

This command gives the system the capability of reading
from or writing to the 296 controllers memory. This command
must be proceeded by a DOC containing the address of the desired RAM location.

In order to write to RAM, Bit 0 (MSB) must be a one in the DOC address, and the data to be written is sent via the DOB. If a read RAM is implied (DOC Bit $0=0$), the contents of the DIC will contain the RAM data after control full clears.

This feature is used for obtaining the following information:
a. Drive characteristics for the formatter and rellability programs.
b. Number of ECC corrections by the controller (each unit has a separate count).
c. Maintenance testing.
d. Features that may be considered in the future.

DETAILED DESCRIPTIONS OF USER RAM LOCATIONS
OCTAL ADDRESS NAME DESCRIPTION
1422

DISABLE CORRECTION

The least significant bit is used to indicate if controller self corrections are permitted. This bit will be initialized on a power on or an IORESET switch. If the ECC switch (G5 SW Position 8) is on it will be initialized to a zero, if it is off it will be initialized to a one. If one is written into this bit, correction will be software disabled. Correction cannot be software enabled if the ECC Enable switch is off.

1460-1462	SELECTED DRIVE CHARACTERISTICS	These locations will be updated whenever a new drive is selected. 1460 - Maximum sector address 1461 - Maximum surface address 1462 - Maximum cylinder address Allow invalld status to go away before a reference is made. Avold writing to these locations.
1500-1503	UNIT CORRECTION COUNTS	These locations will be incremented each time the controller does a correction either by the ECC algorithm or an Early/Late re-try. The maximum count per unit is 65535 (the count will stay at maximum if there are any more corrections to that unit). The counts are initialized to zero on either a power on or an IORESET switch.
		A separate count is maintained for each unit. 1500 -Unit 0 1501 - Unit 1 1502 - Unit 2 1503 -Unit 3

1776-8 EPROM REVISION LEVEL
DIC ACCUMULATOR

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | REV IS ION LEVEL | | | | | | |

EXAMPLE: Revision Level 6 EPROMS
Location 1776-8 = 000006-8

1777-8 PROM ID/REV
DIC ACCUMULATOR

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	R	IDENTIFICATION			REVISION LEVEL										
	E	S													

EXAMPLE: Identification 80 (Hex) Revision Level 6
Location 1777-8 $=100006$

NOTE: Avoid referencing any locations that are not defined here.

EXAM RAM EXAMPLE
READ Contents of Loc 1500 Octal (Unit O corrections)
Accumulator Set up:
AO $=002600$ (NOP Command Unit 0)
A1 = 001500 (RAM Address for DOC)
DOC 1, DSKP ; Send RAM Address
DOAP 0, DSKP ; Send NOP Command and IOPULSE
DIA 0, DSKP ; Wait for Control Full
MOVZL\# 0,0,SZC ; To be zero
JMP .-2
DIC 2, DSKP ; Put contents of RAM Location 1500 into Accumulator 2
WRITE To Location 1500 Octal (Clear Unit O Corrections)Accumulator set up:
$A 0=002600$ (NOP Command Unit 0)
A1 $=101500$ (RAM Address for DOC)
A2 2000000 (RAM Data)
DOC 1, DSKP ; Send RAM Address
DOB 2, DSKP ; Send RAM Data
DOAP 0, DSKP ; Send NOP Command and IOPULSE

6.3.3 ALTERNATE MODES

A command that will change the context of the data recelved from a DIA, DIB or DIC. A command other than Alternate Mode or an IORESET will clear Alternate Mode.
6.3.3.1 ALTERNATE MODE ONEIt changes the context of DIA to read the current memoryaddress. The ending address after a Read/Write transferwill point to the last address plus one.
6.3.3.2 ALTERNATE MODE TWO
It changes the context of the DIA and DIB command. Thisis used to extract the syndrome (ECC remainder not equalto zero after a read command) from the controller inorder to determine whether the data error within the
sector read is correctable or not.
6.4 ERROR CORRECTION CODE (ECC)
When a write command is specified the ECC hardware divides
the data field within the sector by a fixed *generator
polynomial and appends the resulting checkword to the
data field.
*Generator Polynomial
$X-32+X-23+X-21+X-11+X-2+1$

```
When a read command is specified the ECC hardware divides
the data field and the appended checkword within the
sector by a *factored version of the same generator
polynomial. If a data error occurs, the resulting
remainder is non-zero, and the data transfer status (D|A)
bit position 8 is set (bit 8 will not set if the controller
was enabled to correct and the error is correctable). Be
aware that there exists a small class of errors which are
undetectable due to the cyclic properties of the
generator polynomial.
*Factored Version
    (x-1 +x-2 + 1)(x-21+1)
The ECC feature detects all error bursts contained within
21 or less contiguous bits in a sector and allows correction
of all error bursts up to 11 contiguous bits.
```


Figure 6.1

6.5 FORMAT SEQUENCER

The 296 Disk Controller features a format sequencer which controls the disk side of the controller. The firmware which controls this sequencer is contained in 2716 EPROMS allowing disk format changes to take place in the EPROMS instead of the microprocessor firmware.

The format sequencer firmware is arranged in eight banks of 256 words each and is switch selectable for the format bank desired. Each bank consists of half READ/WRITE/ FORMAT CODE and the other half drive characteristics. See Figure 6.1.

6.5.1 READ/WRITE FORMATS

The Read/Write/Format section of a given bank contains the format choices (Main or Alternate).

The Alternate Format is selected only on Ports 2 and 3. Therefore, two header format types could operate simultaneously on this controller restricted only by the port locations. See Figure 6.2 for Header Formats supported and Tables 3.1/3.2.
6.5.2 DRIVE CHARACTERISTICS

The drive characteristics section consists of 16 separate blocks of drive characteristics configurable for each port.

The following is information necessary to format size and communicate precisely with a given disk drive.

1) Maximum Surface, Sector and Cylinder Address
2) Two Volume (CMD, Lark, etc.) and Dual Volume
3) Sync Byte

DIAGNOSTIC SUPPORT PACKAGE GENERAL INFORMATION

Booting Diagnostics from Magnetic Tape.

Step 1 Mount the tape on the Tape Drive and put the Drive

tape you recelived.
Step 2 Program Load - The method of program load varies for different processors. Some of the possibilities are described here.

If your system does not have a program load option, consult your processor manual.

If your system has front panel switches, set them to 100022 for the Primary Tape Drive, or 100062 for the Secondary Drive. Then press program load switch.

For the 5140 virtual console, set 11 A to 100022 for the Primary Tape Drive, or 100062 for the Secondary Drive. Then enter 100022 L (or 100062 L).

For the S 120 virtual console, enter 22 H for the Primary Tape Drive or 62 H for the Secondary Drive.

For the Point 4 virtual console, enter P22 for the Primary Tape Drive or P62 for the Secondary Drive.
LOADING DIAGNOSTICS FROM TAPE TO YOUR SYSTEM DISK
The last file on the DSP Tape (reference menu for number)
is a DUMP Format copy of the previous files. This allows
a User to load (use RDOS load command) the files onto a disk.
Step 1 While the System is running, mount the tape and put the Drive On-line. Be sure that you have correct BPI setting.
Step 2 For an RDOS System enter the commands:
INIT MTO
LOAD/R/V MTO:X
RELEASE MTO
For an AOS System enter the commands:
SUPERUSER ON
DIR :
X RDOS LOAD/V EMTAO:XREWIND EMTAOSUPERUSER OFF
The files can now be booted from disk (enter file name in response to filename? or pathname?).
PARTS LIST
CUSTOM SYSTEMS, INC.

PARTS LIST
CUSTOM SYSTEMS, inc.

WIRE LIST

WIRE LIST

PARTS LIST
custom systems, inc.
EXTERNAL "A" CABLE ASSEMBLY

DESCRIPTION
External "A" Cable
78 Pin "D" Connector
Male Pin
Connector Shield
Screw Set

REF. DWG.
MFG.
등
$\stackrel{0}{7}$
$\underset{\sim}{2}$
Amp
会
Amp
Amp

WIRE LIST

NOTES	$\begin{array}{\|l\|l\|} \hline \text { WIRE } \\ \text { GAUGE } \end{array}$	cotor	ORIGIN	$\left\lvert\, \begin{gathered}\text { TEPNM } \\ \text { Mirued }\end{gathered}\right.$	DESTINATION		REMARKS
TwP		${ }_{\substack{\text { BRN } \\ \text { BLK }}}$	${ }^{p 1}$	Mass	${ }_{\text {P2-2 }}$	$\stackrel{3}{3}^{\text {a }}$	
		RED BLK			P2-3		
		${ }_{\substack{\text { ORG } \\ \text { BLK }}}$			${ }_{\text {P2-5 }}^{\text {P2-6 }}$		
		YEL BLK			${ }_{\text {P2-7 }}$		
1		${ }_{\text {cick }}^{\text {GRN }}$			${ }_{\text {P2-10 }}$		
)		BLU BLK			${ }_{\text {P2-11 }}{ }_{\text {P2-12 }}$		
		Vio BLK			${ }_{\text {P2-13 }}{ }_{\text {P2-14 }}$		
		$\underbrace{\text { gry }}_{\text {gLK }}$			${ }_{\text {P2-15 }}^{\text {P2-16 }}$		
					${ }_{\text {P2-17 }}^{\text {P2-18 }}$		
		$\underset{\substack{\text { Red } \\ \text { BRN }}}{ }$			${ }_{\text {P2-19 }}{ }_{\text {P2-20 }}$		
		${ }_{\substack{\text { org } \\ \text { BRN }}}$			- ${ }_{\text {P2-21 }} \mathrm{P}$		
		${ }_{\substack{\text { YeL } \\ \text { BRN }}}$			${ }_{\substack{\text { P2-23 } \\ \text { P2-24 }}}$		
		${ }_{\text {gren }}^{\text {GRN }}$			${ }_{\text {P2-25 }}{ }_{\text {P2-26 }}$		
		${ }_{\text {BRUN }}^{\text {BRU }}$			${ }_{\substack{\text { P2-27 } \\ \text { P2-28 }}}$		
$\underset{\text { TwP }}{ } \stackrel{ }{ }$		$\underset{\substack{\text { vio } \\ \text { BRN }}}{ }$	$\stackrel{\rightharpoonup}{\text { pl }}$	mass	(${ }_{\substack{\text { P2-29 } \\ \text { P-30 }}}$	\checkmark	
	custom systems			$\begin{gathered} \text { EXTERNAL "A" CABLE ASSEMBLY } \\ \hline \end{gathered}$			
				Docum	MENT NO.	${ }^{286-C 07-20}$	2R0-00

WIRE LIST

NOTES	$\left\|\begin{array}{l} \text { WIRE } \\ \text { GAUGE } \end{array}\right\|$	COLOR	ORIGIN	TERPN:	DESTINATION		REMARKS
${ }^{\text {TuP }}$		$\underset{\substack{\text { GRY } \\ \text { BRN }}}{ }$	$\stackrel{\mathrm{Pl}}{ }$	MASS	- ${ }_{\text {P2-31 }}{ }_{\text {P2 }}$	$\stackrel{3}{3}^{+}$	
		${ }_{\substack{\text { ght } \\ \text { BRN }}}$			- ${ }_{\text {P2-33 }}$		
		$\underbrace{}_{\substack{\text { ORG } \\ \text { RED }}}$			${ }_{\text {P2-36 }}{ }_{\text {P2 -35 }}$		
		$\underset{\substack{\text { YeL } \\ \text { RED }}}{ }$			- ${ }_{\text {P2-37 }}$		
		$\underbrace{\substack{\text { Red }}}_{\text {gen }}$			- ${ }_{\text {P2-39 }}$		
		${ }_{\substack{\text { BUL } \\ \text { RED }}}$			${ }_{\text {P2-41 }}{ }_{\text {P2-42 }}$		\%
		$\underset{\substack{\text { vio } \\ \text { RED }}}{ }$			${ }_{\substack{\text { P2-43 } \\ \text { P2-44 }}}$		
		$\underbrace{}_{\substack{\text { gry } \\ \text { ReD }}}$			${ }_{\text {P2-45 }}^{\text {P2-46 }}$		
		$\underset{\substack{\text { nht } \\ \text { ReD } \\ \hline}}{ }$			${ }_{\text {P2-48 }}^{\text {P2-47 }}$		
		$\underset{\substack{\text { YeL } \\ \text { ORG } \\ \hline}}{ }$			${ }_{\text {P2--49 }}$		
		${ }_{\substack{\text { gra } \\ \text { ORG }}}^{\text {gr }}$			${ }_{\text {P2-51 }}{ }_{\text {P2-52 }}$		
		¢Riv			${ }_{\text {P2-53 }}{ }_{\text {P2 }}$		
		-			- ${ }_{\text {P2-55 }}$		
		$\underset{\substack{\text { gry } \\ \text { ORG }}}{\text { ctiol }}$			P2-57		
$\underset{\text { Twe }}{V}$		wht	$V_{\mathrm{p} 1}$	$\underset{\text { mass }}{v}$	- ${ }_{\text {P2-59 }}^{\text {P2-60 }}$	\checkmark_{3}	
	custom systems			$\begin{gathered} \operatorname{TITLE} \\ \text { ExTERAL "A" CABLE ASSEMBLY } \\ \hline \end{gathered}$			
				DOCU	UMENT No.	286-C07	-Ro-00

.

REVISION HISTORY		
ECO	OATE	OESCRIPTION

 (
PARTS LIST
custom systems, inc.

FOR			INTERNAL "B" CABLE AS'SEMBLY
ITEM	OTY	PART TYPE	DESCRIPTION
1	1	$287-C 04-2 S 0$	Internal "B" Cable
2	1	$205211-2$	50 Pin "D" Connect
3	26	$66505-8$	Female Pins
4	1	D20418-2	Hex Set

WIRE LIST

EXTERNAL "B" CABLE ASS'Y 287-C07-250-00

PARTS LIST
CUSTOM SYSTEMS, INC.
EXTERNAL "B" CABLE ASSEMBLY
DESCRIPTION
External "B" Cable 50 Pin "D" Connector Mate Ping-
Connector Shield
Screw Set

PART TYPE	
$287-$-06-2S0	
$205212-3$	
$66507-2$	
$1-747098-1$	
$205980-1$	

item or
-
for
MFG.
Radon
Amp
全
웅 운

custom systems.

WIRE LIST

[^0]: *NOTE: Single DOC Mode requires W6-1 and W6-2 be removed. Double DOC requires W6-2 be in and W6-1 should still be removed. W6-1 and W6-2 are located by F2 on the controller board.

